1
|
Fazeli P, Abolhasani S, Karamali N, Hajivalili M, Daryabor G, Panji M, Karimian M, Hosseini M. The role of memory T cells in type 1 diabetes: Phenotypes, mechanisms, and therapeutic implications. Autoimmun Rev 2025:103759. [PMID: 39880347 DOI: 10.1016/j.autrev.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing cells in the pancreatic islets. Patients with T1D have autoreactive CD4+ and CD8+ T cells that show specific features, indicating previous exposure to self-antigens. Despite that memory T cells are vital components of the adaptive immune system, providing enduring protection against pathogens; individuals with T1D have a higher proportion of memory T cells compared to healthy individuals with naїve phenotypes. Targeting memory T cells in newly diagnosed T1D patients has shown promising results, providing evidence for the significant role of memory T cells in this disease. There are various types of memory T cells, each with unique characteristics and functions. Recent advancements in understanding the complexity and heterogeneity of T cell subpopulations have shown that T1D cannot be fully understood through simple categorization. This review aims to discuss various types of memory T cells in the immunopathogenesis of T1D, focusing on their phenotypes and frequencies, as well as epigenetic and metabolic alterations. Additionally, it will address novel immunotherapeutic approaches targeting memory T cell subsets in T1D.
Collapse
Affiliation(s)
- Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Panji
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimian
- Department of Endocrinology and Metabolism, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Koenig JFE. T follicular helper and memory B cells in IgE recall responses. Allergol Int 2025; 74:4-12. [PMID: 39562254 DOI: 10.1016/j.alit.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
IgE antibodies raised against innocuous environmental antigens cause allergic diseases like allergic rhinitis, food allergy, and allergic asthma. While some allergies are often outgrown, others (peanut, shellfish, tree nut) are lifelong in the majority of individuals. Lifelong allergies are the result of persistent production of allergen-specific IgE. However, IgE antibodies and the plasma cells that secrete them tend to be short-lived. Persistent allergen-specific IgE titres are thought to be derived from the continued renewal of IgE plasma cells from memory B cells in response to allergen encounters. The initial generation of allergen-specific IgE is driven by B cell activation by IL-4 producing Tfh cells, but the cellular and molecular mechanisms of the long-term production of IgE are poorly characterized. This review investigates the mechanisms governing IgE production and Tfh activation in the primary and recall responses, towards the objective of identifying molecular targets for therapeutic intervention that durably inactivate the IgE recall response.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Schattgen SA, Turner JS, Ghonim MA, Crawford JC, Schmitz AJ, Kim H, Zhou JQ, Awad W, Mettelman RC, Kim W, McIntire KM, Haile A, Klebert MK, Suessen T, Middleton WD, Teefey SA, Presti RM, Ellebedy AH, Thomas PG. Influenza vaccination stimulates maturation of the human T follicular helper cell response. Nat Immunol 2024; 25:1742-1753. [PMID: 39164477 PMCID: PMC11362011 DOI: 10.1038/s41590-024-01926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
The differentiation and specificity of human CD4+ T follicular helper cells (TFH cells) after influenza vaccination have been poorly defined. Here we profiled blood and draining lymph node (LN) samples from human volunteers for over 2 years after two influenza vaccines were administered 1 year apart to define the evolution of the CD4+ TFH cell response. The first vaccination induced an increase in the frequency of circulating TFH (cTFH) and LN TFH cells at week 1 postvaccination. This increase was transient for cTFH cells, whereas the LN TFH cells further expanded during week 2 and remained elevated in frequency for at least 3 months. We observed several distinct subsets of TFH cells in the LN, including pre-TFH cells, memory TFH cells, germinal center (GC) TFH cells and interleukin-10+ TFH cell subsets beginning at baseline and at all time points postvaccination. The shift toward a GC TFH cell phenotype occurred with faster kinetics after the second vaccine compared to the first vaccine. We identified several influenza-specific TFH cell clonal lineages, including multiple responses targeting internal influenza virus proteins, and found that each TFH cell state was attainable within a clonal lineage. Thus, human TFH cells form a durable and dynamic multitissue network.
Collapse
Affiliation(s)
- Stefan A Schattgen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Ghonim
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyunjin Kim
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Walid Awad
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W. Same yet different - how lymph node heterogeneity affects immune responses. Nat Rev Immunol 2024; 24:358-374. [PMID: 38097778 DOI: 10.1038/s41577-023-00965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 05/04/2024]
Abstract
Lymph nodes are secondary lymphoid organs in which immune responses of the adaptive immune system are initiated and regulated. Distributed throughout the body and embedded in the lymphatic system, local lymph nodes are continuously informed about the state of the organs owing to a constant drainage of lymph. The tissue-derived lymph carries products of cell metabolism, proteins, carbohydrates, lipids, pathogens and circulating immune cells. Notably, there is a growing body of evidence that individual lymph nodes differ from each other in their capacity to generate immune responses. Here, we review the structure and function of the lymphatic system and then focus on the factors that lead to functional heterogeneity among different lymph nodes. We will discuss how lymph node heterogeneity impacts on cellular and humoral immune responses and the implications for vaccination, tumour development and tumour control by immunotherapy.
Collapse
Affiliation(s)
- Paulina Cruz de Casas
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
6
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
7
|
Kaminski A, Hager FT, Kopplin L, Ticconi F, Leufgen A, Vendelova E, Rüttger L, Gasteiger G, Cerovic V, Kastenmüller W, Pabst O, Ugur M. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci Immunol 2023; 8:eadj5789. [PMID: 37874251 DOI: 10.1126/sciimmunol.adj5789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Regulatory T cells (Tregs) are present in lymphoid and nonlymphoid tissues where they restrict immune activation, prevent autoimmunity, and regulate inflammation. Tregs in nonlymphoid tissues are typically resident, whereas those in lymph nodes (LNs) are considered to recirculate. However, Tregs in LNs are not a homogenous population, and circulation kinetics of different Treg subsets are poorly characterized. Furthermore, whether Tregs can acquire memory T cell properties and persist for extended periods after their activation in LNs is unclear. Here, we used in situ labeling with a stabilized photoconvertible protein to uncover turnover rates of Tregs in LNs in vivo. We found that, whereas most Tregs in LNs recirculate, 10 to 20% are memory-like resident cells that remain in their respective LNs for weeks to months. Single-cell RNA sequencing revealed that LN-resident cells are a functionally and ontogenetically heterogeneous population and share the same core residency gene signature with conventional CD4+ and CD8+ T cells. Resident cells in LNs did not actively proliferate and did not require continuous T cell receptor (TCR) signaling for their residency. However, resident and circulating Tregs had distinct TCR repertoires, and each LN contained exclusive clonal subpopulations of resident Tregs. Our results demonstrate that, similar to conventional T cells, Tregs can form resident memory-like populations in LNs after adaptive immune responses. Specific and local suppression of immune responses by resident Tregs in draining LNs might provide previously unidentified therapeutic opportunities for the treatment of local chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Tobias Hager
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Institute for Computational Genomics, RWTH Aachen University, Aachen 52074, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Emilia Vendelova
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Lennart Rüttger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| |
Collapse
|
8
|
Yadavilli S, Waight JD, Brett S, Bi M, Zhang T, Liu YB, Ellis C, Turner DC, Hahn A, Shi H, Seestaller-Wehr L, Jing J, Xie Q, Shaik JS, Ji X, Gagnon R, Fieles W, Hook L, Grant S, Hopley S, DeYoung MP, Blackwell C, Chisamore M, Biddlecombe R, Figueroa DJ, Hopson CB, Srinivasan R, Smothers J, Maio M, Rischin D, Olive D, Paul E, Mayes PA, Hoos A, Ballas M. Activating Inducible T-cell Costimulator Yields Antitumor Activity Alone and in Combination with Anti-PD-1 Checkpoint Blockade. CANCER RESEARCH COMMUNICATIONS 2023; 3:1564-1579. [PMID: 37593752 PMCID: PMC10430783 DOI: 10.1158/2767-9764.crc-22-0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
In recent years, there has been considerable interest in mAb-based induction of costimulatory receptor signaling as an approach to combat cancer. However, promising nonclinical data have yet to translate to a meaningful clinical benefit. Inducible T-cell costimulator (ICOS) is a costimulatory receptor important for immune responses. Using a novel clinical-stage anti-ICOS immunoglobulin G4 mAb (feladilimab), which induces but does not deplete ICOS+ T cells and their rodent analogs, we provide an end-to-end evaluation of the antitumor potential of antibody-mediated ICOS costimulation alone and in combination with programmed cell death protein 1 (PD-1) blockade. We demonstrate, consistently, that ICOS is expressed in a range of cancers, and its induction can stimulate growth of antitumor reactive T cells. Furthermore, feladilimab, alone and with a PD-1 inhibitor, induced antitumor activity in mouse and humanized tumor models. In addition to nonclinical evaluation, we present three patient case studies from a first-time-in-human, phase I, open-label, dose-escalation and dose-expansion clinical trial (INDUCE-1; ClinicalTrials.gov: NCT02723955), evaluating feladilimab alone and in combination with pembrolizumab in patients with advanced solid tumors. Preliminary data showing clinical benefit in patients with cancer treated with feladilimab alone or in combination with pembrolizumab was reported previously; with example cases described here. Additional work is needed to further validate the translation to the clinic, which includes identifying select patient populations that will benefit from this therapeutic approach, and randomized data with survival endpoints to illustrate its potential, similar to that shown with CTLA-4 and PD-1 blocking antibodies. Significance Stimulation of the T-cell activation marker ICOS with the anti-ICOS agonist mAb feladilimab, alone and in combination with PD-1 inhibition, induces antitumor activity across nonclinical models as well as select patients with advanced solid tumors.
Collapse
Affiliation(s)
| | | | - Sara Brett
- GSK, Stevenage, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | - Xiao Ji
- GSK, Collegeville, Pennsylvania
| | | | | | - Laura Hook
- GSK, Stevenage, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Michele Maio
- University of Siena and Center for Immuno-Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Olive
- CRCM, Immunity and Cancer, Inserm, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | | | | | | | | |
Collapse
|
9
|
Long Y, Xia CS, Zeng X, Feng J, Ma Y, Liu C. Altered Phenotypes of Colonic and Peripheral Blood Follicular Helper and Follicular Cytotoxic T Cells in Mice with DSS-Induced Colitis. J Inflamm Res 2023; 16:2879-2892. [PMID: 37456782 PMCID: PMC10348340 DOI: 10.2147/jir.s411373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Follicular helper T (Tfh), follicular regulatory T (Tfr), and follicular cytotoxic T (Tfc) cells play important roles in autoimmune diseases. Nevertheless, their changes of functional phenotypes in ulcerative colitis (UC), most importantly, their changes in colon tissue as the target-organ, have not been explored. Methods DSS-colitis was induced in Balb/c mice and lymphocytes were collected from spleen, mesenteric lymph nodes, peripheral blood and colon. Tfh, Tfr, and Tfc cells were analyzed using flow cytometry based on their CD4+CXCR5+FOXP3-Tfh, CD4+CXCR5+FOXP3+Tfr and CD8+CXCR5+Tfc expressions. Various functional characterization markers including CD44, CD62L, TIGIT, CD226, PD-1, ICOS, Helios, CTLA-4 and Bcl6 were analyzed in the T cell subsets of the organs. Results Tfh and Tfr cells in the colon were significantly increased in DSS-colitis mice. Additionally, the proportions of Tfr and Tfc cells in the peripheral blood were also increased, while Tfc cell proportions in the colon were decreased. The proportion of naïve cells in the Tfh, Tfr and Tfc cells in the colon and peripheral blood decreased, while the proportion of effector memory T cells increased. The TIGIT+CD226-Tfh and Tfc cells were upregulated in the colon of DSS-colitis mice. The PD-1+, ICOS+ and PD-1+ICOS+ Tfh cells were increased in both the colonic and peripheral blood Tfh and Tfc of DSS-colitis mice. The Bcl6+ proportions in the Tfh and Tfr were increased in the colon of DSS-colitis mice. Conclusion The colonic and peripheral blood Tfh and Tfc cells of DSS-colitis mice have a significantly activated T cell phenotype, which may play a significant role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jinghong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yinting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Hu M, Notarbartolo S, Foglierini M, Jovic S, Mele F, Jarrossay D, Lanzavecchia A, Cassotta A, Sallusto F. Clonal composition and persistence of antigen-specific circulating T follicular helper cells. Eur J Immunol 2023; 53:e2250190. [PMID: 36480793 PMCID: PMC10107804 DOI: 10.1002/eji.202250190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
T follicular helper (TFH ) cells play an essential role in promoting B cell responses and antibody affinity maturation in germinal centers (GC). A subset of memory CD4+ T cells expressing the chemokine receptor CXCR5 has been described in human blood as phenotypically and clonally related to GC TFH cells. However, the antigen specificity and relationship of these circulating TFH (cTFH ) cells with other memory CD4+ T cells remain poorly defined. Combining antigenic stimulation and T cell receptor (TCR) Vβ sequencing, we found T cells specific to tetanus toxoid (TT), influenza vaccine (Flu), or Candida albicans (C.alb) in both cTFH and non-cTFH subsets, although with different frequencies and effector functions. Interestingly, cTFH and non-cTFH cells specific for C.alb or TT had a largely overlapping TCR Vβ repertoire while the repertoire of Flu-specific cTFH and non-cTFH cells was distinct. Furthermore, Flu-specific but not C.alb-specific PD-1+ cTFH cells had a "GC TFH -like" phenotype, with overexpression of IL21, CXCL13, and BCL6. Longitudinal analysis of serial blood donations showed that Flu-specific cTFH and non-cTFH cells persisted as stable repertoires for years. Collectively, our study provides insights on the relationship of cTFH with non-cTFH cells and on the heterogeneity and persistence of antigen-specific human cTFH cells.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: National Institute of Molecular Genetics, Milano, Italy
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Service d'immunologie et d'allergie, CHUV, Lausanne, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Robinson AM, Higgins BW, Shuparski AG, Miller KB, McHeyzer-Williams LJ, McHeyzer-Williams MG. Evolution of antigen-specific follicular helper T cell transcription from effector function to memory. Sci Immunol 2022; 7:eabm2084. [PMID: 36206356 PMCID: PMC9881730 DOI: 10.1126/sciimmunol.abm2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding how follicular helper T cells (TFH) regulate the specialization, maturation, and differentiation of adaptive B cell immunity is crucial for developing durable high-affinity immune protection. Using indexed single-cell molecular strategies, we reveal a skewed intraclonal assortment of higher-affinity T cell receptors and the distinct molecular programming of the localized TFH compartment compared with emigrant conventional effector TH cells. We find a temporal shift in B cell receptor class switch, which permits identification of inflammatory and anti-inflammatory modules of transcriptional programming that subspecialize TFH function before and during the germinal center (GC) reaction. Late collapse of this local primary GC reaction reveals a persistent post-GC TFH population that discloses a putative memory TFH program. These studies define subspecialized antigen-specific TFH transcriptional programs that progressively change with antibody class-specific evolution of high-affinity B cell immunity and a memory TFH transcriptional program that emerges upon local GC resolution.
Collapse
|
12
|
Sun KN, Huang F, Wang MY, Wu J, Hu CJ, Liu XF. IL-21 Enhances the Immune Protection Induced by the Vibrio vulnificus Hemolysin A Protein. Inflammation 2022; 45:1496-1506. [PMID: 35129769 DOI: 10.1007/s10753-022-01632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Abstract
We previously reported that the Vibrio vulnificus hemolysin A (VvhA) protein elicited good immune protection and could effectively control V. vulnificus infection in mice. However, its molecular mechanism remains unknown. We hypothesized that hemolysin A induces an immunoprotective response via IL-21 regulation. To demonstrate this, IL-21 expression in mice was regulated by injecting either specific antibodies or rIL-21, and the immune response was evaluated by flow cytometry. Our results suggested that IL-21 enhances immune protection by inducing a T follicular helper cell and germinal center B cell response. We used RNA-seq to explore molecular mechanisms and identified 10 upregulated and 32 downregulated genes involved in IL-21-upregulated protection. Gene Ontology analysis and pathway analysis of the differentially expressed genes were also performed. Our findings indicate that IL-21 can enhance the immune protection effect of the VvhA protein and may serve as a novel strategy for enhancing the immune protection effect of protein vaccines.
Collapse
Affiliation(s)
- Ke-Na Sun
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Fei Huang
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Ming-Yi Wang
- Department of Clinical Lab, Weihai Municipal Hospital Affiliated To Dalian Medical University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Jing Wu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Cheng-Jin Hu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China.
| |
Collapse
|
13
|
Liu JH, Zhang JJ, Han WJ, Cui C, Li MZ, Tian ZY, Bai RM, Li LM. B cell memory responses induced by foot-and-mouth disease virus-like particles in BALB/c mice. Vet Immunol Immunopathol 2022; 250:110458. [PMID: 35841772 DOI: 10.1016/j.vetimm.2022.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/12/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
A challenging but critical question is that new foot-and-mouth disease (FMD) vaccines should be to induce B cell memory to provide antibodies for long-term protection. The maintenance of B cell memory is dependent on long-lived plasma cells (LLPCs) and memory B cells. We developed a chimeric FMDV virus-like particles (FMDV-VLPs), fusing VP1-VP4 into HBcAg. In our study, we investigated if or how long B cell memory was induced by FMDV-VLPs in mice. The data showed that FMDV-VLPs can induce memory humoral responses with a high level of total IgG1, IgG2a, IgA, and FMDV-specific IgG antibodies in serum. The persistence of antibody levels in serum could depend on LLPCs. The proportion of LLPCs in CD19+ cells in bone marrow exhibited a dynamic trend with two peaks at 28 days post-immunization (dpi) and 72 dpi, respectively. Additionally, the proportion of memory B cells in CD19+ cells in the spleen increased significantly both at 7 days post primary immunization and at 7 days post -boost immunization. Of note, LLPCs together with memory B cells contribute to the production of FMDV-specific IgG and IgG1. The changes of LLPCs and memory B cells may be related to TNF-α, IL-6 and, CXCL12. Taken together, FMDV-VLPs could induce B cells memory responses. A further understanding of the mechanisms that FMDV-VLPs how we can manipulate the induction and maintenance of memory B cells and LLPCs will promote vaccine design and likely address several challenges to develop FMDV new vaccines in the future.
Collapse
Affiliation(s)
- Jia-Huan Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jun-Juan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Wei-Jian Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chuan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Ming-Zhu Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Zhan-Yun Tian
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Ruo-Man Bai
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Li-Min Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
14
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
15
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
16
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
17
|
Koenig JFE, Bruton K, Phelps A, Grydziuszko E, Jiménez-Saiz R, Jordana M. Memory Generation and Re-Activation in Food Allergy. Immunotargets Ther 2021; 10:171-184. [PMID: 34136419 PMCID: PMC8200165 DOI: 10.2147/itt.s284823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has highlighted the critical role of memory cells in maintaining lifelong food allergies, thereby identifying these cells as therapeutic targets. IgG+ memory B cells replenish pools of IgE-secreting cells upon allergen exposure, which contract thereafter due to the short lifespan of tightly regulated IgE-expressing cells. Advances in the detection and highly dimensional analysis of allergen-specific B and T cells from allergic patients have provided insight on their phenotype and function. The newly identified Th2A and Tfh13 populations represent a leap in our understanding of allergen-specific T cell phenotypes, although how these populations contribute to IgE memory responses remains poorly understood. Within, we discuss the mechanisms by which memory B and T cells are activated, integrating knowledge from human systems and fundamental research. We then focus on memory reactivation, specifically, on the pathways of secondary IgE responses. Throughout, we identify areas of future research which will help identify immunotargets for a transformative therapy for food allergy.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Grydziuszko
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-IP), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Manel Jordana
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Olatunde AC, Hale JS, Lamb TJ. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol 2021; 42:536-550. [PMID: 33972167 PMCID: PMC9107098 DOI: 10.1016/j.it.2021.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
CD4+ follicular helper T (Tfh) cells play a vital role in providing help for B cells undergoing selection and differentiation into activated antibody-secreting cells in mammalian germinal centers (GCs). Increasing evidence suggests that Tfh cells are a heterogeneous population that generates cytokine-skewed immune responses - a reflection of the microenvironment during differentiation. This has important ramifications for Tfh-mediated B cell help. Because Tfh subsets can have opposing effects on GC B cell responses, we discuss current findings regarding the differentiation and functions of cytokine-skewed Tfh cells in modulating GC B cell differentiation. Antibodies are important weapons against infectious diseases but can also be pathogenic mediators in some autoimmune conditions. Since cytokine-skewed Tfh cells can influence the magnitude and quality of the humoral response, we address the roles of cytokine-skewed Tfh cells in disease.
Collapse
Affiliation(s)
- Adesola C Olatunde
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - Tracey J Lamb
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Bestard O, Couzi L, Crespo M, Kessaris N, Thaunat O. Stratifying the humoral risk of candidates to a solid organ transplantation: a proposal of the ENGAGE working group. Transpl Int 2021; 34:1005-1018. [PMID: 33786891 DOI: 10.1111/tri.13874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Detection of circulating antibodies directed against human leukocyte antigen (HLA) molecules, which corresponds to the current definition of 'sensitized patient', has been shown to have a severe impact on both access to transplantation and, if the anti-HLA antibodies are specific to the selected donor, survival of the graft. However, not all donor-specific antibodies (DSA) are equally harmful to the graft and progress in the understanding of humoral memory has led to the conclusion that absence of DSA at transplantation does not rule out the possibility that the patient has a preformed cellular humoral memory against the graft (thereby defining a category of DSA-negative sensitized recipients). Technological progress has led to the generation of new assays that offer unprecedented precision in exploring the different layers (serological and cellular) of alloimmune humoral memory. Based on this recent knowledge, the EuropeaN Guidelines for the mAnagement of Graft rEcipients (ENGAGE) working group to propose an updated definition of sensitization in candidates for solid organ transplantation - one that moves away from the current binary division towards a definition based on homogenous strata with similar humoral risk.
Collapse
Affiliation(s)
- Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Bellvitge Research Institute (IDIBELL), Barcelona, Spain
| | - Lionel Couzi
- Nephrology-Transplantation-Dialysis, CHU Bordeaux, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, Bordeaux University, Bordeaux, France
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain.,Nephropathies Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nicos Kessaris
- Department of Nephrology and Transplantation, Guy's Hospital, London, UK.,King's College London, London, UK
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Lyon, France.,Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| |
Collapse
|
20
|
Baumjohann D, Fazilleau N. Antigen-dependent multistep differentiation of T follicular helper cells and its role in SARS-CoV-2 infection and vaccination. Eur J Immunol 2021; 51:1325-1333. [PMID: 33788271 PMCID: PMC8250352 DOI: 10.1002/eji.202049148] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023]
Abstract
T follicular helper (Tfh) cells play an essential role in regulating the GC reaction and, consequently, the generation of high‐affinity antibodies and memory B cells. Therefore, Tfh cells are critical for potent humoral immune responses against various pathogens and their dysregulation has been linked to autoimmunity and cancer. Tfh cell differentiation is a multistep process, in which cognate interactions with different APC types, costimulatory and coinhibitory pathways, as well as cytokines are involved. However, it is still not fully understood how a subset of activated CD4+ T cells begins to express the Tfh cell‐defining chemokine receptor CXCR5 during the early stage of the immune response, how some CXCR5+ pre‐Tfh cells enter the B‐cell follicles and mature further into GC Tfh cells, and how Tfh cells are maintained in the memory compartment. In this review, we discuss recent advances on how antigen and cognate interactions are important for Tfh cell differentiation and long‐term persistence of Tfh cell memory, and how this is relevant to the current understanding of COVID‐19 pathogenesis and the development of potent SARS‐CoV‐2 vaccines.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Inserm, Toulouse, U1291, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
21
|
Scholz J, Kuhrau J, Heinrich F, Heinz GA, Hutloff A, Worm M, Heine G. Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation. Allergy 2021; 76:1109-1122. [PMID: 32895937 DOI: 10.1111/all.14581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Vitamin A regulates the adaptive immune response and a modulatory impact on type I allergy is discussed. The cellular mechanisms are largely unknown. OBJECTIVE To determine the vitamin A-responding specific lymphocyte reaction in vivo. METHODS Antigen-specific B and T lymphocytes were analyzed in an adoptive transfer airway inflammation mouse model in response to 9-cis retinoic acid (9cRA) and after lymphocyte-specific genetic targeting of the receptor RARα. Flow cytometry, quantitative PCR, next-generation sequencing, and specific Ig-ELISA were used to characterize the cells functionally. RESULTS Systemic 9cRA profoundly enhanced the specific IgA-secreting B-cell frequencies in the lung tissue and serum IgA while reducing serum IgE concentrations. RARα overexpression in antigen-specific B cells promoted differentiation into plasmablasts at the expense of germinal center B cells. In antigen-specific T cells, RARα strongly promoted the differentiation of T follicular helper cells followed by an enhanced germinal center response. CONCLUSIONS 9cRA signaling via RARα impacts the allergen-specific immunoglobulin response directly by the differentiation of B cells and indirectly by promoting T follicular helper cells.
Collapse
Affiliation(s)
- Josephine Scholz
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Julia Kuhrau
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Frederik Heinrich
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Andreas Hutloff
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
- Institute of Clinical Molecular Biology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Margitta Worm
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
| | - Guido Heine
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Department of Dermatology and Allergy University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| |
Collapse
|
22
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Dysregulation of circulating follicular helper T cells in type 2 diabetic patients with diabetic retinopathy. Immunol Res 2021; 69:153-161. [PMID: 33625683 DOI: 10.1007/s12026-021-09182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/14/2021] [Indexed: 12/23/2022]
Abstract
Inflammation is known to be involved in the progression of diabetic retinopathy. Follicular helper T cells (Tfh) play critical roles in the differentiation of long-live plasma cells and production of antibodies, whereas circulating CD4+CXCR5+ T cells may act as a counterpart to measure Tfh cell disorders. In this study, we investigated whether Tfh could be involved in the development of diabetic retinopathy (DR) by assessing circulating Tfh cells in peripheral blood. Data showed that serum levels of total IgG and IgA were both significantly increased in type 2 diabetes mellitus (T2DM) patients with proliferative diabetic retinopathy (PDR) than with non-PDR. Also, B cell activation and differentiation were both enhanced in T2DM patients with PDR. Little changes were detected in levels of Th1, Th2, and Th17 cells. As indicated by elevated serum levels and supernatant from cultured PBMC of IL-21, we found increased circulating Tfh cells in PDR patients with dysregulated subsets. This study suggests the involvement of circulating Tfh cells in DR and, in particular, the pathogenesis of PDR.
Collapse
|
24
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
25
|
Gong F, Dai Y, Zheng T, Cheng L, Zhao D, Wang H, Liu M, Pei H, Jin T, Yu D, Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest 2020; 130:6588-6599. [PMID: 32841212 PMCID: PMC7685722 DOI: 10.1172/jci141054] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDMarked progress is achieved in understanding the physiopathology of coronavirus disease 2019 (COVID-19), which caused a global pandemic. However, the CD4+ T cell population critical for antibody response in COVID-19 is poorly understood.METHODSIn this study, we provided a comprehensive analysis of peripheral CD4+ T cells from 13 COVID-19 convalescent patients, defined as confirmed free of SARS-CoV-2 for 2 to 4 weeks, using flow cytometry and magnetic chemiluminescence enzyme antibody immunoassay. The data were correlated with clinical characteristics.RESULTSWe observed that, relative to healthy individuals, convalescent patients displayed an altered peripheral CD4+ T cell spectrum. Specifically, consistent with other viral infections, cTfh1 cells associated with SARS-CoV-2-targeting antibodies were found in COVID-19 covalescent patients. Individuals with severe disease showed higher frequencies of Tem and Tfh-em cells but lower frequencies of Tcm, Tfh-cm, Tfr, and Tnaive cells, compared with healthy individuals and patients with mild and moderate disease. Interestingly, a higher frequency of cTfh-em cells correlated with a lower blood oxygen level, recorded at the time of admission, in convalescent patients. These observations might constitute residual effects by which COVID-19 can impact the homeostasis of CD4+ T cells in the long-term and explain the highest ratio of class-switched virus-specific antibody producing individuals found in our severe COVID-19 cohort.CONCLUSIONOur study demonstrated a close connection between CD4+ T cells and antibody production in COVID-19 convalescent patients.FUNDINGSix Talent Peaks Project in Jiangsu Province and the National Natural Science Foundation of China (NSFC).
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Ting Zheng
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
| | - Liang Cheng
- Department of Respiration, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Dan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Wang
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Pei
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Yu
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
26
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
27
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The lymph node at a glance - how spatial organization optimizes the immune response. J Cell Sci 2020; 133:133/5/jcs241828. [PMID: 32144196 DOI: 10.1242/jcs.241828] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.
Collapse
Affiliation(s)
- Spencer M Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Li Yao
- Science Education Department, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
31
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
32
|
Ugur M, Mueller SN. T cell and dendritic cell interactions in lymphoid organs: More than just being in the right place at the right time. Immunol Rev 2019; 289:115-128. [DOI: 10.1111/imr.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Milas Ugur
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
33
|
Wang X, Hao GL, Wang BY, Gao CC, Wang YX, Li LS, Xu JD. Function and dysfunction of plasma cells in intestine. Cell Biosci 2019; 9:26. [PMID: 30911371 PMCID: PMC6417281 DOI: 10.1186/s13578-019-0288-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
As the main player in humoral immunity, antibodies play indispensable roles in the body's immune system. Plasma cells (PCs), as antibody factories, are important contributors to humoral immunity. PCs, recognized by their unique marker CD138, are always discovered in the medullary cords of spleen and lymph nodes and in bone marrow and mucosal lymphoid tissue. This article will review the origin and differentiation of PCs, characteristics of short- and long-lived PCs, and the secretion of antibodies, such as IgA, IgM, and IgG. PCs play a crucial role in the maintenance of intestinal homeostasis using immunomodulation though complex mechanisms. Clearly, PCs play functional roles in maintaining intestinal health, but more details are needed to fully understand all the other effects of intestinal PCs.
Collapse
Affiliation(s)
- Xue Wang
- School of Basic Medical Sciences, Xuanwu Hospital, Beijing Capital Medical University, Beijing, 100069 China
| | - Gui-liang Hao
- School of Basic Medical Sciences, Xuanwu Hospital, Beijing Capital Medical University, Beijing, 100069 China
| | - Bo-ya Wang
- Peking University Health Science Center, Beijing, 100081 China
| | - Chen-chen Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Yue-xiu Wang
- Department of Teaching Office, International School, Capital Medical University, Beijing, 100069 China
| | - Li-sheng Li
- Function Platform Center, School of Basic Medical Science, Capital Medical University, Beijing, 100069 China
| | - Jing-dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| |
Collapse
|
34
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T. Generation of memory B cells and their reactivation. Immunol Rev 2019; 283:138-149. [PMID: 29664566 DOI: 10.1111/imr.12640] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Imogen Moran
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tri Giang Phan
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
36
|
High-resolution repertoire analysis reveals a major bystander activation of Tfh and Tfr cells. Proc Natl Acad Sci U S A 2018; 115:9604-9609. [PMID: 30158170 DOI: 10.1073/pnas.1808594115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) and regulatory (Tfr) cells are terminally differentiated cells found in germinal centers (GCs), specialized secondary lymphoid organ structures dedicated to antibody production. As such, follicular T (Tfol) cells are supposed to be specific for immunizing antigens, which has been reported for Tfh cells but is debated for Tfr cells. Here, we used high-throughput T cell receptor (TCR) sequencing to analyze the repertoires of Tfh and Tfr cells, at homeostasis and after immunization with self- or foreign antigens. We observed that, whatever the conditions, Tfh and Tfr cell repertoires are less diverse than those of effector T cells and Treg cells of the same tissues; surprisingly, these repertoires still represent thousands of different sequences, even after immunization with a single antigen that induces a 10-fold increase in Tfol cell numbers. Thorough analysis of the sharing and network of TCR sequences revealed that a specific response to the immunizing antigen can only, but hardly, be detected in Tfh cells immunized with a foreign antigen and Tfr cells immunized with a self-antigen. These antigen-specific responses are obscured by a global stimulation of Tfh and Tfr cells that appears to be antigen-independent. Altogether, our results suggest a major bystander Tfol cell activation during the immune response in the GCs.
Collapse
|
37
|
Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship. Front Immunol 2018; 9:1941. [PMID: 30210496 PMCID: PMC6119692 DOI: 10.3389/fimmu.2018.01941] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Co-ordinated interaction between distinct cell types is a hallmark of successful immune function. A striking example of this is the carefully orchestrated cooperation between helper T cells and B cells that occurs during the initiation and fine-tuning of T-cell dependent antibody responses. While these processes have evolved to permit rapid immune defense against infection, it is becoming increasingly clear that such interactions can also underpin the development of autoimmunity. Here we discuss a selection of cellular and molecular pathways that mediate T cell/B cell collaboration and highlight how in vivo models and genome wide association studies link them with autoimmune disease. In particular, we emphasize how CTLA-4-mediated regulation of CD28 signaling controls the engagement of secondary costimulatory pathways such as ICOS and OX40, and profoundly influences the capacity of T cells to provide B cell help. While our molecular understanding of the co-operation between T cells and B cells derives from analysis of secondary lymphoid tissues, emerging evidence suggests that subtly different rules may govern the interaction of T and B cells at ectopic sites during autoimmune inflammation. Accordingly, the phenotype of the T cells providing help at these sites includes notable distinctions, despite sharing core features with T cells imparting help in secondary lymphoid tissues. Finally, we highlight the interdependence of T cell and B cell responses and suggest that a significant beneficial impact of B cell depletion in autoimmune settings may be its detrimental effect on T cells engaged in molecular conversation with B cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
38
|
Moran I, Nguyen A, Khoo WH, Butt D, Bourne K, Young C, Hermes JR, Biro M, Gracie G, Ma CS, Munier CML, Luciani F, Zaunders J, Parker A, Kelleher AD, Tangye SG, Croucher PI, Brink R, Read MN, Phan TG. Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nat Commun 2018; 9:3372. [PMID: 30135429 PMCID: PMC6105623 DOI: 10.1038/s41467-018-05772-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Vaccine-induced immunity depends on the generation of memory B cells (MBC). However, where and how MBCs are reactivated to make neutralising antibodies remain unknown. Here we show that MBCs are prepositioned in a subcapsular niche in lymph nodes where, upon reactivation by antigen, they rapidly proliferate and differentiate into antibody-secreting plasma cells in the subcapsular proliferative foci (SPF). This novel structure is enriched for signals provided by T follicular helper cells and antigen-presenting subcapsular sinus macrophages. Compared with contemporaneous secondary germinal centres, SPF have distinct single-cell molecular signature, cell migration pattern and plasma cell output. Moreover, SPF are found both in human and mouse lymph nodes, suggesting that they are conserved throughout mammalian evolution. Our data thus reveal that SPF is a seat of immunological memory that may be exploited to rapidly mobilise secondary antibody responses and improve vaccine efficacy.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Weng Hua Khoo
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Biologics Research and Development, Teva Pharmaceuticals, Macquarie Park, NSW, 2113, Australia
| | - Katherine Bourne
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Clara Young
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Gary Gracie
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - C Mee Ling Munier
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, 2052, Australia
| | - John Zaunders
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,St Vincent's Hospital Sydney Centre for Applied Medical Research, Sydney, Australia
| | - Andrew Parker
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anthony D Kelleher
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,St Vincent's Hospital Sydney Centre for Applied Medical Research, Sydney, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Peter I Croucher
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.,Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Mark N Read
- School of Life and Environmental Sciences and the Charles Perkins Centre, University of Sydney, Sydney, NSW, 2052, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.
| |
Collapse
|
39
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
40
|
Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development. Viruses 2018; 10:v10060336. [PMID: 29921828 PMCID: PMC6024737 DOI: 10.3390/v10060336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Passive administration of broadly neutralizing antibodies (bNAbs) capable of recognizing a broad range of viral strains to non-human primates has led to protection from infection with chimeric SIV/HIV virus (SHIV). This data suggests that generating protective antibody responses could be an effective strategy for an HIV vaccine. However, classic vaccine approaches have failed so far to induce such protective antibodies in HIV vaccine trials. HIV-specific bNAbs identified in natural infection show high levels of somatic hypermutations, demonstrating that they underwent extensive affinity maturation. It is likely that to gain ability to recognize diverse viral strains, vaccine-induced humoral responses will also require complex, iterative maturation. T follicular helper cells (Tfh) are a specialized CD4+ T cell subset that provides help to B cells in the germinal center for the generation of high-affinity and long-lasting humoral responses. It is therefore probable that the quality and quantity of Tfh responses upon vaccination will impact development of bNAbs. Here, we review studies that advanced our understanding of Tfh differentiation, function and regulation. We discuss correlates of Tfh responses and bNAb development in natural HIV infection. Finally, we highlight recent strategies to optimize Tfh responses upon vaccination and their impact on prophylactic HIV vaccine research.
Collapse
|
41
|
Ugur M, Kaminski A, Pabst O. Lymph node γδ and αβ CD8 + T cells share migratory properties. Sci Rep 2018; 8:8986. [PMID: 29895956 PMCID: PMC5997669 DOI: 10.1038/s41598-018-27339-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022] Open
Abstract
During immune responses, T cells differentiate into subsets with different functions and migratory properties. Here we characterize migratory behavior of endogenous αβ CD8+ and γδ T cells in lymph nodes by long-term tracking following in vivo photoconversion. We identified subsets of γδ T cells with distinct circulation kinetics that closely mirrored migratory subsets of αβ CD8+ T cells. Notably, αβ CD8+ and γδ T cells both comprised resident populations which stayed in lymph nodes for 4 weeks without circulation or proliferation. Furthermore, in contrast to the common conception, we observed that central memory αβ CD8+ T cells circulate with slower kinetics than naïve cells. Our results show that, similar to αβ T cells, γδ T cells can acquire distinct migratory properties during their development and differentiation and reveal unexpected intricacies of T cell migratory patterns.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
42
|
Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1214. [PMID: 29904388 PMCID: PMC5990602 DOI: 10.3389/fimmu.2018.01214] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
43
|
Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots GG, Förster R, Bernhardt G. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol 2018; 9:714. [PMID: 29686684 PMCID: PMC5900012 DOI: 10.3389/fimmu.2018.00714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Follicular helper (TFH) and regulatory (TFR) cells are critical players in managing germinal center (GC) reactions that accomplish effective humoral immune responses. Transcriptome analyses were done comparing gene regulation of TFH and TFR cells isolated from Peyer’s Patches (PP) and immunized peripheral lymph nodes (pLNs) revealing many regulatory patterns common to all follicular cells. However, in contrast to TFH cells, the upregulation or downregulation of many genes was attenuated substantially in pLN TFR cells when compared to those of PP. Additionally, PP but not pLN TFR cells were largely unresponsive to IL2 and expressed Il4 as well as Il21. Together with fundamental differences in gene expression that were found between cells of both compartments this emphasizes specific adaptations of follicular T cell functions to their micro-milieu. Moreover, although GL7 expression distinguishes matured follicular T cells, GL7+ as well as GL7− cells are present in the GC.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Gray JI, Westerhof LM, MacLeod MKL. The roles of resident, central and effector memory CD4 T-cells in protective immunity following infection or vaccination. Immunology 2018; 154:574-581. [PMID: 29570776 PMCID: PMC6050220 DOI: 10.1111/imm.12929] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
Immunological memory provides rapid protection to pathogens previously encountered through infection or vaccination. CD4 T-cells play a central role in all adaptive immune responses. Vaccines must, therefore, activate CD4 T-cells if they are to generate protective immunity. For many diseases, we do not have effective vaccines. These include human immunodeficiency virus (HIV), tuberculosis and malaria, which are responsible for many millions of deaths each year across the globe. CD4 T-cells play many different roles during the immune response coordinating the actions of many other cells. In order to harness the diverse protective effects of memory CD4 T-cells, we need to understand how memory CD4 T-cells are generated and how they protect the host. Here we review recent findings on the location of different subsets of memory CD4 T-cells that are found in peripheral tissues (tissue resident memory T-cells) and in the circulation (central and effector memory T-cells). We discuss the generation of these cells, and the evidence that demonstrates how they provide immune protection in animal and human challenge models.
Collapse
Affiliation(s)
- Joshua I. Gray
- Centre for ImmunobiologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Lotus M. Westerhof
- Centre for ImmunobiologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
- GLAZgo Discovery CentreInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Megan K. L. MacLeod
- Centre for ImmunobiologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
45
|
Boerhout EM, Koets AP, Mols-Vorstermans TGT, Nuijten PJM, Hoeijmakers MJH, Rutten VPMG, Bijlsma JJE. The antibody response in the bovine mammary gland is influenced by the adjuvant and the site of subcutaneous vaccination. Vet Res 2018; 49:25. [PMID: 29490692 PMCID: PMC5831572 DOI: 10.1186/s13567-018-0521-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 11/10/2022] Open
Abstract
Intramammary infections in cattle resulting in mastitis have detrimental effects on cows' well-being, lifespan and milk production. In the host defense against S. aureus mastitis antibodies are thought to play an important role. To explore potential ways to increase antibody titers in the bovine mammary gland the effects of various adjuvants on the magnitude, isotype, and neutralizing capacity of antibodies produced following subcutaneous vaccine administration at different immunization sites were analyzed. In this study, α-toxoid was used as a model antigen and formulated in three different alum-based adjuvants: Alum-Saponin, Alum-Oil, and Alum-Saponin-Oil. Vaccines were administered near the suspensory ligament of the udder or in the lateral triangular area of the neck. At both immunization sites, immunization with α-toxoid in Alum-Saponin-Oil resulted in higher specific antibody titers in milk and serum as compared with Alum-Oil and Alum-Saponin, without favoring an IgG1, IgG2, or IgA response. Furthermore, the neutralizing capacity of milk serum and serum following immunization near the udder and in the neck was higher when Alum-Saponin-Oil was used as adjuvant compared with Alum-Oil and Alum-Saponin. Prime immunizations near the udder effectively increased both antibody isotype titers and neutralization titers, while prime plus boost immunizations were required to induce similar effects following immunization in the neck. Results indicate that subcutaneous administration of an Alum-Saponin-Oil based vaccine near the udder could be further explored for the development of a one-shot vaccination strategy to efficiently increase intramammary antibody responses.
Collapse
Affiliation(s)
- Eveline M Boerhout
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Central Veterinary Institute Part of Wageningen UR, Edelhertweg 15, PO box 65, 8200 AB, Lelystad, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Tanja G T Mols-Vorstermans
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Piet J M Nuijten
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Mathieu J H Hoeijmakers
- Global Clinical Research, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Victor P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Jetta J E Bijlsma
- Discovery and Technology, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands.
| |
Collapse
|
46
|
McHeyzer-Williams LJ, Dufaud C, McHeyzer-Williams MG. Do Memory B Cells Form Secondary Germinal Centers? Impact of Antibody Class and Quality of Memory T-Cell Help at Recall. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028878. [PMID: 28320753 DOI: 10.1101/cshperspect.a028878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antigen recall can clearly induce a germinal center (GC) reaction. What has become an issue for debate are the origins of the antigen-specific B cells that form memory-response GCs (mGCs). Using antigen labeling and adoptive transfer, memory B cells expressing different antibody class can give rise to mGCs with differing efficiency. Here, we will argue that the range of class-specific memory responses reported across multiple systems represents the spectrum of memory B-cell fate and function. While the formulation of recall immunogen and location of mGCs have an important role, we propose that effective cognate regulation is the key variable influencing recall outcome. These issues remain central to contemporary efforts of rational vaccine design.
Collapse
Affiliation(s)
| | - Chad Dufaud
- The Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
47
|
Asrir A, Aloulou M, Gador M, Pérals C, Fazilleau N. Interconnected subsets of memory follicular helper T cells have different effector functions. Nat Commun 2017; 8:847. [PMID: 29018187 PMCID: PMC5635037 DOI: 10.1038/s41467-017-00843-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023] Open
Abstract
Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.
Collapse
Affiliation(s)
- Assia Asrir
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
- INSERM, U1043, BP 3028, 31024 Cedex 3, Toulouse, F-31300, France
- CNRS, UMR5282, Toulouse, F-31300, France
- Université Toulouse III Paul-Sabatier, Toulouse, F-31300, France
| | - Meryem Aloulou
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
- INSERM, U1043, BP 3028, 31024 Cedex 3, Toulouse, F-31300, France
- CNRS, UMR5282, Toulouse, F-31300, France
- Université Toulouse III Paul-Sabatier, Toulouse, F-31300, France
| | - Mylène Gador
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
- INSERM, U1043, BP 3028, 31024 Cedex 3, Toulouse, F-31300, France
- CNRS, UMR5282, Toulouse, F-31300, France
- Université Toulouse III Paul-Sabatier, Toulouse, F-31300, France
| | - Corine Pérals
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
- INSERM, U1043, BP 3028, 31024 Cedex 3, Toulouse, F-31300, France
- CNRS, UMR5282, Toulouse, F-31300, France
- Université Toulouse III Paul-Sabatier, Toulouse, F-31300, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France.
- INSERM, U1043, BP 3028, 31024 Cedex 3, Toulouse, F-31300, France.
- CNRS, UMR5282, Toulouse, F-31300, France.
- Université Toulouse III Paul-Sabatier, Toulouse, F-31300, France.
| |
Collapse
|
48
|
Abstract
Asthma is a common chronic lung disease that affects 300 million people worldwide. It causes the airways of the lungs to swell and narrow due to inflammation (swelling and excess mucus build-up in the airways) and airway constriction (tightening of the muscles surrounding the airways). Atopic asthma is the most common form of asthma, and is triggered by inhaled allergens that ultimately promote the activation of the Th2-like T cells and the development of Th2-mediated chronic inflammation. Different subsets of T cells, including T follicular helper cells, tissue-resident T, cells and Th2 effector cells, play different functions during allergic immune response. Dendritic cells (DCs) are known to play a central role in initiating allergic Th2-type immune responses and in the development of the T cell phenotype. However, this function depends on the complex interaction with other cells of the immune system and determines whether the response to environmental allergens will be one of tolerance or allergic inflammation. This review discusses cell interactions leading to the initiation and maintenance of allergic Th2-type immune responses, particularly those associated with allergic asthma.
Collapse
|
49
|
Ritvo PGG, Churlaud G, Quiniou V, Florez L, Brimaud F, Fourcade G, Mariotti-Ferrandiz E, Klatzmann D. T
fr
cells lack IL-2Rα but express decoy IL-1R2 and IL-1Ra and suppress the IL-1–dependent activation of T
fh
cells. Sci Immunol 2017; 2:2/15/eaan0368. [DOI: 10.1126/sciimmunol.aan0368] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
|
50
|
Marriott CL, Dutton EE, Tomura M, Withers DR. Retention of Ag-specific memory CD4 + T cells in the draining lymph node indicates lymphoid tissue resident memory populations. Eur J Immunol 2017; 47:860-871. [PMID: 28295233 PMCID: PMC5435927 DOI: 10.1002/eji.201646681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/03/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023]
Abstract
Several different memory T‐cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4+ T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non‐photoconverted Ag‐specific CD4+ T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4+ T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non‐lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4+ T‐cell populations are generated in peripheral lymph nodes following immunisation.
Collapse
Affiliation(s)
- Clare L Marriott
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Emma E Dutton
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka-Ohtani University 3-11-1 Nishikiorikita, Tondabayashi-city, Osaka prefecture, Japan
| | - David R Withers
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|