1
|
Sánchez-Trasviña C, Coronel-Meneses D, Escobar-Fernández AM, Mayolo-Deloisa K. Transdermal microneedle patches as a promising drug delivery system for anti-obesogenic molecules. Front Bioeng Biotechnol 2024; 12:1380537. [PMID: 38919379 PMCID: PMC11196754 DOI: 10.3389/fbioe.2024.1380537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity, characterized by excessive storage of lipids, has become a global pandemic with high incidence levels, and its forecast is not encouraging. Currently, there are different strategies to treat obesity; however, these conventional methods have various limitations. Lifestyle changes may result in poor outcomes due to the complexity of obesity causes, pharmaceutic treatments produce severe side effects, and bariatric surgery is highly invasive. In the search for alternative treatments to fight obesity, transdermal drug delivery systems of anti-obesogenic molecules have gained particular attention. However, the diffusion of molecules through the skin is the main drawback due to the characteristics of different layers of the skin, principally the stratum corneum and its barrier-like behavior. In this sense, microneedles patches (MP) have emerged to overcome this limitation by piercing the skin and allowing drug delivery inside the body. Although MP have been studied for some years, it was not until about 2017 that their potential as anti-obesogenic treatment was reported. This article aims to summarize and analyze the strategies employed to produce MP and to embed the active molecules against obesity. Special attention is focused on the microneedle's material, geometry, array, and additional delivery strategies, like nanoencapsulation. MP are a promising tool to develop an easy-access treatment, avoiding the digestive tract and with the capacity to enhance the anti-obesogenic activity by delivering one or more active molecules.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - David Coronel-Meneses
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Aleyda Margarita Escobar-Fernández
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| |
Collapse
|
2
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal associations of plasma levels of the secreted phospholipase A 2 family and mortality in severe COVID-19. Eur J Immunol 2024:e2350721. [PMID: 38651231 DOI: 10.1002/eji.202350721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.
Collapse
Affiliation(s)
- Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Shudong Sun
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Michael C Seeds
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Charles E McCall
- Departments of Internal Medicine, Microbiology and Immunology, and Clinical and Translational Sciences Institute, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
4
|
Wang LM, Zhang WL, Lyu N, Suo YR, Yang L, Yu B, Jiang XJ. Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2. Chin J Integr Med 2024; 30:277-288. [PMID: 38057549 DOI: 10.1007/s11655-023-3611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 12/08/2023]
Abstract
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Collapse
Affiliation(s)
- Lu-Ming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Lan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Nuan Lyu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Rong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, 341000, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
5
|
Agarwal AK, Garg A. Phospholipid biosynthetic pathways and lipodystrophies: a novel syndrome due to PLAAT3 deficiency. Nat Rev Endocrinol 2024; 20:128-129. [PMID: 38191657 DOI: 10.1038/s41574-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Anil K Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
7
|
Fernandes MF, Aristizabal-Henao JJ, Marvyn PM, M'Hiri I, Wiens MA, Hoang M, Sebastian M, Nachbar R, St-Pierre P, Diaguarachchige De Silva K, Wood GA, Joseph JW, Doucette CA, Marette A, Stark KD, Duncan RE. Renal tubule-specific Atgl deletion links kidney lipid metabolism to glucagon-like peptide 1 and insulin secretion independent of renal inflammation or lipotoxicity. Mol Metab 2024; 81:101887. [PMID: 38280449 PMCID: PMC10850971 DOI: 10.1016/j.molmet.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
OBJECTIVE Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Maria F Fernandes
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | | | - Phillip M Marvyn
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Iman M'Hiri
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Meghan A Wiens
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Manuel Sebastian
- Max Rady College of Medicine, University of Manitoba, Manitoba, Canada
| | - Renato Nachbar
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Philippe St-Pierre
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | | | - Geoffrey A Wood
- Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jamie W Joseph
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | | | - André Marette
- Québec Heart and Lung Institute, Department of Medicine, Laval University, Québec, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology and Health Sciences, University of Waterloo, Ontario, Canada.
| |
Collapse
|
8
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
9
|
Phospholipid modifier PLAAT3 links defective PPARγ-dependent signaling to lipodystrophy. Nat Genet 2023; 55:1790-1791. [PMID: 37919454 DOI: 10.1038/s41588-023-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
|
10
|
Schuermans N, El Chehadeh S, Hemelsoet D, Gautheron J, Vantyghem MC, Nouioua S, Tazir M, Vigouroux C, Auclair M, Bogaert E, Dufour S, Okawa F, Hilbert P, Van Doninck N, Taquet MC, Rosseel T, De Clercq G, Debackere E, Van Haverbeke C, Cherif FR, Urtizberea JA, Chanson JB, Funalot B, Authier FJ, Kaya S, Terryn W, Callens S, Depypere B, Van Dorpe J, Poppe B, Impens F, Mizushima N, Depienne C, Jéru I, Dermaut B. Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling. Nat Genet 2023; 55:1929-1940. [PMID: 37919452 DOI: 10.1038/s41588-023-01535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/16/2023] [Indexed: 11/04/2023]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.
Collapse
Affiliation(s)
- Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg et INSERM, Strasbourg, France
| | | | - Jérémie Gautheron
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology, Metabolism Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Lille University Hospital, Lille, France
- University of Lille, INSERM U1190, European Genomic Institute for Diabetes, Lille, France
| | - Sonia Nouioua
- Department of Neurology of the EHS of Cherchell, University Centre of Blida, Tipaza, Algeria
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Meriem Tazir
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
- Department of Neurology, CHU Algiers (Mustapha Pacha Hospital), Algiers, Algeria
| | - Corinne Vigouroux
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Diabetology and Reproductive Endocrinology, and Department of Molecular Biology and Genetics, Paris, France
| | - Martine Auclair
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Diabetology and Reproductive Endocrinology, and Department of Molecular Biology and Genetics, Paris, France
| | - Elke Bogaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sara Dufour
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fumiya Okawa
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Pascale Hilbert
- Department of Molecular and Cellular Biology, Institute of Pathology and Genetics, Charleroi, Belgium
| | - Nike Van Doninck
- Department of Endocrinology and Diabetology, General Hospital VITAZ, Sint-Niklaas, Belgium
| | - Marie-Caroline Taquet
- Department of Internal Medicine and Nutrition, Hopitaux Universitaires Strasbourg, Strasbourg, France
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Griet De Clercq
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Debackere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Ferroudja Ramdane Cherif
- Department of Neurology of the EHS of Cherchell, University Centre of Blida, Tipaza, Algeria
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | | | - Jean-Baptiste Chanson
- Service de Neurologie et Centre de Référence Neuromusculaire Nord/Est/Ile de France, Hôpital de Hautepierre, Strasbourg, France
| | - Benoit Funalot
- Department of Medical Genetics, Hôpital Henri Mondor, Université Paris-Est-Créteil, Créteil, France
- INSERM UMR955, Team Relaix, Faculty of Medicine, Créteil, France
| | - François-Jérôme Authier
- INSERM UMR955, Team Relaix, Faculty of Medicine, Créteil, France
- Centre Expert de Pathologie Neuromusculaire/Histologie, Département de Pathologie, Hôpital Henri Mondor, Université Paris-Est-Créteil, Créteil, France
| | - Sabine Kaya
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Wim Terryn
- Department of Nephrology, Jan Yperman Hospital, Ieper, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bernard Depypere
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Christel Depienne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Isabelle Jéru
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Department of Medical Genetics, DMU BioGeM, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Yang J, Wang E, Chen W, Xu B, Chen C, Zhang G, Yao J. TMT-Based Proteomics Analysis of the Intervention Effect of Orlistat on Polycystic Ovary Syndrome Rats Induced by Letrozole Combined with a High-Fat Diet. ACS OMEGA 2023; 8:24831-24840. [DOI: https:/doi.org/10.1021/acsomega.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Enli Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Baihui Xu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guimin Zhang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
| |
Collapse
|
12
|
Yang J, Wang E, Chen W, Xu B, Chen C, Zhang G, Yao J. TMT-Based Proteomics Analysis of the Intervention Effect of Orlistat on Polycystic Ovary Syndrome Rats Induced by Letrozole Combined with a High-Fat Diet. ACS OMEGA 2023; 8:24831-24840. [PMID: 37483206 PMCID: PMC10357523 DOI: 10.1021/acsomega.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex gynecological endocrine and metabolic disease. Orlistat as a lipase inhibitor may improve the pathological characteristics of PCOS and is the sole antiobesity agent available in various countries. In this study, the PCOS rat models were established using letrozole and high-fat diet. Tandem Mass Tag labeling peptide coupled with liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the differentially expressed ovarian proteins (DEPs) in the PCOS and control rats for the effect of PCOS, and in the PCOS and orlistat-treated PCOS rats for the effect of orlistat in PCOS. The orlistat attenuated the body weight gain; decreased the levels of testosterone, luteinizing hormone, a ratio of luteinizing/follicle-stimulating hormones; increased the level of estradiol; and recovered the estrous cycle in PCOS rats. In addition, 795 and 119 DEPs were found in PCOS and orlistat-treated PCOS groups, respectively. Based on the Gene Ontology and Kyoto Encyclopedia of Gene and Genomes pathway analysis of DEPs, orlistat restored the disturbed metabolism of linoleic acid, arachidonic acid, galactose, and glycerolipids, and then improved the chronic inflammation in PCOS rats. This study analyzed the ovarian proteome of orlistat-treated PCOS rats and identified targeted proteins, which explored the pathogenesis of PCOS and the potential effects of orlistat in PCOS rats.
Collapse
Affiliation(s)
- Jianmei Yang
- Department
of Pediatric Endocrinology, Shandong Provincial
Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- State
Key Laboratory of Integration and Innovation of Classic Formula and
Modern Chinese Medicine, Lunan Pharmaceutical
Group Co. Ltd., Linyi 276006, Shandong, China
- Department
of Pediatric Endocrinology, Shandong Provincial Hospital, Cheeloo
College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Enli Wang
- State
Key Laboratory of Integration and Innovation of Classic Formula and
Modern Chinese Medicine, Lunan Pharmaceutical
Group Co. Ltd., Linyi 276006, Shandong, China
| | - Wenbin Chen
- Scientific
Center, Shandong Provincial Hospital affiliated
to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Baihui Xu
- State
Key Laboratory of Integration and Innovation of Classic Formula and
Modern Chinese Medicine, Lunan Pharmaceutical
Group Co. Ltd., Linyi 276006, Shandong, China
| | - Chen Chen
- Endocrinology,
SBMS, Faculty of Medicine, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Guimin Zhang
- National
Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi 276006, Shandong, China
| | - Jingchun Yao
- State
Key Laboratory of Integration and Innovation of Classic Formula and
Modern Chinese Medicine, Lunan Pharmaceutical
Group Co. Ltd., Linyi 276006, Shandong, China
| |
Collapse
|
13
|
Rahman SMK, Sasaki S, Uyama T, Hussain Z, Sikder MM, Saiga H, Ohmura-Hoshino M, Ohta KI, Miki Y, Hoshino K, Ueno M, Murakami M, Ueda N. PLAAT1 deficiency alleviates high-fat diet-induced hepatic lipid accumulation in mice. FASEB J 2023; 37:e23032. [PMID: 37330992 DOI: 10.1096/fj.202201033r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is composed of three isoforms in mice (PLAAT1, 3, and 5), all of which function as phospholipid-metabolizing enzymes exhibiting phospholipase A1 /A2 and acyltransferase activities. Plaat3-deficient (Plaat3-/- ) mice were previously reported to show lean phenotype and remarkable hepatic fat accumulation under high-fat diet (HFD) feeding, while Plaat1-/- mice have not been analyzed. In the present study, we generated Plaat1-/- mice and investigated the effects of PLAAT1 deficiency on HFD-induced obesity, hepatic lipid accumulation, and insulin resistance. After HFD treatment, PLAAT1 deficiency caused a lower body weight gain compared to wild-type mice. Plaat1-/- mice also showed reduced liver weight with negligible hepatic lipid accumulation. In accordance with these findings, PLAAT1 deficiency improved HFD-induced hepatic dysfunction and lipid metabolism disorders. Lipidomics analysis in the liver revealed that in Plaat1-/- mice, the levels of various glycerophospholipids tended to increase, while all classes of lysophospholipids examined tended to decrease, suggesting that PLAAT1 functions as phospholipase A1 /A2 in the liver. Interestingly, the HFD treatment of wild-type mice significantly increased the mRNA level of PLAAT1 in the liver. Furthermore, the deficiency did not appear to elevate the risk of insulin resistance in contrast to PLAAT3 deficiency. These results suggested that the suppression of PLAAT1 improves HFD-induced overweight and concomitant hepatic lipid accumulation.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Hiroyuki Saiga
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Mie, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Masaki Ueno
- Department of Inflammation Pathology, Kagawa University School of Medicine, Kagawa, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
14
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
15
|
Phenotypic Characterization of Male Tafazzin-Knockout Mice at 3, 6, and 12 Months of Age. Biomedicines 2023; 11:biomedicines11020638. [PMID: 36831174 PMCID: PMC9953241 DOI: 10.3390/biomedicines11020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked mitochondrial disease caused by mutations in the gene encoding for tafazzin (TAZ), a key enzyme in the remodeling of cardiolipin. Mice with a germline deficiency in Taz have been generated (Taz-KO) but not yet fully characterized. We performed physiological assessments of 3-, 6-, and 12-month-old male Taz-KO mice, including measures of perinatal survival, growth, lifespan, gross anatomy, whole-body energy and substrate metabolism, glucose homeostasis, and exercise capacity. Taz-KO mice displayed reduced viability, with lower-than-expected numbers of mice recorded at 4 weeks of age, and a shortened lifespan due to disease progression. At all ages, Taz-KO mice had lower body weights compared with wild-type (Wt) littermates despite similar absolute food intakes. This finding was attributed to reduced adiposity and diminutive organs and tissues, including heart and skeletal muscles. Although there were no differences in basal levels of locomotion between age-matched genotypes, indirect calorimetry studies showed higher energy expenditure measures and respiratory exchange ratios in Taz-KO mice. At the youngest age, Taz-KO mice had comparable glucose tolerance and insulin action to Wt mice, but while these measures indicated metabolic impairments in Wt mice with advancing age that were likely associated with increasing adiposity, Taz-KO mice were protected. Comparisons across the three age-cohorts revealed a significant and more severe deterioration of exercise capacity in Taz-KO mice than in their Wt littermate controls. The Taz-KO mouse model faithfully recapitulates important aspects of BTHS, and thus provides an important new tool to investigate pathophysiological mechanisms and potential therapies.
Collapse
|
16
|
Song F, Xie T, Liu X, Chin B, Luo X, Liao S, Feng W, He M, Huang N, Su Z, Liu Y. UPLC/Q-TOF-MS-based Metabolomics Study of the Antiosteoporosis Effects of Vaccarin in Ovariectomized Mice. PLANTA MEDICA 2023; 89:218-230. [PMID: 36100252 DOI: 10.1055/a-1942-5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoporosis is a systemic and metabolic bone disease that usually occurs in postmenopausal women, which mainly manifests as bone loss and increased bone fragility that both facilitate fracture. However, few drugs for osteoporosis have shown good efficacy and limited side effects. Vaccarin has demonstrated its antiosteoporosis effects by inhibiting the formation and osteolytic activities of osteoclasts in our previous investigation. In this study, multivariate statistical analysis and ultrahigh-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry were used to analyze the serum metabolites of ovariectomized mice treated with or without vaccarin. As a result, 9 serum metabolites were identified as biomarkers. The metabolic levels of 3 crucial biomarkers, namely, lysophosphatidylcholine [22 : 6, (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)], 1-linoleoylglycerophosphocholine and 1-palmitoyl-Sn-glycero-3-phosphocholine, that were correlated with glycerophospholipid metabolism increased and then decreased significantly after vaccarin treatment. Molecular docking analysis and osteoclasts differentiation experiment further revealed that vaccarin may bind with phospholipase A2 and downregulated its activity to reduce the osteoclastogenesis. Therefore, the occurrence of osteoporosis is closely related with glycerophospholipid metabolism disorders, and vaccarin exerts antiosteoporosis effects by reducing the levels of glycerophospholipid metabolites.
Collapse
Affiliation(s)
- Fangming Song
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| | - Tianyu Xie
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Xi Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Nanning City, China
| | - Bonnie Chin
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Xiaoting Luo
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Shijie Liao
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| | - Wenyu Feng
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Mingwei He
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Nenggan Huang
- Department of Traumatic Orthopaedic, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning City, China
| | - Yun Liu
- Department of Spine and Bone Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning City, China
- Research Centre of Regenerative Medicine, Guangxi Medical University, Nanning City, China
| |
Collapse
|
17
|
Wang Z, Chai J, Wang Y, Gu Y, Long K, Li M, Jin L. Lnc PLAAT3-AS Regulates PLAAT3-Mediated Adipocyte Differentiation and Lipogenesis in Pigs through miR-503-5p. Genes (Basel) 2023; 14:genes14010161. [PMID: 36672902 PMCID: PMC9859061 DOI: 10.3390/genes14010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Animal fat deposition has a significant impact on meat flavor and texture. However, the molecular mechanisms of fat deposition are not well understood. LncPLAAT3-AS is a naturally occurring transcript that is abundant in porcine adipose tissue. Here, we focus on the regulatory role of lncPLAAT3-AS in promoting preadipocyte proliferation and adipocyte differentiation. By overexpressing or repressing lncPLAAT3 expression, we found that lncPLAAT3-AS promoted the transcription of its host gene PLAAT3, a regulator of adipocyte differentiation. In addition, we predicted the region of lncPLAAT3-AS that binds to miR-503-5p and showed by dual luciferase assay that lncPLAAT3-AS acts as a sponge to absorb miR-503-5p. Interestingly, miR-503-5p also targets and represses PLAAT3 expression and helps regulate porcine preadipocyte proliferation and differentiation. Taken together, these results show that lncPLAAT3-AS upregulates PLAAT3 expression by absorbing miR-503-5p, suggesting a potential regulatory mechanism based on competing endogenous RNAs. Finally, we explored lncPLAAT3-AS and PLAAT3 expression in adipose tissue and found that both molecules were expressed at significantly higher levels in fatty pig breeds compared to lean pig breeds. In summary, we identified the mechanism by which lncPLAAT3-AS regulates porcine preadipocyte proliferation and differentiation, contributing to our understanding of the molecular mechanisms of lipid deposition in pigs.
Collapse
Affiliation(s)
- Zhiming Wang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Chai
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhao Wang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiren Gu
- Sichuan Key Laboratory of Animal Breeding and Genetics, Sichuan Institute of Animal Science, Chengdu 610066, China
| | - Keren Long
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.L.); (L.J.)
| | - Long Jin
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.L.); (L.J.)
| |
Collapse
|
18
|
Sers C, Schäfer R. Silencing effects of mutant RAS signalling on transcriptomes. Adv Biol Regul 2023; 87:100936. [PMID: 36513579 DOI: 10.1016/j.jbior.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene. In this context, the number of up-regulated transcripts approximates that of down-regulated transcripts. While up-regulated transcription factors such as MYC, FOSL1, and HMGA2 have been identified and characterized as RAS-responsive drivers of the altered transcriptome, the suppressed factors have been less well studied as potential regulators of the genetic program and transformed phenotype in the breadth of their occurrence. We therefore have collected information on downregulated RAS-responsive factors and discuss their potential role as tumor suppressors that are likely to antagonize active cancer drivers. To better understand the active mechanisms that entail anti-RAS function and those that lead to loss of tumor suppressor activity, we focus on the tumor suppressor HREV107 (alias PLAAT3 [Phospholipase A and acyltransferase 3], PLA2G16 [Phospholipase A2, group XVI] and HRASLS3 [HRAS-like suppressor 3]). Inactivating HREV107 mutations in tumors are extremely rare, hence epigenetic causes modulated by the RAS pathway are likely to lead to down-regulation and loss of function.
Collapse
Affiliation(s)
- Christine Sers
- Laboratory of Molecular Tumor Pathology and systems Biology, Institute of Pathology, Charité Universitätstmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
20
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal Associations of Plasma Levels of the Secreted Phospholipase A 2 Family and Mortality in Severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.21.22282595. [PMID: 36451888 PMCID: PMC9709788 DOI: 10.1101/2022.11.21.22282595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.
Collapse
|
21
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
22
|
Inazumi T, Sugimoto Y. Metabolic Regulation in Adipocytes by Prostanoid Receptors. Biol Pharm Bull 2022; 45:992-997. [DOI: 10.1248/bpb.b22-00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
23
|
Pan Y, Cao S, Tang J, Arroyo JP, Terker AS, Wang Y, Niu A, Fan X, Wang S, Zhang Y, Jiang M, Wasserman DH, Zhang MZ, Harris RC. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J Clin Invest 2022; 132:152391. [PMID: 35499079 PMCID: PMC9057601 DOI: 10.1172/jci152391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan P. Arroyo
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yahua Zhang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Current Knowledge on Mammalian Phospholipase A1, Brief History, Structures, Biochemical and Pathophysiological Roles. Molecules 2022; 27:molecules27082487. [PMID: 35458682 PMCID: PMC9031518 DOI: 10.3390/molecules27082487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Phospholipase A1 (PLA1) is an enzyme that cleaves an ester bond at the sn-1 position of glycerophospholipids, producing a free fatty acid and a lysophospholipid. PLA1 activities have been detected both extracellularly and intracellularly, which are well conserved in higher eukaryotes, including fish and mammals. All extracellular PLA1s belong to the lipase family. In addition to PLA1 activity, most mammalian extracellular PLA1s exhibit lipase activity to hydrolyze triacylglycerol, cleaving the fatty acid and contributing to its absorption into the intestinal tract and tissues. Some extracellular PLA1s exhibit PLA1 activities specific to phosphatidic acid (PA) or phosphatidylserine (PS) and serve to produce lysophospholipid mediators such as lysophosphatidic acid (LPA) and lysophosphatidylserine (LysoPS). A high level of PLA1 activity has been detected in the cytosol fractions, where PA-PLA1/DDHD1/iPLA1 was responsible for the activity. Many homologs of PA-PLA1 and PLA2 have been shown to exhibit PLA1 activity. Although much has been learned about the pathophysiological roles of PLA1 molecules through studies of knockout mice and human genetic diseases, many questions regarding their biochemical properties, including their genuine in vivo substrate, remain elusive.
Collapse
|
25
|
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front Physiol 2022; 13:826314. [PMID: 35283787 PMCID: PMC8907745 DOI: 10.3389/fphys.2022.826314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adaptation to changes in energy availability is pivotal for the survival of animals. Adipose tissue, the body’s largest reservoir of energy and a major source of metabolic fuel, exerts a buffering function for fluctuations in nutrient availability. This functional plasticity ranges from energy storage in the form of triglycerides during periods of excess energy intake to energy mobilization via lipolysis in the form of free fatty acids for other organs during states of energy demands. The subtle balance between energy storage and mobilization is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance, type 2 diabetes and cancer cachexia. As a result, adipocyte lipolysis is tightly regulated by complex regulatory mechanisms involving lipases and hormonal and biochemical signals that have opposing effects. In thermogenic brown and brite adipocytes, lipolysis stimulation is the canonical way for the activation of non-shivering thermogenesis. Lipolysis proceeds in an orderly and delicately regulated manner, with stimulation through cell-surface receptors via neurotransmitters, hormones, and autocrine/paracrine factors that activate various intracellular signal transduction pathways and increase kinase activity. The subsequent phosphorylation of perilipins, lipases, and cofactors initiates the translocation of key lipases from the cytoplasm to lipid droplets and enables protein-protein interactions to assemble the lipolytic machinery on the scaffolding perilipins at the surface of lipid droplets. Although activation of lipolysis has been well studied, the feedback fine-tuning is less well appreciated. This review focuses on the molecular brakes of lipolysis and discusses some of the divergent fine-tuning strategies in the negative feedback regulation of lipolysis, including delicate negative feedback loops, intermediary lipid metabolites-mediated allosteric regulation and dynamic protein–protein interactions. As aberrant adipocyte lipolysis is involved in various metabolic diseases and releasing the brakes on lipolysis in thermogenic adipocytes may activate thermogenesis, targeting adipocyte lipolysis is thus of therapeutic interest.
Collapse
|
26
|
Pan C, Yang C, Wang S, Ma Y. Identifying Key Genes and Functionally Enriched Pathways of Diverse Adipose Tissue Types in Cattle. Front Genet 2022; 13:790690. [PMID: 35237299 PMCID: PMC8884536 DOI: 10.3389/fgene.2022.790690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Fat is a tissue that not just stores energy and plays a protective role; it is also a vital endocrine organ that generates and integrates signals to influence metabolism. Meanwhile, the excessive accumulation of lipids in adipose tissue can lead to metabolic disturbance and diseases. To date, the complicated molecular mechanisms of bovine adipose tissue are still unknown. This study aimed to identify key genes and functionally enriched pathways in various adipose tissue types. Results: The RNAseq data of 264 samples were downloaded from Gene Expression Omnibus (GEO) and analyzed by weighted gene co-expression network analysis (WGCNA). We identified 19 modules that significantly associated with at least one adipose tissue type. The brown module from GSE39618 was most closely associated with intramuscular fat tissue, which contained 550 genes. These genes were significantly enriched in pathways that related to inflammation and disease, such as TNF signaling pathway, IL-17 signaling pathway, and NF-kappa B signaling pathway. The pink module (GSE39618) that contained 58 genes was most closely associated with omental fat tissue. The turquoise (GSE39618), blue (GSE116775), and yellow (GSE65125) module were most closely associated with subcutaneous fat tissue. Genes in these modules were significantly enriched in pathways related to fat metabolism, such as the PPAR signaling pathway, fatty acid metabolism and PI3K-Akt signaling pathway. At last, key genes for intramuscular fat (PTGS2 and IL6), omental fat (ARHGEF5 and WT1), and subcutaneous fat (KIT, QR6Q1, PKD2L1, etc.) were obtained and verified. In addition, it was found that IL10 and VCAM1 might be potential genes to distinguish adipose and muscle. Conclusion: The study applied WGCNA to generate a landscape of adipose tissue and provide a basis for identifying potential pathways and hub genes of different adipose tissue types.
Collapse
Affiliation(s)
- Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, China
- *Correspondence: Yun Ma,
| |
Collapse
|
27
|
Yang L, Zheng L, Xie X, Luo J, Yu J, Zhang L, Meng W, Zhou Y, Chen L, Ouyang D, Zhou H, Tan Z. Targeting PLA2G16, a lipid metabolism gene, by Ginsenoside Compound K to suppress the malignant progression of colorectal cancer. J Adv Res 2022; 36:265-276. [PMID: 35127176 PMCID: PMC8799872 DOI: 10.1016/j.jare.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
PLA2G16 is up-regulated in CRC, and high expression of PLA2G16 is associated with the advanced stages. PLA2G16 promotes the malignant progression of CRC through the Hippo signaling pathway. GCK exerts its anti-CRC effects by inhibiting the protein expression of PLA2G16. Provide a new insights towards the development of effective therapeutic strategies for CRC treatment by targeting PLA2G16.
Introduction Objectives Methods Results Conclusion
Collapse
|
28
|
Hindy G, Dornbos P, Chaffin MD, Liu DJ, Wang M, Selvaraj MS, Zhang D, Park J, Aguilar-Salinas CA, Antonacci-Fulton L, Ardissino D, Arnett DK, Aslibekyan S, Atzmon G, Ballantyne CM, Barajas-Olmos F, Barzilai N, Becker LC, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Bown MJ, Brody JA, Broome JG, Burtt NP, Cade BE, Centeno-Cruz F, Chan E, Chang YC, Chen YDI, Cheng CY, Choi WJ, Chowdhury R, Contreras-Cubas C, Córdova EJ, Correa A, Cupples LA, Curran JE, Danesh J, de Vries PS, DeFronzo RA, Doddapaneni H, Duggirala R, Dutcher SK, Ellinor PT, Emery LS, Florez JC, Fornage M, Freedman BI, Fuster V, Garay-Sevilla ME, García-Ortiz H, Germer S, Gibbs RA, Gieger C, Glaser B, Gonzalez C, Gonzalez-Villalpando ME, Graff M, Graham SE, Grarup N, Groop LC, Guo X, Gupta N, Han S, Hanis CL, Hansen T, He J, Heard-Costa NL, Hung YJ, Hwang MY, Irvin MR, Islas-Andrade S, Jarvik GP, Kang HM, Kardia SLR, Kelly T, Kenny EE, Khan AT, Kim BJ, Kim RW, Kim YJ, Koistinen HA, Kooperberg C, Kuusisto J, Kwak SH, Laakso M, Lange LA, Lee J, Lee J, Lee S, Lehman DM, Lemaitre RN, Linneberg A, Liu J, Loos RJF, Lubitz SA, Lyssenko V, Ma RCW, Martin LW, Martínez-Hernández A, Mathias RA, McGarvey ST, McPherson R, Meigs JB, Meitinger T, Melander O, Mendoza-Caamal E, Metcalf GA, Mi X, Mohlke KL, Montasser ME, Moon JY, Moreno-Macías H, Morrison AC, Muzny DM, Nelson SC, Nilsson PM, O'Connell JR, Orho-Melander M, Orozco L, Palmer CNA, Palmer ND, Park CJ, Park KS, Pedersen O, Peralta JM, Peyser PA, Post WS, Preuss M, Psaty BM, Qi Q, Rao DC, Redline S, Reiner AP, Revilla-Monsalve C, Rich SS, Samani N, Schunkert H, Schurmann C, Seo D, Seo JS, Sim X, Sladek R, Small KS, So WY, Stilp AM, Tai ES, Tam CHT, Taylor KD, Teo YY, Thameem F, Tomlinson B, Tsai MY, Tuomi T, Tuomilehto J, Tusié-Luna T, Udler MS, van Dam RM, Vasan RS, Viaud Martinez KA, Wang FF, Wang X, Watkins H, Weeks DE, Wilson JG, Witte DR, Wong TY, Yanek LR, Kathiresan S, Rader DJ, Rotter JI, Boehnke M, McCarthy MI, Willer CJ, Natarajan P, Flannick JA, Khera AV, Peloso GM. Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes. Am J Hum Genet 2022; 109:81-96. [PMID: 34932938 PMCID: PMC8764201 DOI: 10.1016/j.ajhg.2021.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
Collapse
Affiliation(s)
- George Hindy
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lucinda Antonacci-Fulton
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Diego Ardissino
- ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy; Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Universitˆ, degli Studi di Parma, Parma, Italy
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gil Atzmon
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; University of Haifa, Faculty of Natural Science, Haifa, Israel
| | - Christie M Ballantyne
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX 77030, USA; Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwin Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Bown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ching-Yu Cheng
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Won Jung Choi
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Non-Communicable Disease Research, Bangladesh
| | | | | | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; NHLBI Framingham Heart Study, Framingham, MA 01702, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 770030, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Valentin Fuster
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Guanajuanto, Mexico
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio Gonzalez
- Unidad de Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Pœblica, Cuernavaca, Morelos, Mexico
| | | | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah E Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute for Molecular Genetics, University of Helsinki, Helsinki, Finland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA; Tulane University Translational Science Institute, New Orleans, LA 70112, USA
| | - Nancy L Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL 35294, USA
| | - Sergio Islas-Andrade
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga," Secretaría de Salud, Mexico City, Mexico
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Eimear E Kenny
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Ryan W Kim
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98103, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Seonwook Lee
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ruth J F Loos
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; University of Bergen, Bergen, Norway
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lisa Warsinger Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02912, USA
| | - Ruth McPherson
- Ruddy Canadian Cardiovascuar Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; General Medicine Division, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Meitinger
- Deutsches Forschungszentrum fŸr Herz-Kreislauferkrankungen, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Department of Emergency and Internal Medicine, SkŒne University Hospital, Malmö, Sweden
| | | | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - May E Montasser
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jeffrey R O'Connell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cheol Joo Park
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael Preuss
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische UniversitŠt München, Deutsches Zentrum fŸr Herz-Kreislauf-Forschung, München, Germany
| | - Claudia Schurmann
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany; Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daekwan Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Jeong-Sun Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiinamaija Tuomi
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Departments of Medicine & Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA 02118, USA
| | | | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hugh Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel E Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Tien-Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Verve Therapeutics, Cambridge, MA 02139, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason A Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Ballesteros-Martinez C, Rodrigues-Diez R, Beltrán LM, Moreno-Carriles R, Martínez-Martínez E, González-Amor M, Martínez-González J, Rodríguez C, Cachofeiro V, Salaices M, Briones AM. Microsomal Prostaglandin E Synthase-1 (mPGES-1) is involved in the metabolic and cardiovascular alterations associated with obesity. Br J Pharmacol 2021; 179:2733-2753. [PMID: 34877656 DOI: 10.1111/bph.15776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in obesity development and in the metabolic and cardiovascular alterations associated. EXPERIMENTAL APPROACH mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was studied by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were evaluated by myography. Histological studies, q-RT-PCR and Western Blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients and its correlation with vascular damage was determined. KEY RESULTS Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared to mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodeling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodeling, vessel stiffness and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS mPGES-1 inhibition might be a novel therapeutic approach for the management of obesity and the associated cardiovascular and metabolic alterations.
Collapse
Affiliation(s)
- Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Luis M Beltrán
- Servicio de Medicina Interna. Hospital Universitario La Paz, IdiPaz, Madrid, Spain.,Servicio de Medicina Interna. Hospital Virgen del Rocío - IBiS, Sevilla. Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosa Moreno-Carriles
- Servicio de Angiología y Cirugía vascular. Hospital Universitario La Princesa, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica (IIB) Sant Pau, Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| |
Collapse
|
30
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
32
|
Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y, Liu M. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol 2021; 14:178. [PMID: 34715882 PMCID: PMC8555326 DOI: 10.1186/s13045-021-01194-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cells (CSCs) are considered as the major cause to tumor initiation, recurrence, metastasis, and drug resistance, driving poor clinical outcomes in patients. Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in cancer development and progression. However, limited lncRNAs involved in CSCs have been reported. Methods The novel lncROPM (a regulator of phospholipid metabolism) in breast CSCs (BCSCs) was identified by microarray and validated by qRT-PCR in BCSCs from breast cancer cells and tissues. The clinical significance of lncROPM was evaluated in two breast cancer cohorts and TANRIC database (TCGA-BRCA, RNAseq data). Gain- and loss-of-function assays were performed to examine the role of lncROPM on BCSCs both in vitro and in vivo. The regulatory mechanism of lncROPM was investigated by bioinformatics, RNA FISH, RNA pull-down, luciferase reporter assay, and actinomycin D treatment. PLA2G16-mediated phospholipid metabolism was determined by UHPLC-QTOFMS system. Cells’ chemosensitivity was assessed by CCK8 assay. Results LncROPM is highly expressed in BCSCs. The enhanced lncROPM exists in clinic breast tumors and other solid tumors and positively correlates with malignant grade/stage and poor prognosis in breast cancer patients. Gain- and loss-of-function studies show that lncROPM is required for the maintenance of BCSCs properties both in vitro and in vivo. Mechanistically, lncROPM regulates PLA2G16 expression by directly binding to 3'-UTR of PLA2G16 to increase the mRNA stability. The increased PLA2G16 significantly promotes phospholipid metabolism and the production of free fatty acid, especially arachidonic acid in BCSCs, thereby activating PI3K/AKT, Wnt/β-catenin, and Hippo/YAP signaling, thus eventually involving in the maintenance of BCSCs stemness. Importantly, lncROPM and PLA2G16 notably contribute to BCSCs chemo-resistance. Administration of BCSCs using clinic therapeutic drugs such as doxorubicin, cisplatin, or tamoxifen combined with Giripladib (an inhibitor of cytoplasmic phospholipase A2) can efficiently eliminate BCSCs and tumorigenesis. Conclusions Our study highlights that lncROPM and its target PLA2G16 play crucial roles in sustaining BCSC properties and may serve as a biomarker for BCSCs or other cancer stem cells. Targeting lncROPM-PLA2G16 signaling axis may be a novel therapeutic strategy for patients with breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01194-z.
Collapse
Affiliation(s)
- Shuiqing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching and Lab Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China.
| |
Collapse
|
33
|
Loss of Sirt6 in adipocytes impairs the ability of adipose tissue to adapt to intermittent fasting. Exp Mol Med 2021; 53:1298-1306. [PMID: 34493807 PMCID: PMC8492715 DOI: 10.1038/s12276-021-00664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity for its effectiveness in improving overall health, including its effectiveness in achieving weight loss and euglycemia. The molecular mechanisms of IF, however, are not well understood. This study investigated the relationship between adipocyte sirtuin 6 (Sirt6) and the metabolic benefits of IF. Adipocyte-specific Sirt6-knockout (aS6KO) mice and wild-type littermates were fed a high-fat diet (HFD) ad libitum for four weeks and then subjected to 12 weeks on a 2:1 IF regimen consisting of two days of feeding followed by one day of fasting. Compared with wild-type mice, aS6KO mice subjected to HFD + IF exhibited a diminished response, as reflected by their glucose and insulin intolerance, reduced energy expenditure and adipose tissue browning, and increased inflammation of white adipose tissue. Sirt6 deficiency in hepatocytes or in myeloid cells did not impair adaptation to IF. Finally, the results indicated that the impaired adipose tissue browning and reduced expression of UCP1 in aS6KO mice were accompanied by downregulation of p38 MAPK/ATF2 signaling. Our findings indicate that Sirt6 in adipocytes is critical to obtaining the improved glucose metabolism and metabolic profiles conferred by IF and that maintaining high levels of Sirt6 in adipocytes may mimic the health benefits of IF.
Collapse
|
34
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
35
|
Yang W, Feng Y, Zhou J, Cheung OKW, Cao J, Wang J, Tang W, Tu Y, Xu L, Wu F, Tan Z, Sun H, Tian Y, Wong J, Lai PBS, Chan SL, Chan AWH, Tan PBO, Chen Z, Sung JJY, Yip KYL, To KF, Cheng ASL. A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Sci Transl Med 2021; 13:13/588/eaaz6804. [PMID: 33827976 DOI: 10.1126/scitranslmed.aaz6804] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/26/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell-dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell-trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti-PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.
Collapse
Affiliation(s)
- Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Otto Ka-Wing Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhiwu Tan
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanyong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518061, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Patrick Boon-Ooi Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore 119228, Singapore
| | - Zhiwei Chen
- AIDS Institute, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
36
|
Chatterjee S, Zhou J, Dasgupta R, Cramer-Blok A, Timmer M, van der Stelt M, Ubbink M. Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4. Biochemistry 2021; 60:1178-1190. [PMID: 33749246 PMCID: PMC8154263 DOI: 10.1021/acs.biochem.0c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.
Collapse
Affiliation(s)
- Soumya
Deep Chatterjee
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Juan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anneloes Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
37
|
Organelle degradation in the lens by PLAAT phospholipases. Nature 2021; 592:634-638. [PMID: 33854238 DOI: 10.1038/s41586-021-03439-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
The eye lens of vertebrates is composed of fibre cells in which all membrane-bound organelles undergo degradation during terminal differentiation to form an organelle-free zone1. The mechanism that underlies this large-scale organelle degradation remains largely unknown, although it has previously been shown to be independent of macroautophagy2,3. Here we report that phospholipases in the PLAAT (phospholipase A/acyltransferase, also known as HRASLS) family-Plaat1 (also known as Hrasls) in zebrafish and PLAAT3 (also known as HRASLS3, PLA2G16, H-rev107 or AdPLA) in mice4-6-are essential for the degradation of lens organelles such as mitochondria, the endoplasmic reticulum and lysosomes. Plaat1 and PLAAT3 translocate from the cytosol to various organelles immediately before organelle degradation, in a process that requires their C-terminal transmembrane domain. The translocation of Plaat1 to organelles depends on the differentiation of fibre cells and damage to organelle membranes, both of which are mediated by Hsf4. After the translocation of Plaat1 or PLAAT3 to membranes, the phospholipase induces extensive organelle rupture that is followed by complete degradation. Organelle degradation by PLAAT-family phospholipases is essential for achieving an optimal transparency and refractive function of the lens. These findings expand our understanding of intracellular organelle degradation and provide insights into the mechanism by which vertebrates acquired transparent lenses.
Collapse
|
38
|
Li J, Zhang H, Dong Y, Wang X, Wang G. Omega-3FAs Can Inhibit the Inflammation and Insulin Resistance of Adipose Tissue Caused by HHcy Induced Lipids Profile Changing in Mice. Front Physiol 2021; 12:628122. [PMID: 33643070 PMCID: PMC7907609 DOI: 10.3389/fphys.2021.628122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The adipose Nod-like receptor protein 3 (NLRP3) inflammasome initiates insulin resistance; however, the mechanism of inflammasome activation in adipose tissue remains elusive. In this study, homocysteine (Hcy) was found to participate in insulin resistance via a NLRP3 inflammasome-related process. Hcy-induced activation of NLRP3 inflammasomes were observed in adipose tissue during the generation of insulin resistance in vivo. This animal model suggests that diets high in omega-3 fatty acids alter serum and adipose lipid profiles, and in this way, omega-3 fatty acids may reduce adipose tissue inflammation and attenuate insulin resistance.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yongqiang Dong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xian Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Liu G, Deng Y, Song Y, Sui Y, Cen J, Shao Z, Li H, Tang T. Transdermal Delivery of Adipocyte Phospholipase A2 siRNA using Microneedles to Treat Thyroid Associated Ophthalmopathy-Related Proptosis. Cell Transplant 2021; 30:9636897211010633. [PMID: 33880967 PMCID: PMC8072820 DOI: 10.1177/09636897211010633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO) is an organ-specific autoimmune disease occurring in patients with thyroid disease. Patients with TAO-related proptosis is largely due to excessive orbital adipose tissue Adipocyte phospholipase A2 (AdPLA) is one of the most important regulatory factors in adipocyte lipolysis, which may be associated with TAO-related proptosis. Thus, silencing AdPLA by RNA interference may be beneficial for the treatment of TAO. In this study, we sought to evaluate the efficiency of two types of microneedles to deliver siRNAs for silencing AdPLA. Our results showed that AdPLA mRNA was up-regulated in the orbit adipose tissues from TAO patients. Silence of AdPLA by siRNA can reduce lipid accumulation in both human and mouse adipocyte cell lines. Moreover, silence effects of silicon microneedle array patch-based and injectable microneedle device-based siRNA administration were examined at the belly site of the mice, and injectable microneedle device showed higher knockdown efficiency than silicon microneedle array patch. This study sets the stage not only for future treatment of TAO-related proptosis using AdPLA siRNA, but also provides the foundation for targeted siRNA delivery by using microneedles.
Collapse
Affiliation(s)
- Guiqin Liu
- Shenzhen Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Shenzhen University, Shenzhen, China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Sui
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Ziyu Shao
- Department of Obstetrics & Gynaecology, Panyu Central Hospital, Guangzhou, China
| | - Hu Li
- Department of Obstetrics & Gynaecology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu Central Hospital, Guangzhou, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Cancer Institute of Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
40
|
Prunonosa Cervera I, Gabriel BM, Aldiss P, Morton NM. The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiol Rep 2021; 9:e14662. [PMID: 33433056 PMCID: PMC7802192 DOI: 10.14814/phy2.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity and type 2 diabetes has increased substantially in recent years creating a global health burden. In obesity, skeletal muscle, the main tissue responsible for insulin-mediated glucose uptake, exhibits dysregulation of insulin signaling, glucose uptake, lipid metabolism, and mitochondrial function, thus, promoting type 2 diabetes. The phospholipase A2 (PLA2) enzyme family mediates lipid signaling and membrane remodeling and may play an important role in metabolic disorders such as obesity, diabetes, hyperlipidemia, and fatty liver disease. The PLA2 family consists of 16 members clustered in four groups. PLA2s hydrolyze the sn-2 ester bond of phospholipids generating free fatty acids and lysophospholipids. Differential tissue and subcellular PLA2 expression patterns and the abundance of distinct fatty acyl groups in the target phospholipid determine the impact of individual family members on metabolic functions and, potentially, diseases. Here, we update the current knowledge of the role of the PLA2 family in skeletal muscle, with a view to their potential for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
- Iris Prunonosa Cervera
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Brendan M. Gabriel
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
- Department of Physiology and PharmacologyIntegrative PhysiologyKarolinska InstituteStockholmSweden
- Aberdeen Cardiovascular & Diabetes CentreThe Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Peter Aldiss
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicholas M. Morton
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
41
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
42
|
Rescue of Hepatic Phospholipid Remodeling Defectin iPLA2β-Null Mice Attenuates Obese but Not Non-Obese Fatty Liver. Biomolecules 2020; 10:biom10091332. [PMID: 32957701 PMCID: PMC7565968 DOI: 10.3390/biom10091332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Polymorphisms of group VIA calcium-independent phospholipase A2 (iPLA2β or PLA2G6) are positively associated with adiposity, blood lipids, and Type-2 diabetes. The ubiquitously expressed iPLA2β catalyzes the hydrolysis of phospholipids (PLs) to generate a fatty acid and a lysoPL. We studied the role of iPLA2β on PL metabolism in non-alcoholic fatty liver disease (NAFLD). By using global deletion iPLA2β-null mice, we investigated three NAFLD mouse models; genetic Ob/Ob and long-term high-fat-diet (HFD) feeding (representing obese NAFLD) as well as feeding with methionine- and choline-deficient (MCD) diet (representing non-obese NAFLD). A decrease of hepatic PLs containing monounsaturated- and polyunsaturated fatty acids and a decrease of the ratio between PLs and cholesterol esters were observed in all three NAFLD models. iPLA2β deficiency rescued these decreases in obese, but not in non-obese, NAFLD models. iPLA2β deficiency elicited protection against fatty liver and obesity in the order of Ob/Ob › HFD » MCD. Liver inflammation was not protected in HFD NAFLD, and that liver fibrosis was even exaggerated in non-obese MCD model. Thus, the rescue of hepatic PL remodeling defect observed in iPLA2β-null mice was critical for the protection against NAFLD and obesity. However, iPLA2β deletion in specific cell types such as macrophages may render liver inflammation and fibrosis, independent of steatosis protection.
Collapse
|
43
|
Tans R, Bande R, van Rooij A, Molloy BJ, Stienstra R, Tack CJ, Wevers RA, Wessels HJCT, Gloerich J, van Gool AJ. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102157. [PMID: 32629236 DOI: 10.1016/j.plefa.2020.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Obesity is associated with adipose tissue inflammation which in turn drives insulin resistance and the development of type 2 diabetes. Oxylipins are a collection of lipid metabolites, subdivided in different classes, which are involved in inflammatory cascades. They play important roles in regulating adipose tissue homeostasis and inflammation and are therefore putative biomarkers for obesity-associated adipose tissue inflammation and the subsequent risk of type 2 diabetes onset. The objective for this study is to design an assay for a specific oxylipin class and evaluate these as potential prognostic biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes. METHODS An optimized workflow was developed to extract oxylipins from plasma using solid-phase extraction followed by analysis using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer in multiple reaction monitoring mode. This workflow was applied to clinical plasma samples obtained from obese-type 2 diabetes patients and from lean and obese control subjects. RESULTS The assay was analytically validated and enabled reproducible analyses of oxylipins extracted from plasma with acceptable sensitivities. Analysis of clinical samples revealed discriminative values for four oxylipins between the type 2 diabetes patients and the lean and obese control subjects, viz. PGF2α, PGE2, 15-keto-PGE2 and 13,14-dihydro-15-keto-PGE2. The combination of PGF2α and 15-keto-PGE2 had the most predictive value to discriminate type 2 diabetic patients from lean and obese controls. CONCLUSIONS This proof-of-principle study demonstrates the potential value of oxylipins as biomarkers to discriminate obese individuals from obese-type 2 diabetes patients.
Collapse
Affiliation(s)
- Roel Tans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rieke Bande
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Rinke Stienstra
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
44
|
Parmer C, De Sousa-Coelho AL, Cheng HS, Daher G, Burkart A, Dreyfuss JM, Pan H, Prenner JC, Keilson JM, Pande R, Henkin S, Feinberg MW, Patti ME, Creager MA. Skeletal muscle expression of adipose-specific phospholipase in peripheral artery disease. Vasc Med 2020; 25:401-410. [PMID: 32853041 DOI: 10.1177/1358863x20947467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flow-limiting atherosclerotic lesions of arteries supplying the limbs are a cause of symptoms in patients with peripheral artery disease (PAD). Musculoskeletal metabolic factors also contribute to the pathophysiology of claudication, which is manifest as leg discomfort that impairs walking capacity. Accordingly, we conducted a case-control study to determine whether skeletal muscle metabolic gene expression is altered in PAD. Calf skeletal muscle gene expression of patients with PAD and healthy subjects was analyzed using microarrays. The top-ranking gene differentially expressed between PAD and controls (FDR < 0.001) was PLA2G16, which encodes adipose-specific phospholipase A2 (AdPLA) and is implicated in the maintenance of insulin sensitivity and regulation of lipid metabolism. Differential expression was confirmed by qRT-PCR; PLA2G16 was downregulated by 68% in patients with PAD (p < 0.001). Expression of Pla2g16 was then measured in control (db/+) and diabetic (db/db) mice that underwent unilateral femoral artery ligation. There was significantly reduced expression of Pla2g16 in the ischemic leg of both control and diabetic mice (by 51%), with significantly greater magnitude of reduction in the diabetic mice (by 79%). We conclude that AdPLA is downregulated in humans with PAD and in mice with hindlimb ischemia. Reduced AdPLA may contribute to impaired walking capacity in patients with PAD via its effects on skeletal muscle metabolism. Further studies are needed to fully characterize the role of AdPLA in PAD and to investigate its potential as a therapeutic target for alleviating symptoms of claudication.
Collapse
Affiliation(s)
- Caitlin Parmer
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA
| | | | - Henry S Cheng
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Grace Daher
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Alison Burkart
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Joshua C Prenner
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | | | - Reena Pande
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Stanislav Henkin
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Mark W Feinberg
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Mark A Creager
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
45
|
Tian N, Liu Q, Li Y, Tong L, Lu Y, Zhu Y, Zhang P, Chen H, Hu L, Meng J, Feng M, Li M, Zheng L, Li B, Xu T, Wu L, Tong X. Transketolase Deficiency in Adipose Tissues Protects Mice From Diet-Induced Obesity by Promoting Lipolysis. Diabetes 2020; 69:1355-1367. [PMID: 32295803 DOI: 10.2337/db19-1087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the nonoxidative branch of the PPP that connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically deleted TKT in mouse adipocytes and found no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuated high-fat diet-induced obesity, reduced hepatic steatosis, improved glucose tolerance, alleviated insulin resistance, and increased energy expenditure. Mechanistically, TKT deficiency accumulated nonoxidative PPP metabolites and decreased glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation, and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity but also suggest that limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure.
Collapse
Affiliation(s)
- Na Tian
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanbei Chen
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Meng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ming Feng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianle Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
47
|
Sato H, Taketomi Y, Miki Y, Murase R, Yamamoto K, Murakami M. Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Rep 2020; 31:107579. [DOI: 10.1016/j.celrep.2020.107579] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
|
48
|
Tang Q, Gao Y, Liu Q, Yang X, Wu T, Huang C, Huang Y, Zhang J, Zhang Z, Li R, Pu S, Zhang G, Zhao Y, Zhou J, Huang H, Li Y, Jiang W, Chang Y, He J. Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling. Mol Metab 2020; 37:100994. [PMID: 32278654 PMCID: PMC7215198 DOI: 10.1016/j.molmet.2020.100994] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms. METHODS For overexpression studies, the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice was targeted bilaterally and adenovirus was delivered by using stereotaxic apparatus. For knockout studies, the POMC neuron-specific Sirt6 knockout mice (PKO mice) were generated. Mice were fed with chow diet or high-fat diet, and body weight and food intake were monitored. Whole-body energy expenditure was determined by metabolic cages. Parameters of body composition and glucose/lipid metabolism were evaluated. RESULTS Sirt6 overexpression in the ARC ameliorated diet-induced obesity. Conversely, selective Sirt6 ablation in POMC neurons predisposed mice to obesity and metabolic disturbances. PKO mice showed an increased fat mass and food intake, while the energy expenditure was decreased. Mechanistically, Sirt6 could modulate leptin signaling in hypothalamic POMC neurons, with Sirt6 deficiency impairing leptin-induced phosphorylation of signal transducer and activator of transcription 3. The effects of leptin on reducing food intake and body weight and leptin-stimulated lipolysis were also impaired. Moreover, Sirt6 inhibition diminished the leptin-induced depolarization of POMC neurons. CONCLUSIONS Our results reveal a key role of Sirt6 in POMC neurons against energy imbalance, suggesting that Sirt6 is an important molecular regulator for POMC neurons to promote negative energy balance.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Cuiyuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guorong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongsheng Chang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
49
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
50
|
J.U C, Mohan MC, B PK. Downregulation of adipogenic genes in 3T3-L1 Pre adipocytes- a possible mechanism of anti-obesity activity of herbal decoction Varanadi Kashayam. J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|