1
|
Sun H, Li L, Yan J, Huang T. Prioritization of drug targets for thyroid cancer: a multi-omics Mendelian randomization study. Endocrine 2024; 86:732-743. [PMID: 38896366 DOI: 10.1007/s12020-024-03933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Recurrence or tumor metastasis and drug resistance remain the major challenge in the treatment of thyroid cancer. It is needed to identify novel drug targets for thyroid cancer. METHODS Summary data-based Mendelian randomization (SMR) and colocalization analysis were performed to evaluate the associations between gene methylation, expression, protein levels with thyroid cancer. We additionally performed protein-protein interaction (PPI) network, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses to further explore the potential roles of identified genes in thyroid cancer. RESULTS SDCCAG8 and VCAM1 genes were associated with risk of thyroid cancer with tier 1 evidence, while TCN2 gene was with tier 3 evidence. SDCCAG8 gene was associated with risk of papillary thyroid cancer with tier 1 evidence. At the level of circulating proteins, genetically predicted higher levels of SDCCAG8 (OR = 0.46, 95% CI 0.34-0.64) and VCAM1 (OR = 0.21, 95% CI 0.10-0.45) were inversely associated with thyroid cancer risk; higher level of TCN2 was associated with an increased risk of thyroid cancer (OR = 1.30, 95% CI 1.15-1.47); and the higher level of SDCCAG8 (OR = 0.40, 95% CI 0.28-0.58) was associated with a decreased risk of papillary thyroid cancer. The bioinformatics analysis showed that SDCCAG8, VCAM1 and TCN2 might play roles in immune-related pathways. CONCLUSION SDCCAG8, VCAM1 and TCN2 genes were associated with thyroid cancer risk with evidence at multi-omics levels. There were potential roles of SDCCAG8, VCAM1 and TCN2 in immune-related pathways. Our findings might improve the understanding of the pathogenesis of thyroid cancer and discovery of novel potential drug targets for this disease.
Collapse
Affiliation(s)
- Hong Sun
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jingchao Yan
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu X, Zhu S, Liu X, Luo X, Chen C, Jiang L, Wu Y. Integrative genomic analysis of RNA-modification-single nucleotide polymorphisms associated with kidney function. Heliyon 2024; 10:e38815. [PMID: 39506937 PMCID: PMC11538735 DOI: 10.1016/j.heliyon.2024.e38815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Increasing evidence suggests that RNA modification plays a significant role in the kidney and may be an ideal target for the treatment of kidney diseases. However, the specific mechanisms underlying RNA modifications in the pathogenesis of kidney disease remain unclear. Genome-wide association studies (GWAS) have identified numerous genetic loci involved in kidney function and RNA modifications. The identification and exploration of RNA modification-related single-nucleotide polymorphisms (RNAm-SNPs) associated with kidney function can help us to comprehensively understand the underlying mechanism of kidney disease and identify potential therapeutic targets. Methods First, we examined the association of RNAm-SNPs with eGFR. Second, we performed expression quantitative trait locus (eQTL) and protein quantitative trait locus (pQTL) analyses to explore the functions of the identified RNAm-SNPs. Finally, we evaluated the causality between RNAm-SNP-associated gene expression and circulating proteins and kidney function using a Mendelian randomization (MR) analysis. Results A total of 252 RNA m-SNPs related to m6A, m1A, A-to-I, m5C, m7G, and m5U were identified. All these factors were significantly associated with the eGFR. A total of 119(47.22 %) RNAm-SNPs showed cis-eQTL effects in blood cells, whereas 72 (28.57 %) RNAm-SNPs showed cis-pQTL effects in plasma. 47 (18.65 %) RNAm-SNPs exhibited cis-eQTL and cis-pQTL effects. In addition, we demonstrated a causal association between RNAm-SNP-associated gene expression, circulating protein levels, and eGFR decline. Some of the identified genes and proteins have been reported to be associated with kidney diseases, such as CDK10 and SDCCAG8. Conclusions This study reveals an association between RNAm-SNPs and kidney function. These SNPs regulate gene expression and protein levels through RNA modifications, eventually leading to kidney dysfunction. Our study provides novel insights that connect the genetic risk of kidney disease to RNA modification and suggests potential therapeutic targets for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Sai Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiaomei Luo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
3
|
Takahashi K, Sudharsan R, Beltran WA. Mapping protein distribution in the canine photoreceptor sensory cilium and calyceal processes by ultrastructure expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600953. [PMID: 38979372 PMCID: PMC11230445 DOI: 10.1101/2024.06.27.600953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Photoreceptors are highly polarized sensory neurons, possessing a unique ciliary structure known as the photoreceptor sensory cilium (PSC). Vertebrates have two subtypes of photoreceptors: rods, which are responsible for night vision, and cones, which support daylight vision and color perception. Despite identifying functional and morphological differences between these subtypes, ultrastructural analyses of the PSC molecular architecture in rods and cones are still lacking. In this study, we employed ultrastructure expansion microscopy (U-ExM) to characterize the molecular architecture of the PSC in canine retina. We demonstrated that U-ExM is applicable to both non-frozen and cryopreserved retinal tissues with standard paraformaldehyde fixation. Using this validated U-ExM protocol, we revealed the molecular localization of numerous ciliopathy-related proteins in canine photoreceptors. Furthermore, we identified significant architectural differences in the PSC, ciliary rootlet, and calyceal processes between canine rods and cones. These findings pave the way for a better understanding of alterations in the molecular architecture of the PSC in canine models of retinal ciliopathies.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
4
|
Dollfus H, Lilien MR, Maffei P, Verloes A, Muller J, Bacci GM, Cetiner M, van den Akker ELT, Grudzinska Pechhacker M, Testa F, Lacombe D, Stokman MF, Simonelli F, Gouronc A, Gavard A, van Haelst MM, Koenig J, Rossignol S, Bergmann C, Zacchia M, Leroy BP, Mosbah H, Van Eerde AM, Mekahli D, Servais A, Poitou C, Valverde D. Bardet-Biedl syndrome improved diagnosis criteria and management: Inter European Reference Networks consensus statement and recommendations. Eur J Hum Genet 2024:10.1038/s41431-024-01634-7. [PMID: 39085583 DOI: 10.1038/s41431-024-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
Four European Reference Networks (ERN-EYE, ERKNet, Endo-ERN, ERN-ITHACA) have teamed up to establish a consensus statement and recommendations for Bardet-Biedl syndrome (BBS). BBS is an autosomal recessive ciliopathy with at least 26 genes identified to date. The clinical manifestations are pleiotropic, can be observed in utero and will progress with age. Genetic testing has progressively improved in the last years prompting for a revision of the diagnostic criteria taking into account clinical Primary and Secondary features, as well as positive or negative molecular diagnosis. This consensus statement also emphasizes on initial diagnosis, monitoring and lifelong follow-up, and symptomatic care that can be provided to patients and family members according to the involved care professionals. For paediatricians, developmental anomalies can be at the forefront for diagnosis (such as polydactyly) but can require specific care, such as for associated neuro developmental disorders. For ophthalmology, the early onset retinal degeneration requires ad hoc functional and imaging technologies and specific care for severe visual impairment. For endocrinology, among other manifestations, early onset obesity and its complications has benefited from better evaluation of eating behaviour problems, improved lifestyle programs, and from novel pharmacological therapies. Kidney and urinary track involvements warrants lifespan attention, as chronic kidney failure can occur and early management might improve outcome. This consensus recommends revised diagnostic criteria for BBS that will ensure certainty of diagnosis, giving robust grounds for genetic counselling as well as in the perspective of future trials for innovative therapies.
Collapse
Affiliation(s)
- Hélène Dollfus
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Université de Strasbourg, UMRS_1112, Strasbourg, France.
| | - Marc R Lilien
- ERKNet Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Pietro Maffei
- Endo-ERN Department of Medicine (DIMED), 3rd Medical Clinic, Padua University, Padua, Italy
| | - Alain Verloes
- ERN-ITHACA Department of Genetics, AP-HP - Université de Paris; INSERM UMR 1141 "NeuroDiderot", Hôpital Robert Debré, Paris, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Giacomo M Bacci
- ERN-EYE Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, University of Florence, Florence, Italy
| | - Metin Cetiner
- ERKNet Children's Hospital, Pediatrics II, University of Essen, Essen, Germany
| | - Erica L T van den Akker
- Endo-ERN Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Testa
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Didier Lacombe
- ERN-ITHACA Department of Medical Genetics, CHU Bordeaux, INSERM Unit_1211, Laboratory "Rare Diseases: Genetics and Metabolism", University of Bordeaux, Bordeaux, France
| | - Marijn F Stokman
- ERKNet Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesca Simonelli
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Aurélie Gouronc
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, UMRS_1112, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Amélie Gavard
- ERN-EYE Coordination Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mieke M van Haelst
- ERN-ITHACA Department of Human Genetics, Section Clinical Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jens Koenig
- ERKNet University Children's Hospital Muenster, Muenster, NRW, Germany
| | - Sylvie Rossignol
- Endo-ERN Département de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Miriam Zacchia
- ERKNet Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Bart P Leroy
- ERN-EYE Department of Ophthalmology & Department of Head & Skin, Ghent University Hospital and Ghent University, Ghent, Belgium
- Center for Cellular and Molecular Therapeutics and Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Héléna Mosbah
- Endo-ERN Department of Endocrinology, Diabetology & Nutrition, University Hospital of Poitiers, Poitiers, France
| | - Albertien M Van Eerde
- ERKNet Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Djalila Mekahli
- ERKNet PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Aude Servais
- ERKNet Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker Hospital, AP-HP, Centre of Reference for the French Nationwide MARHEANetwork (CNR-MARHEA), Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | - Christine Poitou
- Endo-ERN Centre de Référence pour les obésités rares (CRMR PRADORT), Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Sorbonne Université, INSERM, Nutrition & Obesities: Systemic Approaches Research Group (NutriOmics), Paris, France
| | - Diana Valverde
- CINBIO, Universidad de Vigo, Grupo de Investigación en Enfermedades Raras, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
5
|
Gomes LHF, Marques AB, Dias ICDM, Gabeira SCDO, Barcelos TR, Guimarães MDO, Ferreira IR, Guida LC, Lucena SL, Rocha AD. Validation of Gene Expression Patterns for Oral Feeding Readiness: Transcriptional Analysis of Set of Genes in Neonatal Salivary Samples. Genes (Basel) 2024; 15:936. [PMID: 39062715 PMCID: PMC11275400 DOI: 10.3390/genes15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Neonatal health assessment is crucial for detecting and intervening in various disorders. Traditional gene expression analysis methods often require invasive procedures during sample collection, which may not be feasible or ideal for preterm infants. In recent years, saliva has emerged as a promising noninvasive biofluid for assessing gene expression. Another trend that has been growing is the use of "omics" technologies such as transcriptomics in the analysis of gene expression. The costs for carrying out these analyses and the difficulty of analysis make the detection of candidate genes necessary. These genes act as biomarkers for the maturation stages of the oral feeding issue. METHODOLOGY Salivary samples (n = 225) were prospectively collected from 45 preterm (<34 gestational age) infants from five predefined feeding stages and submitted to RT-qPCR. A better description of the targeted genes and results from RT-qPCR analyses were included. The six genes previously identified as predictive of feeding success were tested. The genes are AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1, along with two reference genes: GAPDH and 18S. RT-qPCR amplification enabled the analysis of the gene expression of AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 in neonatal saliva. Expression results were correlated with the feeding status during sample collection. CONCLUSIONS In summary, the genes AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 play critical roles in regulating oral feeding and the development of premature infants. Understanding the influence of these genes can provide valuable insights for improving nutritional care and support the development of these vulnerable babies. Evidence suggests that saliva-based gene expression analysis in newborns holds great promise for early detection and monitoring of disease and understanding developmental processes. More research and standardization of protocols are needed to fully explore the potential of saliva as a noninvasive biomarker in neonatal care.
Collapse
Affiliation(s)
- Leonardo Henrique Ferreira Gomes
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Andressa Brito Marques
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Isabel Cristina de Meireles Dias
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sanny Cerqueira de O. Gabeira
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Tamara Rosa Barcelos
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Mariana de Oliveira Guimarães
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Igor Ribeiro Ferreira
- Rural and Remote Support Services, Department of Health, Integrated Cardiovascular Clinical Network SA, Adelaide, SA 5042, Australia
| | - Letícia Cunha Guida
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sabrina Lopes Lucena
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Adriana Duarte Rocha
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| |
Collapse
|
6
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
7
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Tomlinson JW. Bardet-Biedl syndrome: A focus on genetics, mechanisms and metabolic dysfunction. Diabetes Obes Metab 2024; 26 Suppl 2:13-24. [PMID: 38302651 DOI: 10.1111/dom.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
9
|
Munir A, Afsar S, Rehman AU. A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023. BMC Ophthalmol 2024; 24:55. [PMID: 38317096 PMCID: PMC10840256 DOI: 10.1186/s12886-024-03319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023. METHODS Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines. RESULTS A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber's congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. CONCLUSION In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.
Collapse
Affiliation(s)
- Asad Munir
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Salma Afsar
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
10
|
Weisschuh N, Mazzola P, Zuleger T, Schaeferhoff K, Kühlewein L, Kortüm F, Witt D, Liebmann A, Falb R, Pohl L, Reith M, Stühn LG, Bertrand M, Müller A, Casadei N, Kelemen O, Kelbsch C, Kernstock C, Richter P, Sadler F, Demidov G, Schütz L, Admard J, Sturm M, Grasshoff U, Tonagel F, Heinrich T, Nasser F, Wissinger B, Ossowski S, Kohl S, Riess O, Stingl K, Haack TB. Diagnostic genome sequencing improves diagnostic yield: a prospective single-centre study in 1000 patients with inherited eye diseases. J Med Genet 2024; 61:186-195. [PMID: 37734845 PMCID: PMC10850689 DOI: 10.1136/jmg-2023-109470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Karin Schaeferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Friederike Kortüm
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lisa Pohl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Milda Reith
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olga Kelemen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Carina Kelbsch
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Christoph Kernstock
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Paul Richter
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Francoise Sadler
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- MVZ für Humangenetik und Molekularpathologie, Rostock, Germany
| | - Fadi Nasser
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
12
|
Carden S, Vitiello E, Rosa E Silva I, Holder J, Quarantotti V, Kishore K, Roamio Franklin VN, D'Santos C, Ochi T, van Breugel M, Gergely F. Proteomic profiling of centrosomes across multiple mammalian cell and tissue types by an affinity capture method. Dev Cell 2023; 58:2393-2410.e9. [PMID: 37852252 DOI: 10.1016/j.devcel.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Centrosomes are the major microtubule-organizing centers in animals and play fundamental roles in many cellular processes. Understanding how their composition varies across diverse cell types and how it is altered in disease are major unresolved questions, yet currently available centrosome isolation protocols are cumbersome and time-consuming, and they lack scalability. Here, we report the development of centrosome affinity capture (CAPture)-mass spectrometry (MS), a powerful one-step purification method to obtain high-resolution centrosome proteomes from mammalian cells. Utilizing a synthetic peptide derived from CCDC61 protein, CAPture specifically isolates intact centrosomes. Importantly, as a bead-based affinity method, it enables rapid sample processing and multiplexing unlike conventional approaches. Our study demonstrates the power of CAPture-MS to elucidate cell-type-dependent heterogeneity in centrosome composition, dissect hierarchical interactions, and identify previously unknown centrosome components. Overall, CAPture-MS represents a transformative tool to unveil temporal, regulatory, cell-type- and tissue-specific changes in centrosome proteomes in health and disease.
Collapse
Affiliation(s)
- Sarah Carden
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Elisa Vitiello
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Valentina Quarantotti
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Clive D'Santos
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Takashi Ochi
- MRC Laboratory of Molecular Biology, Cambridge, UK; The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| | - Mark van Breugel
- MRC Laboratory of Molecular Biology, Cambridge, UK; School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Fanni Gergely
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
14
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
15
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
16
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
18
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
19
|
Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19:115-132. [PMID: 36741589 PMCID: PMC9896974 DOI: 10.2147/tcrm.s338653] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Bardet Biedl syndrome (BBS) is a rare inherited disorder considered a model of non-motile ciliopathy. It is in fact caused by mutations of genes encoding for proteins mainly localized to the base of the cilium. Clinical features of BBS patients are widely shared with patients suffering from other ciliopathies, especially autosomal recessive syndromic disorders; moreover, mutations in cilia-related genes can cause different clinical ciliopathy entities. Besides the best-known clinical features, as retinal degeneration, learning disabilities, polydactyly, obesity and renal defects, several additional clinical signs have been reported in BBS, expanding our understanding of the complexity of its clinical spectrum. The present review aims to describe the current knowledge of BBS i) pathophysiology, ii) clinical manifestations, highlighting both the most common and the less described features, iii) current and future perspective for treatment.
Collapse
Affiliation(s)
- Andrea Melluso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Floriana Secondulfo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Biogem Scarl, Ariano Irpino, AV, 83031, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Correspondence: Miriam Zacchia, Via Pansini 5, Naples, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 6671, Email
| |
Collapse
|
20
|
Li C, Wang X, Li F, Ding H, Liu L, Xiong Y, Yang C, Zhang Y, Wu J, Yin A. A novel non-sense variant in the OFD1 gene caused Joubert syndrome. Front Genet 2023; 13:1064762. [PMID: 36704348 PMCID: PMC9871390 DOI: 10.3389/fgene.2022.1064762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Joubert syndrome (JBS) is a rare neurodevelopmental disorder associated with progressive renal, liver, and retinal involvement that exhibits heterogeneity in both clinical manifestations and genetic etiology. Therefore, it is difficult to make a definite prenatal diagnosis. Methods: Whole-exome sequencing and Sanger sequencing were performed to screen the causative gene variants in a suspected JBS family. RNA-seq and protein model prediction were performed to clarify the potential pathogenic mechanism. A more comprehensive review of previously reported cases with OFD1 variants is presented and may help to establish a genotype-phenotype. Results: We identified a novel non-sense variant in the OFD1 gene, OFD1 (NM_003611.3): c.2848A>T (p.Lys950Ter). Sanger sequencing confirmed cosegregation among this family. RNA-seq confirmed that partial degradation of mutant transcripts, which was predicted to be caused by the non-sense-mediated mRNA decay (NMD) mechanism, may explain the reduction in the proportion of mutant transcripts. Protein structure prediction of the non-sense variant transcript revealed that this variant may lead to a change in the OFD1 protein structure. Conclusion: The genetic variation spectrum of JBS10 caused by OFD1 was broadened. The novel variants further deepened our insight into the molecular mechanism of the disease.
Collapse
Affiliation(s)
- Chen Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingwang Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fake Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Xiong
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Medical Imaging Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| |
Collapse
|
21
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
22
|
Choudhary A, Peles D, Nayak R, Mizrahi L, Stern S. Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophr Res 2022:S0920-9964(22)00406-6. [PMID: 36443183 DOI: 10.1016/j.schres.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Schizophrenia (SCZ) is a complex, heritable and polygenic neuropsychiatric disease, which disables the patients as well as decreases their life expectancy and quality of life. Common and rare variants studies on SCZ subjects have provided >100 genomic loci that hold importance in the context of SCZ pathophysiology. Transcriptomic studies from clinical samples have informed about the differentially expressed genes (DEGs) and non-coding RNAs in SCZ patients. Despite these advancements, no causative genes for SCZ were found and hence SCZ is difficult to recapitulate in animal models. In the last decade, induced Pluripotent Stem Cells (iPSCs)-based models have helped in understanding the neural phenotypes of SCZ by studying patient iPSC-derived 2D neuronal cultures and 3D brain organoids. Here, we have aimed to provide a simplistic overview of the current progress and advancements after synthesizing the enormous literature on SCZ genetics and SCZ iPSC-based models. Although further understanding of SCZ genetics and pathophysiological mechanisms using these technological advancements is required, the recent approaches have allowed to delineate important cellular mechanisms and biological pathways affected in SCZ.
Collapse
Affiliation(s)
- Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
23
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Xionghui Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
24
|
Clinical variant interpretation and biologically relevant reference transcripts. NPJ Genom Med 2022; 7:59. [PMID: 36257961 PMCID: PMC9579139 DOI: 10.1038/s41525-022-00329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical variant interpretation is highly dependent on the choice of reference transcript. Although the longest transcript has traditionally been chosen as the reference, APPRIS principal and MANE Select transcripts, biologically supported reference sequences, are now available. In this study, we show that MANE Select and APPRIS principal transcripts are the best reference transcripts for clinical variation. APPRIS principal and MANE Select transcripts capture almost all ClinVar pathogenic variants, and they are particularly powerful over the 94% of coding genes in which they agree. We find that a vanishingly small number of ClinVar pathogenic variants affect alternative protein products. Alternative isoforms that are likely to be clinically relevant can be predicted using TRIFID scores, the highest scoring alternative transcripts are almost 700 times more likely to house pathogenic variants. We believe that APPRIS, MANE and TRIFID are essential tools for clinical variant interpretation.
Collapse
|
25
|
Chaudhary NS, Armstrong ND, Hidalgo BA, Gutiérrez OM, Hellwege JN, Limdi NA, Reynolds RJ, Judd SE, Nadkarni GN, Lange L, Winkler CA, Kopp JB, Arnett DK, Tiwari HK, Irvin MR. SMOC2 gene interacts with APOL1 in the development of end-stage kidney disease: A genome-wide association study. Front Med (Lausanne) 2022; 9:971297. [PMID: 36250097 PMCID: PMC9554233 DOI: 10.3389/fmed.2022.971297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.
Collapse
Affiliation(s)
- Ninad S. Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Orlando M. Gutiérrez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard J. Reynolds
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne E. Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Denver, CO, United States
| | - Cheryl A. Winkler
- Basic Research Program, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeffrey B. Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donna K. Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
27
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
28
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
29
|
Ren ZL, Zhang HB, Li L, Yang ZL, Jiang L. Characterization of two novel knock-in mouse models of syndromic retinal ciliopathy carrying hypomorphic Sdccag8 mutations. Zool Res 2022; 43:442-456. [PMID: 35503560 PMCID: PMC9113982 DOI: 10.24272/j.issn.2095-8137.2021.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
Mutations in serologically defined colon cancer autoantigen protein 8 ( SDCCAG8) were first identified in retinal ciliopathy families a decade ago with unknown function. To investigate the pathogenesis of SDCCAG8-associated retinal ciliopathies in vivo, we employed CRISPR/Cas9-mediated homology-directed recombination (HDR) to generate two knock-in mouse models, Sdccag8Y236X/Y236X and Sdccag8E451GfsX467/E451GfsX467 , which carry truncating mutations of the mouse Sdccag8, corresponding to mutations that cause Bardet-Biedl syndrome (BBS) and Senior-Løken syndrome (SLS) (c.696T>G p.Y232X and c.1339-1340insG p.E447GfsX463) in humans, respectively. The two mutant Sdccag8 knock-in mice faithfully recapitulated human SDCCAG8-associated BBS phenotypes such as rod-cone dystrophy, cystic renal disorder, polydactyly, infertility, and growth retardation, with varied age of onset and severity depending on the hypomorphic strength of the Sdccag8 mutations. To the best of our knowledge, these knock-in mouse lines are the first BBS mouse models to present with the polydactyly phenotype. Major phototransduction protein mislocalization was also observed outside the outer segment after initiation of photoreceptor degeneration. Impaired cilia were observed in the mutant photoreceptors, renal epithelial cells, and mouse embryonic fibroblasts derived from the knock-in mouse embryos, suggesting that SDCCAG8 plays an essential role in ciliogenesis, and cilium defects are a primary driving force of SDCCAG8-associated retinal ciliopathies.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| | - Li Jiang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China . E-mail:
| |
Collapse
|
30
|
Habiby R, Bichet DG, Arthus MF, Connaughton D, Shril S, Mane S, Majmundar AJ, Hildebrandt F, Robertson GL. A Novel Form of Familial Vasopressin Deficient Diabetes Insipidus Transmitted in an X-linked Recessive Manner. J Clin Endocrinol Metab 2022; 107:e2513-e2522. [PMID: 35137152 PMCID: PMC9113824 DOI: 10.1210/clinem/dgac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial pituitary diabetes insipidus has been described only in an autosomal dominant or recessive mode of inheritance. OBJECTIVE This work aims to determine the cause of a novel form of familial diabetes insipidus (DI) that is controlled by desmopressin therapy but segregates in an X-linked recessive manner. METHODS Thirteen members from 3 generations of the kindred with familial DI were studied. Water intake, urine volume, urine osmolality, plasma osmolality, and plasma vasopressin were measured under basal conditions, during fluid deprivation, 3% saline infusion, and water loading. Magnetic resonance images of the posterior pituitary also were obtained. In affected males, the effects of desmopressin therapy and linkage of the DI to markers for chromosome Xq28 were determined. In addition, the genes encoding vasopressin, aquaporin-2, the AVPR2 receptor, and its flanking regions were sequenced. RESULTS This study showed that 4 males from 3 generations of the kindred have DI that is due to a deficiency of vasopressin, is corrected by standard doses of desmopressin, and segregates with markers for the AVPR2 gene in Xq28. However, no mutations were found in AVPR2 or its highly conserved flanking regions. Exome sequencing confirmed these findings and also revealed no deleterious variants in the provasopressin and aquaporin-2 genes. The 4 obligate female carriers osmo-regulated vasopressin in the low normal range. CONCLUSION X-linked recessive transmission of DI can be due to a defect in either the secretion or the action of vasopressin. Other criteria are necessary to differentiate and manage the 2 disorders correctly.
Collapse
Affiliation(s)
- Reema Habiby
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel G Bichet
- Renal Genetic Laboratory, Hôpital du Sacré-Coeur de Montreal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Marie-Francoise Arthus
- Renal Genetic Laboratory, Hôpital du Sacré-Coeur de Montreal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Dervia Connaughton
- Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Gary L Robertson
- Department of Medicine (Emeritus), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Correspondence: Gary L. Robertson, MD, 8889 Sletto Rd, Mount Horeb, WI 53572, USA.
| |
Collapse
|
31
|
Tsutsumi R, Chaya T, Tsujii T, Furukawa T. The carboxyl-terminal region of SDCCAG8 comprises a functional module essential for cilia formation as well as organ development and homeostasis. J Biol Chem 2022; 298:101686. [PMID: 35131266 PMCID: PMC8902618 DOI: 10.1016/j.jbc.2022.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein–protein interaction networks involved in cilia development.
Collapse
|
32
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
33
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
34
|
Medina G, Perry J, Oza A, Kenna M. Hiding in plain sight: genetic deaf-blindness is not always Usher syndrome. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006088. [PMID: 34021019 PMCID: PMC8327880 DOI: 10.1101/mcs.a006088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Hearing loss (HL) is the most common congenital sensory impairment. Usher syndrome (USH) is the leading genetic etiology of congenital deafness combined with progressive vision loss, and individuals presenting with these symptoms are often assumed to have USH. This can be an erroneous assumption, as there are additional genetic causes of deaf-blindness. Our objective is to describe and accurately diagnose non-USH genetic causes of deaf-blindness. We present three children with hearing and vision loss with clinical and genetic findings suggestive of USH. However, ongoing clinical assessment did not completely support an USH diagnosis, and exome analysis was pursued for all three individuals. Updated genetic testing showed pathogenic variants in ALMS1 in the first individual and TUBB4B in the second and third. Although HL in all three was consistent with USH type 2, vision impairment with retinal changes was noted by age 2 yr, which is unusual for USH. In all three the updated genotype more accurately fit the clinical phenotype. Because USH is the most common form of genetic deaf-blindness, individuals with HL, early vision impairment, and retinal dysfunction are often assumed to have USH. However, additional genes associated with HL and retinal impairment include ALMS1, TUBB4B, CEP78, ABHD12, and PRPS1. Accurate genetic diagnosis is critical to these individuals’ understanding of their genetic conditions, prognosis, vision and hearing loss management, and future access to molecular therapies. If clinically or genetically USH seems uncertain, updated genetic testing for non-USH genes is essential.
Collapse
Affiliation(s)
- Genevieve Medina
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Julia Perry
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Andrea Oza
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts 02139, USA.,Invitae, San Francisco, California 94103, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Li YF, Shi LJ, Wang P, Wang JW, Shi GY, Lee SC. Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncol Rep 2021; 46:151. [PMID: 34080666 PMCID: PMC8185503 DOI: 10.3892/or.2021.8102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes increases the risk various types of cancer and is associated with a poor prognosis therein. There is also evidence that the disease is associated with cancer metastasis. Centrosome amplification can initiate tumorigenesis with metastasis in vivo and increase the invasiveness of cancer cells in vitro. Our previous study reported that type 2 diabetes promotes centrosome amplification via the upregulation and centrosomal translocation of Rho-associated protein kinase 1 (ROCK1), which suggests that centrosome amplification is a candidate biological link between type 2 diabetes and cancer development. In the present study, functional proteomics analysis was used to further investigate the molecular pathways underlying centrosome amplification by targeting ROCK1 binding partners. High glucose, insulin and palmitic acid were used to induce centrosome amplification, and immunofluorescent staining was employed to visualize centrosomal alterations. Combined with immunoprecipitation, mass spectrometry-based proteomics analysis was used to identify ROCK1 binding proteins, and protein complex disruption was achieved by siRNA-knockdown. In total, 1,148 ROCK1 binding proteins were identified, among which 106 proteins were exclusively associated with the treated samples, 193 were only associated with the control samples, and 849 were found in both the control and treated samples. Of the proteins with evidence of centrosomal localization, Dynactin subunit 2 (DCTN2) was confirmed to be localized to the centrosomes. Treating the cells with high glucose, insulin and palmitic acid increased the protein levels of ROCK1 and DCTN2, promoted their binding with each other, and triggered centrosome amplification. Disruption of the protein complex by knocking down ROCK1 or DCTN2 expression partially attenuated centrosome amplification, while simultaneous knockdown of both proteins completely inhibited centrosome amplification. These results suggested ROCK1-DCTN2 binding as a signal for the regulation of centrosome homeostasis, which is key for diabetes-associated centrosome amplification, and enriches our knowledge of centrosome biology. Therefore, the ROCK1-DCTN2 complex may serve as a target for inhibiting centrosome amplification both in research or future therapeutic development.
Collapse
Affiliation(s)
- Yuan Fei Li
- Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lin Jie Shi
- Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pu Wang
- Changzhi Medical University, Changzhi, Shanxi 030001, P.R. China
| | - Jia Wen Wang
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Guang Yi Shi
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Shao Chin Lee
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
36
|
Flynn M, Whitton L, Donohoe G, Morrison CG, Morris DW. Altered gene regulation as a candidate mechanism by which ciliopathy gene SDCCAG8 contributes to schizophrenia and cognitive function. Hum Mol Genet 2021; 29:407-417. [PMID: 31868218 DOI: 10.1093/hmg/ddz292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in genes that encode centrosomal/ciliary proteins cause severe cognitive deficits, while common single-nucleotide polymorphisms in these genes are associated with schizophrenia (SZ) and cognition in genome-wide association studies. The role of these genes in neuropsychiatric disorders is unknown. The ciliopathy gene SDCCAG8 is associated with SZ and educational attainment (EA). Genome editing of SDCCAG8 caused defects in primary ciliogenesis and cilium-dependent cell signalling. Transcriptomic analysis of SDCCAG8-deficient cells identified differentially expressed genes that are enriched in neurodevelopmental processes such as generation of neurons and synapse organization. These processes are enriched for genes associated with SZ, human intelligence (IQ) and EA. Phenotypic analysis of SDCCAG8-deficent neuronal cells revealed impaired migration and neuronal differentiation. These data implicate ciliary signalling in the aetiology of SZ and cognitive dysfunction. We found that centrosomal/ciliary genes are enriched for association with IQ, suggesting altered gene regulation as a general model for neurodevelopmental impacts of centrosomal/ciliary genes.
Collapse
Affiliation(s)
- Mairéad Flynn
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland.,Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland
| |
Collapse
|
37
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
38
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
39
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
40
|
Al Alawi I, Al Riyami M, Barroso-Gil M, Powell L, Olinger E, Al Salmi I, Sayer JA. The diagnostic yield of whole exome sequencing as a first approach in consanguineous Omani renal ciliopathy syndrome patients. F1000Res 2021; 10:207. [PMID: 34354814 PMCID: PMC8290205 DOI: 10.12688/f1000research.40338.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, ( TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.
Collapse
Affiliation(s)
- Intisar Al Alawi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
- National Genetic Center, Ministry of Health, Muscat, Oman
| | - Mohammed Al Riyami
- Pediatric Nephrology Unit, Department of Child Health, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Laura Powell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Eric Olinger
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Issa Al Salmi
- Renal Medicine Department, Royal Hospital, Ministry of Health, Muscat, Oman
- Oman Medical Speciality Board, Muscat, Oman
| | - John A. Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
- Oman Medical Speciality Board, Muscat, Oman
- Newcastle Biomedical Research Centre, NIHR, Newcastle upon Tyne, Tyne and Wear, NE45PL, UK
| |
Collapse
|
41
|
Al Alawi I, Al Riyami M, Barroso-Gil M, Powell L, Olinger E, Al Salmi I, Sayer JA. The diagnostic yield of whole exome sequencing as a first approach in consanguineous Omani renal ciliopathy syndrome patients. F1000Res 2021; 10:207. [PMID: 34354814 PMCID: PMC8290205 DOI: 10.12688/f1000research.40338.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, ( TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.
Collapse
Affiliation(s)
- Intisar Al Alawi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
- National Genetic Center, Ministry of Health, Muscat, Oman
| | - Mohammed Al Riyami
- Pediatric Nephrology Unit, Department of Child Health, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Laura Powell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Eric Olinger
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
| | - Issa Al Salmi
- Renal Medicine Department, Royal Hospital, Ministry of Health, Muscat, Oman
- Oman Medical Speciality Board, Muscat, Oman
| | - John A. Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
- Oman Medical Speciality Board, Muscat, Oman
- Newcastle Biomedical Research Centre, NIHR, Newcastle upon Tyne, Tyne and Wear, NE45PL, UK
| |
Collapse
|
42
|
Mann N, Mzoughi S, Schneider R, Kühl SJ, Schanze D, Klämbt V, Lovric S, Mao Y, Shi S, Tan W, Kühl M, Onuchic-Whitford AC, Treimer E, Kitzler TM, Kause F, Schumann S, Nakayama M, Buerger F, Shril S, van der Ven AT, Majmundar AJ, Holton KM, Kolb A, Braun DA, Rao J, Jobst-Schwan T, Mildenberger E, Lennert T, Kuechler A, Wieczorek D, Gross O, Ermisch-Omran B, Werberger A, Skalej M, Janecke AR, Soliman NA, Mane SM, Lifton RP, Kadlec J, Guccione E, Schmeisser MJ, Zenker M, Hildebrandt F. Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. J Am Soc Nephrol 2021; 32:580-596. [PMID: 33593823 PMCID: PMC7920168 DOI: 10.1681/asn.2020040490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.
Collapse
Affiliation(s)
- Nina Mann
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Slim Mzoughi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Verena Klämbt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Svjetlana Lovric
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Youying Mao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shasha Shi
- Grenoble Alpes University, National Center for Scientific Research (CNRS), French Alternative Energies and Atomic Energy Commission (CEA), Institute of Structural Biology, Grenoble, France
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ana C Onuchic-Whitford
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ernestine Treimer
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Thomas M Kitzler
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Franziska Kause
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sven Schumann
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florian Buerger
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amelie T van der Ven
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Amy Kolb
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eva Mildenberger
- Division of Neonatology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Thomas Lennert
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Beate Ermisch-Omran
- Department of Pediatric Nephrology, University Children's Hospital, Münster, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Martin Skalej
- Institute of Neuroradiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
- The Egyption Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Jan Kadlec
- Grenoble Alpes University, National Center for Scientific Research (CNRS), French Alternative Energies and Atomic Energy Commission (CEA), Institute of Structural Biology, Grenoble, France
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Majmundar AJ, Buerger F, Forbes TA, Klämbt V, Schneider R, Deutsch K, Kitzler TM, Howden SE, Scurr M, Tan KS, Krzeminski M, Widmeier E, Braun DA, Lai E, Ullah I, Amar A, Kolb A, Eddy K, Chen CH, Salmanullah D, Dai R, Nakayama M, Ottlewski I, Kolvenbach CM, Onuchic-Whitford AC, Mao Y, Mann N, Nabhan MM, Rosen S, Forman-Kay JD, Soliman NA, Heilos A, Kain R, Aufricht C, Mane S, Lifton RP, Shril S, Little MH, Hildebrandt F. Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice. SCIENCE ADVANCES 2021; 7:eabe1386. [PMID: 33523862 PMCID: PMC10763988 DOI: 10.1126/sciadv.abe1386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.
Collapse
Affiliation(s)
- Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Buerger
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas A Forbes
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Nephrology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Verena Klämbt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Deutsch
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas M Kitzler
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara E Howden
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Scurr
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ker Sin Tan
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mickaël Krzeminski
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ethan Lai
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ihsan Ullah
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Amar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Kolb
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Eddy
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin Heng Chen
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daanya Salmanullah
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabel Ottlewski
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Onuchic-Whitford
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Youying Mao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nina Mann
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marwa M Nabhan
- Department of Pediatrics, Center for Pediatric Nephrology and Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Neveen A Soliman
- Department of Pediatrics, Center for Pediatric Nephrology and Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Andreas Heilos
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa H Little
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kousi M, Söylemez O, Ozanturk A, Mourtzi N, Akle S, Jungreis I, Muller J, Cassa CA, Brand H, Mokry JA, Wolf MY, Sadeghpour A, McFadden K, Lewis RA, Talkowski ME, Dollfus H, Kellis M, Davis EE, Sunyaev SR, Katsanis N. Evidence for secondary-variant genetic burden and non-random distribution across biological modules in a recessive ciliopathy. Nat Genet 2020; 52:1145-1150. [PMID: 33046855 PMCID: PMC8272915 DOI: 10.1038/s41588-020-0707-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/31/2020] [Indexed: 11/08/2022]
Abstract
The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Onuralp Söylemez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aysegül Ozanturk
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Niki Mourtzi
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA
| | - Sebastian Akle
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jean Muller
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Population and Medical Genetics and Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill Anne Mokry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Maxim Y Wolf
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Kelsey McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Talkowski
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Population and Medical Genetics and Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA.
- Departments of Pediatrics and Cellular and Molecular Biology, Northwestern University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
45
|
Fujii Y, Matsumura H, Shirasu A, Nakakura H, Yamazaki S, Morisada N, Iijima K, Ashida A. Genetic analysis diagnosed Bardet–Biedl syndrome in a patient with a clinical diagnosis of Senior–Løken syndrome. RENAL REPLACEMENT THERAPY 2020. [DOI: 10.1186/s41100-020-00294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Senior–Løken syndrome (SLS) and Bardet–Biedl syndrome (BBS) are ciliopathies. SLS is characterized by retinitis pigmentosa (RP) and familial nephronophthisis, leading to end-stage kidney disease, while BBS is characterized by six major symptoms: RP, polydactyly, obesity, genital abnormalities, learning difficulties, and renal defects. Ciliopathies have been diagnosed on a phenotypic basis, but diagnosis can now be established by genetic testing, using techniques such as next-generation sequencing. Here, we report a patient clinically diagnosed with SLS but diagnosed with BBS 13 years later using next-generation sequencing.
Case presentation
The patient was diagnosed with RP at the age of 6 years. She had some difficulty in social interactions and pre-obesity, but no polydactyly. At the age of 8 years, she was diagnosed with chronic kidney disease, anemia, and liver dysfunction. Kidney and liver biopsy revealed renal tubule cysts, tubule membrane disruption, and liver fibrosis. Therefore, SLS was diagnosed but no NPHP1 mutations were detected. Peritoneal dialysis was started at the age of 9 years, and she underwent kidney transplantation with a graft from her father at the age of 13 years. At the age of 21 years, she again underwent genetic testing for most of the mutations associated with ciliopathy. This revealed a homozygous frameshift mutation in intron 11 of SDCCAG8.
Conclusions
Mutations in SDCCAG8 are known to be causative of SLS and BBS without polydactyly. The fact that the patient had RP, some difficulty in social interactions, pre-obesity, juvenile nephronophthisis, liver fibrosis, bronchial asthma, and otitis media suggested BBS. However, some of these are not specific symptoms for BBS and she had few typical symptoms of BBS. Therefore, a definitive diagnosis of BBS was difficult without genetic analysis. Because many more patients with SDCCAG8 mutations have extrarenal manifestations like the current patient than standard nephronophthisis patients, careful monitoring of extrarenal manifestations is needed to improve patient management.
Collapse
|
46
|
Connaughton DM, Dai R, Owen DJ, Marquez J, Mann N, Graham-Paquin AL, Nakayama M, Coyaud E, Laurent EMN, St-Germain JR, Blok LS, Vino A, Klämbt V, Deutsch K, Wu CHW, Kolvenbach CM, Kause F, Ottlewski I, Schneider R, Kitzler TM, Majmundar AJ, Buerger F, Onuchic-Whitford AC, Youying M, Kolb A, Salmanullah D, Chen E, van der Ven AT, Rao J, Ityel H, Seltzsam S, Rieke JM, Chen J, Vivante A, Hwang DY, Kohl S, Dworschak GC, Hermle T, Alders M, Bartolomaeus T, Bauer SB, Baum MA, Brilstra EH, Challman TD, Zyskind J, Costin CE, Dipple KM, Duijkers FA, Ferguson M, Fitzpatrick DR, Fick R, Glass IA, Hulick PJ, Kline AD, Krey I, Kumar S, Lu W, Marco EJ, Wentzensen IM, Mefford HC, Platzer K, Povolotskaya IS, Savatt JM, Shcherbakova NV, Senguttuvan P, Squire AE, Stein DR, Thiffault I, Voinova VY, Somers MJG, Ferguson MA, Traum AZ, Daouk GH, Daga A, Rodig NM, Terhal PA, van Binsbergen E, Eid LA, Tasic V, Rasouly HM, Lim TY, Ahram DF, Gharavi AG, Reutter HM, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Lifton RP, Xu H, Mane SM, Sanna-Cherchi S, Sharrocks AD, Raught B, Fisher SE, Bouchard M, Khokha MK, Shril S, Hildebrandt F. Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. Am J Hum Genet 2020; 107:727-742. [PMID: 32891193 PMCID: PMC7536580 DOI: 10.1016/j.ajhg.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Nephrology, Department of Medicine, University Hospital - London Health Sciences Centre, Schulich School of Medicine & Dentistry, Western University, 339 Windermere Road, London, ON N6A 5A5, Canada
| | - Rufeng Dai
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adda L Graham-Paquin
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lot Snijders Blok
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands; Human Genetics Department, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Verena Klämbt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen-Han Wilfred Wu
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline M Kolvenbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Kause
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Ottlewski
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ronen Schneider
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas M Kitzler
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amar J Majmundar
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Onuchic-Whitford
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mao Youying
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Kolb
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daanya Salmanullah
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Evan Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amelie T van der Ven
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Hadas Ityel
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Johanna M Rieke
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asaf Vivante
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel Aviv University, Faculty of Medicine, Tel Aviv-Yafo 6997801, Israel
| | - Daw-Yang Hwang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Kohl
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel C Dworschak
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Hermle
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariëlle Alders
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Meibergdreef 9, 1105 Amsterdam, Netherlands
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle A Baum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Thomas D Challman
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Jacob Zyskind
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Carrie E Costin
- Department of Clinical Genetics, Akron Children's Hospital, One Perkins Square, Akron, OH 44308, USA
| | - Katrina M Dipple
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Floor A Duijkers
- Department of Clinical Genetics, University of Amsterdam, 1012 WX Amsterdam, the Netherlands
| | - Marcia Ferguson
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - David R Fitzpatrick
- MRC Institute of Genetics & Molecular Medicine, Royal Hospital for Sick Children, The University of Edinburgh, 2XU, Crewe Rd S, Edinburgh EH4 2XU, UK
| | - Roger Fick
- Mary Bridge Childrens Hospital, 316 Martin Luther King JR Way, Tacoma, WA 98405, USA
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, 1000 Central Street, Suite 610, Evanston, IL 60201, USA
| | - Antonie D Kline
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany; Swiss Epilepsy Center, Klinik Lengg, Bleulerstrasse 60, 8000 Zürich, Switzerland
| | - Selvin Kumar
- Department of Pediatric Nephrology, Institute of Child Health and Hospital for Children, Tamil Salai, Egmore, Chennai, Tamil Nadu 600008, India
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | - Elysa J Marco
- Cortica Healthcare, 4000 Civic Center Drive, Ste 100, San Rafael, CA 94939, USA
| | - Ingrid M Wentzensen
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Juliann M Savatt
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Natalia V Shcherbakova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Prabha Senguttuvan
- Department of Pediatric Nephrology, Dr. Mehta's Multi-Specialty Hospital, No.2, Mc Nichols Rd, Chetpet, Chennai, Tamil Nadu 600031, India
| | - Audrey E Squire
- Seattle Children's Hospital, Department of Genetic Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Deborah R Stein
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO 64108, USA; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, 5000 Holmes St, Kansas City, MO 64110, USA
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Michael J G Somers
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Ferguson
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avram Z Traum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ghaleb H Daouk
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ankana Daga
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Loai A Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, Skopje 1000, North Macedonia
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Tze Y Lim
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Dina F Ahram
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Heiko M Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany; Section of Neonatology and Pediatric Intensive Care, Clinic for Pediatrics, University Hospital Bonn, Adenauerallee 119, 53313 Bonn, Germany
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Kristen M Laricchia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Richard P Lifton
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands
| | - Maxime Bouchard
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Bahmanpour Z, Daneshmandpour Y, Kazeminasab S, Khalil Khalili S, Alehabib E, Chapi M, Soosanabadi M, Darvish H, Emamalizadeh B. A novel splice site mutation in the SDCCAG8 gene in an Iranian family with Bardet-Biedl syndrome. Int Ophthalmol 2020; 41:389-397. [PMID: 32926352 DOI: 10.1007/s10792-020-01588-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS: OMIM 209,900) is a rare ciliopathic human genetic disorder that affects many parts of the body systems. BBS is a genetically heterogeneous disorder with a wide spectrum of clinical manifestations which makes its diagnosis and management more challenging. RetNet reports 18 genes that cause BBS and each of genes has had several known mutations. Genetic studies suggesting that serologically defined colon cancer antigen 8 (SDCCAG8) gene mutations are a major cause of BBS. MATERIALS AND METHODS In this section, we investigated the consanguineous Iranian family members with BBS. Whole-exome sequencing and Sanger sequencing, were performed to screen and confirm the suspicious pathogenic mutations. The identified mutation was investigated using bioinformatics tools to predict the effect of the mutation on protein structure. RESULTS Sequential analysis identified a novel splice site mutation c.1221 + 2 T > A in the SDCCAG8 gene in BBS patients. Structure-based approaches have predicted significant structural alterations in SDCCAG8 protein. CONCLUSIONS This study was conducted to show the aberrant alternative splicing as one of the single splicing mutations identified can cause BBS by affecting the function of SDCCAG8 protein.
Collapse
Affiliation(s)
- Zahra Bahmanpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabeh Khalil Khalili
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Alehabib
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Chapi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Darvish
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Babak Emamalizadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
BBS4 Is Essential for Nuclear Transport of Transcription Factors Mediating Neuronal ER Stress Response. Mol Neurobiol 2020; 58:78-91. [PMID: 32894499 DOI: 10.1007/s12035-020-02104-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022]
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive syndrome presenting with retinal dystrophy, cognitive impairment, and obesity. BBS is characterized by elevated endoplasmic reticulum (ER) stress in the early stages of adipocyte and retinal development. BBS expression in the CNS and indications of hippocampal dysgenesis suggest neural development abnormalities. However, the role of BBS in ER stress in neuronal cells has not yet been studied. Therefore, we aimed at studying the role of BBS4 in neuronal development under normal and ER stress conditions. ER stress and unfolded protein response (UPR) were studied in BBS4-silenced (SiBBS4) SH-SY5Y cells during differentiation under normal and stress states, using molecular and biochemical markers. ER stress was demonstrated at early neural differentiation, with significantly augmented expression of UPR markers corresponding to BBS4 expression. In the undifferentiated state, BBS4 silencing resulted in significantly reduced ER-stress markers' expression under normal and ER-stress states. Independent of ER stress, SiBBS4 cells demonstrated significant reduction in activated phospho-IRE1α. Under BBS4 silencing, both sXBP-1 and activated ATF6α p50 failed to translocate to the nucleus. Transcript levels of apoptosis markers were upregulated under BBS4 depletion and ER-stress induction, corresponding to decreased viability. BBS4 depletion in neuronal cells results in reduced sensitivity to ER stress during differentiation and under ER-stress induction, partly due to failure in translocation of ER-transcription factors (TF) sXBP-1 and ATF6α p50 to the nucleus. Hence, BBS4 is essential for nuclear transport under ER-stress response in neuronal cells during early differentiation. Our studies shed light on molecular mechanisms through which BBS4 malfunction alters neuronal ER stress response.
Collapse
|
49
|
Méjécase C, Kozak I, Moosajee M. The genetic landscape of inherited eye disorders in 74 consecutive families from the United Arab Emirates. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:762-772. [PMID: 32783370 PMCID: PMC8432150 DOI: 10.1002/ajmg.c.31824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/28/2023]
Abstract
Genetic eye diseases are phenotypically and genetically heterogeneous, affecting 1 in 1,000 people worldwide. This prevalence can increase in populations where endogamy is a social preference, such as in Arab populations. A retrospective consecutive cohort of 91 patients from 74 unrelated families affected with non-syndromic and syndromic inherited eye disease presenting to the ocular genetics service at Moorfields Eye Hospitals United Arab Emirates (UAE) between 2017 and 2019, underwent clinically accredited genetic testing using targeted gene panels. The mean ± SD age of probands was 27.4 ± 16.2 years, and 45% were female (41/91). The UAE has a diverse and dynamic population, and the main ethnicity of families in this cohort was 74% Arab (n = 55), 8% Indian (n = 6) and 7% Pakistani (n = 5). Fifty-six families (90.3%) were genetically solved, with 69 disease-causing variants in 40 genes. Fourteen novel variants were detected with large deletions in CDHR1 and TTLL5, a multiexon (1-8) duplication in TEAD1 and 11 single nucleotides variants in 9 further genes. ABCA4-retinopathy was the most frequent cause accounting for 21% of cases, with the confirmed UAE founder mutation c.5882G>A p.(Gly1961Glu)/c.2570T>C p.(Leu857Pro) in 25%. High diagnostic yield for UAE patients can guide prognosis, family decision-making, access to clinical trials and approved treatments.
Collapse
Affiliation(s)
- Cécile Méjécase
- Institute of Ophthalmology, University College London, London, UK
| | - Igor Kozak
- Moorfields Eye Hospitals United Arab Emirates (UAE), Dubai, UAE
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospitals United Arab Emirates (UAE), Dubai, UAE.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Great Ormond Street Hospital for Children NHS Trust, London, UK.,The Francis Crick Institute, London, UK
| |
Collapse
|
50
|
Al-Hamed MH, Alzaidan H, Hussein M, Albaik L, Qari A, Sayer JA, Imtiaz F. Novel pathogenic MAPKBP1 variant in a family with nephronophthisis. Clin Kidney J 2020; 14:728-730. [PMID: 33623699 PMCID: PMC7886576 DOI: 10.1093/ckj/sfaa090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mohamed H Al-Hamed
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maged Hussein
- Nephrology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lina Albaik
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle, UK.,National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|