1
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
De Mattei F, Ferrandes F, Gallone S, Canosa A, Calvo A, Chiò A, Vasta R. Epidemiology of Spinocerebellar Ataxias in Europe. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1176-1183. [PMID: 37698771 PMCID: PMC11102384 DOI: 10.1007/s12311-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of rare neurodegenerative conditions sharing an autosomal dominant pattern of inheritance. More than 40 SCAs have been genetically determined. However, a systematic review of SCA epidemiology in Europe is still missing. Here we performed a narrative review of the literature on the epidemiology of the most common SCAs in Europe. PubMed, Embase, and MEDLINE were searched from inception until 1 April 2023. All English peer-reviewed articles published were considered and then filtered by abstract examination and subsequently by full text reading. A total of 917 original articles were retrieved. According to the inclusion criteria and after reviewing references for useful papers, a total of 35 articles were included in the review. Overall, SCA3 is the most frequent spinocerebellar ataxia in Europe. Its frequency is strikingly higher in Portugal, followed by Germany, France, and Netherlands. None or few cases were described in Italy, Russia, Poland, Serbia, Finland, and Norway. SCA1 and SCA2 globally displayed similar frequencies, and are more prevalent in Italy, United Kingdom, Poland, Serbia, and France.
Collapse
Affiliation(s)
- Filippo De Mattei
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Fabio Ferrandes
- Aging Brain and Memory Clinic, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Salvatore Gallone
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Antonio Canosa
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Andrea Calvo
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Adriano Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| |
Collapse
|
4
|
Garza R, Atacho DA, Adami A, Gerdes P, Vinod M, Hsieh P, Karlsson O, Horvath V, Johansson PA, Pandiloski N, Matas-Fuentes J, Quaegebeur A, Kouli A, Sharma Y, Jönsson ME, Monni E, Englund E, Eichler EE, Gale Hammell M, Barker RA, Kokaia Z, Douse CH, Jakobsson J. LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. SCIENCE ADVANCES 2023; 9:eadh9543. [PMID: 37910626 PMCID: PMC10619931 DOI: 10.1126/sciadv.adh9543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.
Collapse
Affiliation(s)
- Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Meghna Vinod
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Vivien Horvath
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Pia A. Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Jon Matas-Fuentes
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical Neurosciences, University of Cambridge and Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Antonina Kouli
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge CB2 0PY, UK
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Molly Gale Hammell
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institute for Systems Genetics, Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge CB2 0PY, UK
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| | - Christopher H. Douse
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC B11, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
5
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
6
|
Fu S, Bury LAD, Eum J, Wynshaw-Boris A. Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am J Hum Genet 2023; 110:826-845. [PMID: 37098352 PMCID: PMC10183467 DOI: 10.1016/j.ajhg.2023.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.403A>C (p.Ile135Leu) variant found in an ASD-affected individual with macrocephaly dysregulates cortical neurogenesis in an ASD-genetic-background-dependent fashion. Transcriptome analysis at both bulk and single-cell level revealed that the PTEN c.403A>C variant and ASD genetic background affected genes involved in neurogenesis, neural development, and synapse signaling. We also found that this PTEN p.Ile135Leu variant led to overproduction of NPC subtypes as well as neuronal subtypes including both deep and upper layer neurons in its ASD background, but not when introduced into a control genetic background. These findings provide experimental evidence that both the PTEN p.Ile135Leu variant and ASD genetic background contribute to cellular features consistent with ASD associated with macrocephaly.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jaejin Eum
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, Gilliat S, Cvetanovic M. Extracellular Matrix Regulation in Physiology and in Brain Disease. Int J Mol Sci 2023; 24:7049. [PMID: 37108212 PMCID: PMC10138624 DOI: 10.3390/ijms24087049] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.
Collapse
Affiliation(s)
- Alyssa Soles
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Adem Selimovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Ferris Ghannoum
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Emmanuel Labrada Moncada
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Coffin SL, Durham MA, Nitschke L, Xhako E, Brown AM, Revelli JP, Villavicencio Gonzalez E, Lin T, Handler HP, Dai Y, Trostle AJ, Wan YW, Liu Z, Sillitoe RV, Orr HT, Zoghbi HY. Disruption of the ATXN1-CIC complex reveals the role of additional nuclear ATXN1 interactors in spinocerebellar ataxia type 1. Neuron 2023; 111:481-492.e8. [PMID: 36577402 PMCID: PMC9957872 DOI: 10.1016/j.neuron.2022.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative disease in that it is caused by a mutation in a broadly expressed protein, ATXN1; however, only select populations of cells degenerate. The interaction of polyglutamine-expanded ATXN1 with the transcriptional repressor CIC drives cerebellar Purkinje cell pathogenesis; however, the importance of this interaction in other vulnerable cells remains unknown. Here, we mutated the 154Q knockin allele of Atxn1154Q/2Q mice to prevent the ATXN1-CIC interaction globally. This normalized genome-wide CIC binding; however, it only partially corrected transcriptional and behavioral phenotypes, suggesting the involvement of additional factors in disease pathogenesis. Using unbiased proteomics, we identified three ATXN1-interacting transcription factors: RFX1, ZBTB5, and ZKSCAN1. We observed altered expression of RFX1 and ZKSCAN1 target genes in SCA1 mice and patient-derived iNeurons, highlighting their potential contributions to disease. Together, these data underscore the complexity of mechanisms driving cellular vulnerability in SCA1.
Collapse
Affiliation(s)
- Stephanie L Coffin
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mark A Durham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larissa Nitschke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eder Xhako
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Amanda M Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Esmeralda Villavicencio Gonzalez
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hillary P Handler
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yanwan Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
13
|
Orengo JP, Nitschke L, van der Heijden ME, Ciaburri NA, Orr HT, Zoghbi HY. Reduction of mutant ATXN1 rescues premature death in a conditional SCA1 mouse model. JCI Insight 2022; 7:e154442. [PMID: 35290244 PMCID: PMC9089789 DOI: 10.1172/jci.insight.154442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder. As disease progresses, motor neurons are affected, and their dysfunction contributes toward the inability to maintain proper respiratory function, a major driving force for premature death in SCA1. To investigate the isolated role of motor neurons in SCA1, we created a conditional SCA1 (cSCA1) mouse model. This model suppresses expression of the pathogenic SCA1 allele with a floxed stop cassette. cSCA1 mice crossed to a ubiquitous Cre line recapitulate all the major features of the original SCA1 mouse model; however, they took twice as long to develop. We found that the cSCA1 mice produced less than half of the pathogenic protein compared with the unmodified SCA1 mice at 3 weeks of age. In contrast, restricted expression of the pathogenic SCA1 allele in motor neurons only led to a decreased distance traveled of mice in the open field assay and did not affect body weight or survival. We conclude that a 50% or greater reduction of the mutant protein has a dramatic effect on disease onset and progression; furthermore, we conclude that expression of polyglutamine-expanded ATXN1 at this level specifically in motor neurons is not sufficient to cause premature lethality.
Collapse
Affiliation(s)
- James P. Orengo
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Neuroscience and
| | - Larissa Nitschke
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Nicholas A. Ciaburri
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Huda Y. Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Neuroscience and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
14
|
Traa A, Machiela E, Rudich PD, Soo SK, Senchuk MM, Van Raamsdonk JM. Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation. Int J Mol Sci 2021; 22:ijms222413447. [PMID: 34948242 PMCID: PMC8703635 DOI: 10.3390/ijms222413447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models. In this work, we examine the effect of decreasing mitochondrial fragmentation in a neuronal C. elegans model of polyglutamine toxicity called Neur-67Q. We find that Neur-67Q worms exhibit mitochondrial fragmentation in GABAergic neurons and decreased mitochondrial function. Disruption of drp-1 eliminates differences in mitochondrial morphology and rescues deficits in both movement and longevity in Neur-67Q worms. In testing twenty-four RNA interference (RNAi) clones that decrease mitochondrial fragmentation, we identified eleven clones—each targeting a different gene—that increase movement and extend lifespan in Neur-67Q worms. Overall, we show that decreasing mitochondrial fragmentation may be an effective approach to treating polyglutamine diseases and we identify multiple novel genetic targets that circumvent the potential negative side effects of disrupting the primary mitochondrial fission gene drp-1.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Paige D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sonja K. Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
15
|
Structural Analysis and Spatiotemporal Expression of Atxn1 Genes in Zebrafish Embryos and Larvae. Int J Mol Sci 2021; 22:ijms222111348. [PMID: 34768779 PMCID: PMC8583371 DOI: 10.3390/ijms222111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish have come into focus to model cerebellar diseases such as spinocerebellar ataxias (SCAs), which is caused by an expansion of translated CAG repeats in several unrelated genes. In spinocerebellar ataxia type 1 (SCA1), gain-of-function in the mutant ATXN1 contributes to SCA1’s neuropathy. Human ATXN1 and its paralog ATXN1L are chromatin-binding factors, act as transcriptional repressors, and have similar expression patterns. However, little is known about atxn1 genes in zebrafish. Recently, two family members, atxn1a and atxn1b, were identified as duplicate orthologs of ATXN1, as was atxn1l, the ortholog of ATXN1L. In this study, we analyzed the phylogenetic relationship of the atxn1 family members in zebrafish, compared their genetic structures, and verified the predicted transcripts by both RT-PCR and whole-mount in situ hybridization. All three genes, atxn1a, atxn1b, and atxn1l, show overlapping, but also distinct, expression domains during embryonic and larval development. While atxn1a and atxn1l display similar spatiotemporal embryonic expression, atxn1b expression is initiated during the onset of brain development and is predominantly expressed in the cerebellum throughout zebrafish development. These results provide new insights into atxn1 genes and their expression patterns in zebrafish during embryonic and late-larval development and may contribute importantly to future experiments in disease modeling of SCAs.
Collapse
|
16
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Beijer D, Kim HJ, Guo L, O'Donovan K, Mademan I, Deconinck T, Van Schil K, Fare CM, Drake LE, Ford AF, Kochański A, Kabzińska D, Dubuisson N, Van den Bergh P, Voermans NC, Lemmers RJ, van der Maarel SM, Bonner D, Sampson JB, Wheeler MT, Mehrabyan A, Palmer S, De Jonghe P, Shorter J, Taylor JP, Baets J. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 2021; 6:e148363. [PMID: 34291734 PMCID: PMC8410042 DOI: 10.1172/jci.insight.148363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Inès Mademan
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Tine Deconinck
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Kristof Van Schil
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nicolas Dubuisson
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Jacinda B Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Anahit Mehrabyan
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven Palmer
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| |
Collapse
|
18
|
Nitschke L, Coffin SL, Xhako E, El-Najjar DB, Orengo JP, Alcala E, Dai Y, Wan YW, Liu Z, Orr HT, Zoghbi HY. Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight 2021; 6:144955. [PMID: 33554954 PMCID: PMC7934855 DOI: 10.1172/jci.insight.144955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder characterized by motor incoordination, mild cognitive decline, respiratory dysfunction, and early lethality. It is caused by the expansion of the polyglutamine (polyQ) tract in Ataxin-1 (ATXN1), which stabilizes the protein, leading to its toxic accumulation in neurons. Previously, we showed that serine 776 (S776) phosphorylation is critical for ATXN1 stability and contributes to its toxicity in cerebellar Purkinje cells. Still, the therapeutic potential of disrupting S776 phosphorylation on noncerebellar SCA1 phenotypes remains unstudied. Here, we report that abolishing S776 phosphorylation specifically on the polyQ-expanded ATXN1 of SCA1-knockin mice reduces ATXN1 throughout the brain and not only rescues the cerebellar motor incoordination but also improves respiratory function and extends survival while not affecting the hippocampal learning and memory deficits. As therapeutic approaches are likely to decrease S776 phosphorylation on polyQ-expanded and WT ATXN1, we further disrupted S776 phosphorylation on both alleles and observed an attenuated rescue, demonstrating a potential protective role of WT allele. This study not only highlights the role of S776 phosphorylation to regulate ATXN1 levels throughout the brain but also suggests distinct brain region–specific disease mechanisms and demonstrates the importance of developing allele-specific therapies for maximal benefits in SCA1.
Collapse
Affiliation(s)
- Larissa Nitschke
- Program in Integrative Molecular and Biomedical Sciences and.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Stephanie L Coffin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics
| | - Eder Xhako
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics
| | - Dany B El-Najjar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - James P Orengo
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Neurology, and
| | - Elizabeth Alcala
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Yanwan Dai
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Huda Y Zoghbi
- Program in Integrative Molecular and Biomedical Sciences and.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics.,Department of Neurology, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
19
|
Mei C, Dong H, Nisenbaum E, Thielhelm T, Nourbakhsh A, Yan D, Smeal M, Lundberg Y, Hoffer ME, Angeli S, Telischi F, Nie G, Blanton SH, Liu X. Genetics and the Individualized Therapy of Vestibular Disorders. Front Neurol 2021; 12:633207. [PMID: 33613440 PMCID: PMC7892966 DOI: 10.3389/fneur.2021.633207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Vestibular disorders (VDs) are a clinically divergent group of conditions that stem from pathology at the level of the inner ear, vestibulocochlear nerve, or central vestibular pathway. No etiology can be identified in the majority of patients with VDs. Relatively few families have been reported with VD, and so far, no causative genes have been identified despite the fact that more than 100 genes have been identified for inherited hearing loss. Inherited VDs, similar to deafness, are genetically heterogeneous and follow Mendelian inheritance patterns with all modes of transmission, as well as multifactorial inheritance. With advances in genetic sequencing, evidence of familial clustering in VD has begun to highlight the genetic causes of these disorders, potentially opening up new avenues of treatment, particularly in Meniere's disease and disorders with comorbid hearing loss, such as Usher syndrome. In this review, we aim to present recent findings on the genetics of VDs, review the role of genetic sequencing tools, and explore the potential for individualized medicine in the treatment of these disorders. Methods: A search of the PubMed database was performed for English language studies relevant to the genetic basis of and therapies for vestibular disorders, using search terms including but not limited to: “genetics,” “genomics,” “vestibular disorders,” “hearing loss with vestibular dysfunction,” “individualized medicine,” “genome-wide association studies,” “precision medicine,” and “Meniere's syndrome.” Results: Increasing numbers of studies on vestibular disorder genetics have been published in recent years. Next-generation sequencing and new genetic tools are being utilized to unearth the significance of the genomic findings in terms of understanding disease etiology and clinical utility, with growing research interest being shown for individualized gene therapy for some disorders. Conclusions: The genetic knowledge base for vestibular disorders is still in its infancy. Identifying the genetic causes of balance problems is imperative in our understanding of the biology of normal function of the vestibule and the disease etiology and process. There is an increasing effort to use new and efficient genetic sequencing tools to discover the genetic causes for these diseases, leading to the hope for precise and personalized treatment for these patients.
Collapse
Affiliation(s)
- Christine Mei
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Hongsong Dong
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States.,Shenzhen Second People's Hospital, Shenzhen, China
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Torin Thielhelm
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Molly Smeal
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Yesha Lundberg
- Department of Otolaryngology, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Simon Angeli
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Fred Telischi
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Guohui Nie
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
20
|
Mier P, Andrade-Navarro MA. Assessing the low complexity of protein sequences via the low complexity triangle. PLoS One 2020; 15:e0239154. [PMID: 33378336 PMCID: PMC7773278 DOI: 10.1371/journal.pone.0239154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background Proteins with low complexity regions (LCRs) have atypical sequence and structural features. Their amino acid composition varies from the expected, determined proteome-wise, and they do not follow the rules of structural folding that prevail in globular regions. One way to characterize these regions is by assessing the repeatability of a sequence, that is, calculating the local propensity of a region to be part of a repeat. Results We combine two local measures of low complexity, repeatability (using the RES algorithm) and fraction of the most frequent amino acid, to evaluate different proteomes, datasets of protein regions with specific features, and individual cases of proteins with extreme compositions. We apply a representation called ‘low complexity triangle’ as a proof-of-concept to represent the low complexity measured values. Results show that proteomes have distinct signatures in the low complexity triangle, and that these signatures are associated to complexity features of the sequences. We developed a web tool called LCT (http://cbdm-01.zdv.uni-mainz.de/~munoz/lct/) to allow users to calculate the low complexity triangle of a given protein or region of interest. Conclusions The low complexity triangle proves to be a suitable procedure to represent the general low complexity of a sequence or protein dataset. Homorepeats, direpeats, compositionally biased regions and globular regions occupy characteristic positions in the triangle. The described pipeline can be used to characterize LCRs and may help in quantifying the content of degenerated tandem repeats in proteins and proteomes.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Koscik TR, Sloat L, van der Plas E, Joers JM, Deelchand DK, Lenglet C, Öz G, Nopoulos PC. Brainstem and striatal volume changes are detectable in under 1 year and predict motor decline in spinocerebellar ataxia type 1. Brain Commun 2020; 2:fcaa184. [PMID: 33409488 PMCID: PMC7772094 DOI: 10.1093/braincomms/fcaa184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 1 is a progressive neurodegenerative, movement disorder. With potential therapies on the horizon, it is critical to identify biomarkers that (i) differentiate between unaffected and spinocerebellar ataxia Type 1-affected individuals; (ii) track disease progression; and (iii) are directly related to clinical changes of the patient. Magnetic resonance imaging of volumetric changes in the brain may be a suitable source of biomarkers for spinocerebellar ataxia Type 1. In a previous report on a longitudinal study of patients with spinocerebellar ataxia Type 1, we evaluated the volume and magnetic resonance spectroscopy measures of the cerebellum and pons, showing pontine volume and pontine N-acetylaspartate-to-myo-inositol ratio were sensitive to change over time. As a follow-up, the current study conducts a whole brain exploration of volumetric MRI measures with the aim to identify biomarkers for spinocerebellar ataxia Type 1 progression. We adapted a joint label fusion approach using multiple, automatically generated, morphologically matched atlases to label brain regions including cerebellar sub-regions. We adjusted regional volumes by total intracranial volume allowing for linear and power-law relationships. We then utilized Bonferroni corrected linear mixed effects models to (i) determine group differences in regional brain volume and (ii) identify change within affected patients only. We then evaluated the rate of change within each brain region to identify areas that changed most rapidly. Lastly, we used a penalized, linear mixed effects model to determine the strongest brain predictors of motor outcomes. Decrease in pontine volume and accelerating decrease in putamen volume: (i) reliably differentiated spinocerebellar ataxia Type 1-affected and -unaffected individuals; (ii) were observable in affected individuals without referencing an unaffected comparison group; (iii) were detectable within ∼6-9 months; and (iv) were associated with increased disease burden. In conclusion, volumetric change in the pons and putamen may provide powerful biomarkers to track disease progression in spinocerebellar ataxia Type 1. The methods employed here are readily translatable to current clinical settings, providing a framework for study and usage of volumetric neuroimaging biomarkers for clinical trials.
Collapse
Affiliation(s)
- Timothy R Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - Lauren Sloat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| |
Collapse
|
22
|
Louka A, Zacco E, Temussi PA, Tartaglia GG, Pastore A. RNA as the stone guest of protein aggregation. Nucleic Acids Res 2020; 48:11880-11889. [PMID: 33068411 PMCID: PMC7708036 DOI: 10.1093/nar/gkaa822] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold. In particular, an association has recently emerged between aggregation and the assembly of prion-like proteins in RNA-rich complexes, associated with both physiological and pathological events. Here, we discuss the historical rising of the concept of prion-like domains, their relation to RNA and their role in protein aggregation. As a paradigmatic example, we present the case study of TDP-43, an RNA-binding prion-like protein associated with amyotrophic lateral sclerosis. Through this example, we demonstrate how the current definition of prions has incorporated quite different concepts making the meaning of the term richer and more stimulating. An important message that emerges from our analysis is the dual role of RNA in protein aggregation, making RNA, that has been considered for many years a 'silent presence' or the 'stone guest' of protein aggregation, an important component of the process.
Collapse
Affiliation(s)
- Alexandra Louka
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| | - Elsa Zacco
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
- University “Federico II’’ Napoli, via Cynthia, Napoli 80100, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain and ICREA, 23 Passeig Lluıs Companys, Barcelona 08010, Spain
- Charles Darwin department of Biology and Biotechnology, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| |
Collapse
|
23
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci 2020; 77:4015-4029. [PMID: 32306062 PMCID: PMC7541529 DOI: 10.1007/s00018-020-03520-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
25
|
Nitschke L, Tewari A, Coffin SL, Xhako E, Pang K, Gennarino VA, Johnson JL, Blanco FA, Liu Z, Zoghbi HY. miR760 regulates ATXN1 levels via interaction with its 5' untranslated region. Genes Dev 2020; 34:1147-1160. [PMID: 32763910 PMCID: PMC7462065 DOI: 10.1101/gad.339317.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
Identifying modifiers of dosage-sensitive genes involved in neurodegenerative disorders is imperative to discover novel genetic risk factors and potential therapeutic entry points. In this study, we focus on Ataxin-1 (ATXN1), a dosage-sensitive gene involved in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). While the precise maintenance of ATXN1 levels is essential to prevent disease, the mechanisms that regulate ATXN1 expression remain largely unknown. We demonstrate that ATXN1's unusually long 5' untranslated region (5' UTR) negatively regulates its expression via posttranscriptional mechanisms. Based on recent reports that microRNAs (miRNAs) can interact with both 3' and 5' UTRs to regulate their target genes, we identify miR760 as a negative regulator that binds to a conserved site in ATXN1's 5' UTR to induce RNA degradation and translational inhibition. We found that delivery of Adeno-associated virus (AAV)-expressing miR760 in the cerebellum reduces ATXN1 levels in vivo and mitigates motor coordination deficits in a mouse model of SCA1. These findings provide new insights into the regulation of ATXN1 levels, present additional evidence for miRNA-mediated gene regulation via 5' UTR binding, and raise the possibility that noncoding mutations in the ATXN1 locus may act as risk factors for yet to be discovered progressive ataxias.
Collapse
Affiliation(s)
- Larissa Nitschke
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Ambika Tewari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Stephanie L Coffin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eder Xhako
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Jennifer L Johnson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Francisco A Blanco
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
27
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
28
|
Tazelaar GHP, Boeynaems S, De Decker M, van Vugt JJFA, Kool L, Goedee HS, McLaughlin RL, Sproviero W, Iacoangeli A, Moisse M, Jacquemyn M, Daelemans D, Dekker AM, van der Spek RA, Westeneng HJ, Kenna KP, Assialioui A, Da Silva N, Povedano M, Pardina JSM, Hardiman O, Salachas F, Millecamps S, Vourc'h P, Corcia P, Couratier P, Morrison KE, Shaw PJ, Shaw CE, Pasterkamp RJ, Landers JE, Van Den Bosch L, Robberecht W, Al-Chalabi A, van den Berg LH, Van Damme P, Veldink JH, van Es MA. ATXN1 repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Commun 2020; 2:fcaa064. [PMID: 32954321 PMCID: PMC7425293 DOI: 10.1093/braincomms/fcaa064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023] Open
Abstract
Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Steven Boeynaems
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium,Department of Genetics, Stanford University School of Medicine,
Stanford, CA 94305-5120, USA
| | - Mathias De Decker
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Joke J F A van Vugt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Lindy Kool
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College
Dublin, Dublin D02 PN40, Republic of Ireland
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Matthieu Moisse
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Annelot M Dekker
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Rick A van der Spek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Abdelilah Assialioui
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de
Llobregat, Barcelona 08908, Spain
| | - Nica Da Silva
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | | | - Mónica Povedano
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona 08908, Spain
| | | | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin D02 PN40, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin D02 PN40, Republic of Ireland
| | - François Salachas
- Centre de compétence SLA-Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris 75651, France.,Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Patrick Vourc'h
- INSERM U930, Université François Rabelais, Tours 92120, France
| | - Philippe Corcia
- Centre de compétence SLA-fédération Tours-Limoges, Tours 92120, France
| | - Philippe Couratier
- Centre de compétence SLA-fédération Tours-Limoges, Limoges 87100, France
| | - Karen E Morrison
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ludo Van Den Bosch
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wim Robberecht
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Philip Van Damme
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
29
|
Oertel FC, Zeitz O, Rönnefarth M, Bereuter C, Motamedi S, Zimmermann HG, Kuchling J, Grosch AS, Doss S, Browne A, Paul F, Schmitz-Hübsch T, Brandt AU. Functionally Relevant Maculopathy and Optic Atrophy in Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract 2020; 7:502-508. [PMID: 32626794 PMCID: PMC7328427 DOI: 10.1002/mdc3.12949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA-ATXN1) is an inherited progressive ataxia disorder characterized by an adult-onset cerebellar syndrome combined with nonataxia signs. Retinal or optic nerve affection are not systematically described. Objectives To describe a retinal phenotype and its functional relevance in SCA-ATXN1. Methods We applied optical coherence tomography (OCT) in 20 index cases with SCA-ATXN1 and 22 healthy controls (HCs), investigating qualitative changes and quantifying the peripapillary retinal nerve fiber layer (pRNFL) thickness and combined ganglion cell and inner plexiform layer (GCIP) volume as markers of optic atrophy and outer retinal layers as markers of maculopathy. Visual function was assessed by high- (HC-VA) and low-contrast visual acuity (LC-VA) and the Hardy-Rand-Rittler pseudoisochromatic test for color vision. Results Five patients (25%) showed distinct maculopathies in the ellipsoid zone (EZ). Furthermore, pRNFL (P < 0.001) and GCIP (P = 0.002) were reduced in patients (pRNFL, 80.86 ± 9.49 μm; GCIP, 1.84 ± 0.16 mm3) compared with HCs (pRNFL, 97.02 ± 8.34 μm; GCIP, 1.98 ± 0.12 mm3). Outer macular layers were similar between groups, but reduced in patients with maculopathies. HC-VA (P = 0.002) and LC-VA (P < 0.001) were reduced in patients (HC-VA [logMAR]: 0.01 ± 010; LC-VA [logMAR]: 0.44 ± 0.16) compared with HCs (HC-VA [logMAR]: -0.12 ± 0.08; LC-VA [logMAR]: 0.25 ± 0.05). Color vision was abnormal in 2 patients with maculopathies. Conclusions A distinct maculopathy, termed EZ disruption, as well as optic atrophy add to the known nonataxia features in SCA-ATXN1. Whereas optic atrophy may be understood as part of a widespread neurodegeneration, EZ disruption may be explained by effects of ataxin-1 gene or protein on photoreceptors. Our findings extend the spectrum of nonataxia signs in SCA-ATXN1 with potential relevance for diagnosis and monitoring.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Maria Rönnefarth
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Charlotte Bereuter
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Seyedamirhosein Motamedi
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Anne Sophie Grosch
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Sarah Doss
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurological Sciences University of Nebraska Medical Center Nebraska Omaha USA
| | - Andrew Browne
- Department of Ophthalmology University of California Irvine Irvine California USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology University of California Irvine Irvine California USA
| |
Collapse
|
30
|
Anderson CJ, Figueroa KP, Dorval AD, Pulst SM. Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat. Ann Neurol 2020; 85:681-690. [PMID: 30854718 DOI: 10.1002/ana.25464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Degenerative cerebellar ataxias (DCAs) affect up to 1 in 5,000 people worldwide, leading to incoordination, tremor, and falls. Loss of Purkinje cells, nearly universal across DCAs, dysregulates the dentatothalamocortical network. To address the paucity of treatment strategies, we developed an electrical stimulation-based therapy for DCAs targeting the dorsal dentate nucleus. METHODS We tested this therapeutic strategy in the Wistar Furth shaker rat model of Purkinje cell loss resulting in tremor and ataxia. We implanted shaker rats with stimulating electrodes targeted to the dorsal dentate nucleus and tested a spectrum of frequencies ranging from 4 to 180 Hz. RESULTS Stimulation at 30 Hz most effectively reduced motor symptoms. Stimulation frequencies >100 Hz, commonly used for parkinsonism and essential tremor, worsened incoordination, and frequencies within the tremor physiologic range may worsen tremor. INTERPRETATION Low-frequency deep cerebellar stimulation may provide a novel strategy for treating motor symptoms of degenerative cerebellar ataxias. Ann Neurol 2019;85:681-690.
Collapse
Affiliation(s)
| | | | - Alan D Dorval
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
31
|
Volovikov EA, Davidenko AV, Lagarkova MA. Molecular Mechanisms of Spinocerebellar Ataxia Type 1. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542002012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet 2020; 29:117-131. [PMID: 31696233 PMCID: PMC8216071 DOI: 10.1093/hmg/ddz265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.
Collapse
Affiliation(s)
- Melissa Asher
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Bennyworth
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| | - Ruo-Yah Lai
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - CRC-SCA
- Clinical Research Consortium for Spinocerebellar Ataxia (CRC-SCA)#
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| |
Collapse
|
33
|
Prestori F, Moccia F, D’Angelo E. Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). Int J Mol Sci 2019; 21:ijms21010216. [PMID: 31892274 PMCID: PMC6981692 DOI: 10.3390/ijms21010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
34
|
Rocha S, Vieira J, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Sousa AD, Vieira CP. ATXN1 N-terminal region explains the binding differences of wild-type and expanded forms. BMC Med Genomics 2019; 12:145. [PMID: 31655597 PMCID: PMC6814966 DOI: 10.1186/s12920-019-0594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Wild-type (wt) polyglutamine (polyQ) regions are implicated in stabilization of protein-protein interactions (PPI). Pathological polyQ expansion, such as that in human Ataxin-1 (ATXN1), that causes spinocerebellar ataxia type 1 (SCA1), results in abnormal PPI. For ATXN1 a larger number of interactors has been reported for the expanded (82Q) than the wt (29Q) protein. Methods To understand how the expanded polyQ affects PPI, protein structures were predicted for wt and expanded ATXN1, as well as, for 71 ATXN1 interactors. Then, the binding surfaces of wt and expanded ATXN1 with the reported interactors were inferred. Results Our data supports that the polyQ expansion alters the ATXN1 conformation and that it enhances the strength of interaction with ATXN1 partners. For both ATXN1 variants, the number of residues at the predicted binding interface are greater after the polyQ, mainly due to the AXH domain. Moreover, the difference in the interaction strength of the ATXN1 variants was due to an increase in the number of interactions at the N-terminal region, before the polyQ, for the expanded form. Conclusions There are three regions at the AXH domain that are essential for ATXN1 PPI. The N-terminal region is responsible for the strength of the PPI with the ATXN1 variants. How the predicted motifs in this region affect PPI is discussed, in the context of ATXN1 post-transcriptional modifications.
Collapse
Affiliation(s)
- Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Noé Vázquez
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - André D Sousa
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
35
|
Simón-Carrasco L, Jiménez G, Barbacid M, Drosten M. The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer. Cell Cycle 2019; 17:702-711. [PMID: 29578365 DOI: 10.1080/15384101.2018.1450029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The transcriptional repressor Capicua (CIC) has emerged as an important rheostat of cell growth regulated by RAS/MAPK signaling. Cic was originally discovered in Drosophila, where it was shown to be inactivated by MAPK signaling downstream of the RTKs Torso and EGFR, which results in signal-dependent responses that are required for normal cell fate specification, proliferation and survival of developing and adult tissues. CIC is highly conserved in mammals, where it is also negatively regulated by MAPK signaling. Here, we review the roles of CIC during mammalian development, tissue homeostasis, tumor formation and therapy resistance. Available data indicate that CIC is involved in multiple biological processes, including lung development, liver homeostasis, autoimmunity and neurobehavioral processes. Moreover, CIC has been shown to be involved in tumor development as a tumor suppressor, both in human as well as in mouse models. Finally, several lines of evidence implicate CIC as a determinant of sensitivity to EGFR and MAPK pathway inhibitors, suggesting that CIC may play a broader role in human cancer than originally anticipated.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| | - Gerardo Jiménez
- b Institut de Biologia Molecular de Barcelona-CSIC , Parc Científic de Barcelona, Barcelona , Spain.,c ICREA , Pg. Lluís Companys 23, Barcelona , Spain
| | - Mariano Barbacid
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| | - Matthias Drosten
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| |
Collapse
|
36
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
37
|
Chen C, Ding X, Akram N, Xue S, Luo SZ. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Molecules 2019; 24:molecules24081622. [PMID: 31022909 PMCID: PMC6514960 DOI: 10.3390/molecules24081622] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is a DNA/RNA binding protein that is involved in RNA metabolism and DNA repair. Numerous reports have demonstrated by pathological and genetic analysis that FUS is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and polyglutamine diseases. Traditionally, the fibrillar aggregation of FUS was considered to be the cause of those diseases, especially via its prion-like domains (PrLDs), which are rich in glutamine and asparagine residues. Lately, a nonfibrillar self-assembling phenomenon, liquid–liquid phase separation (LLPS), was observed in FUS, and studies of its functions, mechanism, and mutual transformation with pathogenic amyloid have been emerging. This review summarizes recent studies on FUS self-assembling, including both aggregation and LLPS as well as their relationship with the pathology of ALS, FTLD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiufang Ding
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Nimrah Akram
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Verdile V, De Paola E, Paronetto MP. Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Front Genet 2019; 10:173. [PMID: 30967892 PMCID: PMC6440380 DOI: 10.3389/fgene.2019.00173] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Phase separation is a physiological process occurring spontaneously when single-phase molecular complexes separate in two phases, a concentrated phase and a more diluted one. Eukaryotic cells employ phase transition strategies to promote the formation of intracellular territories not delimited by membranes with increased local RNA concentration, such as nucleolus, paraspeckles, P granules, Cajal bodies, P-bodies, and stress granules. These organelles contain both proteins and coding and non-coding RNAs and play important roles in different steps of the regulation of gene expression and in cellular signaling. Recently, it has been shown that most human RNA-binding proteins (RBPs) contain at least one low-complexity domain, called prion-like domain (PrLD), because proteins harboring them display aggregation properties like prion proteins. PrLDs support RBP function and contribute to liquid–liquid phase transitions that drive ribonucleoprotein granule assembly, but also render RBPs prone to misfolding by promoting the formation of pathological aggregates that lead to toxicity in specific cell types. Protein–protein and protein-RNA interactions within the separated phase can enhance the transition of RBPs into solid aberrant aggregates, thus causing diseases. In this review, we highlight the role of phase transition in human disease such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and in cancer. Moreover, we discuss novel therapeutic strategies focused to control phase transitions by preventing the conversion into aberrant aggregates. In this regard, the stimulation of chaperone machinery to disassemble membrane-less organelles, the induction of pathways that could inhibit aberrant phase separation, and the development of antisense oligonucleotides (ASOs) to knockdown RNAs could be evaluated as novel therapeutic strategies for the treatment of those human diseases characterized by aberrant phase transition aggregates.
Collapse
Affiliation(s)
- Veronica Verdile
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
39
|
Martins Junior CR, Borba FCD, Martinez ARM, Rezende TJRD, Cendes IL, Pedroso JL, Barsottini OGP, França Júnior MC. Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:555-562. [PMID: 30231129 DOI: 10.1590/0004-282x20180080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.
Collapse
Affiliation(s)
| | - Fabrício Castro de Borba
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | | | | | - Iscia Lopes Cendes
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Genética Médica, Campinas SP, Brasil
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Unidade de Ataxia, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | |
Collapse
|
40
|
Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases. Curr Neurol Neurosci Rep 2018; 18:107. [DOI: 10.1007/s11910-018-0914-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Martins Junior CR, Martinez ARM, Vasconcelos IF, de Rezende TJR, Casseb RF, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 2018; 265:2949-2959. [PMID: 30324307 DOI: 10.1007/s00415-018-9087-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 1 is an autosomal dominant disorder caused by a CAG repeat expansion in ATXN1, characterized by progressive cerebellar and extracerebellar symptoms. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are few data about supratentorial/spinal damage and its clinical relevance. We have thus designed this multimodal MRI study to uncover the structural signature of SCA1. To accomplish that, a group of 33 patients and 33 age-and gender-matched healthy controls underwent MRI on a 3T scanner. All patients underwent a comprehensive neurological and neuropsychological evaluation. We correlated the structural findings with the clinical features of the disease. In addition, we evaluated the disease progression looking at differences in SCA1 subgroups defined by disease duration. Ataxia and pyramidal signs were the main symptoms. Neuropsychological evaluation disclosed cognitive impairment in 53% with predominant frontotemporal dysfunction. Gray matter analysis unfolded cortical thinning of primary and associative motor areas with more restricted impairment of deep structures. Deep gray matter atrophy was associated with motor handicap and poor cognition skills. White matter integrity loss was diffuse in the brainstem but restricted in supratentorial structures. Cerebellar cortical thinning was found in multiple areas and correlated not only with motor disability but also with verbal fluency. Spinal cord atrophy correlated with motor handicap. Comparison of MRI findings in disease duration-defined subgroups identified a peculiar pattern of progressive degeneration.
Collapse
Affiliation(s)
- Carlos Roberto Martins Junior
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Alberto Rolim Muro Martinez
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Ingrid Faber Vasconcelos
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | | | - Raphael Fernandes Casseb
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes Cavalcante França
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil.
| |
Collapse
|
42
|
Yau WY, O'Connor E, Sullivan R, Akijian L, Wood NW. DNA repair in trinucleotide repeat ataxias. FEBS J 2018; 285:3669-3682. [PMID: 30152109 DOI: 10.1111/febs.14644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The inherited cerebellar ataxias comprise of a genetic heterogeneous group of disorders. Pathogenic expansions of cytosine-adenine-guanine (CAG) encoding polyglutamine tracts account for the largest proportion of autosomal dominant cerebellar ataxias, while GAA expansion in the first introns of frataxin gene is the commonest cause of autosomal recessive cerebellar ataxias. Currently, there is no available treatment to alter the disease trajectory, with devastating consequences for affected individuals. Inter- and Intrafamily phenotypic variability suggest the existence of genetic modifiers, which may become targets amendable to treatment. Recent studies have demonstrated the importance of DNA repair pathways in modifying spinocerebellar ataxia with CAG repeat expansions. In this review, we discuss the mechanisms in which DNA repair pathways, epigenetics and other genetic factors may act as modifiers in cerebellar ataxias due to trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Wai Yan Yau
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Emer O'Connor
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Roisin Sullivan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK
| | - Layan Akijian
- Department of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nicholas W Wood
- Department of Molecular Neuroscience, Institute of Neurology, University College London, UK.,Neurogenetics laboratory, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
43
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
44
|
Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, Hagenaars SP, Ritchie SJ, Marioni RE, Fawns-Ritchie C, Liewald DCM, Okely JA, Ahola-Olli AV, Barnes CLK, Bertram L, Bis JC, Burdick KE, Christoforou A, DeRosse P, Djurovic S, Espeseth T, Giakoumaki S, Giddaluru S, Gustavson DE, Hayward C, Hofer E, Ikram MA, Karlsson R, Knowles E, Lahti J, Leber M, Li S, Mather KA, Melle I, Morris D, Oldmeadow C, Palviainen T, Payton A, Pazoki R, Petrovic K, Reynolds CA, Sargurupremraj M, Scholz M, Smith JA, Smith AV, Terzikhan N, Thalamuthu A, Trompet S, van der Lee SJ, Ware EB, Windham BG, Wright MJ, Yang J, Yu J, Ames D, Amin N, Amouyel P, Andreassen OA, Armstrong NJ, Assareh AA, Attia JR, Attix D, Avramopoulos D, Bennett DA, Böhmer AC, Boyle PA, Brodaty H, Campbell H, Cannon TD, Cirulli ET, Congdon E, Conley ED, Corley J, Cox SR, Dale AM, Dehghan A, Dick D, Dickinson D, Eriksson JG, Evangelou E, Faul JD, Ford I, Freimer NA, Gao H, Giegling I, Gillespie NA, Gordon SD, Gottesman RF, Griswold ME, Gudnason V, Harris TB, Hartmann AM, Hatzimanolis A, Heiss G, Holliday EG, Joshi PK, Kähönen M, Kardia SLR, Karlsson I, Kleineidam L, Knopman DS, Kochan NA, Konte B, Kwok JB, Le Hellard S, Lee T, Lehtimäki T, Li SC, Lill CM, Liu T, Koini M, London E, Longstreth WT, Lopez OL, Loukola A, Luck T, Lundervold AJ, Lundquist A, Lyytikäinen LP, Martin NG, Montgomery GW, Murray AD, Need AC, Noordam R, Nyberg L, Ollier W, Papenberg G, Pattie A, Polasek O, Poldrack RA, Psaty BM, Reppermund S, Riedel-Heller SG, Rose RJ, Rotter JI, Roussos P, Rovio SP, Saba Y, Sabb FW, Sachdev PS, Satizabal CL, Schmid M, Scott RJ, Scult MA, Simino J, Slagboom PE, Smyrnis N, Soumaré A, Stefanis NC, Stott DJ, Straub RE, Sundet K, Taylor AM, Taylor KD, Tzoulaki I, Tzourio C, Uitterlinden A, Vitart V, Voineskos AN, Kaprio J, Wagner M, Wagner H, Weinhold L, Wen KH, Widen E, Yang Q, Zhao W, Adams HHH, Arking DE, Bilder RM, Bitsios P, Boerwinkle E, Chiba-Falek O, Corvin A, De Jager PL, Debette S, Donohoe G, Elliott P, Fitzpatrick AL, Gill M, Glahn DC, Hägg S, Hansell NK, Hariri AR, Ikram MK, Jukema JW, Vuoksimaa E, Keller MC, Kremen WS, Launer L, Lindenberger U, Palotie A, Pedersen NL, Pendleton N, Porteous DJ, Räikkönen K, Raitakari OT, Ramirez A, Reinvang I, Rudan I, Dan Rujescu, Schmidt R, Schmidt H, Schofield PW, Schofield PR, Starr JM, Steen VM, Trollor JN, Turner ST, Van Duijn CM, Villringer A, Weinberger DR, Weir DR, Wilson JF, Malhotra A, McIntosh AM, Gale CR, Seshadri S, Mosley TH, Bressler J, Lencz T, Deary IJ. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun 2018; 9:2098. [PMID: 29844566 PMCID: PMC5974083 DOI: 10.1038/s41467-018-04362-x] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/23/2018] [Indexed: 11/15/2022] Open
Abstract
General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
Collapse
Affiliation(s)
- Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Max Lam
- Institute of Mental Health, Singapore, 539747, Singapore
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Joey W Trampush
- BrainWorkup, LLC, Los Angeles, 90033, CA, USA
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Stuart J Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Chloe Fawns-Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Judith A Okely
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ari V Ahola-Olli
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
- Department of Internal Medicine, Satakunta Central Hospital, Pori, 28100, Finland
| | - Catriona L K Barnes
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Lars Bertram
- Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, Washington, USA
| | - Katherine E Burdick
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, 10468, NY, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Andrea Christoforou
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5020, Norway
| | - Pamela DeRosse
- Institute of Mental Health, Singapore, 539747, Singapore
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
| | - Srdjan Djurovic
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Department of Medical Genetics, Oslo University Hospital, University of Bergen, Oslo, 0424, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0315, Norway
| | - Stella Giakoumaki
- Department of Psychology, University of Crete, Crete, GR-74100, Greece
| | - Sudheer Giddaluru
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5020, Norway
| | - Daniel E Gustavson
- Department of Psychiatry, University of California, San Diego, 92093, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 92093, CA, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, 8036, Austria
- Institute of Medical Informatics Statistics and Documentation, Medical University of Graz, Graz, 8036, Austria
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, xxxxxx, The Netherlands
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Emma Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, 06511, CT, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, 00014, Finland
| | - Markus Leber
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, D-50937, Germany
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
| | - Ingrid Melle
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Derek Morris
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Christopher Oldmeadow
- Medical Research Institute and Faculty of Health, University of Newcastle, New South Wa0les, 2308, Australia
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
| | - Antony Payton
- Centre for EpidemiologyDivision of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, M13 9PL, UK
| | - Raha Pazoki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Katja Petrovic
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, 8036, Austria
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, 92521, CA, USA
| | - Muralidharan Sargurupremraj
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000, Bordeaux, France
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, 04107, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04107, Germany
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, IS-201, Iceland
- University of Iceland, Reykjavik, 101, Iceland
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - B Gwen Windham
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, 60612, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, 60612, IL, USA
| | - Jin Yu
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Victoria, 3052, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, 3010, Australia
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-LabEx DISTALZ, F-59000, Lille, France
| | - Ole A Andreassen
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, 0372, Norway
| | | | - Amelia A Assareh
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
| | - John R Attia
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New South Wales, 2305, Australia
| | - Deborah Attix
- Department of NeurologyBryan Alzheimer's Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, 27708, NC, USA
- Psychiatry and Behavioral Sciences, Division of Medical Psychology, and Department of Neurology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, MD, Baltimore, 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, Baltimore, 21287, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, 60612, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, 60612, IL, USA
| | - Anne C Böhmer
- Institute of Human Genetics, University of Bonn, Bonn, 53113, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, 53113, Germany
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, 60612, IL, USA
- Departments of Behavioral Sciences, Rush University Medical Center, Chicago, 60612, IL, USA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, 2031, NSW, Australia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, 06520, CT, USA
| | | | - Eliza Congdon
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, 90024, CA, USA
| | | | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Anders M Dale
- Department of Psychiatry, University of California, San Diego, 92093, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Danielle Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, 20892, MD, USA
| | - Johan G Eriksson
- National Institute for Health and Welfare, Helsinki, FI-00271, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, 00290, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, FI-00029, Finland
- Folkhälsan Research Centre, Helsinki, 2018, Finland
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- National Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Nelson A Freimer
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, 90024, CA, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Ina Giegling
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, 06108, Germany
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, 23298, VA, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205, MD, USA
| | - Michael E Griswold
- Department of Data Science, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, IS-201, Iceland
- University of Iceland, Reykjavik, 101, Iceland
| | - Tamara B Harris
- Intramural Research Program National Institutes on Aging, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Annette M Hartmann
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, 06108, Germany
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, 11528, Greece
- University Mental Health Research Institute, Athens, GR-156 01, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, 11521, Greece
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, 27599, NC, USA
| | - Elizabeth G Holliday
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New South Wales, 2305, Australia
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center, Tampere, FI-33014, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ida Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Luca Kleineidam
- Department of Psychiatry Medical Faculty, University of Cologne, Cologne, 50923, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, 53127, Germany
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, 2031, Australia
| | - Bettina Konte
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, 06108, Germany
| | - John B Kwok
- Brain and Mind Centre-The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Stephanie Le Hellard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5020, Norway
| | - Teresa Lee
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, 2031, Australia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Shu-Chen Li
- Max Planck Institute for Human Development, Berlin, 14195, Germany
- Technische Universität Dresden, Dresden, 01187, Germany
| | - Christina M Lill
- Genetic and Molecular Epidemiology Group, Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Tian Liu
- Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
- Max Planck Institute for Human Development, Berlin, 14195, Germany
| | - Marisa Koini
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, 8036, Austria
| | - Edythe London
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, 90024, CA, USA
| | - Will T Longstreth
- Department of Neurology, School of Medicine, University of Washington, Seattle, 98195-6465, WA, USA
- Department of Epidemiology, University of Washington, Seattle, 98195, WA, USA
| | - Oscar L Lopez
- Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, 15213, PA, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
| | - Tobias Luck
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04107, Germany
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, 04103, Germany
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, 5009, Norway
- K. G. Jebsen Center for Neuropsychiatry, University of Bergen, Bergen, N-5009, Norway
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, SE-901 87, Sweden
- Department of Statistics, USBE Umeå University, S-907 97, Umeå, Sweden
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | - Alison D Murray
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Anna C Need
- Division of Brain Sciences, Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, SE-901 87, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - William Ollier
- Centre for Integrated Genomic Medical Research, Institute of Population Health, University of Manchester, Manchester, M13 9PT, UK
| | - Goran Papenberg
- Max Planck Institute for Human Development, Berlin, 14195, Germany
- Karolinska Institutet, Aging Research Center, Stockholm University, Stockholm, SE-113 30, Sweden
| | - Alison Pattie
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ozren Polasek
- Gen-Info LLC, Zagreb, 10000, Croatia
- Faculty of Medicine, University of Split, Split, 21000, Croatia
| | - Russell A Poldrack
- Department of Psychology, Stanford University, Palo Alto, 94305-2130, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, Washington, USA
- Deparment of Health Services, University of Washington, Seattle, 98195-7660, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, 98101, WA, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, 2052, Australia
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, 04103, Germany
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405-7007, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90509, CA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, 10468, NY, USA
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Yasaman Saba
- Institute of Molecular Biology and Biochemistry, Centre for Molecular Medicine, Medical University of Graz, Graz, 8036, Austria
| | - Fred W Sabb
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, 97403, OR, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, 2031, Australia
| | - Claudia L Satizabal
- Department of Neurology, Boston University School of Medicine, Boston, 02118, MA, USA
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, 01702-5827, MA, USA
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital, Bonn, D-53012, Germany
| | - Rodney J Scott
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, New South Wales, 2305, Australia
| | - Matthew A Scult
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, 27708-0086, NC, USA
| | - Jeannette Simino
- Department of Data Science, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Nikolaos Smyrnis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, 11528, Greece
- University Mental Health Research Institute, Athens, GR-156 01, Greece
| | - Aïcha Soumaré
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000, Bordeaux, France
| | - Nikos C Stefanis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, 11528, Greece
- University Mental Health Research Institute, Athens, GR-156 01, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, 11521, Greece
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, 21205, MD, USA
| | - Kjetil Sundet
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0315, Norway
| | - Adele M Taylor
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90509, CA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Christophe Tzourio
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000, Bordeaux, France
- Department of Public Health, University Hospital of Bordeaux, Bordeaux, 33076, France
| | - André Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015, The Netherlands
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Aristotle N Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, M5T 1L8, Canada
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare, Helsinki, FI-00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, 53127, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital, Bonn, D-53012, Germany
| | - K Hoyan Wen
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, 3015, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, Baltimore, 21287, USA
| | - Robert M Bilder
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, 90024, CA, USA
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, GR-71003, Greece
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030-3411, TX, USA
| | - Ornit Chiba-Falek
- Department of NeurologyBryan Alzheimer's Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, DO2 AY89, Ireland
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, 10032, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA
| | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000, Bordeaux, France
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, 33000, France
| | - Gary Donohoe
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, 98195, WA, USA
- Department of Global Health, University of Washington, Seattle, 98104, WA, USA
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, DO2 AY89, Ireland
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, 06511, CT, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Narelle K Hansell
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, 27708-0086, NC, USA
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, xxxxxx, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, 80309, CO, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, 92093, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 92093, CA, USA
| | - Lenore Launer
- Intramural Research Program National Institutes on Aging, National Institutes of Health, Bethesda, 20892, MD, USA
| | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, 00014, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Manchester Academic Health Science Centre, and Manchester Medical School, Institute of Brain, Behaviour, and Mental Health, University of Manchester, Manchester, M13 9PL, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20520, Finland
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, D-50937, Germany
- Institute of Human Genetics, University of Bonn, Bonn, 53113, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Ivar Reinvang
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0315, Norway
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Dan Rujescu
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, 06108, Germany
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, 8036, Austria
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Centre for Molecular Medicine, Medical University of Graz, Graz, 8036, Austria
| | - Peter W Schofield
- School of Medicine and Public Health, University of Newcastle, New South Wales, 2308, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, 2031, Australia
- Faculty of Medicine, University of New South Wales, Sydney, 2052, Australia
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5020, Norway
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, 2052, Australia
| | - Steven T Turner
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cornelia M Van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, 21205, MD, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anil Malhotra
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, 11004, NY, USA
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, 11549, NY, USA
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Catharine R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Sudha Seshadri
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, 97403, OR, USA
- Department of Neurology, Boston University School of Medicine, Boston, 02118, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229, TX, USA
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Todd Lencz
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
45
|
The genetic component of preeclampsia: A whole-exome sequencing study. PLoS One 2018; 13:e0197217. [PMID: 29758065 PMCID: PMC5951572 DOI: 10.1371/journal.pone.0197217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a major cause of maternal and perinatal deaths. The aetiology of preeclampsia is largely unknown but a polygenetic component is assumed. To explore this hypothesis, we performed an in-depth whole-exome sequencing study in women with (cases, N = 50) and without (controls, N = 50) preeclampsia. The women were identified in an unselected cohort of 2,545 pregnant women based on data from the Danish National Patient Registry and the Medical Birth Registry. Matching DNA was obtained from a biobank containing excess blood from routine antenatal care visits. Novogene performed the whole-exome sequencing blinded to preeclampsia status. Variants for comparison between cases and controls were filtered in the Ingenuity Variant Analysis software. We applied two different strategies; a disease association panel approach, which included variants in single genes associated with established clinical risk factors for preeclampsia, and a gene panel approach, which included biological pathways harbouring genes previously reported to be associated with preeclampsia. Variant variability was compared in cases and controls at the level of biological processes, signalling pathways, and in single genes. Regardless of the applied strategy and the level of variability examined, we consistently found positive correlations between variant numbers in cases and controls (all R2s>0.88). Contrary to what was expected, cases carried fewer variants in biological processes and signalling pathways than controls (all p-values ≤0.02). In conclusion, our findings challenge the hypothesis of a polygenetic aetiology for preeclampsia with a common network of susceptibility genes. The greater genetic diversity among controls may suggest a protective role of genetic diversity against the development of preeclampsia.
Collapse
|
46
|
Edamakanti CR, Do J, Didonna A, Martina M, Opal P. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. J Clin Invest 2018. [PMID: 29533923 DOI: 10.1172/jci96765] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with transcriptional changes detectable as early as a week after birth in SCA1-knockin mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1. We found that expanded ATXN1 stimulates the proliferation of postnatal cerebellar stem cells in SCA1 mice. These hyperproliferating stem cells tended to differentiate into GABAergic inhibitory interneurons rather than astrocytes; this significantly increased the GABAergic inhibitory interneuron synaptic connections, disrupting cerebellar Purkinje cell function in a non-cell autonomous manner. We confirmed the increased basket cell-Purkinje cell connectivity in human SCA1 patients. Mutant ATXN1 thus alters the neural circuitry of the developing cerebellum, setting the stage for the later vulnerability of Purkinje cells to SCA1. We propose that other late-onset degenerative diseases may also be rooted in subtle developmental derailments.
Collapse
Affiliation(s)
| | - Jeehaeh Do
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Puneet Opal
- Davee Department of Neurology, and.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
47
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Groth CL, Berman BD. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8:534. [PMID: 29416937 PMCID: PMC5801325 DOI: 10.7916/d80s0zjq] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism.
Collapse
Affiliation(s)
- Christopher L. Groth
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neurology Section, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
49
|
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder caused by a CAG repeat expansion, characterized by progressive cerebellar ataxia and pyramidal signs. Non-motor and extracerebellar symptoms may occur. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are no data about cord damage in the disease and its clinical relevance. To evaluate in vivo spinal cord damage in SCA1, a group of 31 patients with SCA1 and 31 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images to estimate the cervical spinal cord area (CA) and eccentricity (CE) at three C2/C3 levels based on a semi-automatic image segmentation protocol. The scale for assessment and rating of ataxia (SARA) was used to quantify disease severity. The groups were significantly different regarding CA (47.26 ± 7.4 vs. 68.8 ± 5.7 mm2, p < 0.001) and CE values (0.803 ± 0.044 vs. 0.774 ± 0.043, p < 0.05). Furthermore, in the patient group, CA presented significant correlation with SARA scores (R = -0.633, p < 0.001) and CAGn expansion (R = -0.658, p < 0.001). CE was not associated with SARA scores (p = 0.431). In the multiple variable regression, CA was strongly associated with disease duration (coefficient -0.360, p < 0.05) and CAGn expansion (coefficient -1.124, p < 0.001). SCA1 is characterized by cervical cord atrophy and anteroposterior flattening. Morphometric analyses of the spinal cord MRI might be a useful biomarker in the disease.
Collapse
|
50
|
Abstract
More than 40 diseases, most of which primarily affect the nervous system, are caused by expansions of simple sequence repeats dispersed throughout the human genome. Expanded trinucleotide repeat diseases were discovered first and remain the most frequent. More recently tetra-, penta-, hexa-, and even dodeca-nucleotide repeat expansions have been identified as the cause of human disease, including some of the most common genetic disorders seen by neurologists. Repeat expansion diseases include both causes of myotonic dystrophy (DM1 and DM2), the most common genetic cause of amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72), Huntington disease, and eight other polyglutamine disorders, including the most common forms of dominantly inherited ataxia, the most common recessive ataxia (Friedreich ataxia), and the most common heritable mental retardation (fragile X syndrome). Here I review distinctive features of this group of diseases that stem from the unusual, dynamic nature of the underlying mutations. These features include marked clinical heterogeneity and the phenomenon of clinical anticipation. I then discuss the diverse molecular mechanisms driving disease pathogenesis, which vary depending on the repeat sequence, size, and location within the disease gene, and whether the repeat is translated into protein. I conclude with a brief clinical and genetic description of individual repeat expansion diseases that are most relevant to neurologists.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|