1
|
Graham JB, Swarts JL, Koehne AL, Watson CE, Lund JM. Regulatory T cells restrict immunity and pathology in distal tissue sites following a localized infection. Mucosal Immunol 2024; 17:923-938. [PMID: 38908483 PMCID: PMC11484473 DOI: 10.1016/j.mucimm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Regulatory T cells (Tregs) are well-known to mediate peripheral tolerance at homeostasis, and there is a growing appreciation for their role in modulating infectious disease immunity. Following acute and chronic infections, Tregs can restrict pathogen-specific T cell responses to limit immunopathology. However, it is unclear if Tregs mediate control of pathology and immunity in distal tissue sites during localized infections. We investigated the role of Tregs in immunity and disease in various tissue compartments in the context of "mild" vaginal Zika virus infection. We found that Tregs are critical to generating robust virus-specific CD8 T cell responses in the initial infection site. Further, Tregs limit inflammatory cytokines and immunopathology during localized infection; a dysregulated immune response in Treg-depleted mice leads to increased T cell infiltrates and immunopathology in both the vagina and the central nervous system (CNS). Importantly, these CNS infiltrates are not present at the same magnitude during infection of Treg-sufficient mice, in which there is no CNS immunopathology. Our data suggest that Tregs are necessary to generate a robust virus-specific response at the mucosal site of infection, while Treg-mediated restriction of bystander inflammation limits immunopathology both at the site of infection as well as distal tissue sites.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amanda L Koehne
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine E Watson
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Egloff C, Fovet CM, Denis J, Pascal Q, Bossevot L, Luccantoni S, Leonec M, Dereuddre-Bosquet N, Leparc-Goffart I, Le Grand R, Durand GA, Badaut C, Picone O, Roques P. Fetal Zika virus inoculation in macaques revealed control of the fetal viral load during pregnancy. Virol J 2024; 21:209. [PMID: 39227837 PMCID: PMC11373269 DOI: 10.1186/s12985-024-02468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.
Collapse
Affiliation(s)
- Charles Egloff
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Claire-Maëlle Fovet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Jessica Denis
- Unité interactions hôtes-pathogènes, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Laetitia Bossevot
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Marco Leonec
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- National Reference Center for Arboviruses, INSERM-Institut de Recherche Biomédicale des Armées, 13005, Marseille, France
| | - Cyril Badaut
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), 13005, Marseille, France
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Olivier Picone
- Service de gynécologie-obstétrique, Hôpital Louis Mourier, AP-HP, IAME INSERM U1137, Université de PARIS, Paris, France
| | - Pierre Roques
- Center for Immunology of Viral, Auto-Immune, Hematological and Viral Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265, Fontenay aux Roses, France.
- Virology Unit, Institut Pasteur de Guinée (IPGui), BP4416, Conakry, Guinea.
| |
Collapse
|
4
|
Dedloff MR, Lazear HM. Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. Annu Rev Virol 2024; 11:363-379. [PMID: 38848605 DOI: 10.1146/annurev-virology-111821-101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and Listeria monocytogenes. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.
Collapse
Affiliation(s)
- Margaret R Dedloff
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
5
|
Martinot AJ, Cox F, Abbink P, Hecht JL, Bronson R, Borducchi EN, Rinaldi WJ, Ferguson MJ, De La Barrera RA, Zahn R, van der Fits L, Barouch DH. Ad26.M.Env ZIKV vaccine protects pregnant rhesus macaques and fetuses against Zika virus infection. NPJ Vaccines 2024; 9:157. [PMID: 39198466 PMCID: PMC11358461 DOI: 10.1038/s41541-024-00927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
At the start of the Zika virus (ZIKV) epidemic in 2015, ZIKV spread across South and Central America, and reached parts of the southern United States placing pregnant women at risk for fetal microcephaly, fetal loss, and other adverse pregnancy outcomes associated with congenital ZIKA syndrome (CZS). For this reason, testing of a safe and efficacious ZIKV vaccine remains a global health priority. Here we report that a single immunization with Ad26.M.Env ZIKV vaccine, when administered prior to conception, fully protects pregnant rhesus macaques from ZIKV viral RNA in blood and tissues with no adverse effects in dams and fetuses. Furthermore, vaccination prevents ZIKV distribution to fetal tissues including the brain. ZIKV associated neuropathology was absent in offspring of Ad26.M.Env vaccinated dams, although pathology was limited in fetuses from non-immunized, challenged dams. Vaccine efficacy is associated with induction of ZIKV neutralizing antibodies in pregnant rhesus macaques. These data suggest the feasibility of vaccine prevention of CZS in humans.
Collapse
Affiliation(s)
- Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Departments of Infectious Disease and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | - Freek Cox
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan L Hecht
- Division of Anatomic Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Tisoncik-Go J, Lewis TB, Whitmore LS, Voss K, Niemeyer S, Dai J, Kim P, Hubbell K, Iwayama N, Ahrens C, Wangari S, Murnane R, Edlefsen PT, Guerriero KA, Gale M, Fuller DH, O'Connor MA. Chronic innate immune impairment and ZIKV persistence in the gastrointestinal tract during SIV infection in pigtail macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609309. [PMID: 39229223 PMCID: PMC11370579 DOI: 10.1101/2024.08.23.609309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mosquito borne flaviviruses, including dengue (DENV) and Zika (ZIKV) viruses, have caused global epidemics in areas with high HIV prevalence due to the expanded geographic range of arthropod vectors. Despite the occurrence of large flavivirus outbreaks in countries with high HIV prevalence, there is little knowledge regarding the effects of flavivirus infection in people living with HIV (PLWH). Here, we use a pigtail macaque model of HIV/AIDS to investigate the impact of simian immunodeficiency virus (SIV)-induced immunosuppression on ZIKV replication and pathogenesis. Early acute SIV infection induced expansion of peripheral ZIKV cellular targets and increased innate immune activation and peripheral blood mononuclear cells (PBMC) from SIV infected macaques were less permissive to ZIKV infection in vitro. In SIV-ZIKV co-infected animals, we found increased persistence of ZIKV in the periphery and tissues corresponding to alterations in innate cellular (monocytes, neutrophils) recruitment to the blood and tissues, decreased anti-ZIKV immunity, and chronic peripheral inflammatory and innate immune gene expression. Collectively, these findings suggest that untreated SIV infection may impair cellular innate responses and create an environment of chronic immune activation that promotes prolonged ZIKV viremia and persistence in the gastrointestinal tract. These results suggest that PLWH or other immunocompromised individuals could be at a higher risk for chronic ZIKV replication, which in turn could increase the timeframe of ZIKV transmission. Thus, PLWH are important populations to target during the deployment of vaccine and treatment strategies against ZIKV.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington (Seattle, Washington)
| | - Thomas B Lewis
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Leanne S Whitmore
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Kathleen Voss
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Skyler Niemeyer
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Jin Dai
- Department of Immunology, University of Washington (Seattle, Washington)
| | - Paul Kim
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Kai Hubbell
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Naoto Iwayama
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Chul Ahrens
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Solomon Wangari
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | | | - Kathryn A Guerriero
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
| | - Michael Gale
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Immunology, University of Washington (Seattle, Washington)
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington (Seattle, Washington)
- Department of Global Health, University of Washington (Seattle, Washington)
| | - Deborah H Fuller
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| | - Megan A O'Connor
- Washington National Primate Research Center, University of Washington (Seattle, Washington)
- Department of Microbiology, University of Washington (Seattle, Washington)
| |
Collapse
|
7
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Adams Waldorf KM, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun 2024; 15:5173. [PMID: 38890352 PMCID: PMC11189406 DOI: 10.1038/s41467-024-49524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Kwon T. Utilizing non-human primate models to combat recent COVID-19/SARS-CoV-2 and viral infectious disease outbreaks. J Med Primatol 2024; 53:e12689. [PMID: 38084001 DOI: 10.1111/jmp.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
In recent times, global viral outbreaks and diseases, such as COVID-19 (SARS-CoV-2), Zika (ZIKV), monkeypox (MPOX), Ebola (EBOV), and Marburg (MARV), have been extensively documented. Swiftly deciphering the mechanisms underlying disease pathogenesis and devising vaccines or therapeutic interventions to curtail these outbreaks stand as paramount imperatives. Amidst these endeavors, animal models emerge as pivotal tools. Among these models, non-human primates (NHPs) hold a position of particular importance. Their proximity in evolutionary lineage and physiological resemblances to humans render them a primary model for comprehending human viral infections. This review encapsulates the pivotal role of various NHP species-such as rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), african green monkeys (Chlorocebus sabaeus/aethiops), pigtailed macaques (Macaca nemestrina/Macaca leonina), baboons (Papio hamadryas/Papio anubis), and common marmosets (Callithrix jacchus)-in investigations pertaining to the abovementioned viral outbreaks. These NHP models play a pivotal role in illuminating key aspects of disease dynamics, facilitating the development of effective countermeasures, and contributing significantly to our overall understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
10
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
11
|
Ball EE, Bennett JL, Keesler RI, Van Rompay KKA, Coffey LL, Bliss-Moreau E. Prenatal Zika virus exposure is associated with lateral geniculate nucleus abnormalities in juvenile rhesus macaques. Neuroreport 2023; 34:786-791. [PMID: 37695589 PMCID: PMC10699751 DOI: 10.1097/wnr.0000000000001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zika virus' neural tropism causes significant neural pathology, particularly in developing fetuses. One of the consistent findings from humans and animal models is that prenatal exposure to Zika virus (ZIKV) causes pathology in the eyes and visual pathways of the brain, although the extent to which this pathology persists over development is not clear. In the present report, we build upon our previous work which demonstrated that full-term rhesus monkey ( Macaca mulatta ) fetuses who were exposed to ZIKV early in gestation had significant pathological abnormalities to the organization of the lateral geniculate nucleus (LGN), a major hub of the visual network. The objective of the present work was to replicate those LGN findings and determine whether such pathology persisted across childhood development. We carried out histological analyses of the LGNs of two juvenile rhesus monkeys who were prenatally exposed to ZIKV and two age-matched controls. Pregnant rhesus monkeys were infected with ZIKV via the intravenous and intra-amniotic routes and tracked across development. Following sacrifice and perfusion, brains were subjected to quantitative neuroanatomical analyses with a focus on the size and structure of the LGN and its composite layers. Early fetal ZIKV exposure resulted in developmental abnormalities within the brains' visual pathway: specifically disorganization, blending of layers, laminar discontinuities, and regions of low cell density within the LGN. These abnormalities were not observed in the control animals. Our findings demonstrate that the ZIKV's damage to the LGN that occurs during fetal development persists into childhood.
Collapse
Affiliation(s)
- Erin E Ball
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California
- United States Army, Veterinary Corps, USA
- Currently Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jeffrey L Bennett
- California National Primate Center, University of California
- Department of Psychology, University of California, Davis, California
| | - Rebekah I Keesler
- California National Primate Center, University of California
- Currently Charles River Laboratories, Reno, Nevada, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California
- California National Primate Center, University of California
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California
| | - Eliza Bliss-Moreau
- California National Primate Center, University of California
- Department of Psychology, University of California, Davis, California
| |
Collapse
|
12
|
Moadab G, Pittet F, Bennett JL, Taylor CL, Fiske O, Singapuri A, Coffey LL, Van Rompay KKA, Bliss-Moreau E. Prenatal Zika virus infection has sex-specific effects on infant physical development and mother-infant social interactions. Sci Transl Med 2023; 15:eadh0043. [PMID: 37878673 DOI: 10.1126/scitranslmed.adh0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
There is enormous variation in the extent to which fetal Zika virus (fZIKV) infection affects the developing brain. Despite the neural consequences of fZIKV infection observed in people and animal models, many open questions about the relationship between infection dynamics and fetal and infant development remain. To further understand how ZIKV affects the developing nervous system and the behavioral consequences of prenatal infection, we adopted a nonhuman primate model of fZIKV infection in which we inoculated pregnant rhesus macaques and their fetuses with ZIKV in the early second trimester of fetal development. We then tracked their health across gestation and characterized infant development across the first month of life. ZIKV-infected pregnant mothers had long periods of viremia and mild changes to their hematological profiles. ZIKV RNA concentrations, an indicator of infection magnitude, were higher in mothers whose fetuses were male, and the magnitude of ZIKV RNA in the mothers' plasma or amniotic fluid predicted infant outcomes. The magnitude of ZIKV RNA was negatively associated with infant growth across the first month of life, affecting males' growth more than females' growth, although for most metrics, both males and females evidenced slower growth rates as compared with control animals whose mothers were not ZIKV inoculated. Compared with control infants, fZIKV infants also spent more time with their mothers during the first month of life, a social behavior difference that may have long-lasting consequences on psychosocial development during childhood.
Collapse
Affiliation(s)
- Gilda Moadab
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey L Bennett
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Christopher L Taylor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Olivia Fiske
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Waldorf KA, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a pigtail macaque model of congenital Zika infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561759. [PMID: 37873381 PMCID: PMC10592731 DOI: 10.1101/2023.10.11.561759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle Washington, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
15
|
Pagani I, Ottoboni L, Panina-Bordignon P, Martino G, Poli G, Taylor S, Turnbull JE, Yates E, Vicenzi E. Heparin Precursors with Reduced Anticoagulant Properties Retain Antiviral and Protective Effects That Potentiate the Efficacy of Sofosbuvir against Zika Virus Infection in Human Neural Progenitor Cells. Pharmaceuticals (Basel) 2023; 16:1385. [PMID: 37895856 PMCID: PMC10609960 DOI: 10.3390/ph16101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection. In this study, we investigated the effects of chemically modified heparin derivatives with reduced anticoagulant activities. These derivatives were used as experimental probes to explore the structure-activity relationships. Precursor fractions of porcine heparin, obtained during the manufacture of conventional pharmaceutical heparin with decreased anticoagulant activities, were also explored. Interestingly, these modified heparin derivatives and precursor fractions not only prevented cell death but also inhibited the ZIKV replication of infected neural progenitor cells grown as neurospheres. These effects were observed regardless of the specific sulfation position or overall charge. Furthermore, the combination of heparin with Sofosbuvir, an antiviral licensed for the treatment of hepatitis C (HCV) that also belongs to the same Flaviviridae family as ZIKV, showed a synergistic effect. This suggested that a combination therapy approach involving heparin precursors and Sofosbuvir could be a potential strategy for the prevention or treatment of ZIKV infections.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Panina-Bordignon
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Guido Poli
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Human Immuno-Virology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sarah Taylor
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Life Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | - Edwin Yates
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Life Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
16
|
Koenig MR, Mitzey AM, Zeng X, Reyes L, Simmons HA, Morgan TK, Bohm EK, Pritchard JC, Schmidt JA, Ren E, Leyva Jaimes FB, Winston E, Basu P, Weiler AM, Friedrich TC, Aliota MT, Mohr EL, Golos TG. Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus macaque (Macaca mulatta) model. PLoS Pathog 2023; 19:e1011274. [PMID: 37549143 PMCID: PMC10434957 DOI: 10.1371/journal.ppat.1011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/17/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terry K. Morgan
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Jenna A. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Ren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Winston
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Lu AY, Gustin A, Newhouse D, Gale M. Viral Protein Accumulation of Zika Virus Variants Links with Regulation of Innate Immunity for Differential Control of Viral Replication, Spread, and Response to Interferon. J Virol 2023; 97:e0198222. [PMID: 37162358 PMCID: PMC10231147 DOI: 10.1128/jvi.01982-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
Collapse
Affiliation(s)
- Amy Y. Lu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Thomas J, Garcia J, Terry M, Mahaney S, Quintanilla O, Silva DC, Morales M, VandeBerg JL. Monodelphis domestica as a Fetal Intra-Cerebral Inoculation Model for Zika Virus Pathogenesis. Pathogens 2023; 12:pathogens12050733. [PMID: 37242404 DOI: 10.3390/pathogens12050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Monodelphis domestica (the laboratory opossum) is a marsupial native to South America. At birth, these animals are developmentally equivalent to human embryos at approximately 5 weeks of gestation, which, when coupled with other characteristics including the size of the animals, the development of a robust immune system during juvenile development, and the relative ease of experimental manipulation, have made M. domestica a valuable model in many areas of biomedical research. However, their suitability as models for infectious diseases, especially neurotropic viruses such as Zika virus (ZIKV), is currently unknown. Here, we describe the replicative effects of ZIKV using a fetal intra-cerebral model of inoculation. Using immunohistology and in situ hybridization, we found that opossum embryos and fetuses are susceptible to infection by ZIKV administered intra-cerebrally, that the infection persists, and that viral replication results in neural pathology and may occasionally result in global growth restriction. These results demonstrate the utility of M. domestica as a new animal model for investigating ZIKV infection in vivo and facilitate further inquiry into viral pathogenesis, particularly for those viruses that are neurotropic, that require a host with the ability to sustain sustained viremia, and/or that may require intra-cerebral inoculations of large numbers of embryos or fetuses.
Collapse
Affiliation(s)
- John Thomas
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Juan Garcia
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Matthew Terry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Susan Mahaney
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| | - Oscar Quintanilla
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Dionn Carlo Silva
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Marisol Morales
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - John L VandeBerg
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| |
Collapse
|
19
|
Capra D, DosSantos MF, Sanz CK, Acosta Filha LG, Nunes P, Heringer M, Ximenes-da-Silva A, Pessoa L, de Mattos Coelho-Aguiar J, da Fonseca ACC, Mendes CB, da Rocha LS, Devalle S, Niemeyer Soares Filho P, Moura-Neto V. Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Front Microbiol 2023; 14:1162554. [PMID: 37125179 PMCID: PMC10140533 DOI: 10.3389/fmicb.2023.1162554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The inner ear, the organ of equilibrium and hearing, has an extraordinarily complex and intricate arrangement. It contains highly specialized structures meticulously tailored to permit auditory processing. However, hearing also relies on both peripheral and central pathways responsible for the neuronal transmission of auditory information from the cochlea to the corresponding cortical regions. Understanding the anatomy and physiology of all components forming the auditory system is key to better comprehending the pathophysiology of each disease that causes hearing impairment. In this narrative review, the authors focus on the pathophysiology as well as on cellular and molecular mechanisms that lead to hearing loss in different neonatal infectious diseases. To accomplish this objective, the morphology and function of the main structures responsible for auditory processing and the immune response leading to hearing loss were explored. Altogether, this information permits the proper understanding of each infectious disease discussed.
Collapse
Affiliation(s)
- Daniela Capra
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina K. Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lionete Gall Acosta Filha
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Luciana Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | | | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Soares Filho
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Zhou J, Guan MY, Li RT, Qi YN, Yang G, Deng YQ, Li XF, Li L, Yang X, Liu JF, Qin CF. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine 2023; 89:104457. [PMID: 36739631 PMCID: PMC9931927 DOI: 10.1016/j.ebiom.2023.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging arbovirus of the genus flavivirus that is associated with congenital Zika syndrome (CZS) in newborns. A wide range of clinical symptoms including intellectual disability, speech delay, coordination or movement problems, and hearing and vision loss, have been well documented in children with CZS. However, whether ZIKV can invade the olfactory system and lead to post-viral olfactory dysfunction (PVOD) remains unknown. METHODS We investigated the susceptibility and biological responses of the olfactory system to ZIKV infection using mouse models and human olfactory organoids derived from patient olfactory mucosa. FINDINGS We demonstrate that neonatal mice infected with ZIKV suffer from transient olfactory dysfunction when they reach to puberty. Moreover, ZIKV mainly targets olfactory ensheathing cells (OECs) and exhibits broad cellular tropism colocalizing with small populations of mature/immature olfactory sensory neurons (mOSNs/iOSNs), sustentacular cells and horizontal basal cells in the olfactory mucosa (OM) of immunodeficient AG6 mice. ZIKV infection induces strong antiviral immune responses in both the olfactory mucosa and olfactory bulb tissues, resulting in the upregulation of proinflammatory cytokines/chemokines and genes related to the antiviral response. Histopathology and transcriptomic analysis showed typical tissue damage in the olfactory system. Finally, by using an air-liquid culture system, we showed that ZIKV mainly targets sustentacular cells and OECs and support robust ZIKV replication. INTERPRETATION Our results demonstrate that olfactory system represents as significant target for ZIKV infection, and that PVOD may be neglected in CZS patients. FUNDING Stated in the acknowledgment.
Collapse
Affiliation(s)
- Jia Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng-Yue Guan
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 10010, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yi-Ni Qi
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guan Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian-Feng Liu
- Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Tisoncik-Go J, Voss KM, Lewis TB, Muruato AE, Kuller L, Finn EE, Betancourt D, Wangari S, Ahrens J, Iwayama N, Grant RF, Murnane RD, Edlefsen PT, Fuller DH, Barber GN, Gale M, O’Connor MA. Evaluation of the immunogenicity and efficacy of an rVSV vaccine against Zika virus infection in macaca nemestrina. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1108420. [PMID: 37383986 PMCID: PMC10306241 DOI: 10.3389/fviro.2023.1108420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes an acute febrile illness. ZIKV can be transmitted between sexual partners and from mother to fetus. Infection is strongly associated with neurologic complications in adults, including Guillain-Barré syndrome and myelitis, and congenital ZIKV infection can result in fetal injury and congenital Zika syndrome (CZS). Development of an effective vaccine is imperative to protect against ZIKV vertical transmission and CZS. Recombinant Vesicular Stomatitis virus (rVSV) is a highly effective and safe vector for the delivery of foreign immunogens for vaccine purposes. Here, we evaluate an rVSV vaccine expressing the full length pre-membrane (prM) and ZIKV envelope (E) proteins (VSV-ZprME), shown to be immunogenic in murine models of ZIKV infection, for its capacity to induce immune responses in nonhuman primates. Moreover, we assess the efficacy of the rVSVΔM-ZprME vaccine in the protection of pigtail macaques against ZIKV infection. Administration of the rVSVΔM-ZprME vaccine was safe, but it did not induce robust anti-ZIKV T-cell responses, IgM or IgG antibodies, or neutralizing antibodies in most animals. Post ZIKV challenge, animals that received the rVSVΔM control vaccine lacking ZIKV antigen had higher levels of plasma viremia compared to animals that received the rVSVΔM-ZprME vaccine. Anti-ZIKV neutralizing Ab titers were detected in a single animal that received the rVSVΔM-ZprME vaccine that was associated with reduced plasma viremia. The overall suboptimal ZIKV-specific cellular and humoral responses post-immunization indicates the rVSVΔM-ZprME vaccine did not elicit an immune response in this pilot study. However, recall antibody response to the rVSVΔM-ZprME vaccine indicates it may be immunogenic and further developments to the vaccine construct could enhance its potential as a vaccine candidate in a nonhuman primate pre-clinical model.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA
- Center for innate immunity and immune disease, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Kathleen M. Voss
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA
- Center for innate immunity and immune disease, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Thomas B. Lewis
- Washington National Primate Research Center, Seattle, WA
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA
| | - Antonio E. Muruato
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA
| | - LaRene Kuller
- Washington National Primate Research Center, Seattle, WA
| | - Eric E. Finn
- Washington National Primate Research Center, Seattle, WA
| | - Dillon Betancourt
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Joel Ahrens
- Washington National Primate Research Center, Seattle, WA
| | - Naoto Iwayama
- Washington National Primate Research Center, Seattle, WA
| | | | - Robert D. Murnane
- Washington National Primate Research Center, Seattle, WA
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Deborah H. Fuller
- Washington National Primate Research Center, Seattle, WA
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA
| | - Glen N. Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA
- Center for innate immunity and immune disease, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Megan A. O’Connor
- Washington National Primate Research Center, Seattle, WA
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
22
|
Watanabe S, Vasudevan SG. Clinical and experimental evidence for transplacental vertical transmission of flaviviruses. Antiviral Res 2023; 210:105512. [PMID: 36572192 DOI: 10.1016/j.antiviral.2022.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) epidemic outbreak in Americas in 2016 attracted global attention because of the association of the virus infection with severe birth defects such as microcephaly, mediated through transplacental virus transmission during pregnancy. Less well-known, but also reported is the increasing evidence that prenatal vertical transmission can be caused by other flaviviruses such as dengue virus (DENV). Currently, the mechanism(s) that cause the vertical transmission of flaviviruses is understudied. Here we review the published reports of clinical evidence of intrauterine transmission of ZIKV and other flaviviruses. We also discuss the animal models for flavivirus infection during pregnancy that have been developed to study the mechanisms underlying the transplacental transmission of flaviviruses in order to develop potential countermeasures for its prevention.
Collapse
Affiliation(s)
- Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore
| |
Collapse
|
23
|
Adam A, Lee C, Wang T. Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens 2023; 12:194. [PMID: 36839466 PMCID: PMC9963317 DOI: 10.3390/pathogens12020194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Zika virus (ZIKV), a re-emerging mosquito-borne flavivirus, has caused outbreaks in Africa, Asia, the Pacific, and, more recently, in the Americas. ZIKV has been associated with the neurological autoimmune disorder Guillain-Barre syndrome in adults and congenital Zika syndrome in fetuses and infants, including microcephaly, spontaneous abortion, and intrauterine growth restriction. It is considered to be a major threat to global public health due to its unprecedented clinical impact on humans. Currently, there are no specific prophylactics or therapeutics available to prevent or treat ZIKV infection. The development of a safe and efficacious ZIKV vaccine remains a global health priority. Since the recent outbreak, multiple platforms have been used in the development of candidate ZIKV vaccines. The candidate vaccines have been shown to elicit strong T cell and neutralization antibody responses and protect against ZIKV infection in animal models. Some candidates have progressed successfully to clinical trials. Live-attenuated vaccines, which induce rapid and durable protective immunity, are one of the most important strategies for controlling flavivirus diseases. In this review, we discuss recent progress in the development of candidate live-attenuated ZIKV vaccines.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christy Lee
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
24
|
Kirschen GW, Burd I. Modeling of vertical transmission and pathogenesis of cytomegalovirus in pregnancy: Opportunities and challenges. FRONTIERS IN VIROLOGY 2023; 3:1106634. [PMID: 36908829 PMCID: PMC9997718 DOI: 10.3389/fviro.2023.1106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In addition to facilitating nutrient, oxygen, and waste transfer between developing fetus and mother, the placenta provides important immune barrier function against infection. Elucidation of the complexity of placental barrier function at the maternal-fetal interface has been greatly aided through experimental model organism systems. In this review, we focus on models of vertical transmission of cytomegalovirus (CMV), a ubiquitous double-stranded DNA viruses whose vertical transmission during pregnancy can lead to devastating neurological and obstetric sequelae. We review the current evidence related to guinea pig and murine models of congenital CMV infection, discuss the possible translatability of a non-human primate model, and conclude with recently developed technology using human placental organoids.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
25
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
26
|
Kim S, Shin HY. Understanding the Tissue Specificity of ZIKV Infection in Various Animal Models for Vaccine Development. Vaccines (Basel) 2022; 10:1517. [PMID: 36146595 PMCID: PMC9504629 DOI: 10.3390/vaccines10091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flavivirus genus and is principally transmitted by Aedes aegypti mosquitoes. ZIKV infection often causes no or only mild symptoms, but it can also trigger severe consequences, including microcephaly in infants and Guillain-Barré syndrome, uveitis, and neurologic manifestations in adults. There is no ZIKV vaccine or treatment currently approved for clinical use. The primary target of ZIKV infection has been recognized as the maternal placenta, with vertical transmission to the fetal brain. However, ZIKV can also spread to multiple tissues in adults, including the sexual organs, eyes, lymph nodes, and brain. Since numerous studies have indicated that there are slightly different tissue-specific pathologies in each animal model of ZIKV, the distinct ZIKV tropism of a given animal model must be understood to enable effective vaccine development. Here, we comprehensively discussed the tissue specificity of ZIKV reported in each animal model depending on the genetic background and route of administration. This review should facilitate the selection of appropriate animal models when studying the fundamental pathogenesis of ZIKV infection, thereby supporting the design of optimal preclinical and clinical studies for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
27
|
Berry N, Stein M, Ferguson D, Ham C, Hall J, Giles E, Kempster S, Adedeji Y, Almond N, Herrera C. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 2022; 11:1033. [PMID: 36145466 PMCID: PMC9503824 DOI: 10.3390/pathogens11091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Monja Stein
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Potters Bar EN6 3QC, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Yemisi Adedeji
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
28
|
Gurung S, Reuter D, Norris A, Dubois M, Maxted M, Singleton K, Castillo-Castrejon M, Papin JF, Myers DA. Early and mid-gestation Zika virus (ZIKV) infection in the olive baboon (Papio anubis) leads to fetal CNS pathology by term gestation. PLoS Pathog 2022; 18:e1010386. [PMID: 35969617 PMCID: PMC9410558 DOI: 10.1371/journal.ppat.1010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) infection in pregnancy can produce catastrophic teratogenic damage to the developing fetus including microcephaly and congenital Zika syndrome (CZS). We previously described fetal CNS pathology occurring by three weeks post-ZIKV inoculation in Olive baboons at mid-gestation, including neuroinflammation, loss of radial glia (RG), RG fibers, neuroprogenitor cells (NPCs) resulting in disrupted NPC migration. In the present study, we explored fetal brain pathologies at term gestation resulting from ZIKV exposure during either first or second trimester in the Olive baboon. In all dams, vRNA in whole blood resolved after 7 days post inoculation (dpi). One first trimester infected dam aborted at 5 dpi. All dams developed IgM and IgG response to ZIKV with ZIKV IgG detected in fetal serum. Placental pathology and inflammation were observed including disruption of syncytiotrophoblast layers, delayed villous maturation, partially or fully thrombosed vessels, calcium mineralization and fibrin deposits. In the uterus, ZIKV was detected in ¾ first trimester but not in second trimester infected dams. While ZIKV was not detected in any fetal tissue at term, all fetuses exhibited varying degrees of neuropathology. Fetal brains from ZIKV inoculated dams exhibited a range of gross brain pathologies including irregularities of the major gyri and sulci of the cerebral cortex and cerebellar pathology. Frontal cortices of ZIKV fetuses showed a general disorganization of the six-layered cortex with degree of disorganization varying among the fetuses from the two groups. Frontal cortices from ZIKV inoculation in the first but not second trimester exhibited increased microglia, and in both trimester ZIKV inoculation, increased astrocyte numbers (white matter). In the cerebellum, increased microglia were observed in fetuses from both first and second trimester inoculation. In first trimester ZIKV inoculation, decreased oligodendrocyte precursor cell populations were observed in fetal cerebellar white matter. In general, our observations are in accordance with those described in human ZIKV infected fetuses.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Abby Norris
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Molly Dubois
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marta Maxted
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Krista Singleton
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
- * E-mail:
| |
Collapse
|
29
|
Raasch LE, Yamamoto K, Newman CM, Rosinski JR, Shepherd PM, Razo E, Crooks CM, Bliss MI, Breitbach ME, Sneed EL, Weiler AM, Zeng X, Noguchi KK, Morgan TK, Fuhler NA, Bohm EK, Alberts AJ, Havlicek SJ, Kabakov S, Mitzey AM, Antony KM, Ausderau KK, Mejia A, Basu P, Simmons HA, Eickhoff JC, Aliota MT, Mohr EL, Friedrich TC, Golos TG, O’Connor DH, Dudley DM. Fetal loss in pregnant rhesus macaques infected with high-dose African-lineage Zika virus. PLoS Negl Trop Dis 2022; 16:e0010623. [PMID: 35926066 PMCID: PMC9380952 DOI: 10.1371/journal.pntd.0010623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman primates (NHP). Macaque models are important for understanding how ZIKV infections impact human pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g., varying the dose and timing of infection) could lead to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be strain-specific.
Collapse
Affiliation(s)
- Lauren E. Raasch
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Elaina Razo
- Department of Pediatrics, UW Madison, Madison, Wisconsin, United States of America
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, UW Madison, Madison, Wisconsin, United States of America
| | - Mason I. Bliss
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Emily L. Sneed
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nicole A. Fuhler
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexandra J. Alberts
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Samantha J. Havlicek
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Sabrina Kabakov
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, UW Madison, Madison, Wisconsin, United States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, UW Madison, Madison, Wisconsin, United States of America
| | - Karla K. Ausderau
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Waisman Center, UW Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, UW Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, UW Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, UW Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Mask E, Hodara VL, Callery JE, Parodi LM, Obregon-Perko V, Yagi S, Glenn J, Frost P, Clemmons E, Patterson JL, Cox LA, Giavedoni LD. Molecular Approaches for the Validation of the Baboon as a Nonhuman Primate Model for the Study of Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:880860. [PMID: 35493734 PMCID: PMC9046911 DOI: 10.3389/fcimb.2022.880860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.
Collapse
Affiliation(s)
- Emma Mask
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Vida L. Hodara
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica E. Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Laura M. Parodi
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, United States
| | - Jeremy Glenn
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Patrice Frost
- Southwest National Primate Research Center, San Antonio, TX, United States
| | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, United States
| | | | - Laura A. Cox
- Southwest National Primate Research Center, San Antonio, TX, United States,Center for Precision Medicine, Wake Forest Health Sciences University, Winston Salem, NC, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States,Southwest National Primate Research Center, San Antonio, TX, United States,*Correspondence: Luis D. Giavedoni,
| |
Collapse
|
31
|
Schuler-Faccini L, Del Campo M, García-Alix A, Ventura LO, Boquett JA, van der Linden V, Pessoa A, van der Linden Júnior H, Ventura CV, Leal MC, Kowalski TW, Rodrigues Gerzson L, Skilhan de Almeida C, Santi L, Beys-da-Silva WO, Quincozes-Santos A, Guimarães JA, Garcez PP, Gomes JDA, Vianna FSL, Anjos da Silva A, Fraga LR, Vieira Sanseverino MT, Muotri AR, Lopes da Rosa R, Abeche AM, Marcolongo-Pereira C, Souza DO. Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Front Genet 2022; 13:758715. [PMID: 35350244 PMCID: PMC8957982 DOI: 10.3389/fgene.2022.758715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Five years after the identification of Zika virus as a human teratogen, we reviewed the early clinical manifestations, collectively called congenital Zika syndrome (CZS). Children with CZS have a very poor prognosis with extremely low performance in motor, cognitive, and language development domains, and practically all feature severe forms of cerebral palsy. However, these manifestations are the tip of the iceberg, with some children presenting milder forms of deficits. Additionally, neurodevelopment can be in the normal range in the majority of the non-microcephalic children born without brain or eye abnormalities. Vertical transmission and the resulting disruption in development of the brain are much less frequent when maternal infection occurs in the second half of the pregnancy. Experimental studies have alerted to the possibility of other behavioral outcomes both in prenatally infected children and in postnatal and adult infections. Cofactors play a vital role in the development of CZS and involve genetic, environmental, nutritional, and social determinants leading to the asymmetric distribution of cases. Some of these social variables also limit access to multidisciplinary professional treatment.
Collapse
Affiliation(s)
- Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Miguel Del Campo
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Liana O Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | | | - André Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil.,Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | - Camila V Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,CESUCA-Centro Universitário, Cachoeirinha, Brazil
| | | | | | - Lucélia Santi
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Jorge A Guimarães
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - André Anjos da Silva
- School of Medicine, Graduate Program in Medical Sciences-Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil.,School of Medicine, Universidade do Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Lucas Rosa Fraga
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Alberto Mantovani Abeche
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Diogo O Souza
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
32
|
Villazana-Kretzer DL, Wuertz KM, Newhouse D, Damicis JR, Dornisch EM, Voss KM, Muruato AE, Paymaster JA, Schmiedecke SS, Edwards SM, Napolitano PG, Tisoncik-Go J, Ieronimakis N, Gale M. ZIKV can infect human term placentas in the absence of maternal factors. Commun Biol 2022; 5:243. [PMID: 35304593 PMCID: PMC8933440 DOI: 10.1038/s42003-022-03158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
Zika virus infection can result in devastating pregnancy outcomes when it crosses the placental barrier. For human pregnancies, the mechanisms of vertical transmission remain enigmatic. Utilizing a human placenta-cotyledon perfusion model, we examined Zika virus exposure in the absence of maternal factors. To distinguish responses related to viral infection vs. recognition, we evaluated cotyledons perfused with either active or inactivated Zika virus. Active Zika virus exposure resulted in infection, cell death and syncytium injury. Pathology corresponded with transcriptional changes related to inflammation and innate immunity. Inactive Zika virus exposure also led to syncytium injury and related changes in gene expression but not cell death. Our observations reveal pathologies and innate immune responses that are dependent on infection or virus placenta interactions independent of productive infection. Importantly, our findings indicate that Zika virus can infect and compromise placentas in the absence of maternal humoral factors that may be protective. Villazana-Kretzer et al. compare histology, physiology and gene expression in cotyledons from term placentas perfused with either active or UV-inactivated Zika virus. They show that ZIKV can infect human term placentas in the absence of maternal factors and identify unique transcriptional responses to active ZIKA virus.
Collapse
Affiliation(s)
| | - Kathryn McGuckin Wuertz
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Antonio E Muruato
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer A Paymaster
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Stacey S Schmiedecke
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Sarah M Edwards
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Peter G Napolitano
- Department of OB/GYN, University of Washington Medical Center, Seattle, WA, USA
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA. .,Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
33
|
Beckman D, Seelke AMH, Bennett J, Dougherty P, Van Rompay KKA, Keesler R, Pesavento PA, Coffey LLA, Morrison JH, Bliss-Moreau E. Neuroanatomical abnormalities in a nonhuman primate model of congenital Zika virus infection. eLife 2022; 11:e64734. [PMID: 35261339 PMCID: PMC8906804 DOI: 10.7554/elife.64734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated neuropathological consequences of fetal ZIKV exposure in rhesus monkeys, a translatable animal model for human neural development, by carrying out quantitative neuroanatomical analyses of the nearly full-term brains of fetuses infected with ZIKV and procedure-matched controls. For each animal, a complete cerebral hemisphere was evaluated using immunohistochemical (IHC) and neuroanatomical techniques to detect virus, identify affected cell types, and evaluate gross neuroanatomical abnormalities. IHC staining revealed the presence of ZIKV in the frontal lobe, which contained activated microglia and showed increased apoptosis of immature neurons. ZIKV-infected animals exhibited macrostructural changes within the visual pathway. Regional differences tracked with the developmental timing of the brain, suggesting inflammatory processes related to viral infiltration swept through the cortex, followed by a wave of cell death resulting in morphological changes. These findings may help explain why some infants born with normal sized heads during the ZIKV epidemic manifest developmental challenges as they age.
Collapse
Affiliation(s)
- Danielle Beckman
- California National Primate Research Center, UC DavisDavisUnited States
| | - Adele MH Seelke
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Jeffrey Bennett
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Paige Dougherty
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Koen KA Van Rompay
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Rebekah Keesler
- California National Primate Research Center, UC DavisDavisUnited States
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Lark LA Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - John H Morrison
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Neurology, School of Medicine, UC DavisDavisUnited States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| |
Collapse
|
34
|
Hsu DC, Chumpolkulwong K, Corley MJ, Hunsawong T, Inthawong D, Schuetz A, Imerbsin R, Silsorn D, Nadee P, Sopanaporn J, Phuang-Ngern Y, Klungthong C, Reed M, Fernandez S, Ndhlovu LC, Paul R, Lugo-Roman L, Michael NL, Modjarrad K, Vasan S. Neurocognitive impact of Zika virus infection in adult rhesus macaques. J Neuroinflammation 2022; 19:40. [PMID: 35130924 PMCID: PMC8822695 DOI: 10.1186/s12974-022-02402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. Methods Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. Results All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6–6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. Conclusions The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02402-4.
Collapse
Affiliation(s)
- Denise C Hsu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA. .,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.
| | | | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Taweewun Hunsawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Dutsadee Inthawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA
| | - Rawiwan Imerbsin
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Decha Silsorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Panupat Nadee
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Jumpol Sopanaporn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | | | | | - Matthew Reed
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, 63143, USA
| | - Luis Lugo-Roman
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.,Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
35
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Vue D, Tang Q. Zika Virus Overview: Transmission, Origin, Pathogenesis, Animal Model and Diagnosis. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10.15212/zoonoses-2021-0017. [PMID: 34957474 PMCID: PMC8698461 DOI: 10.15212/zoonoses-2021-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zika virus (ZIKV) was first discovered in 1947 in Uganda. ZIKV did not entice much attention until Brazil hosted the 2016 Summer Olympics Game, where ZIKV attracted a global audience. ZIKV is a flavivirus that can be transmitted chiefly through the biting of the mosquito or sexually or by breastfeeding at a lower scale. As time passed, the recent discovery of how the ZIKV causes congenital neurodevelopmental defects, including microcephaly, makes us reevaluate the importance of ZIKV interaction with centrosome organization because centrosome plays an important role in cell division. When the ZIKV disrupts centrosome organization and mitotic abnormalities, this will alter neural progenitor differentiation. Altering the neural progenitor differentiation will lead to cell cycle arrest, increase apoptosis, and inhibit the neural progenitor cell differentiation, as this can lead to abnormalities in neural cell development resulting in microcephaly. Understanding the importance of ZIKV infection throughout the years, this review article gives an overview of the history, transmission routes, pathogenesis, animal models, and diagnosis.
Collapse
Affiliation(s)
- Dallas Vue
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW Washington, DC 20059, USA
| |
Collapse
|
37
|
Melton A, Doyle-Meyers LA, Blair RV, Midkiff C, Melton HJ, Russell-Lodrigue K, Aye PP, Schiro F, Fahlberg M, Szeltner D, Spencer S, Beddingfield BJ, Goff K, Golden N, Penney T, Picou B, Hensley K, Chandler KE, Plante JA, Plante KS, Weaver SC, Roy CJ, Hoxie JA, Gao H, Montefiori DC, Mankowski JL, Bohm RP, Rappaport J, Maness NJ. The pigtail macaque (Macaca nemestrina) model of COVID-19 reproduces diverse clinical outcomes and reveals new and complex signatures of disease. PLoS Pathog 2021; 17:e1010162. [PMID: 34929014 PMCID: PMC8722729 DOI: 10.1371/journal.ppat.1010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.
Collapse
Affiliation(s)
- Alexandra Melton
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Biomedical Science Training Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Hunter J. Melton
- Florida State University, Department of Statistics, Tallahassee, Florida, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Dawn Szeltner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Skye Spencer
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | | | - Kelly Goff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Toni Penney
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Krystle Hensley
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kristin E. Chandler
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rudolf P. Bohm
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
38
|
Balint E, Montemarano A, Feng E, Ashkar AA. From Mosquito Bites to Sexual Transmission: Evaluating Mouse Models of Zika Virus Infection. Viruses 2021; 13:v13112244. [PMID: 34835050 PMCID: PMC8625727 DOI: 10.3390/v13112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following the recent outbreak of Zika virus (ZIKV) infections in Latin America, ZIKV has emerged as a global health threat due to its ability to induce neurological disease in both adults and the developing fetus. ZIKV is largely mosquito-borne and is now endemic in many parts of Africa, Asia, and South America. However, several reports have demonstrated persistent ZIKV infection of the male reproductive tract and evidence of male-to-female sexual transmission of ZIKV. Sexual transmission may broaden the reach of ZIKV infections beyond its current geographical limits, presenting a significant threat worldwide. Several mouse models of ZIKV infection have been developed to investigate ZIKV pathogenesis and develop effective vaccines and therapeutics. However, the majority of these models focus on mosquito-borne infection, while few have considered the impact of sexual transmission on immunity and pathogenesis. This review will examine the advantages and disadvantages of current models of mosquito-borne and sexually transmitted ZIKV and provide recommendations for the effective use of ZIKV mouse models.
Collapse
|
39
|
Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses 2021; 13:2088. [PMID: 34696518 PMCID: PMC8539636 DOI: 10.3390/v13102088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015-2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA;
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
40
|
Yao R, Ianevski A, Kainov D. Safe-in-Man Broad Spectrum Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:313-337. [PMID: 34258746 DOI: 10.1007/978-981-16-0267-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.
Collapse
Affiliation(s)
- Rouan Yao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Institute for Molecule Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Strange DP, Jiyarom B, Sadri-Ardekani H, Cazares LH, Kenny TA, Ward MD, Verma S. Paracrine IFN Response Limits ZIKV Infection in Human Sertoli Cells. Front Microbiol 2021; 12:667146. [PMID: 34079533 PMCID: PMC8165286 DOI: 10.3389/fmicb.2021.667146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. The testes have been implicated as sites of long-term ZIKV replication, and our previous studies have identified Sertoli cells (SC), the nurse cells of the seminiferous epithelium that govern spermatogenesis, as major targets of ZIKV infection. To improve our understanding of the interaction of ZIKV with human SC, we analyzed ZIKV-induced proteome changes in these cells using high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data demonstrated that interferon (IFN) signaling was the most significantly enriched pathway and the antiviral proteins MX1 and IFIT1 were among the top upregulated proteins in SC following ZIKV infection. The dynamic between IFN response and ZIKV infection kinetics in SC remains unclear, therefore we further determined whether MX1 and IFIT1 serve as antiviral effectors against ZIKV. We found that increased levels of MX1 at the later time points of infection coincided with diminished ZIKV infection while the silencing of MX1 and IFIT1 enhanced peak ZIKV propagation in SC. Furthermore, although IFN-I exposure was found to significantly hinder ZIKV replication in SC, IFN response was attenuated in these cells as compared to other cell types. The data in this study highlight IFN-I as a driver of the antiviral state that limits ZIKV infection in SC and suggests that MX1 and IFIT1 function as antiviral effectors against ZIKV in SC. Collectively, this study provides important biological insights into the response of SC to ZIKV infection and the ability of the virus to persist in the testes.
Collapse
Affiliation(s)
- Daniel P. Strange
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lisa H. Cazares
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Tara A. Kenny
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Michael D. Ward
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| |
Collapse
|
43
|
Schultz V, Barrie JA, Donald CL, Crawford CL, Mullin M, Anderson TJ, Solomon T, Barnett SC, Linington C, Kohl A, Willison HJ, Edgar JM. Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia 2021; 69:2023-2036. [PMID: 33942402 PMCID: PMC9216243 DOI: 10.1002/glia.24010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.
Collapse
Affiliation(s)
- Verena Schultz
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Jennifer A Barrie
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Colin L Crawford
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Margaret Mullin
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Thomas J Anderson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, Glasgow
| | - Tom Solomon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Susan C Barnett
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Christopher Linington
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Hugh J Willison
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Julia M Edgar
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| |
Collapse
|
44
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
45
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
46
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
47
|
de Alcantara BN, Imbeloni AA, de Brito Simith Durans D, de Araújo MTF, do Rosário Moutinho da Cruz E, de Carvalho CAM, de Mendonça MHR, de Sousa JR, Moraes AF, Filho AJM, de Lourdes Gomes Lima M, Neto OPA, Chiang JO, de Azevedo Scalercio SRR, Carneiro LA, Quaresma JAS, da Costa Vasconcelos PF, de Almeida Medeiros DB. Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. Sci Rep 2021; 11:6099. [PMID: 33731800 PMCID: PMC7971060 DOI: 10.1038/s41598-021-85571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The absence of an adequate animal model for studies has limited the understanding of congenital Zika syndrome (CZS) in humans during the outbreak in America. In this study, we used squirrel monkeys (Saimiri collinsi), a neotropical primate (which mimics the stages of human pregnancy), as a model of Zika virus (ZIKV) infection. Seven pregnant female squirrel monkeys were experimentally infected at three different gestational stages, and we were able reproduce a broad range of clinical manifestations of ZIKV lesions observed in newborn humans. Histopathological and immunohistochemical analyses of early-infected newborns (2/4) revealed damage to various areas of the brain and ZIKV antigens in the cytoplasm of neurons and glial cells, indicative of CZS. The changes caused by ZIKV infection were intrauterine developmental delay, ventriculomegaly, simplified brain gyri, vascular impairment and neuroprogenitor cell dysfunction. Our data show that the ZIKV infection outcome in squirrel monkeys is similar to that in humans, indicating that this model can be used to help answer questions about the effect of ZIKV infection on neuroembryonic development and the morphological changes induced by CZS.
Collapse
Affiliation(s)
- Bianca Nascimento de Alcantara
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Aline Amaral Imbeloni
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | | | - Carlos Alberto Marques de Carvalho
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | | | - Jorge Rodrigues de Sousa
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Adriana Freitas Moraes
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Maria de Lourdes Gomes Lima
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Orlando Pereira Amador Neto
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | - Liliane Almeida Carneiro
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil. .,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.
| |
Collapse
|
48
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Schouest B, Peterson TA, Szeltner DM, Scheef EA, Baddoo M, Ungerleider N, Flemington EK, MacLean AG, Maness NJ. Transcriptional signatures of Zika virus infection in astrocytes. J Neurovirol 2021; 27:116-125. [PMID: 33405202 PMCID: PMC7921019 DOI: 10.1007/s13365-020-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Astrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tiffany A Peterson
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dawn M Szeltner
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Elizabeth A Scheef
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
50
|
Imbeloni AA, de Alcantara BN, Coutinho LN, de Azevedo Scalercio SRR, Carneiro LA, Oliveira KG, Filho AJM, de Brito Simith Durans D, da Silva WB, Nunes BTD, Casseb LMN, Chiang JO, de Carvalho CAM, Machado MB, Quaresma JAS, de Almeida Medeiros DB, da Costa Vasconcelos PF. Prenatal disorders and congenital Zika syndrome in squirrel monkeys. Sci Rep 2021; 11:2698. [PMID: 33514824 PMCID: PMC7846595 DOI: 10.1038/s41598-021-82028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
During the Zika virus (ZIKV) outbreak in Brazil (2015–2016), the clinical manifestations associated with its infection were complex and included miscarriage and congenital malformations, not previously described. In this study, we evaluated the prenatal conditions of pregnant female squirrel monkeys (Saimiri collinsi) infected during different gestational thirds (GTs) and assessed all clinical aspects, diagnostic imaging, viremia and the immune response. In our study, 75% of the infected animals in the 1st GT group had significant clinical manifestations, such as miscarriage and prolonged viremia associated with a late immune response. Consequently, their neonates showed fetal neuropathology, such as cerebral hemorrhage, lissencephaly or malformations of the brain grooves, ventriculomegaly, and craniofacial malformations. Thus, our study demonstrated the relevance of pregnant squirrel monkeys as a model for the study of ZIKV infection in neonates due to the broad clinical manifestations presented, including the typical congenital Zika syndrome manifestations described in humans.
Collapse
Affiliation(s)
- Aline Amaral Imbeloni
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | | | | | - Liliane Almeida Carneiro
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Karol Guimarães Oliveira
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Livia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Mariana Borges Machado
- University Center of Para, Governador Jose Malcher Avenue, 485, Belem, Para, 66035-065, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil.
| |
Collapse
|