1
|
Su Q, Yang H, Li X, Zhong Y, Feng Y, Li H, Tahir MM, Zhao Z. Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. PLANT PHYSIOLOGY 2024; 196:1887-1907. [PMID: 39158080 DOI: 10.1093/plphys/kiae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, shaanxi 712100, China
| |
Collapse
|
2
|
Mei Q, Li M, Chen J, Yang J, Duan D, Yang J, Ma F, Mao K. Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple. Gene 2024; 935:149076. [PMID: 39505090 DOI: 10.1016/j.gene.2024.149076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
E3 ligases are essential for ubiquitination and play a role in regulating various aspects of eukaryotic life. Ariadne (ARI) proteins, a subfamily of RBR (RING-between-RING) proteins, have been recognized as a new class of RING-finger E3 ligases. Recent research has shed light on their potential involvement in plants' responses to abiotic stress. However, comprehensive studies on ARI genes in apple (Malus domestica) are still lacking. This study identified ten MdARI genes in the apple genome, and examined intraspecific and interspecific collinearity to explore the evolutionary relationships of ARI family members. Phylogenetic analyses classified MdARIs into two subfamilies (A and B), and by integrating gene structure, conserved motifs, and sequence comparison results, subfamily B was further divided into two subgroups (I and II). Tissue expression analyses revealed varied expression patterns of MdARI genes in different tissues, and subcellular localization showed that MdARI1-1, MdARI1-2, and MdARI9-1 were located in the nucleus, while the other seven MdARIs were distributed throughout the cell. Analyses of promoter cis-elements and expression patterns under cold, salt, and drought treatments indicated the involvement of MdARIs in abiotic stress responses. Several proteins crucial to the plant stress response were predicted to be potential MdARIs-interacting proteins based on the protein interaction network. Additionally, the interaction between UBC11 (E2) and MdARI7-2 was confirmed by a yeast two-hybrid (Y2H) experiment, suggesting that MdARI7-2 may function as an E3. These findings will greatly benefit future research on the role and mechanisms of ARI proteins in apple stress response.
Collapse
Affiliation(s)
- Quanlin Mei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang Z, Yang T, Liu Y, Wu S, Sun H, Wu J, Li Y, Zheng Y, Ren H, Yang Y, Shi S, Wang W, Pan Q, Lian L, Duan S, Zhu Y, Cai Y, Zhou H, Zhang H, Tang K, Cui J, Gao D, Chen L, Jiang Y, Sun X, Zhou X, Fei Z, Ma N, Gao J. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. NATURE PLANTS 2024; 10:1659-1671. [PMID: 39394508 DOI: 10.1038/s41477-024-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida 'Samantha' ('JACmantha') and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars. Homologous chromosomes of 'Samantha' exhibit frequent homoeologous exchanges. Population genomic and genomic composition analyses reveal the contributions of wild Rosa species to modern roses and highlight that R. odorata and its derived cultivars are important contributors to modern roses, much like R. chinensis 'Old Blush'. Furthermore, selective sweeps during modern rose breeding associated with major agronomic traits, including continuous and recurrent flowering, double flower, flower senescence and disease resistance, are identified. This study provides insights into the genetic basis of modern rose origin and breeding history, and offers unprecedented genomic resources for rose improvement.
Collapse
Affiliation(s)
- Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Haoran Ren
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuyong Yang
- Kunming Yang Chinese Rose Gardening Co. Ltd., Kunming, Yunnan, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenyan Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Lijuan Lian
- People's Government of Weishanzhuang Town, Daxing, Beijing, China
| | | | - Yingxiong Zhu
- Yunnan Xinhaihui Flower Industry Co. Ltd., Tonghai, Yunnan, China
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hougao Zhou
- College Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Kaixue Tang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | | | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA.
- USDA-ARS Robert W Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Qi Y, Shan D, Cao Y, Ma N, Lu L, Tian L, Feng Z, Ke F, Jian J, Gao Z, Xu Y. Telomere-to-telomere Genome Assembly of two representative Asian and European pear cultivars. Sci Data 2024; 11:1170. [PMID: 39461942 PMCID: PMC11513147 DOI: 10.1038/s41597-024-04015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
As the third most important temperate fruit, Pear (Pyrus spp.) exhibits a remarkable genetic diversity and is classified into two mainly categories known as Asian pear and European pear. Although several pear genomes are available, most of the released versions are fragmented and not chromosome-level high-quality. In this study, we report two high-quality genomes for Pyrus bretschneideri Rhed. cv. 'Danshansuli' (DS) and Pyrus communis L. cv. 'Conference' (KFL), which represent the predominant Asian and European cultivars, respectively, with nearly telomere-to-telomere (T2T) gap-free level. The finally assembled genome sizes for DS and KFL were 510.98 Mb and 510.71 Mb, respectively, with Contig N50 of 29.47 Mb and 30.47 Mb, where each chromosome was represented by a single contig. The DS and KFL genomes yielded a total of 46,394 and 44,702 protein-coding genes, respectively. Among these genes, the functional annotation accounted for 96.47% and 96.46% in the DS and KFL genomes. The two novels nearly T2T genomic information offers an invaluable resource for comparative genomics, genetic diversity analysis, molecular breeding strategies, and functional exploration.
Collapse
Affiliation(s)
- Yongjie Qi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Dai Shan
- BGI Genomics, Shenzhen, 518083, China
| | - Yufen Cao
- Chinese Academy of Agricultural Sciences (CAAS), Xingcheng, 125100, China
| | - Na Ma
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Liqing Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Luming Tian
- Chinese Academy of Agricultural Sciences (CAAS), Xingcheng, 125100, China
| | - Zhan Feng
- BGI Genomics, Shenzhen, 518083, China
| | - Fanjun Ke
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jianbo Jian
- BGI Genomics, Shenzhen, 518083, China.
- Marine Biology Institute, Shantou University, Shantou, 515063, China.
| | - Zhenghui Gao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Yiliu Xu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
5
|
An ZS, Zuo CW, Mao J, Ma ZH, Li WF, Chen BH. Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear ( Pyrus bretschneideri Rehd.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2928. [PMID: 39458875 PMCID: PMC11511176 DOI: 10.3390/plants13202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. 'Huangguan') (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (Z.-H.M.)
| |
Collapse
|
6
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
7
|
Zhang B, Yang HJ, Li YN, Zhu ZZ, Zhao ZY, Yang YZ. MdNAC5: a key regulator of fructose accumulation in apple fruit. THE NEW PHYTOLOGIST 2024. [PMID: 39363422 DOI: 10.1111/nph.20158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
The sweetness of apple fruit is a key factor in the improvement of apple varieties, with fructose being the sweetest of the soluble sugars, playing a crucial role in determining the overall sweetness of the apple. Therefore, uncovering the key genes controlling fructose accumulation and deciphering the regulatory mechanisms of fructose are vitally important for the improvement of apple varieties. In this study, through BSA-seq and transcriptome analysis of the 'Changfu 2' × 'Golden Delicious' F1 hybrid population, MdNAC5 was identified as a key regulatory gene for fructose content. MdNAC5 was shown to significantly influence fructose accumulation in both apples and tomatoes. Furthermore, we conducted a detailed identification of sugar transporters and metabolic enzymes in apples, discovering that MdNAC5 can enhance fructose accumulation in vacuoles and the conversion of sucrose to fructose by binding to and activating the promoters of the vacuolar sugar transporter MdTST2 and the neutral invertase MdNINV6. Additionally, MdNAC5 regulated the MdEIN3.4-MdSWEET15a module, strengthening the unloading of sucrose in the phloem of the fruit. Our results reveal a new mechanism by which MdNAC5 regulates fructose accumulation in apples and provide theoretical foundations for improving apple sweetness through genetic modification.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Hui-Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Zhen-Zhen Zhu
- Yangling Fruit Industry Innovation Center, Yangling, Shaanxi, 712100, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Ya-Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Švara A, Sun H, Fei Z, Khan A. Advancing apple genetics research: Malus coronaria and Malus ioensis genomes and a gene family-based pangenome of native North American apples. DNA Res 2024; 31:dsae026. [PMID: 39185728 PMCID: PMC11489038 DOI: 10.1093/dnares/dsae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
Wild Malus species flourished in North America long before Europeans introduced domesticated apples. Malus coronaria and M. ioensis are native to the mid-western and eastern United States, while M. angustifolia and M. fusca grow in the southeast and west, respectively. They offer disease resistance, climate and soil adaptability, and horticultural traits for apple breeding. However, their utilization remains limited due to insufficient genomic resources and specific genetics. We report high-quality phased chromosome-scale assemblies of M. coronaria and M. ioensis, generated using long-read and conformation capture sequencing. Phylogenetic and synteny analysis indicated high relatedness between these 2 genomes and previously published genome of M. angustifolia, and lower relatedness with M. fusca. Gene family-based pangenome of North American Malus identified 60,211 orthogroups containing 340,087 genes. Genes involved in basic cellular and metabolic processes, growth, and development were core to the existence of these species, whereas genes involved in secondary metabolism, stress response, and interactions with other organisms were accessory and are likely associated with adaptation to specific environments. Structural variation hotspots were mostly overlapping with high gene density. This study offers novel native North American Malus genome resources that can be used to identify genes for apple breeding and understand their evolution and adaptation.
Collapse
Affiliation(s)
- Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, United States
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United States
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, United States
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, United States
| |
Collapse
|
9
|
Sun H, Abeli P, Campoy JA, Rütjes T, Krause K, Jiao WB, Beaudry R, Schneeberger K. The identification and analysis of meristematic mutations within the apple tree that developed the RubyMac sport mutation. BMC PLANT BIOLOGY 2024; 24:912. [PMID: 39350074 PMCID: PMC11443920 DOI: 10.1186/s12870-024-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars. RESULTS For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree. In addition, we found 54 somatic gene conversions (i.e., loss-of-heterozygosity mutations) that also distinguished the two parts of the tree. Approximately 20% of the mutations were specific to individual cell lineages, suggesting that they originated from the corresponding meristematic layers. Interestingly, the de novo mutations were enriched for GC = > AT transitions while the gene conversions showed the opposite bias for AT = > GC transitions, suggesting that GC-biased gene conversions have the potential to counteract the AT-bias of de novo mutations. By comparing the gene expression patterns in fruit skins from mutant and wild-type branches, we found 56 differentially expressed genes including 18 involved in anthocyanin biosynthesis. While none of the differently expressed genes harbored a somatic mutation, we found that some of them in regions of the genome that were recently associated with natural variation in fruit coloration. CONCLUSION Our analysis revealed insights in the characteristics of somatic change, which not only included de novo mutations but also gene conversions. Some of these somatic changes displayed strong candidate mutations for the change in fruit coloration in RubyMac.
Collapse
Affiliation(s)
- Hequan Sun
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Patrick Abeli
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - José Antonio Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
| | - Thea Rütjes
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Illumina Solutions Center Berlin, Berlin, Germany
| | - Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence On Plant Sciences, Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
10
|
Tian J, Chen Z, Jiang C, Li S, Yun X, He C, Wang D. Chromosome-scale genome assembly of Docynia delavayi provides new insights into the α-farnesene biosynthesis. Int J Biol Macromol 2024; 278:134820. [PMID: 39154695 DOI: 10.1016/j.ijbiomac.2024.134820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Docynia delavayi is an economically significant fruit species with a high market potential due to the special aroma of its fruit. Here, a 653.34 Mb high-quality genome of D. delavayi was first reported, of which 93.8 % of the sequences (612.98 Mb) could be anchored to 17 chromosomes, containing 48,325 protein-coding genes. Ks analysis proved that two whole genome duplication (WGD) events occurred in D. delavayi, resulting in the expansion of genes associated with terpene biosynthesis, which promoted its fruit-specific aroma production. Combined multi-omics analysis, α-farnesene was detected as the most abundant aroma substance emitted by D. delavayi fruit during storage, meanwhile one α-farnesene synthase gene (AFS) and 15 transcription factors (TFs) were identified as the candidate genes potentially involved in α-farnesene biosynthesis. Further studies for the regulation network of α-farnesene biosynthesis revealed that DdebHLH, DdeERF1 and DdeMYB could activate the transcription of DdeAFS. To our knowledge, it is the first report that MYB TF plays a regulatory role in α-farnesene biosynthesis, which will greatly facilitate future breeding programs for D. delavayi.
Collapse
Affiliation(s)
- Jinhong Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhuo Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Can Jiang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Siguang Li
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Xinhua Yun
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Chengzhong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
11
|
Hsiang TF, Chen YY, Nakano R, Oikawa A, Matsuura T, Ikeda Y, Yamane H. Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission. PLANT MOLECULAR BIOLOGY 2024; 114:99. [PMID: 39285107 DOI: 10.1007/s11103-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yue-Yu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto, 619-0812, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
12
|
Herold L, Choi S, He SY, Zipfel C. The conserved AvrE family of bacterial effectors: functions and targets during pathogenesis. Trends Microbiol 2024:S0966-842X(24)00222-1. [PMID: 39278787 DOI: 10.1016/j.tim.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sera Choi
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
13
|
Shen W, Zhang D, Zhang Z, He J, Khalil A, Li X, Ma F, Guan Q, Niu C. The SET-Domain-Containing Protein MdSDG26 Negatively Regulates Alternaria alternata Resistance in Apple. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257329 DOI: 10.1111/pce.15136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Apple leaf spot is one of the most devastating diseases in the apple industry, caused by Alternaria alternata f. sp mali (A. alternata). SET-domain group (SDG) proteins function as the histone methyltransferases and participate in plant development and stress responses. However, whether SDG proteins are associated with A. alternata resistance is largely unclear. Here, we describe the pathogen-inducible MdSDG26 gene in apple (Malus × domestica). MdSDG26 has two transcript variants that function similarly in catalyzing histone methylation and A. alternata resistance. Transient overexpression of MdSDG26 increased the global levels of H3K4me3 and H3K36me3, whereas knockdown of MdSDG26 only reduced the H3K36me3 level. Transcriptome analysis revealed that MdSDG26 affected the genome-wide transcriptome changes in response to A. alternata infection. ChIP-qPCR analysis demonstrated that MdSDG26 modulates the levels of H3K36me3 and H3K4me3 at both the promoter and exon regions of MdNTL9. As a negative regulator of A. alternata resistance in apples, MdNTL9 plays a pivotal role in MdSDG26-mediated resistance to A. alternata. Therefore, our findings provide compelling evidence for the regulatory function of MdSDG26 in histone methylation and its molecular role in conferring resistance to A. alternata.
Collapse
Affiliation(s)
- Wenyun Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dehui Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Zitong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jieqiang He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Arij Khalil
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Xuewei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Fu W, Zhao L, Qiu W, Xu X, Ding M, Lan L, Qu S, Wang S. Whole-genome resequencing identifies candidate genes and allelic variation in the MdNADP-ME promoter that regulate fruit malate and fructose contents in apple. PLANT COMMUNICATIONS 2024; 5:100973. [PMID: 38751120 PMCID: PMC11412932 DOI: 10.1016/j.xplc.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
Soluble sugar and organic acids are key determinants of fruit organoleptic quality and directly affect the commodity value and economic returns of fruit crops. We performed whole-genome sequencing of the apple varieties Gala and Xiahongrou, along with their F1 hybrids, to construct a high-density bin map. Our quantitative genetic analysis pinpointed 53 quantitative trait loci (QTLs) related to 11 sugar and acid traits. We identified a candidate gene, MdNADP-ME, responsible for malate degradation, in a stable QTL on linkage group 15. Sequence analysis revealed an A/C SNP in the promoter region (MEp-799) that influences binding of the MdMYB2 transcription factor, thereby affecting MdNADP-ME expression. In our study of various apple genotypes, this SNP has been demonstrated to be linked to malate and fructose levels. We also developed a dCAPS marker associated with fruit fructose content. These results substantiate the role of MdNADP-ME in maintaining the equilibrium between sugar and acid contents in apple fruits.
Collapse
Affiliation(s)
- Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Xuzhou 221131, China
| | - Wanjun Qiu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Lan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
16
|
Wang T, Zheng Y, Xu C, Deng Y, Hao X, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Movement of ACC oxidase 3 mRNA from seeds to flesh promotes fruit ripening in apple. MOLECULAR PLANT 2024; 17:1221-1235. [PMID: 38902921 DOI: 10.1016/j.molp.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Xenia, the phenomenon in which the pollen genotype directly affects the phenotypic characteristics of maternal tissues (i.e., fruit ripening), has applications in crop production and breeding. However, the underlying molecular mechanism has yet to be elucidated. Here, we investigated whether mobile mRNAs from the pollen affect the ripening and quality-related characteristics of the fruit using cross-pollination between distinct Malus domestica (apple) cultivars. We demonstrated that hundreds of mobile mRNAs originating from the seeds are delivered to the fruit. We found that the movement of one of these mRNAs, ACC oxidase 3 (MdACO3), is coordinated with fruit ripening. Salicylic acid treatment, which can cause plasmodesmal closure, blocks MdACO3 movement, indicating that MdACO3 transcripts may move through the plasmodesmata. To assess the role of mobile MdACO3 transcripts in apple fruit, we created MdACO3-GFP-expressing apple seeds using MdACO3-GFP-overexpressing pollen for pollination and showed that MdACO3 transcripts in the transgenic seeds move to the flesh, where they promote fruit ripening. Furthermore, we demonstrated that MdACO3 can be transported from the seeds to fruit in the fleshy-fruited species tomato and strawberry. These results underscore the potential of mobile mRNAs from seeds to influence fruit characteristics, providing an explanation for the xenia phenomenon. Notably, our findings highlight the feasibility of leveraging diverse pollen genomic resources, without resorting to genome editing, to improve fruit quality.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Zheng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Chen Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yulin Deng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Xinyi Hao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Zhu X, Chen Y, Jiao J, Zhao S, Yan Y, Ma F, Yao JL, Li P. Four glycosyltransferase genes are responsible for synthesis and accumulation of different flavonol glycosides in apple tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1937-1952. [PMID: 38923617 DOI: 10.1111/tpj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Flavonols are widely synthesized throughout the plant kingdom, playing essential roles in plant physiology and providing unique health benefits for humans. Their glycosylation plays significant role in improving their stability and solubility, thus their accumulation and function. However, the genes encoding the enzymes catalyze this glycosylation remain largely unknown in apple. This study utilized a combination of methods to identify genes encoding such enzymes. Initially, candidate genes were selected based on their potential to encode UDP-dependent glycosyltransferases (UGTs) and their expression patterns in response to light induction. Subsequently, through testing the in vitro enzyme activity of the proteins produced in Escherichia coli cells, four candidates were confirmed to encode a flavonol 3-O-galactosyltransferase (UGT78T6), flavonol 3-O-glucosyltransferase (UGT78S1), flavonol 3-O-xylosyltransferase/arabinosyltransferase (UGT78T5), and flavonol 3-O-rhamnosyltransferase (UGT76AE22), respectively. Further validation of these genes' functions was conducted by modulating their expression levels in stably transformed apple plants. As anticipated, a positive correlation was observed between the expression levels of these genes and the content of specific flavonol glycosides corresponding to each gene. Moreover, overexpression of a flavonol synthase gene, MdFLS, resulted in increased flavonol glycoside content in apple roots and leaves. These findings provide valuable insights for breeding programs aimed at enriching apple flesh with flavonols and for identifying flavonol 3-O-glycosyltransferases of other plant species.
Collapse
Affiliation(s)
- Xiaoping Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanshan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Mobarak T, Delaire M, Brisset MN, Orsel M. Transcriptomic dataset of Malus domestica young leaves in response to acibenzolar-S-methyl (ASM) and/or nitrogen nutrition. Data Brief 2024; 55:110727. [PMID: 39100780 PMCID: PMC11295710 DOI: 10.1016/j.dib.2024.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Plant resistance inducers (PRIs) and nitrogen (N) nutrition are both known to affect plant defence but their interaction has not been well described. We addressed this question in apple (Malus domestica) by generating a transcriptomic data set of young leaves from seedlings grown in subirrigation systems allowing variations in nitrate supply as the sole nitrogen source. Plants under three contrasting N status (high; limited for 10 days; or just resupplied after a 12 days limitation) received foliar applications of the chemical elicitor acibenzolar-S-methyl (ASM), a functional analog of salicylic acid, or water. Two days later, the youngest developed leaves were sampled for total RNA extraction and sequencing analysis (RNAseq). The current dataset includes 1) a detailed protocol of plant sample production and 2) transcriptomic profile description of young leaves as normalized counts obtained from sequence mapping against the Malus domestica GDDH13v1.1 reference transcriptome. The raw data files and processed data are available at the Gene Expression Omnibus (GEO) repository under the accession number GSE264541. This dataset is a valuable resource to investigate further the molecular mechanisms underlying the role of nitrogen and/or ASM treatment in Malus domestica.
Collapse
Affiliation(s)
- Térance Mobarak
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Mickaël Delaire
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Mathilde Orsel
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
19
|
Wang N, Liu W, Mei Z, Zhang S, Zou Q, Yu L, Jiang S, Fang H, Zhang Z, Chen Z, Wu S, Cheng L, Chen X. A Functional InDel in the WRKY10 Promoter Controls the Degree of Flesh Red Pigmentation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400998. [PMID: 38874015 PMCID: PMC11321683 DOI: 10.1002/advs.202400998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
MYB transcription factors have been linked to anthocyanin synthesis and various color phenotypes in plants. In apple, MYB10 confers a red-flesh phenotype due to a minisatellite insertion in its R6 promoter, but R6:MYB10 genotypes exhibit various degrees of red pigmentation in the flesh, suggesting the involvement of other genetic factors. Here, it is shown that MdWRKY10, a transcription factor identified via DNA pull-down trapping, binds to the promoter of MdMYB10 and activates its transcription. MdWRKY10 specifically interacts with the WDR protein MdTTG1 to join the apple MYB-bHLH-WDR (MBW) complex, which significantly enhances its transcriptional activation activity. A 163-bp InDel detected in the promoter region of the alleles of MdWRKY10 in a hybrid population of identical heterozygous genotypes regarding R6 by structural variation analysis, contains a typical W-box element that MdWRKY10 binds to for transactivation. This leads to increased transcript levels of MdWRKY10 and MdMYB10 and enhanced anthocyanin synthesis in the flesh, largely accounting for the various degrees of flesh red pigmentation in the R6 background. These findings reveal a novel regulatory role of the WRKY-containing protein complex in the formation of red flesh apple phenotypes and provide broader insights into the molecular mechanism governing anthocyanin synthesis in plants.
Collapse
Affiliation(s)
- Nan Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
- Section of Horticulture, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Wenjun Liu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Zhuoxin Mei
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shuhui Zhang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Qi Zou
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Lei Yu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of ForestryShandong Agricultural UniversityTai'anShandong271000China
| | - Zongying Zhang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Zijing Chen
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shujing Wu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Xuesen Chen
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| |
Collapse
|
20
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Huang Y, Zhai L, Chai X, Liu Y, Lv J, Pi Y, Gao B, Wang X, Wu T, Zhang X, Han Z, Wang Y. Bacillus B2 promotes root growth and enhances phosphorus absorption in apple rootstocks by affecting MhMYB15. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1880-1899. [PMID: 38924231 DOI: 10.1111/tpj.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.
Collapse
Affiliation(s)
- Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yao Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| |
Collapse
|
22
|
Minamikawa MF, Kunihisa M, Moriya S, Shimizu T, Inamori M, Iwata H. Genomic prediction and genome-wide association study using combined genotypic data from different genotyping systems: application to apple fruit quality traits. HORTICULTURE RESEARCH 2024; 11:uhae131. [PMID: 38979105 PMCID: PMC11228094 DOI: 10.1093/hr/uhae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 07/10/2024]
Abstract
With advances in next-generation sequencing technologies, various marker genotyping systems have been developed for genomics-based approaches such as genomic selection (GS) and genome-wide association study (GWAS). As new genotyping platforms are developed, data from different genotyping platforms must be combined. However, the potential use of combined data for GS and GWAS has not yet been clarified. In this study, the accuracy of genomic prediction (GP) and the detection power of GWAS increased for most fruit quality traits of apples when using combined data from different genotyping systems, Illumina Infinium single-nucleotide polymorphism array and genotyping by random amplicon sequencing-direct (GRAS-Di) systems. In addition, the GP model, which considered the inbreeding effect, further improved the accuracy of the seven fruit traits. Runs of homozygosity (ROH) islands overlapped with the significantly associated regions detected by the GWAS for several fruit traits. Breeders may have exploited these regions to select promising apples by breeders, increasing homozygosity. These results suggest that combining genotypic data from different genotyping platforms benefits the GS and GWAS of fruit quality traits in apples. Information on inbreeding could be beneficial for improving the accuracy of GS for fruit traits of apples; however, further analysis is required to elucidate the relationship between the fruit traits and inbreeding depression (e.g. decreased vigor).
Collapse
Affiliation(s)
- Mai F Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Miyuki Kunihisa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa Nabeyashiki, Morioka, Iwate 020-0123, Japan
| | - Tokurou Shimizu
- Institute of Fruit Tree and Tea Science, NARO, Okitsu Nakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Minoru Inamori
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Jia D, Li Y, Jia K, Huang B, Dang Q, Wang H, Wang X, Li C, Zhang Y, Nie J, Yuan Y. Abscisic acid activates transcription factor module MdABI5-MdMYBS1 during carotenoid-derived apple fruit coloration. PLANT PHYSIOLOGY 2024; 195:2053-2072. [PMID: 38536032 DOI: 10.1093/plphys/kiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 06/30/2024]
Abstract
Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of "Beni Shogun" and "Yanfu 3" show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor (TF), MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, β-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene β-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain TF ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.
Collapse
Affiliation(s)
- Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qingyuan Dang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| |
Collapse
|
24
|
Peng H, Yi Y, Li J, Qing Y, Zhai X, Deng Y, Tian J, Zhang J, Hu Y, Qin X, Lu Y, Yao Y, Wang S, Zheng Y. A haplotype-resolved genome assembly of Malus domestica 'Red Fuji'. Sci Data 2024; 11:592. [PMID: 38844753 PMCID: PMC11156929 DOI: 10.1038/s41597-024-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.
Collapse
Affiliation(s)
- Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yating Yi
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Jinrong Li
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - You Qing
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yanfen Lu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| |
Collapse
|
25
|
Hsiang TF, Yamane H, Gao-Takai M, Tao R. Regulatory role of Prunus mume DAM6 on lipid body accumulation and phytohormone metabolism in the dormant vegetative meristem. HORTICULTURE RESEARCH 2024; 11:uhae102. [PMID: 38883329 PMCID: PMC11179725 DOI: 10.1093/hr/uhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024]
Abstract
Bud dormancy is a crucial process in the annual growth cycle of woody perennials. In Rosaceae fruit tree species, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factor genes regulating bud dormancy have been identified, but their molecular roles in meristematic tissues have not been thoroughly characterized. In this study, molecular and physiological analyses of transgenic apple plants overexpressing the Japanese apricot DAM6 gene (PmDAM6) and Japanese apricot cultivars and F1 individuals with contrasting dormancy characteristics revealed the metabolic pathways controlled by PmDAM6. Our transcriptome analysis and transmission electron microscopy examination demonstrated that PmDAM6 promotes the accumulation of lipid bodies and inhibits cell division in the dormant vegetative meristem by down-regulating the expression of lipid catabolism genes (GDSL ESTERASE/LIPASE and OIL BODY LIPASE) and CYCLIN genes, respectively. Our findings also indicate PmDAM6 promotes abscisic acid (ABA) accumulation and decreases cytokinin (CTK) accumulation in vegetative buds by up-regulating the expression of the ABA biosynthesis gene ARABIDOPSIS ALDEHYDE OXIDASE and the CTK catabolism gene CYTOKININ DEHYDROGENASE, while also down-regulating the expression of the CTK biosynthesis genes ISOPENTENYL TRANSFERASE (IPT) and CYP735A. Additionally, PmDAM6 modulates gibberellin (GA) metabolism by up-regulating GA2-OXIDASE expression and down-regulating GA3-OXIDASE expression. Furthermore, PmDAM6 may also indirectly promote lipid accumulation and restrict cell division by limiting the accumulation of CTK and GA in buds. In conclusion, using our valuable genetic platform, we clarified how PmDAM6 modifies diverse cellular processes, including lipid catabolism, phytohormone (ABA, CTK, and GA) biosynthesis and catabolism, and cell division, in the dormant vegetative meristem.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mei Gao-Takai
- Experimental Farm, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Yu Z, Li J, Wang H, Ping B, Li X, Liu Z, Guo B, Yu Q, Zou Y, Sun Y, Ma F, Zhao T. Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. HORTICULTURE RESEARCH 2024; 11:uhae118. [PMID: 38919560 PMCID: PMC11197308 DOI: 10.1093/hr/uhae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.
Collapse
Affiliation(s)
- Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiguang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bocheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
Fan Y, Sun C, Yan K, Li P, Hein I, Gilroy EM, Kear P, Bi Z, Yao P, Liu Z, Liu Y, Bai J. Recent Advances in Studies of Genomic DNA Methylation and Its Involvement in Regulating Drought Stress Response in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1400. [PMID: 38794470 PMCID: PMC11125032 DOI: 10.3390/plants13101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
As global arid conditions worsen and groundwater resources diminish, drought stress has emerged as a critical impediment to plant growth and development globally, notably causing declines in crop yields and even the extinction of certain cultivated species. Numerous studies on drought resistance have demonstrated that DNA methylation dynamically interacts with plant responses to drought stress by modulating gene expression and developmental processes. However, the precise mechanisms underlying these interactions remain elusive. This article consolidates the latest research on the role of DNA methylation in plant responses to drought stress across various species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration (including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation), and overall responses to drought conditions. While many studies have observed significant shifts in genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of specific genes and pathways involved remains limited. This review aims to furnish a reference for detailed research into plant responses to drought stress through epigenetic approaches, striving to identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Youfang Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Pengcheng Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Ingo Hein
- The James Hutton Institute, Dundee DD2 5DA, UK; (I.H.); (E.M.G.)
| | | | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing 102199, China;
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| |
Collapse
|
28
|
Liu W, Liu C, Chen S, Wang M, Wang X, Yu Y, Sederoff RR, Wei H, You X, Qu G, Chen S. A nearly gapless, highly contiguous reference genome for a doubled haploid line of Populus ussuriensis, enabling advanced genomic studies. FORESTRY RESEARCH 2024; 4:e019. [PMID: 39524412 PMCID: PMC11524312 DOI: 10.48130/forres-0024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 11/16/2024]
Abstract
Populus species, particularly P. trichocarpa, have long served as model trees for genomics research, owing to fully sequenced genomes. However, the high heterozygosity, and the presence of repetitive regions, including centromeres and ribosomal RNA gene clusters, have left 59 unresolved gaps, accounting for approximately 3.32% of the P. trichocarpa genome. In this study, the callus induction method was improved to derive a doubled haploid (DH) callus line from P. ussuriensis anthers. Leveraging long-read sequencing, we successfully assembled a nearly gap-free, telomere-to-telomere (T2T) P. ussuriensis genome spanning 412.13 Mb. This genome assembly contains only seven gaps and has a contig N50 length of 19.50 Mb. Annotation revealed 34,953 protein-coding genes in this genome, which is 465 more than that of P. trichocarpa. Notably, centromeric regions are characterized by higher-order repeats, we identified and annotated centromere regions in all DH genome chromosomes, a first for poplars. The derived DH genome exhibits high collinearity with P. trichocarpa and significantly fills gaps present in the latter's genome. This T2T P. ussuriensis reference genome will not only enhance our understanding of genome structure, and functions within the poplar genus but also provides valuable resources for poplar genomic and evolutionary studies.
Collapse
Affiliation(s)
- Wenxuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Meng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yue Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ronald R. Sederoff
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, MI 49931, USA
| | - Xiangling You
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
29
|
Keller B, Jung M, Bühlmann-Schütz S, Hodel M, Studer B, Broggini GAL, Patocchi A. The genetic basis of apple shape and size unraveled by digital phenotyping. G3 (BETHESDA, MD.) 2024; 14:jkae045. [PMID: 38441135 PMCID: PMC11075547 DOI: 10.1093/g3journal/jkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 05/08/2024]
Abstract
Great diversity of shape, size, and skin color is observed among the fruits of different apple genotypes. These traits are critical for consumers and therefore interesting targets for breeding new apple varieties. However, they are difficult to phenotype and their genetic basis, especially for fruit shape and ground color, is largely unknown. We used the FruitPhenoBox to digitally phenotype 525 genotypes of the apple reference population (apple REFPOP) genotyped for 303,148 single nucleotide polymorphism (SNP) markers. From the apple images, 573 highly heritable features describing fruit shape and size as well as 17 highly heritable features for fruit skin color were extracted to explore genotype-phenotype relationships. Out of these features, seven principal components (PCs) and 16 features with the Pearson's correlation r < 0.75 (selected features) were chosen to carry out genome-wide association studies (GWAS) for fruit shape and size. Four PCs and eight selected features were used in GWAS for fruit skin color. In total, 69 SNPs scattered over all 17 apple chromosomes were significantly associated with round, conical, cylindrical, or symmetric fruit shapes and fruit size. Novel associations with major effect on round or conical fruit shapes and fruit size were identified on chromosomes 1 and 2. Additionally, 16 SNPs associated with PCs and selected features related to red overcolor as well as green and yellow ground color were found on eight chromosomes. The identified associations can be used to advance marker-assisted selection in apple fruit breeding to systematically select for desired fruit appearance.
Collapse
Affiliation(s)
- Beat Keller
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Michaela Jung
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Simone Bühlmann-Schütz
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Marius Hodel
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Giovanni A L Broggini
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Andrea Patocchi
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| |
Collapse
|
30
|
Zhao T, Sun Q, Hu DG. Unveiling rootstock-induced dwarfing from comparative genomic analysis. MOLECULAR HORTICULTURE 2024; 4:18. [PMID: 38705978 PMCID: PMC11071195 DOI: 10.1186/s43897-024-00097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Affiliation(s)
- Tingting Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
31
|
Li B, Qu S, Kang J, Peng Y, Yang N, Ma B, Ruan YL, Ma F, Li M, Zhu L. The MdCBF1/2-MdTST1/2 module regulates sugar accumulation in response to low temperature in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:787-801. [PMID: 38206080 DOI: 10.1111/tpj.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.
Collapse
Affiliation(s)
- Baiyun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiayi Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Gao C, Zhao B, Zhang J, Du X, Wang J, Guo Y, He Y, Feng H, Huang L. Adaptive regulation of miRNAs/milRNAs in tissue-specific interaction between apple and Valsa mali. HORTICULTURE RESEARCH 2024; 11:uhae094. [PMID: 38799130 PMCID: PMC11116833 DOI: 10.1093/hr/uhae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.
Collapse
Affiliation(s)
- Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binsen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Zhao Q, Li X, Jiao Y, Chen Y, Yan Y, Wang Y, Hamiaux C, Wang Y, Ma F, Atkinson RG, Li P. Identification of two key genes involved in flavonoid catabolism and their different roles in apple resistance to biotic stresses. THE NEW PHYTOLOGIST 2024; 242:1238-1256. [PMID: 38426393 DOI: 10.1111/nph.19644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoning Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuzhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Yule Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
34
|
Xue L, Liu X, Wang W, Huang D, Ren C, Huang X, Yin X, Lin-Wang K, Allan AC, Chen K, Xu C. MYB transcription factors encoded by diversified tandem gene clusters cause varied Morella rubra fruit color. PLANT PHYSIOLOGY 2024; 195:598-616. [PMID: 38319742 DOI: 10.1093/plphys/kiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenli Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Zhang T, Huang W, Zhang L, Li DZ, Qi J, Ma H. Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages. Nat Commun 2024; 15:3305. [PMID: 38632270 PMCID: PMC11024178 DOI: 10.1038/s41467-024-47428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Poaceae members shared a whole-genome duplication called rho. However, little is known about the evolutionary pattern of the rho-derived duplicates among Poaceae lineages and implications in adaptive evolution. Here we present phylogenomic/phylotranscriptomic analyses of 363 grasses covering all 12 subfamilies and report nine previously unknown whole-genome duplications. Furthermore, duplications from a single whole-genome duplication were mapped to multiple nodes on the species phylogeny; a whole-genome duplication was likely shared by woody bamboos with possible gene flow from herbaceous bamboos; and recent paralogues of a tetraploid Oryza are implicated in tolerance of seawater submergence. Moreover, rho duplicates showing differential retention among subfamilies include those with functions in environmental adaptations or morphogenesis, including ACOT for aquatic environments (Oryzoideae), CK2β for cold responses (Pooideae), SPIRAL1 for rapid cell elongation (Bambusoideae), and PAI1 for drought/cold responses (Panicoideae). This study presents a Poaceae whole-genome duplication profile with evidence for multiple evolutionary mechanisms that contribute to gene retention and losses.
Collapse
Affiliation(s)
- Taikui Zhang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weichen Huang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ji Qi
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
36
|
Zhang W, Han Y, Liao L. Phenomics and transcriptomic profiling of fruit development in distinct apple varieties. Sci Data 2024; 11:390. [PMID: 38627414 PMCID: PMC11021526 DOI: 10.1038/s41597-024-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Apple is one of the most economically important and popular temperate fruit trees. The domestication of apple has resulted in substantial phenotypic differences, particularly between wild and cultivated varieties. However, the relationship between gene expression and phenotypic variations in apple remains poorly understood. Here, we present a comprehensive dataset featuring five distinct apple varieties, including two wild varieties and three representative cultivated varieties. The dataset comprises of both phenomics data, encompassing twelve fruit quality-related traits continuously measured over two years, and transcriptomic data obtained at different developmental stages with three biological replicates. We performed basic quality control process, gene expression normalization and differential gene expression analysis to demonstrate the utility and reliability of the dataset. Our findings indicate that gene expression strongly related with phenotypic variations in apple. This dataset serves as a valuable resource, encompassing phenomics and transcriptomic data in multiple formats, thereby facilitating further exploration of the relationships between gene expression and phenotypic traits in apple.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
37
|
Pegler JL, Patrick JW, McDermott B, Brown A, Oultram JMJ, Grof CPL, Ward JM. Phaseolus vulgaris STP13.1 is an H +-coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials. PLANT DIRECT 2024; 8:e585. [PMID: 38651017 PMCID: PMC11033725 DOI: 10.1002/pld3.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Benjamin McDermott
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Anthony Brown
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John M. Ward
- Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
38
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
39
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
40
|
Gu C, Pei MS, Guo ZH, Wu L, Qi KJ, Wang XP, Liu H, Liu Z, Lang Z, Zhang S. Multi-omics provide insights into the regulation of DNA methylation in pear fruit metabolism. Genome Biol 2024; 25:70. [PMID: 38486226 PMCID: PMC10938805 DOI: 10.1186/s13059-024-03200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Extensive research has been conducted on fruit development in crops, but the metabolic regulatory networks underlying perennial fruit trees remain poorly understood. To address this knowledge gap, we conduct a comprehensive analysis of the metabolome, proteome, transcriptome, DNA methylome, and small RNAome profiles of pear fruit flesh at 11 developing stages, spanning from fruitlet to ripening. Here, we systematically investigate the metabolic landscape and regulatory network involved. RESULTS We generate an association database consisting of 439 metabolites and 14,399 genes to elucidate the gene regulatory network of pear flesh metabolism. Interestingly, we detect increased DNA methylation in the promoters of most genes within the database during pear flesh development. Application of a DNA methylation inhibitor to the developing fruit represses chlorophyll degradation in the pericarp and promotes xanthophyll, β-carotene, and abscisic acid (ABA) accumulation in the flesh. We find the gradual increase in ABA production during pear flesh development is correlated with the expression of several carotenoid pathway genes and multiple transcription factors. Of these transcription factors, the zinc finger protein PbZFP1 is identified as a positive mediator of ABA biosynthesis in pear flesh. Most ABA pathway genes and transcription factors are modified by DNA methylation in the promoters, although some are induced by the DNA methylation inhibitor. These results suggest that DNA methylation inhibits ABA accumulation, which may delay fruit ripening. CONCLUSION Our findings provide insights into epigenetic regulation of metabolic regulatory networks during pear flesh development, particularly with regard to DNA methylation.
Collapse
Affiliation(s)
- Chao Gu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao-Song Pei
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Hua Guo
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Jie Qi
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Ping Wang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Shaoling Zhang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
41
|
Peñuela M, Finke J, Rocha C. Methylomes as key features for predicting recombination in some plant species. PLANT MOLECULAR BIOLOGY 2024; 114:25. [PMID: 38457042 PMCID: PMC10924001 DOI: 10.1007/s11103-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/27/2023] [Indexed: 03/09/2024]
Abstract
Knowing how chromosome recombination works is essential for plant breeding. It enables the design of crosses between different varieties to combine desirable traits and create new ones. This is because the meiotic crossovers between homologous chromatids are not purely random, and various strategies have been developed to describe and predict such exchange events. Recent studies have used methylation data to predict chromosomal recombination in rice using machine learning models. This approach proved successful due to the presence of a positive correlation between the CHH context cytosine methylation and recombination rates in rice chromosomes. This paper assesses the question if methylation can be used to predict recombination in four plant species: Arabidopsis, maize, sorghum, and tomato. The results indicate a positive association between CHH context methylation and recombination rates in certain plant species, with varying degrees of strength in their relationships. The CG and CHG methylation contexts show negative correlation with recombination. Methylation data was key effectively in predicting recombination in sorghum and tomato, with a mean determination coefficient of 0.65 ± 0.11 and 0.76 ± 0.05, respectively. In addition, the mean correlation values between predicted and experimental recombination rates were 0.83 ± 0.06 for sorghum and 0.90 ± 0.05 for tomato, confirming the significance of methylomes in both monocotyledonous and dicotyledonous species. The predictions for Arabidopsis and maize were not as accurate, likely due to the comparatively weaker relationships between methylation contexts and recombination, in contrast to sorghum and tomato, where stronger associations were observed. To enhance the accuracy of predictions, further evaluations using data sets closely related to each other might prove beneficial. In general, this methylome-based method holds great potential as a reliable strategy for predicting recombination rates in various plant species, offering valuable insights to breeders in their quest to develop novel and improved varieties.
Collapse
Affiliation(s)
- Mauricio Peñuela
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia.
| | - Jorge Finke
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| | - Camilo Rocha
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| |
Collapse
|
42
|
Hadish JA, Hargarten HL, Zhang H, Mattheis JP, Honaas LA, Ficklin SP. Towards identification of postharvest fruit quality transcriptomic markers in Malus domestica. PLoS One 2024; 19:e0297015. [PMID: 38446822 PMCID: PMC10917293 DOI: 10.1371/journal.pone.0297015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/27/2023] [Indexed: 03/08/2024] Open
Abstract
Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.
Collapse
Affiliation(s)
- John A. Hadish
- Molecular Plant Science Department, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Heidi L. Hargarten
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Huiting Zhang
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - James P. Mattheis
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Loren A. Honaas
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Stephen P. Ficklin
- Molecular Plant Science Department, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
43
|
Morimoto T, Narazaki R, Okabe H, Zhang L, Nishimura K, Itai A. Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization. Mol Genet Genomics 2024; 299:21. [PMID: 38429502 DOI: 10.1007/s00438-024-02131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.
Collapse
Affiliation(s)
- Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryuya Narazaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hiroaki Okabe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Lumin Zhang
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Institute of Tropical Eco-agriculture, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Kazusa Nishimura
- Graduate School of Environmental, Natural Science and Technology, Okayama University, Life, Okayama, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
44
|
Li W, Chu C, Li H, Zhang H, Sun H, Wang S, Wang Z, Li Y, Foster TM, López-Girona E, Yu J, Li Y, Ma Y, Zhang K, Han Y, Zhou B, Fan X, Xiong Y, Deng CH, Wang Y, Xu X, Han Z. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat Genet 2024; 56:505-516. [PMID: 38347217 DOI: 10.1038/s41588-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/08/2024] [Indexed: 03/16/2024]
Abstract
Dwarfing rootstocks have transformed the production of cultivated apples; however, the genetic basis of rootstock-induced dwarfing remains largely unclear. We have assembled chromosome-level, near-gapless and haplotype-resolved genomes for the popular dwarfing rootstock 'M9', the semi-vigorous rootstock 'MM106' and 'Fuji', one of the most commonly grown apple cultivars. The apple orthologue of auxin response factor 3 (MdARF3) is in the Dw1 region of 'M9', the major locus for rootstock-induced dwarfing. Comparing 'M9' and 'MM106' genomes revealed a 9,723-bp allele-specific long terminal repeat retrotransposon/gypsy insertion, DwTE, located upstream of MdARF3. DwTE is cosegregated with the dwarfing trait in two segregating populations, suggesting its prospective utility in future dwarfing rootstock breeding. In addition, our pipeline discovered mobile mRNAs that may contribute to the development of dwarfed scion architecture. Our research provides valuable genomic resources and applicable methodology, which have the potential to accelerate breeding dwarfing rootstocks for apple and other perennial woody fruit trees.
Collapse
Affiliation(s)
- Wei Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Hui Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haochen Sun
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Shiyao Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zijun Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yuqi Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Motueka, New Zealand
| | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North, New Zealand
| | - Jiaxin Yu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation; Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongming Han
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bowen Zhou
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xingqiang Fan
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yao Xiong
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Auckland, New Zealand.
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| | - Xuefeng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| |
Collapse
|
45
|
Zhang FJ, Li ZY, Zhang DE, Ma N, Wang YX, Zhang TT, Zhao Q, Zhang Z, You CX, Lu XY. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. PHYSIOLOGIA PLANTARUM 2024; 176:e14288. [PMID: 38644531 DOI: 10.1111/ppl.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.
Collapse
Affiliation(s)
- Fu-Jun Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhao-Yang Li
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - De-En Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Ma
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong-Xu Wang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenlu Zhang
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
46
|
Wang J, Wang J, Li Y, Lv Y, Zhao J, Li H, Zhang B, Zhang M, Tian J, Li X, Xing L. Epigenomic mechanism regulating the quality and ripeness of apple fruit with differing harvest maturity. PHYSIOLOGIA PLANTARUM 2024; 176:e14278. [PMID: 38644530 DOI: 10.1111/ppl.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 04/23/2024]
Abstract
Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.
Collapse
Affiliation(s)
- Jing Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiahe Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yongqian Lv
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jianwen Tian
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Xiaolong Li
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
47
|
Gunaseelan K, Schröder R, Rebstock R, Ninan AS, Deng C, Khanal BP, Favre L, Tomes S, Dragulescu MA, O'Donoghue EM, Hallett IC, Schaffer RJ, Knoche M, Brummell DA, Atkinson RG. Constitutive expression of apple endo-POLYGALACTURONASE1 in fruit induces early maturation, alters skin structure and accelerates softening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1413-1431. [PMID: 38038980 DOI: 10.1111/tpj.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. β-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.
Collapse
Affiliation(s)
- Kularajathevan Gunaseelan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Annu S Ninan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Laurie Favre
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Monica A Dragulescu
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Erin M O'Donoghue
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | | | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - David A Brummell
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
48
|
Huang J, Chen J, Shi M, Zheng J, Chen M, Wu L, Zhu H, Zheng Y, Wu Q, Wu F. Genome assembly provides insights into the genome evolution of Baccaurea ramiflora Lour. Sci Rep 2024; 14:4867. [PMID: 38418841 PMCID: PMC10901894 DOI: 10.1038/s41598-024-55498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
Baccaurea ramiflora Lour., an evergreen tree of the Baccaurea genus of the Phyllanthaceae family, is primarily distributed in South Asia, Southeast Asia, and southern China, including southern Yunnan Province. It is a wild or semi-cultivated tree species with ornamental, edible, and medicinal value, exhibiting significant development potential. In this study, we present the whole-genome sequencing of B. ramiflora, employing a combination of PacBio SMRT and Illumina HiSeq 2500 sequencing techniques. The assembled genome size was 975.8 Mb, with a contig N50 of 509.33 kb and the longest contig measuring 7.74 Mb. The genome comprises approximately 73.47% highly repetitive sequences, of which 52.1% are long terminal repeat-retrotransposon sequences. A total of 29,172 protein-coding genes were predicted, of which 25,980 (89.06%) have been annotated, Additionally, 3452 non-coding RNAs were identified. Comparative genomic analysis revealed a close relationship between B. ramiflora and the Euphorbiaceae family, with both being sister groups that diverged approximately 59.9 million years ago. During the evolutionary process, B. ramiflora exhibited positive selection in 278 candidate genes. Synonymous substitution rate and collinearity analysis demonstrated that B. ramiflora underwent a single ancient genome-wide triploidization event, without recent genome-wide duplication events. This high-quality B. ramiflora genome provides a valuable resource for basic research and tree improvement programs focusing on the Phyllanthaceae family.
Collapse
Affiliation(s)
- Jianjian Huang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Jie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Min Shi
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Jiaqi Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Ming Chen
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Linjun Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Yuzhong Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Qinghan Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Fengnian Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China.
| |
Collapse
|
49
|
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. THE PLANT CELL 2024; 36:585-604. [PMID: 38019898 PMCID: PMC10896295 DOI: 10.1093/plcell/koad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuyuan Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yanni Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xiaoqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tiantian Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
50
|
Watson AE, Guitton B, Soriano A, Rivallan R, Vignes H, Farrera I, Huettel B, Arnaiz C, Falavigna VDS, Coupel-Ledru A, Segura V, Sarah G, Dufayard JF, Sidibe-Bocs S, Costes E, Andrés F. Target enrichment sequencing coupled with GWAS identifies MdPRX10 as a candidate gene in the control of budbreak in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1352757. [PMID: 38455730 PMCID: PMC10918860 DOI: 10.3389/fpls.2024.1352757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.
Collapse
Affiliation(s)
- Amy E. Watson
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baptiste Guitton
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Ronan Rivallan
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Hélène Vignes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Isabelle Farrera
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Catalina Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Aude Coupel-Ledru
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Dufayard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Stéphanie Sidibe-Bocs
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Evelyne Costes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fernando Andrés
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|