1
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Hamerman JA, Barton GM. The path ahead for understanding Toll-like receptors-driven systemic autoimmunity. Curr Opin Immunol 2024; 91:102482. [PMID: 39353255 DOI: 10.1016/j.coi.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Five mammalian Toll-like receptors (TLR 3, 7, 8, 9, and 13) recognize nucleic acids (NA) and induce signals that control the function of multiple immune cell types and initiate both innate and adaptive immune responses. While these receptors enable recognition of diverse microbial threats, in some instances, they respond inappropriately to self-NA released from host cells and drive the development of autoimmune diseases. Specifically, activation of TLR7 and TLR8 by self-RNA and TLR9 by self-DNA has been linked to development of a collection of systemic autoimmune or autoinflammatory disorders, including systemic lupus erythematosus, systemic juvenile idiopathic arthritis, and macrophage activation syndrome. Here, we discuss recent progress in understanding how these receptors contribute to such diverse clinical phenotypes. We highlight how comparative studies between mice and humans have not only been beneficial in identifying key pathways relevant for disease but also reveal gaps in our understanding of disease mechanisms. We identify several challenges that we hope the field will tackle in the years ahead.
Collapse
Affiliation(s)
- Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Gregory M Barton
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Li X, Ebara M, Shirahata N, Yamazaki T, Hanagata N. Synergistic Effects of Metal-Organic Nanoplatform and Guanine Quadruplex-Based CpG Oligodeoxynucleotides in Therapeutic Cancer Vaccines with Different Tumor Antigens. Vaccines (Basel) 2024; 12:649. [PMID: 38932378 PMCID: PMC11209203 DOI: 10.3390/vaccines12060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3-CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Kawai A, Hirata H, Tokunoh N, Ono C, Matsuura Y, Hirai T, Yoshioka Y. Adjuvant-free parenterally injectable vaccine platform that harnesses previously induced IgG as an antigen delivery carrier. Biochem Biophys Res Commun 2024; 711:149919. [PMID: 38608435 DOI: 10.1016/j.bbrc.2024.149919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruki Hirata
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Li SL, Hou HY, Chu X, Zhu YY, Zhang YJ, Duan MD, Liu J, Liu Y. Nanomaterials-Involved Tumor-Associated Macrophages' Reprogramming for Antitumor Therapy. ACS NANO 2024; 18:7769-7795. [PMID: 38420949 DOI: 10.1021/acsnano.3c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.
Collapse
Affiliation(s)
- Shu-Lan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hua-Ying Hou
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xu Chu
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Yu-Ying Zhu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yu-Juan Zhang
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Meng-Die Duan
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Junyi Liu
- Albany Medical College, New York 12208, United States
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
7
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
8
|
Mizuta M, Inoue N, Shimizu M, Sakumura N, Yokoyama T, Kuroda R, Ikawa Y, Sugimoto N, Harada K, Yachie A, Wada T. Distinct roles of IL-18 and IL-1β in murine model of macrophage activation syndrome. J Allergy Clin Immunol 2023; 152:940-948.e6. [PMID: 37352976 DOI: 10.1016/j.jaci.2023.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND IL-18 and IL-1β play a central role in the pathogenesis of systemic juvenile idiopathic arthritis and its life-threatening complication, macrophage activation syndrome (MAS). OBJECTIVES This study aimed to clarify the role of IL-18 and IL-1β in the pathogenesis of MAS. METHODS We developed a mouse model to evaluate the role of each cytokine with Toll-like receptor 9 stimulation after continuous infusion with IL-18, IL-1β, and a combination of both for 7 days. The symptoms and laboratory findings were compared among the IL-18, IL-1β, and combination (IL-18+IL-1β) groups. RESULTS Body weight was significantly decreased in the IL-1β and combination groups. Splenomegaly was observed in all groups, whereas hepatomegaly was noted in the IL-18 group only. Decreased T-cell numbers, anemia, and thrombocytopenia were observed in the combination group. IFN-γ, CXCL9, and IL-12A mRNA levels were upregulated and IL-10 mRNA levels in the spleen were downregulated in the IL-18 group. Hepatomegaly and splenomegaly in the IL-18 group were observed in a dose-dependent manner. TNF-α, CXCL9, and IL-12A mRNA levels were upregulated only in those mice with extremely elevated plasma IL-18 levels. CONCLUSION IL-18 and IL-1β have distinct roles in the pathogenesis of MAS. Dual blockade of IL-18 and IL-1β might be necessary to treat MAS.
Collapse
Affiliation(s)
- Mao Mizuta
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Inoue
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaki Shimizu
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Naoto Sakumura
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadafumi Yokoyama
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rie Kuroda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naotoshi Sugimoto
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiro Yachie
- Division of Patient Safety, Kanazawa University Hospital, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Dittmar JW, Teplensky MH, Evangelopoulos M, Qin L, Zhang B, Mirkin CA. Tuning DNA Dissociation from Spherical Nucleic Acids for Enhanced Immunostimulation. ACS NANO 2023; 17:17996-18007. [PMID: 37713675 PMCID: PMC10801821 DOI: 10.1021/acsnano.3c04333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The stability of the core can significantly impact the therapeutic effectiveness of liposome-based drugs. While the spherical nucleic acid (SNA) architecture has elevated liposomal stability to increase therapeutic efficacy, the chemistry used to anchor the DNA to the liposome core is an underexplored design parameter with a potentially widespread biological impact. Herein, we explore the impact of SNA anchoring chemistry on immunotherapeutic function by systematically studying the importance of hydrophobic dodecane anchoring groups in attaching DNA strands to the liposome core. By deliberately modulating the size of the oligomer that defines the anchor, a library of structures has been established. These structures, combined with in vitro and in vivo immune stimulation analyses, elucidate the relationships between and importance of anchoring strength and dissociation of DNA from the SNA shell on its biological properties. Importantly, the most stable dodecane anchor, (C12)9, is superior to the n = 4-8 and 10 structures and quadruples immune stimulation compared to conventional cholesterol-anchored SNAs. When the OVA1 peptide antigen is encapsulated by the (C12)9 SNA and used as a therapeutic vaccine in an E.G7-OVA tumor model, 50% of the mice survived the initial tumor, and all of those survived tumor rechallenge. Importantly, the strong innate immune stimulation does not cause a cytokine storm compared to linear immunostimulatory DNA. Moreover, a (C12)9 SNA that encapsulates a peptide targeting SARS-CoV-2 generates a robust T cell response; T cells raised from SNA treatment kill >40% of target cells pulsed with the same peptide and ca. 45% of target cells expressing the entire spike protein. This work highlights the importance of using anchor chemistry to elevate SNA stability to achieve more potent and safer immunotherapeutics in the context of both cancer and infectious disease.
Collapse
Affiliation(s)
- Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lei Qin
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Chad A Mirkin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Gu Y, Hu Y, Huang S, Ruiz S, Kawai T, Bai Y, Han X. CpG ODN/Mangiferin Dual Delivery through Calcium Alginate Hydrogels Inhibits Immune-Mediated Osteoclastogenesis and Promotes Alveolar Bone Regeneration in Mice. BIOLOGY 2023; 12:976. [PMID: 37508406 PMCID: PMC10376397 DOI: 10.3390/biology12070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
The immune system plays an important role in the skeletal system during bone repair and regeneration. The controlled release of biological factors from the immune system could facilitate and optimize the bone remodeling process through the regulation of the activities of bone cells. This study aimed to determine the effect of the controlled delivery of immunomodulatory biologicals on bone regeneration. Immunostimulatory cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) and glucosylxanthone Mangiferin (MAG)-embedded microbeads were incubated with P. gingivalis-challenged splenocytes, or co-cultured with RAW264.7 cells. The effect of CpG ODN/MAG-containing microbeads on bone regeneration was then tested in vivo in a mouse alveolar bone defect model. The results demonstrated that MAG significantly antagonized P. gingivalis proliferation and reduced the live/dead cell ratio. After the addition of CpG ODN + MAG microbeads, anti-inflammatory cytokines IL-10 and IL-4 were upregulated on day 2 but not day 4, whereas pro-inflammatory cytokine IL-1β responses showed no difference at both timepoints. RANKL production by splenocytes and TRAP+ cell formation of RAW264.7 cells were inhibited by the addition of CpG ODN + MAG microbeads. Alveolar bony defects, filled with CpG ODN + MAG microbeads, showed significantly increased new bone after 4 weeks. In summary, this study evaluated a new hydrogel-based regimen for the local delivery and controlled release of biologicals to repair and regenerate alveolar bony defects. The combined CpG ODN + MAG treatment may promote alveolar bone regeneration through the anti-microbial/anti-inflammatory effects and the inhibition of RANKL-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shengyuan Huang
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
11
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
12
|
Yang L, Lang Y, Wu H, Xiang K, Wang Y, Yu M, Liu Y, Yang B, He L, Lu G, Ni Q, Chen X, Zhang L. Engineered Toll-like Receptor Nanoagonist Binding to Extracellular Matrix Elicits Safe and Robust Antitumor Immunity. ACS NANO 2023; 17:5340-5353. [PMID: 36913671 DOI: 10.1021/acsnano.2c08429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy, such as the Toll-like receptor (TLR) agonist including CpG oligodeoxynucleotide, has shown potency in clinical settings. However, it is still confronted with multiple challenges, which include the limited efficacy and severe adverse events caused by the rapid clearance and systemic diffusion of CpG. Here we report an improved CpG-based immunotherapy approach composed of a synthetic extracellular matrix (ECM)-anchored DNA/peptide hybrid nanoagonist (EaCpG) via (1) a tailor designed DNA template that encodes tetramer CpG and additional short DNA moieties, (2) generation of elongated multimeric CpG through rolling circle amplification (RCA), (3) self-assembly of densely packaged CpG particles composed of tandem CpG building blocks and magnesium pyrophosphate, and (4) incorporation of multiple copies of ECM binding peptide through hybridization to short DNA moieties. The structurally well-defined EaCpG shows dramatically increased intratumoral retention and marginal systemic dissemination through peritumoral administration, leading to potent antitumor immune response and subsequent tumor elimination, with minimal treatment-related toxicity. Combined with conventional standard-of-care therapies, peritumor administration of EaCpG generates systemic immune responses that lead to a curative abscopal effect on distant untreated tumors in multiple cancer models, which is superior to the unmodified CpG. Taken together, EaCpG provides a facile and generalizable strategy to simultaneously potentiate the potency and safety of CpG for combinational cancer immunotherapies.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Haoguang Wu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Kaiyan Xiang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Yuanzheng Wang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Mengqi Yu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Liu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Qianqian Ni
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| |
Collapse
|
13
|
Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2023; 13:1053107. [PMID: 36703973 PMCID: PMC9872660 DOI: 10.3389/fimmu.2022.1053107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected β-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.
Collapse
Affiliation(s)
- Mengshan Liu
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wim E. Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Department of Immunology, Nutricia Research B.V., Utrecht, Netherlands
| | - Cornelus F. van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,*Correspondence: Linette E. M. Willemsen,
| |
Collapse
|
14
|
Hansoongnern P, Phecharat N, Wasanasuk K, Tommeurd W, Chankeeree P, Lekcharoensuk C, Semkum P, Pinitkiatisakul S, Lekcharoensuk P. Encapsidated-CpG ODN enhances immunogenicity of porcine circovirus type 2 virus-like particles. Vet Microbiol 2022; 275:109583. [DOI: 10.1016/j.vetmic.2022.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022]
|
15
|
Huang S, Ma Y, Wang F, Li J, Yang Z, Jiang Y, Chen X, Hu S, Yi Q. ERK is involved in the regulation of CpG ODN 2395 on the expression levels of anti-lipopolysaccharide factors in Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1206-1213. [PMID: 36403703 DOI: 10.1016/j.fsi.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
CpG oligodeoxynucleotides (ODN), as an effective adjuvant or immunopotentiator, activate the immune system and induce various immune responses. Recently, it has also been reported that high dose of CpG ODN can lead to immunosuppression. However, the underlying mechanism of CpG ODN-mediated immune response remains largely unknown in invertebrates. In the present study, the role of ERK in regulating expression levels of anti-lipopolysaccharide factors (ALFs) induced by different doses of CpG ODN 2395 was analyzed in Chinese mitten crab, Eriocheir sinensis. The mRNA expression levels of EsALFs (EsALF1, EsALF2 and EsALF3) and EsERK in haemocytes were observed to increase from 6 h to 48 h post low doses of CpG ODN 2395 (0.5 μg and 2.5 μg) stimulation, while they were suppressed after high dose of CpG ODN 2395 (12.5 μg) injection. Meanwhile, the phosphorylation levels of ERK in haemocytes were significantly promoted after low doses of CpG ODN 2395 injection, and a reduce level of ERK phosphorylation was observed after high dose of CpG ODN 2395 injection. Further investigation showed that the expression levels of EsALFs induced by CpG ODN 2395 were markedly down-regulated after knocking down the expression of EsERK. Similarly, the EsALFs mRNA expression were also inhibited post different doses of CpG ODN 2395 stimulation in PD98059 (ERK inhibitor) injection crabs. These results collectively suggest that ERK is involved in regulating the expression level of EsALFs induced by different dose of CpG ODN 2395 in Chinese mitten crab, which contribute to the understanding of the regulation of CpG ODN involving in immune response in crustaceans.
Collapse
Affiliation(s)
- Shu Huang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xi Chen
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shengyang Hu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qilin Yi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
16
|
Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience 2022; 25:105324. [PMID: 36304121 PMCID: PMC9593262 DOI: 10.1016/j.isci.2022.105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Efficient delivery of subunit vaccines to dendritic cells (DCs) is necessary to improve vaccine efficacy, because the vaccine antigen alone cannot induce sufficient protective immunity. Here, we identified DC-targeting peptides using a phage display system and demonstrated the potential of these peptides as antigen-delivery carriers to improve subunit vaccine effectiveness in mice. The fusion of antigen proteins and peptides with DC-targeting peptides induced strong antigen-specific IgG responses, even in the absence of adjuvants. In addition, the DC-targeting peptide improved the distribution of antigens to DCs and antigen presentation by DCs. The combined use of an adjuvant with a DC-targeting peptide improved the effectiveness of the vaccine. Furthermore, nucleolin, located on the DC surface, was identified as the receptor for DC-targeting peptide, and nucleolin was indispensable for the vaccine effect of the DC-targeting peptide. Overall, the findings of this study could be useful for developing subunit vaccines against infectious diseases. We successfully identified an efficient DC-targeting peptide using a phage display system Fusion of the peptide improves the efficacy of vaccine even in the absence of adjuvants The peptide improves the distribution of antigens to DCs and antigen presentation by DCs Nucleolin is indispensable for the vaccine effect of the DC-targeting peptide
Collapse
|
17
|
Kelly G, Milligan JJ, Mastria EM, Kim S, Zelenetz SR, Dobbins J, Cai LY, Li X, Nair SK, Chilkoti A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J Control Release 2022; 343:267-276. [PMID: 35077742 PMCID: PMC8960370 DOI: 10.1016/j.jconrel.2022.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Biomaterial-based approaches for a combination of radiotherapy and immunotherapy can improve outcomes in metastatic cancer through local delivery of both therapeutic modalities to the primary tumor to control local tumor growth and distant metastases. This study describes an injectable depot for sustained intratumoral (i.t.) delivery of an iodine-131 (131I) radionuclide and a CpG oligodeoxynucleotide immunostimulant, driven by the thermally sensitive phase transition behavior of elastin-like polypeptides (ELPs). We synthesized and characterized an ELP with an oligolysine tail (ELP-K12) that forms an electrostatic complex with CpG for delivery from an ELP depot and evaluated the ability of the complex to enhance local and systemic tumor control as a monotherapy and in combination with 131I-ELP brachytherapy. I.t delivery of CpG from an ELP-K12 depot dramatically prolongs i.t. retention to more than 21 days as compared to soluble CpG that is only retained within the tumor for <24 h. ELP-K12 also enhances CpG delivery by increasing cellular uptake of CpG to generate greater toll-like receptor 9 (TLR9) activation than CpG alone. I.t. treatment with an ELP-K12/CpG depot slows primary tumor growth and reduces lung metastases in a poorly immunogenic 4 T1 syngeneic breast cancer model whereas i.t treatment of CpG alone has no significant effect on primary tumor growth or metastases. Notably, a combination of 131I-ELP brachytherapy and ELP-K12/CpG delivered i.t. inhibited 4 T1 tumor growth and strongly decreased the development of lung metastases, leading to a synergistic improvement in mouse survival. These preclinical results demonstrate that injectable ELP depots may provide a useful approach for the delivery of combination radio- and immuno-therapy to treat metastatic disease.
Collapse
Affiliation(s)
- Garrett Kelly
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Eric M. Mastria
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Sarah Kim
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Stephanie R. Zelenetz
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Jarrett Dobbins
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Leon Y. Cai
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Smita K. Nair
- Department of Surgery, Duke University School of Medicine, 2301 Erwin Rd., DUMC Box 370, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Nakagawa T, Tanino T, Onishi M, Tofukuji S, Kanazawa T, Ishioka Y, Itoh T, Kugimiya A, Katayama K, Yamamoto T, Nagira M, Ishii KJ. S-540956, a CpG Oligonucleotide Annealed to a Complementary Strand With an Amphiphilic Chain Unit, Acts as a Potent Cancer Vaccine Adjuvant by Targeting Draining Lymph Nodes. Front Immunol 2022; 12:803090. [PMID: 35003132 PMCID: PMC8735836 DOI: 10.3389/fimmu.2021.803090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Robust induction of cancer-antigen-specific CD8+ T cells is essential for the success of cancer peptide vaccines, which are composed of a peptide derived from a cancer-specific antigen and an immune-potentiating adjuvant, such as a Toll-like receptor (TLR) agonist. Efficient delivery of a vaccine antigen and an adjuvant to antigen-presenting cells in the draining lymph nodes (LNs) holds key to maximize vaccine efficacy. Here, we developed S-540956, a novel TLR9-agonistic adjuvant consisting of B-type CpG ODN2006 (also known as CpG7909), annealed to its complementary sequence oligodeoxynucleotide (ODN) conjugated to a lipid; it could target both a cancer peptide antigen and a CpG-adjuvant in the draining LNs. S-540956 accumulation in the draining LNs and activation of plasmacytoid dendritic cells (pDCs) were significantly higher than that of ODN2006. Mechanistic analysis revealed that S-540956 enhanced the induction of MHC class I peptide-specific CD8+ T cell responses via TLR9 in a CD4+ T cell-independent manner. In mice, the therapeutic effect of S-540956-adjuvanted with a human papillomavirus (HPV)-E7 peptide vaccine against HPV-E7-expressing TC-1 tumors was significantly better than that of an ODN2006-adjuvanted vaccine. Our findings demonstrate a novel adjuvant discovery with the complementary strand conjugated to a lipid, which enabled draining LN targeting and increased ODN2006 accumulation in draining LNs, thereby enhancing the adjuvant effect. Our findings imply that S-540956 is a promising adjuvant for cancer peptide vaccines and has a high potential for applications in various vaccines, including recombinant protein vaccines.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Tetsuya Tanino
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Motoyasu Onishi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Soichi Tofukuji
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takayuki Kanazawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Yukichi Ishioka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Itoh
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Akira Kugimiya
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Morio Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
19
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
20
|
Liang Y, Gong H, Li Y, Lu Y, Wu X, Zhang X, Ding D, Tang X, Tang Q. Aggregation-Induced Emission-Based Vaccine Improves Potential Antitumor Immunotherapy. J Biomed Nanotechnol 2021; 17:2053-2061. [PMID: 34706805 DOI: 10.1166/jbn.2021.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, immunomodulation based on biomaterials has held great promise for preventing and treating cancer. Tumor vaccination can be considered as one of promising immunotherapies, compared with the vaccines for infectious disease, it still stays in its infant. Herein, we designed a near-infrared-emitting AIEgens (named TPE-Ph-DCM) based vaccine as an adjuvant in enhancing immune response. AIE-based photodynamic vaccine exhibited efficiently enhancement of the DC?s antigen prestation and elicited antigen-specific cytotoxic T lymphocyte functionality, and significantly inhibited B16-OVA tumor growth prophylactically and therapeutically in mice model. This study is expected to provide a scientific basis for developing effective and safe tumor vaccines.
Collapse
Affiliation(s)
- Yong Liang
- Central and Clinical Laboratory, The Affiliated Huaian Hospital of Xuzhou Medical University and Huaian Second Hospital, Huaian, 223002, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Yan Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Xiaoqian Wu
- Central and Clinical Laboratory, The Affiliated Huaian Hospital of Xuzhou Medical University and Huaian Second Hospital, Huaian, 223002, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Tianjin, 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Tianjin, 300071, China
| | - Xiaolong Tang
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science & Technology, Huainan, 232001, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
21
|
Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer's disease pathology in aged squirrel monkeys. Brain 2021; 144:2146-2165. [PMID: 34128045 PMCID: PMC8502485 DOI: 10.1093/brain/awab129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis. Activated resident microglia and peripheral macrophages can display protective or detrimental phenotypes depending on the stimulus and environment. Toll-like receptors (TLRs) are a family of innate immune regulators known to play an important role in governing the phenotypic status of microglia. We have shown in multiple transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA) while promoting cognitive benefits. In the current study we have used a non-human primate model of sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. The major complications in current immunotherapeutic trials for Alzheimer's disease are amyloid-related imaging abnormalities, which are linked to the presence and extent of CAA; hence, the prominence of CAA in elderly squirrel monkeys makes them a valuable model for studying the safety of the CpG ODN-based concept of immunomodulation. We demonstrate that long-term use of Class B CpG ODN 2006 induces a favourable degree of innate immunity stimulation without producing excessive or sustained inflammation, resulting in efficient amelioration of both CAA and tau Alzheimer's disease-related pathologies in association with behavioural improvements and in the absence of microhaemorrhages in aged elderly squirrel monkeys. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. The present evidence together with our earlier, extensive preclinical research, validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach, increasing the likelihood of CpG ODN therapeutic efficacy in future clinical trials.
Collapse
Affiliation(s)
- Akash G Patel
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sara R Krivoshik
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Xuewei Pei
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth L Cho
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Margish D Ramani
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lawrence E Williams
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Henrieta Scholtzova
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| |
Collapse
|
22
|
Li C, Luo S, Wang J, Shen Z, Wu ZS. Nuclease-resistant signaling nanostructures made entirely of DNA oligonucleotides. NANOSCALE 2021; 13:7034-7051. [PMID: 33889882 DOI: 10.1039/d1nr00197c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleic acid probes have the advantages of excellent biocompatibility, biodegradability, versatile functionalities and remarkable programmability. However, the low biostability of nucleic acid probes under complex physiological conditions limits their in vivo application. Despite impressive progress in the development of inorganic material-mediated biostable nucleic acid nanostructures, uncertain systemic toxicity of composite nanocarriers has hindered their application in living organisms. In the field of biomedicine, as a promising alternative capable of avoiding potential cytotoxicity, biologically stable nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in recent years, offering an exciting in vivo tool for cancer diagnosis and clinical treatment. In this review, we summarize the recent advances in the development of nuclease-resistant DNA nanostructures with different geometrical shapes, such as tetrahedron, octahedron, DNA triangular prism (DTP), DNA nanotubes and DNA origami, introduce innovative assembly strategies, and discuss unique structural advantages and especially biological applications in cellular imaging and targeted drug delivery in an organism. Finally, we conclude with the challenges in the clinical development of DNA nanostructures and present an outlook of the future of this rapidly expanding field.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | | | | | | | | |
Collapse
|
23
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
24
|
Ham WK, Lee EJ, Jeon MS, Kim HY, Agrahari G, An EJ, Bang CH, Kim DS, Kim TY. Treatment with phosphodiester CpG-ODN ameliorates atopic dermatitis by enhancing TGF-β signaling. BMB Rep 2021. [PMID: 33612150 PMCID: PMC7907740 DOI: 10.5483/bmbrep.2021.54.2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Won-Kook Ham
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun-Jung Lee
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Myung Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22212, Korea
| | - Hae-Young Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gaurav Agrahari
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun-Joo An
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chul Hwan Bang
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Doo-Sik Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Corresponding author. Tel: +82-2-2258-7629; Fax: +82-2-3482-8261; E-mail:
| |
Collapse
|
25
|
Neuroinflammation in Prion Disease. Int J Mol Sci 2021; 22:ijms22042196. [PMID: 33672129 PMCID: PMC7926464 DOI: 10.3390/ijms22042196] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation, typically manifest as microglial activation and astrogliosis accompanied by transcriptomic alterations, represents a common hallmark of various neurodegenerative conditions including prion diseases. Microglia play an overall neuroprotective role in prion disease, whereas reactive astrocytes with aberrant phenotypes propagate prions and contribute to prion-induced neurodegeneration. The existence of heterogeneous subpopulations and dual functions of microglia and astrocytes in prion disease make them potential targets for therapeutic intervention. A variety of neuroinflammation-related molecules are involved in prion pathogenesis. Therapeutics targeting neuroinflammation represents a novel approach to combat prion disease. Deciphering neuroinflammation in prion disease will deepen our understanding of pathogenesis of other neurodegenerative disorders.
Collapse
|
26
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
27
|
Mollarasouli F, Badilli U, Bakirhan NK, Ozkan SA, Ozkan Y. Advanced DNA nanomachines: Strategies and bioapplications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Burn OK, Prasit KK, Hermans IF. Modulating the Tumour Microenvironment by Intratumoural Injection of Pattern Recognition Receptor Agonists. Cancers (Basel) 2020; 12:E3824. [PMID: 33352882 PMCID: PMC7765936 DOI: 10.3390/cancers12123824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Signalling through pattern recognition receptors (PRRs) leads to strong proinflammatory responses, enhancing the activity of antigen presenting cells and shaping adaptive immune responses against tumour associated antigens. Unfortunately, toxicities associated with systemic administration of these agonists have limited their clinical use to date. Direct injection of PRR agonists into the tumour can enhance immune responses by directly modulating the cells present in the tumour microenvironment. This can improve local antitumour activity, but importantly, also facilitates systemic responses that limit tumour growth at distant sites. As such, this form of therapy could be used clinically where metastatic tumour lesions are accessible, or as neoadjuvant therapy. In this review, we summarise current preclinical data on intratumoural administration of PRR agonists, including new strategies to optimise delivery and impact, and combination studies with current and promising new cancer therapies.
Collapse
Affiliation(s)
- Olivia K. Burn
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| | - Kef K. Prasit
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6042, New Zealand; (O.K.B.); (K.K.P.)
- Maurice Wilkins Centre, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
29
|
Araie Y, Ohtsuki S, Park S, Nagaoka M, Umemura K, Sugiyama H, Kusamori K, Takahashi Y, Takakura Y, Nishikawa M. Combined use of chemically modified nucleobases and nanostructured DNA for enhanced immunostimulatory activity of CpG oligodeoxynucleotide. Bioorg Med Chem 2020; 29:115864. [PMID: 33223462 DOI: 10.1016/j.bmc.2020.115864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oligodeoxynucleotide (ODN) containing a cytosine-phosphate-guanine (CpG) motif, or CpG ODN, is considered suitable for treating immune diseases, including allergies. Although the phosphorothioate modification is used to enhance the stability and immunostimulatory activity of CpG ODNs, it is associated with the risk of adverse effects. Construction of nanostructured DNA assemblies, such as tripod- and hexapod-like structured DNAs, tripodna and hexapodna, respectively, were also found to increase this activity. The chemical modification of nucleobases could be another approach for enhancing CpG ODN activity. Here, we examined whether chemically modified nucleobase substitutions can enhance CpG ODN activity by measuring tumor necrosis factor α (TNF-α) release after addition to murine macrophage-like RAW264.7 cells. First, the guanine at the 18th position of phosphodiester CpG 1668 was substituted with several chemically modified guanines, and then the various guanines were substituted. Among all tested substitutions, 15,18-thdG, in which two guanines outside the CpG motif were substituted with the 2-aminothieno[3,4-d]pyrimidine guanine mimic (thdG), was the most effective. Compared to 32P-CpG 1668, 32P-15,18-thdG was taken up more efficiently by the RAW264.7 cells. Then, 15,18-thdG was incorporated into tripodna and hexapodna. 15,18-thdG/tri- or hexapodna induced higher TNF-α release from the RAW264.7 cells than PO CpG 1668/tri- or hexapodna, respectively. These results indicate that the thdG substitution is a useful effective strategy for enhancing the immunostimulatory activity of CpG DNAs in both single stranded and DNA nanostructure forms.
Collapse
Affiliation(s)
- Yuki Araie
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shozo Ohtsuki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Nagaoka
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keisuke Umemura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
30
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
31
|
Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines (Basel) 2020; 8:vaccines8030433. [PMID: 32756368 PMCID: PMC7565178 DOI: 10.3390/vaccines8030433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.
Collapse
|
32
|
Papagno L, Kuse N, Lissina A, Gostick E, Price DA, Appay V, Nicoli F. The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8 + T-cell responses in vitro. Sci Rep 2020; 10:11620. [PMID: 32669577 PMCID: PMC7363897 DOI: 10.1038/s41598-020-67704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2'3'-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2'3'-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs.
Collapse
Affiliation(s)
- Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Anna Lissina
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
33
|
Harel M, Girard-Guyonvarc'h C, Rodriguez E, Palmer G, Gabay C. Production of IL-18 Binding Protein by Radiosensitive and Radioresistant Cells in CpG-Induced Macrophage Activation Syndrome. THE JOURNAL OF IMMUNOLOGY 2020; 205:1167-1175. [PMID: 32651219 DOI: 10.4049/jimmunol.2000168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
IL-18 binding protein (IL-18BP) acts as a naturally occurring IL-18 decoy receptor. If the balance between IL-18 and IL-18BP is dysregulated, abnormal levels of free bioactive IL-18 are detected, such as in the sera of Il-18bp knockout (KO) mice with CpG-induced macrophage activation syndrome. To determine the cellular sources of Il-18bp in vivo, we selectively depleted Il-18bp expression in either radiosensitive or radioresistant cells using bone marrow transfer between wild-type (WT) and Il-18bp KO mice. Following repeated CpG injections, Il-18bp KO (donor)→ Il-18bp KO (recipient) chimeric mice exhibited more severe disease, with an enhanced Ifn-γ signature and circulating free Il-18 levels, in comparison with WT→WT chimeras. Interestingly, the phenotype of KO→WT and WT→KO mice did not differ from that of WT→WT mice. Consistent with this finding, serum Il-18bp levels were similar in these three groups of mice. The contribution of radioresistant and radiosensitive cells to Il-18bp production varied markedly according to the organ examined, with a major contribution of radiosensitive cells in the spleen as opposed to a major contribution of radioresistant cells in the lung. Finally, Ifn-γ blockade abrogated the CpG-induced but not the constitutive Il-18bp production. Our results demonstrate that circulating Il-18bp is induced in response to Ifn-γ during CpG-induced macrophage activation syndrome and is present at high levels in the circulation to prevent the deleterious systemic effects of Il-18.
Collapse
Affiliation(s)
- Mathilde Harel
- Department of Pathology and Immunology, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Medicine, University Hospitals, CH-1211 Geneva 14, Switzerland
| | | | - Emiliana Rodriguez
- Department of Pathology and Immunology, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Medicine, University Hospitals, CH-1211 Geneva 14, Switzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Medicine, University Hospitals, CH-1211 Geneva 14, Switzerland
| | - Cem Gabay
- Department of Pathology and Immunology, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and .,Division of Rheumatology, Department of Medicine, University Hospitals, CH-1211 Geneva 14, Switzerland
| |
Collapse
|
34
|
Wang H, Yu W, Li H, Zheng Y, Chen Z, Lin H, Shen Y. N-Acetyl-l-Leucine-Polyethyleneimine-Mediated Delivery of CpG Oligodeoxynucleotides 2006 Inhibits RAW264.7 Cell Osteoclastogenesis. Drug Des Devel Ther 2020; 14:2657-2665. [PMID: 32764870 PMCID: PMC7368329 DOI: 10.2147/dddt.s241826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/03/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION CpG oligodeoxynucleotides (CpG ODN) play important roles in resisting inflammation and bone resorption. However, the inherent instability and rapid degradation hinder their wider application. This study aimed to evaluate whether N-acetyl-L-leucine-modified polyethyleneimine (N-Ac-L-Leu-PEI) could effectively deliver CpG ODN 2006 to RAW264.7 cells and and if it can regulate osteoclastogenesis in vitro. MATERIALS AND METHODS Gel retardation assay was conducted to evaluate whether N- Ac-L-Leu-PEI and CpG ODN could form a stable complex. RAW264.7 cells were divided into four groups of control group, ODN group, phosphorothioate ODN group and N-Ac-L-Leu-PEI/ODN group. Fluorescence assay was conducted to evaluate the transfection rate of ODNs in different groups. Cell viability was determined by MTT assay. Cell apoptosis was determined by live-dead cell staining and flow cytometry assay. Relative expression levels of osteoclastic differentiation factors, including Nfatc, c-fos, receptor activator of nuclear factor κB (RANK), and matrix metalloproteinase 9 (MMP9), were determined by real-time PCR and Western blot. RESULTS N-Ac-L-Leu-PEI and CpG ODN could form a stable complex at a mass ratio of 1:1 (w:w). MTT assay showed that the cell viability of N-Ac-L-Leu-PEI was relatively high even at a mass ratio of 8 μg/mL. The transfection rate of N-Ac-L-Leu-PEI-ODN complex was higher than 90%. The cell proliferation and apoptosis was significantly enhanced in N-Ac-L-Leu-PEI- CpG ODN group when compared to those in phosphorothioate CpG ODN. The expression levels of Nfatc, c-fos, RANK, and MMP9 were significantly decreased in N-Ac-L-Leu-PEI/ODN complex group. DISCUSSION N-Ac-L-Leu-PEI could be a potential gene vehicle for the prevention of periodontitis-mediated bone resorption.
Collapse
Affiliation(s)
- Huining Wang
- Department of Periodontics, Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou325027, Zhejiang Province, People’s Republic of China
| | - Wenwen Yu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021, People’s Republic of China
- Department of Orthodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin300041, People’s Republic of China
| | - Hongyan Li
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Yi Zheng
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin130061, People’s Republic of China
| | - Zhen Chen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Hongbing Lin
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Yuqin Shen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin130061, People’s Republic of China
| |
Collapse
|
35
|
Dobashi-Okuyama K, Kawakami K, Miyasaka T, Sato K, Ishii K, Kawakami K, Masuda C, Suzuki S, Kasamatsu J, Yamamoto H, Tanno D, Kanno E, Tanno H, Kawano T, Takayanagi M, Takahashi T, Ohno I. Novel Toll-Like Receptor 9 Agonist Derived from Cryptococcus neoformans Attenuates Allergic Inflammation Leading to Asthma Onset in Mice. Int Arch Allergy Immunol 2020; 181:651-664. [PMID: 32585675 DOI: 10.1159/000508535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The enhanced type 2 helper (Th2) immune response is responsible for the pathogenesis of allergic asthma. To suppress the enhanced Th2 immune response, activation of the Th1 immune response has been an alternative strategy for anti-asthma therapy. In this context, effective Th1-inducing adjuvants that inhibit the development of allergic asthma but do not flare the side effects of the primary agent are required in clinical treatment and preventive medicine. OBJECTIVE In this study, we aimed to determine the regulation of the Th2 type immune response in asthma by a novel immunostimulatory oligodeoxynucleotide (ODN) derived from Cryptococcus neoformans, termed ODN112, which contains a cytosine-guanine (CG) sequence but not canonical CpG motifs. METHODS Using an ovalbumin-induced asthma mouse model, we assessed the effect of ODN112 on prototypical asthma-related features in the lung and on the Th1/Th2 profile in the lymph nodes and lung of mice treated with ODN112 during sensitization. RESULTS AND CONCLUSION ODN112 treatment attenuated asthma features in mice. In the bronchial lymph nodes of the lungs and in the spleen, ODN112 increased interferon-γ production and attenuated Th2 recall responses. In dendritic cells (DCs) after allergen sensitization, ODN112 enhanced cluster of differentiation (CD) 40 and CD80 expression but did not alter CD86 expression. Interleukin-12p40 production from DCs was also increased in a Th2-polarizing condition. Our results suggest that ODN112 is a potential Th1-inducing adjuvant during Th2 cell differentiation in the sensitization phase.
Collapse
Affiliation(s)
- Kaori Dobashi-Okuyama
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan,
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chiaki Masuda
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Syugo Suzuki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
36
|
Babii O, Wang Z, Liu G, Martinez EC, van Drunen Littel-van den Hurk S, Chen L. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: Impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction. Int J Biol Macromol 2020; 159:46-56. [PMID: 32437810 DOI: 10.1016/j.ijbiomac.2020.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Although synthetic CpG oligodeoxynucleotides (ODNs) have shown substantial potential as immunotherapeutic agents, their effective intracellular delivery remains challenging. In this work, nanoparticles prepared from low-molecular weight (LMW) chitosans were investigated as CpG ODN delivery systems. Chitosan samples with a molecular weight (Mw) of 5 and 15 kDa and degree of deacetylation (DDA) of 50 and 80% were prepared. Additionally, mannosylated chitosans with a substitution degree of 15% were synthesized. The impact of LMW chitosan Mw and DDA on nanoparticle physical properties and the associated immunostimulatory effect in RAW 264.7 cells was studied. Nanoparticles prepared with chitosan of higher DDA and larger Mw exhibited better CpG ODN binding ability and intracellular uptake. Nevertheless, the most efficient immunostimulatory effect was observed while using 50% acetylated and mannosylated samples. The decreased charge density on chitosan backbone resulted in the enhanced intracellular CpG ODN release, which promoted in vitro cytokine secretion. Moreover, mannose ligand grafting promoted nanoparticle uptake through receptor-mediated recognition. Overall, this research suggests that chitosan structural parameters can be modulated to prepare LMW chitosan nanoparticles that first efficiently encapsulate CpG ODN, and then release it in immune cells, thus may be used as an efficient vector for intracellular CpG ODN delivery.
Collapse
Affiliation(s)
- Oksana Babii
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Zhenggang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guangyu Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
37
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|
38
|
Munakata L, Tanimoto Y, Osa A, Meng J, Haseda Y, Naito Y, Machiyama H, Kumanogoh A, Omata D, Maruyama K, Yoshioka Y, Okada Y, Koyama S, Suzuki R, Aoshi T. Lipid nanoparticles of Type-A CpG D35 suppress tumor growth by changing tumor immune-microenvironment and activate CD8 T cells in mice. J Control Release 2019; 313:106-119. [PMID: 31629036 DOI: 10.1016/j.jconrel.2019.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
Type-A CpG oligodeoxynucleotides (ODNs), which have a natural phosphodiester backbone, is one of the highest IFN-α inducer from plasmacytoid dendritic cells (pDC) via Toll-like receptor 9 (TLR9)-dependent signaling. However, the in vivo application of Type-A CpG has been limited because the rapid degradation in vivo results in relatively weak biological effect compared to other Type-B, -C, and -P CpG ODNs, which have nuclease-resistant phosphorothioate backbones. To overcome this limitation, we developed lipid nanoparticles formulation containing a Type-A CpG ODN, D35 (D35LNP). When tested in a mouse tumor model, intratumoral and intravenous D35LNP administration significantly suppressed tumor growth in a CD8 T cell-dependent manner, whereas original D35 showed no efficacy. Tumor suppression was associated with Th1-related gene induction and activation of CD8 T cells in the tumor. The combination of D35LNP and an anti-PD-1 antibody increased the therapeutic efficacy. Importantly, the therapeutic schedule and dose of intravenous D35LNP did not induce apparent liver toxicity. These results suggested that D35LNP is a safe and effective immunostimulatory drug formulation for cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan
| | - Yoshihiko Tanimoto
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Jie Meng
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yasunari Haseda
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Hirotomo Machiyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan
| | - Kazuo Maruyama
- Laboratory of Ultrasound Theranostics, Faculty of Pharma-Science, Teikyo University, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Japan.
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
39
|
Popescu M, Cabrera-Martinez B, Winslow GM. TNF-α Contributes to Lymphoid Tissue Disorganization and Germinal Center B Cell Suppression during Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2415-2424. [PMID: 31570507 DOI: 10.4049/jimmunol.1900484] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.
Collapse
Affiliation(s)
- Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| |
Collapse
|
40
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
41
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
42
|
von Gamm M, Schaub A, Jones AN, Wolf C, Behrens G, Lichti J, Essig K, Macht A, Pircher J, Ehrlich A, Davari K, Chauhan D, Busch B, Wurst W, Feederle R, Feuchtinger A, Tschöp MH, Friedel CC, Hauck SM, Sattler M, Geerlof A, Hornung V, Heissmeyer V, Schulz C, Heikenwalder M, Glasmacher E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med 2019; 216:1700-1723. [PMID: 31126966 PMCID: PMC6605757 DOI: 10.1084/jem.20181762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/15/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.
Collapse
Affiliation(s)
- Matthias von Gamm
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Christine Wolf
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gesine Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Lichti
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Essig
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Anna Macht
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | | | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg-Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany .,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
43
|
Hu J, Xu J, Li M, Zhang Y, Yi H, Chen J, Dong L, Zhang J, Huang Z. Targeting Lymph Node Sinus Macrophages to Inhibit Lymph Node Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:650-662. [PMID: 31121477 PMCID: PMC6529739 DOI: 10.1016/j.omtn.2019.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
Lymph nodes are important peripheral immune organs in which numerous important immune responses occur. During the process of lymphatic metastasis, lymph nodes are also sites through which tumor cells must pass. Therefore, it is essential to develop a drug delivery system that can specifically transfer immunostimulatory medicine into lymph nodes to block lymphatic metastasis. Here, we developed a nucleic acid drug delivery system containing cationic agarose (C-agarose) and CpG oligodeoxynucleotides. C-agarose has a high affinity for Siglec-1 on the surface of lymph node sinus macrophages, which have a high specificity for targeting lymph nodes. Subcutaneous implantation of C-agarose+CpG gel caused the accumulation of CpG in the lymph node sinus macrophages and generated antitumor immune responses in the lymph node. C-agarose+CpG gel treatment decreased the metastasis size in the tumor-draining lymph node (TDLN) and lung metastatic nodules and suppressed tumor growth in both a mouse 4T1 breast cancer model and a B16F10 melanoma model. On this basis, this study proposes a nonsurgical invasive lymph node targeting immunotherapy concept that may provide a new approach for antitumor metastasis.
Collapse
Affiliation(s)
- Junqing Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jinhao Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Mingyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yanping Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Huaiqiang Yi
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Lei Dong
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
44
|
EnanDIM - a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy. J Immunother Cancer 2019; 7:5. [PMID: 30621769 PMCID: PMC6323716 DOI: 10.1186/s40425-018-0470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Toll-like receptor 9 agonists are potent activators of the immune system. Their clinical potential in immunotherapy against metastatic cancers is being evaluated across a number of clinical trials. TLR9 agonists are DNA-based molecules that contain several non-methylated CG-motifs for TLR9 recognition. Chemical modifications of DNA backbones are usually employed to prevent degradation by nucleases. These, however, can promote undesirable off-target effects and therapeutic restrictions. Methods Within the EnanDIM® family members of TLR9 agonists described here, D-deoxyribose nucleotides at the nuclease-accessible 3′-ends are replaced by nuclease-resistant L-deoxyribose nucleotides. EnanDIM® molecules with varying sequences were screened for their activation of human peripheral blood mononuclear cells based on secretion of IFN-alpha and IP-10 as well as activation of immune cells. Selected molecules were evaluated in mice in a maximum feasible dose study and for analysis of immune activation. The ability to modulate the tumor-microenvironment and anti-tumor responses after EnanDIM® administration was analyzed in syngeneic murine tumor models. Results The presence of L-deoxyribose containing nucleotides at their 3′-ends is sufficient to prevent EnanDIM® molecules from nucleolytic degradation. EnanDIM® molecules show broad immune activation targeting specific components of both the innate and adaptive immune systems. Activation was strictly dependent on the presence of CG-motifs, known to be recognized by TLR9. The absence of off-target effects may enable a wide therapeutic window. This advantageous anti-tumoral immune profile also promotes increased T cell infiltration into CT26 colon carcinoma tumors, which translates into reduced tumor growth. EnanDIM® molecules also drove regression of multiple other murine syngeneic tumors including MC38 colon carcinoma, B16 melanoma, A20 lymphoma, and EMT-6 breast cancer. In A20 and EMT-6, EnanDIM® immunotherapy cured a majority of mice and established persistent anti-tumor immune memory as evidenced by the complete immunity of these mice to subsequent tumor re-challenge. Conclusions In summary, EnanDIM® comprise a novel family of TLR9 agonists that facilitate an efficacious activation of both innate and adaptive immunity. Their proven potential in onco-immunotherapy, as shown by cytotoxic activity, beneficial modulation of the tumor microenvironment, inhibition of tumor growth, and induction of long-lasting, tumor-specific memory, supports EnanDIM® molecules for further preclinical and clinical development. Electronic supplementary material The online version of this article (10.1186/s40425-018-0470-3) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Wisniewski T, Drummond E. Future horizons in Alzheimer's disease research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:223-241. [PMID: 31699317 DOI: 10.1016/bs.pmbts.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are growing genetic, transcriptomic and proteomic data pointing to the complexity of Alzheimer's disease (AD) pathogenesis. Unbiased "omics" approaches are essential for the future development of effective AD research, which will need to be combined and personalized, given that multiple distinct pathways can drive AD pathology. It is essential to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity, as well as the common presence of mixed pathologies. These nonmutually exclusive therapeutic approaches include the targeting of multiple toxic oligomeric species concurrently, targeting the apolipoprotein E/amyloid β interaction and the modulation of innate immunity, as well as more "out of the box" ideas such as targeting infectious agents that may play a role in AD.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States.
| | - Eleanor Drummond
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Carroll JA, Race B, Williams K, Chesebro B. Toll-like receptor 2 confers partial neuroprotection during prion disease. PLoS One 2018; 13:e0208559. [PMID: 30596651 PMCID: PMC6312208 DOI: 10.1371/journal.pone.0208559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation and neurodegeneration are common during prion infection, but the mechanisms that underlie these pathological features are not well understood. Several components of innate immunity, such as Toll-like receptor (TLR) 4 and Complement C1q, have been shown to influence prion disease. To identify additional components of innate immunity that might impact prion disease within the central nervous system (CNS), we screened RNA from brains of pre-clinical and clinical 22L-infected mice for alterations in genes associated with innate immunity. Transcription of several genes encoding damage-associated molecular pattern (DAMP) proteins and receptors were increased in the brains of prion-infected mice. To investigate the role of some of these proteins in prion disease of the CNS, we infected mice deficient in DAMP receptor genes Tlr2, C3ar1, and C5ar1 with 22L scrapie. Elimination of TLR2 accelerated disease by a median of 10 days, while lack of C3aR1 or C5aR1 had no effect on disease tempo. Histopathologically, all knockout mouse strains tested were similar to infected control mice in gliosis, vacuolation, and PrPSc deposition. Analysis of proinflammatory markers in the brains of infected knockout mice indicated only a few alterations in gene expression suggesting that C5aR1 and TLR2 signaling did not act synergistically in the brains of prion-infected mice. These results indicate that signaling through TLR2 confers partial neuroprotection during prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| |
Collapse
|
47
|
Dominguez-Molina B, Machmach K, Perales C, Tarancon-Diez L, Gallego I, Sheldon JL, Leal M, Domingo E, Ruiz-Mateos E. Toll-Like Receptor 7 (TLR-7) and TLR-9 Agonists Improve Hepatitis C Virus Replication and Infectivity Inhibition by Plasmacytoid Dendritic Cells. J Virol 2018; 92:e01219-18. [PMID: 30232187 PMCID: PMC6232477 DOI: 10.1128/jvi.01219-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells with high antiviral activity triggered by Toll-like receptor 7 (TLR-7) and TLR-9 stimulation. Moreover, they are important mediators between innate and adaptive immunity. Although nowadays there is available an effective therapeutic arsenal against hepatitis C virus (HCV), a protective vaccine is not available. We have analyzed the pDCs' response to HCV infection in a hepatitis C virus (HCV)-Huh7.5 virus-cell system, which allows completion of the virus infectious cycle. pDCs were cocultured following human immunodeficiency virus (HIV) aldrithiol-2 (AT-2 [TLR-7 agonist]) inactivation and CpG (TLR-9 agonist) stimulation. We employed three virus derivatives-wild-type Jc1, interferon (IFN)-resistant virus IR, and high-replicative-fitness virus P100-in order to explore additional IFN-α-related virus inhibition mechanisms. pDCs inhibited HCV infectivity and replication and produced IFN-α. After TLR-7 and TLR-9 stimulation, inhibition of infectivity and IFN-α production by pDCs were enhanced. TLR-7 stimulation drove higher TNF-related apoptosis-inducing ligand (TRAIL) expression in pDCs. Additionally, TLR-7- and TLR-9-stimulated pDCs exhibited a mature phenotype, improving the antigen presentation and lymph node homing-related markers. In conclusion, pDCs could serve as a drug target against HCV in order to improve antiviral activity and as an enhancer of viral immunization.IMPORTANCE We implemented a coculture system of pDCs with HCV-infected hepatoma cell line, Huh7.5. We used three HCV derivatives in order to gain insight into pDCs' behavior against HCV and associated antiviral mechanisms. The results with this cell coculture system support the capacity of pDCs to inhibit HCV replication and infectivity mainly via IFN-α, but also through additional mechanisms associated with pDC maturation. We provided evidence that TLR agonists can enhance antiviral pDCs' function and can induce phenotypic changes that may facilitate the interplay with other immune cells. These findings suggest the possibility of including TLR agonists in the strategies of HCV vaccine development.
Collapse
Affiliation(s)
- B Dominguez-Molina
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - K Machmach
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- California National Primate Research Center, Davis, California, USA
| | - C Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - L Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - I Gallego
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - J L Sheldon
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Leal
- Servicio de Medicina Interna, Hospital Viamed, Santa Ángela de la Cruz, Seville, Spain
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - E Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - E Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
48
|
Seo JW, Tavaré R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW. CD8 + T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 2018; 24:4976-4987. [PMID: 29967252 PMCID: PMC6215696 DOI: 10.1158/1078-0432.ccr-18-0261] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/06/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Purpose: Noninvasive and quantitative tracking of CD8+ T cells by PET has emerged as a potential technique to gauge response to immunotherapy. We apply an anti-CD8 cys-diabody, labeled with 64Cu, to assess the sensitivity of PET imaging of normal and diseased tissue.Experimental Design: Radiolabeling of an anti-CD8 cys-diabody (169cDb) with 64Cu was developed. The accumulation of 64Cu-169cDb was evaluated with PET/CT imaging (0, 5, and 24 hours) and biodistribution (24 hours) in wild-type mouse strains (n = 8/group studied with imaging and IHC or flow cytometry) after intravenous administration. Tumor-infiltrating CD8+ T cells in tumor-bearing mice treated with CpG and αPD-1 were quantified and mapped (n = 6-8/group studied with imaging and IHC or flow cytometry).Results: We demonstrate the ability of immunoPET to detect small differences in CD8+ T-cell distribution between mouse strains and across lymphoid tissues, including the intestinal tract of normal mice. In FVB mice bearing a syngeneic HER2-driven model of mammary adenocarcinoma (NDL), 64Cu-169cDb PET imaging accurately visualized and quantified changes in tumor-infiltrating CD8+ T cells in response to immunotherapy. A reduction in the circulation time of the imaging probe followed the development of treatment-related liver and splenic hypertrophy and provided an indication of off-target effects associated with immunotherapy protocols.Conclusions: 64Cu-169cDb imaging can spatially map the distribution of CD8+ T cells in normal organs and tumors. ImmunoPET imaging of tumor-infiltrating cytotoxic CD8+ T cells detected changes in T-cell density resulting from adjuvant and checkpoint immunotherapy protocols in our preclinical evaluation. Clin Cancer Res; 24(20); 4976-87. ©2018 AACR.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
49
|
Su Y, Liu M, Liang K, Liu X, Song Y, Deng Y. Evaluating the Accelerated Blood Clearance Phenomenon of PEGylated Nanoemulsions in Rats by Intraperitoneal Administration. AAPS PharmSciTech 2018; 19:3210-3218. [PMID: 30187444 DOI: 10.1208/s12249-018-1120-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
The accelerated blood clearance (ABC) phenomenon is induced by repeated intravenous injection of stealth polyethylene glycol (PEG) nanocarriers and appears as the alteration of the pharmacokinetics and biodistribution of the second administration. Nevertheless, there is no any report about the ABC phenomenon induced by intraperitoneal administration of PEGylated nanocarriers. In this study, we firstly observed whether the ABC phenomenon is induced with PEGylated nanoemulsion at the dose of 0.5~100 μmol phospholipid·kg-1 by intraperitoneal/intravenous injections in rats. The PEG (molecule weight, 2000)-modified nanoemulsions PE-B and PE in which fluorescence indicator dialkylcarbocyanines (DiR) is encapsulated by PE-B were prepared for this work. The pharmacokinetics of the first injected PE via veins or peritoneal cavity features different variation trends. Moreover, the tissue distributions (in vivo or in vitro) of the first injected PE by intraperitoneal injection reveals that the PE gains access to the whole lymphatic circulatory system. Furthermore, our results demonstrate that the ABC phenomenon can be induced by intraperitoneal administration PE-B and present obvious changes with varying PE-B concentration 0.5~100 μmol phospholipid·kg-1. Moreover, an interesting point is that the ABC phenomenon induced by intraperitoneal injected PE-B can be significantly inhibited by intraperitoneal pre-injection of distilled water. For understanding this issue clear, we studied the production of anti-PEG IgM and the characteristic morphologies of immune cells. We observed that the mast cells in peritoneal cavity exhibit rapid depletion in response to the intraperitoneal pre-injection of distilled water, while the anti-PEG IgM secretes at the same level.
Collapse
|
50
|
Hu Q, Wang S, Wang L, Gu H, Fan C. DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Adv Healthc Mater 2018; 7:e1701153. [PMID: 29356400 DOI: 10.1002/adhm.201701153] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Indexed: 12/15/2022]
Abstract
In the beginning of the 21st century, therapeutic oligonucleotides have shown great potential for the treatment of many life-threatening diseases. However, effective delivery of therapeutic oligonucleotides to the targeted location in vivo remains a major issue. As an emerging field, DNA nanotechnology is applied in many aspects including bioimaging, biosensing, and drug delivery. With sequence programming and optimization, a series of DNA nanostructures can be precisely engineered with defined size, shape, surface chemistry, and function. Simply with hybridization, therapeutic oligonucleotides including unmethylated cytosine-phosphate-guanine dinucleotide oligos, small interfering RNA (siRNA) or antisense RNA, single guide RNA of the regularly interspaced short palindromic repeat-Cas9 system, and aptamers, are successfully loaded on DNA nanostructures for delivery. In this progress report, the development history of DNA nanotechnology is first introduced, and then the mechanisms and means for cellular uptake of DNA nanostructures are discussed. Next, current approaches to deliver therapeutic oligonucleotides with DNA nanovehicles are summarized. In the end, the challenges and opportunities for DNA nanostructure-based systems for the delivery of therapeutic oligonucleotides are discussed.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Sheng Wang
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|