1
|
Paul T, See JW, Vijayakumar V, Njideaka-Kevin T, Loh H, Lee VJQ, Dogrul BN. Neurostructural changes in schizophrenia and treatment-resistance: a narrative review. PSYCHORADIOLOGY 2024; 4:kkae015. [PMID: 39399446 PMCID: PMC11467815 DOI: 10.1093/psyrad/kkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
Schizophrenia is a complex disorder characterized by multiple neurochemical abnormalities and structural changes in the brain. These abnormalities may begin before recognizable clinical symptoms appear and continue as a dynamic process throughout the illness. Recent advances in imaging techniques have significantly enriched our comprehension of these structural alterations, particularly focusing on gray and white matter irregularities and prefrontal, temporal, and cingulate cortex alterations. Some of the changes suggest treatment resistance to antipsychotic medications, while treatment nonadherence and relapses may further exacerbate structural abnormalities. This narrative review aims to discuss the literature about alterations and deficits within the brain, which could improve the understanding of schizophrenia and how to interpret neurostructural changes.
Collapse
Affiliation(s)
- Tanya Paul
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Jia Whei See
- General Medicine, Universitas Sriwijaya, Palembang City 30114, Indonesia
| | - Vetrivel Vijayakumar
- Department of Psychiatry, United Health Services Hospitals, Johnson City, New York 13790, USA
| | - Temiloluwa Njideaka-Kevin
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Hanyou Loh
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Vivian Jia Qi Lee
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Bekir Nihat Dogrul
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
2
|
Shi Z, Li X, Todaro DR, Cao W, Lynch KG, Detre JA, Loughead J, Langleben DD, Wiers CE. Medial prefrontal neuroplasticity during extended-release naltrexone treatment of opioid use disorder - a longitudinal structural magnetic resonance imaging study. Transl Psychiatry 2024; 14:360. [PMID: 39237534 PMCID: PMC11377591 DOI: 10.1038/s41398-024-03061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Opioid use disorder (OUD) has been linked to macroscopic structural alterations in the brain. The monthly injectable, extended-release formulation of μ-opioid antagonist naltrexone (XR-NTX) is highly effective in reducing opioid craving and preventing opioid relapse. Here, we investigated the neuroanatomical effects of XR-NTX by examining changes in cortical thickness during treatment for OUD. Forty-seven OUD patients underwent structural magnetic resonance imaging and subjectively rated their opioid craving ≤1 day before (pre-treatment) and 11 ± 3 days after (on-treatment) the first XR-NTX injection. A sample of fifty-six non-OUD individuals completed a single imaging session and served as the comparison group. A publicly available [¹¹C]carfentanil positron emission tomography dataset was used to assess the relationship between changes in cortical thickness and μ-opioid receptor (MOR) binding potential across brain regions. We found that the thickness of the medial prefrontal and anterior cingulate cortices (mPFC/aCC; regions with high MOR binding potential) was comparable between the non-OUD individuals and the OUD patients at pre-treatment. However, among the OUD patients, mPFC/aCC thickness significantly decreased from pre-treatment to on-treatment. A greater reduction in mPFC/aCC thickness was associated with a greater reduction in opioid craving. Taken together, our study suggests XR-NTX-induced cortical thickness reduction in the mPFC/aCC regions in OUD patients. The reduction in thickness does not appear to indicate a restoration to the non-OUD level but rather reflects XR-NTX's distinct therapeutic impact on an MOR-rich brain structure. Our findings highlight the neuroplastic effects of XR-NTX that may inform the development of novel OUD interventions.
Collapse
Affiliation(s)
- Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin R Todaro
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wen Cao
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin G Lynch
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Loughead
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel D Langleben
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corinde E Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Sudimac S, Kühn S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. ENVIRONMENTAL RESEARCH 2024; 262:119813. [PMID: 39155041 DOI: 10.1016/j.envres.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
In cities, the incidence of mental disorders is higher, while visits to nature have been reported to benefit mental health and brain function. However, there is a lack of knowledge about how exposure to natural and urban environments affects brain structure. To explore the causal relationship between exposure to these environments and the hippocampal formation, 60 participants were sent on a one hour walk in either a natural (forest) or an urban environment (busy street), and high-resolution hippocampal imaging was performed before and after the walks. We found that the participants who walked in the forest had an increase in subiculum volume, a hippocampal subfield involved in stress response inhibition, while no change was observed after the urban walk. However, this result did not withstand Bonferroni correction for multiple comparisons. Furthermore, the increase in subiculum volume after the forest walk was associated with a decrease in self-reported rumination. These results indicate that visits to nature can lead to observable alterations in brain structure, with potential benefits for mental health and implications for public health and urban planning policies.
Collapse
Affiliation(s)
- Sonja Sudimac
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany.
| | - Simone Kühn
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
4
|
Schulmann A, Marenco S, Vawter MP, Akula N, Limon A, Mandal A, Auluck PK, Patel Y, Lipska BK, McMahon FJ. Antipsychotic drug use complicates assessment of gene expression changes associated with schizophrenia. Transl Psychiatry 2023; 13:93. [PMID: 36932057 PMCID: PMC10023659 DOI: 10.1038/s41398-023-02392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not. APD exposure was associated with numerous changes in the brain transcriptome, especially among SCZ patients on atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. Co-expression modules enriched for synaptic function showed convergent patterns between SCZ and some of the APD effects, while those associated with inflammation and glucose metabolism exhibited predominantly divergent patterns between SCZ and APD effects. In contrast, major cell-type shifts inferred in SCZ were primarily unaffected by APD use. These results show that APDs may confound SCZ-associated gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of SCZ.
Collapse
Affiliation(s)
- Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Agenor Limon
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Yash Patel
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Barbara K Lipska
- Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| |
Collapse
|
5
|
Lowe XR, Merchant M, A Whitmer R. Antipsychotic Medication Risk of Dementia and Death: A Propensity Matched Cohort Study. Curr Drug Res Rev 2022; 14:139-147. [PMID: 35232344 DOI: 10.2174/2589977514666220301102717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to compare the incidence of dementia and all-cause mortality up to 20 years post-treatment in an index non-demented cohort between antipsychotic (AP) medication treatment and non-AP treatment groups. METHOD All patients in Kaiser Permanente Northern California with a major psychiatric diagnosis between 01/01/1996 and 12/31/2000, age ≥ 50 years, and without dementia diagnosis were included. The study cohort was divided into a "user group", patients treated with AP for ≥ 365 days (n = 1,829), and a "non-user group", propensity score matched on age, sex, and race (n = 9,145). The association between AP exposure and dementia or mortality during the follow-up period (01/01/2001-12/31/2015) was evaluated using Cox proportional hazard models adjusted for psychiatric diagnosis, comorbidities, and other medications. The user group had a hazard ratio (HR) of 2.2 (CI 1.8-2.7) for dementia and 1.3 (CI 1.2-1.5) for death. The onset of dementia in the user group was significantly higher in patients aged ≤ 65 years (p < 0.001). The user group was sub-grouped into atypical, typical, and both; HR for dementia was 1.7 (CI 1.2-2.4), 2.5 (CI 1.9-3.1), and 1.8 (CI 1.4-2.4), respectively. RESULT Dementia and mortality were significantly higher in patients concurrently treated with benzodiazepine (HR 1.3; CI 1.2-1.5 and HR 1.4; CI 1.3-1.5) or tricyclic antidepressants (HR 1.2; CI 1.1-1.4 and HR 1.1; CI 1.0-1.2), respectively. CONCLUSION Our preliminary results reveal an association between AP treatment and increased rates of both dementia and mortality. Future research is needed to substantiate our current findings.
Collapse
Affiliation(s)
- Xiu R Lowe
- Department of Mental Health and Addiction Medicine, Kaiser Permanente Northern California, Union City, CA
| | - Maqdooda Merchant
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | |
Collapse
|
6
|
Kühn S, Mascherek A, Filevich E, Lisofsky N, Becker M, Butler O, Lochstet M, Mårtensson J, Wenger E, Lindenberger U, Gallinat J. Spend time outdoors for your brain - an in-depth longitudinal MRI study. World J Biol Psychiatry 2022; 23:201-207. [PMID: 34231438 DOI: 10.1080/15622975.2021.1938670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The effects of nature on physical and mental health are an emerging topic in empirical research with increasing influence on practical health recommendations. Here we set out to investigate the association between spending time outdoors and brain structural plasticity in conjunctions with self-reported affect. METHODS We established the Day2day study, which includes an unprecedented in-depth assessment of variability of brain structure in a serial sequence of 40-50 structural magnetic resonance imaging (MRI) acquisitions of each of six young healthy participants for 6-8 months (n = 281 MRI scans in total). RESULTS A whole-brain analysis revealed that time spent outdoors was positively associated with grey matter volume in the right dorsolateral prefrontal cortex and positive affect, also after controlling for physical activity, fluid intake, free time, and hours of sunshine. CONCLUSIONS Results indicate remarkable and potentially behaviorally relevant plasticity of cerebral structure within a short time frame driven by the daily time spent outdoors. This is compatible with anecdotal evidence of the health and mood-promoting effects of going for a walk. The study may provide the first evidence for underlying cerebral mechanisms of so-called green prescriptions with possible consequences for future interventions in mental disorders.
Collapse
Affiliation(s)
- Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.,Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Mascherek
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Filevich
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Institute for Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Lisofsky
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Maxi Becker
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Oisin Butler
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Johan Mårtensson
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Jürgen Gallinat
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Månsson KNT, Lasselin J, Karshikoff B, Axelsson J, Engler H, Schedlowski M, Benson S, Petrovic P, Lekander M. Anterior insula morphology and vulnerability to psychopathology-related symptoms in response to acute inflammation. Brain Behav Immun 2022; 99:9-16. [PMID: 34547400 DOI: 10.1016/j.bbi.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The role of inflammation in common psychiatric diseases is now well acknowledged. However, the factors and mechanisms underlying inter-individual variability in the vulnerability to develop psychopathology-related symptoms in response to inflammation are not well characterized. Herein, we aimed at investigating morphological brain regions central for interoception and emotion regulation, and if these are associated with acute inflammation-induced sickness and anxiety responses. METHODS Systemic inflammation was induced using an intravenous injection of lipopolysaccharide (LPS) at a dose of 0.6 ng/kg body weight in 28 healthy individuals, while 21 individuals received an injection of saline (placebo). Individuals' gray matter volume was investigated by automated voxel-based morphometry technique on T1-weighted anatomical images derived from magnetic resonance imaging (MRI). Plasma concentrations of TNF-α and IL-6, sickness symptoms (SicknessQ), and state anxiety (STAI-S) were measured before and after the injection. RESULTS A stronger sickness response to LPS was significantly associated with a larger anterior insula gray matter volume, independently from increases in cytokine concentrations, age, sex and body mass index (R2 = 65.6%). Similarly, a greater LPS-induced state anxiety response was related to a larger anterior insula gray matter volume, and also by a stronger increase in plasma TNF-α concentrations (R2 = 40.4%). DISCUSSION Anterior insula morphology appears central in the sensitivity to develop symptoms of sickness and anxiety in response to inflammation, and could thus be one risk factor in inflammation-related psychopathologies. Because of the limited sample size, the current results need to be replicated.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany/United Kingdom; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden.
| | - Julie Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Predrag Petrovic
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden; Neuro Division, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
8
|
Broessner G, Ellerbrock I, Menz MM, Frank F, Verius M, Gaser C, May A. Repetitive T1 Imaging Influences Gray Matter Volume Estimations in Structural Brain Imaging. Front Neurol 2021; 12:755749. [PMID: 34777226 PMCID: PMC8581175 DOI: 10.3389/fneur.2021.755749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Voxel-based morphometry (VBM) is a widely used tool for studying structural patterns of brain plasticity, brain development and disease. The source of the T1-signal changes is not understood. Most of these changes are discussed to represent loss or possibly gain of brain gray matter and recent publications speculate also about non-structural changes affecting T1-signal. We investigated the potential of pain stimulation to ultra-short-term alter gray matter signal changes in pain relevant brain regions in healthy volunteers using a longitudinal design. Immediately following regional nociceptive input, we detected significant gray matter volume (GMV) changes in central pain processing areas, i.e. anterior cingulate and insula cortex. However, similar results were observed in a control group using the identical time intervals but without nociceptive painful input. These GMV changes could be reproduced in almost 100 scanning sessions enrolling 72 healthy individuals comprising repetitive magnetization-prepared rapid gradient-echo (MPRAGE) sequences. These data suggest that short-term longitudinal repetitive MPRAGE may produce significant GMV changes without any intervention. Future studies investigating brain plasticity should focus and specifically report a consistent timing at which time-point during the experiment the T1-weighted scan is conducted. There is a necessity of a control group for longitudinal imaging studies.
Collapse
Affiliation(s)
- Gregor Broessner
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Ellerbrock
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Frank
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Verius
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Gaser
- Departments of Neurology and Psychiatry, Jena University Hospital, Jena, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Månsson KNT, Cortes DS, Manzouri A, Li TQ, Hau S, Fischer H. Viewing Pictures Triggers Rapid Morphological Enlargement in the Human Visual Cortex. Cereb Cortex 2021; 30:851-857. [PMID: 31408088 PMCID: PMC7132946 DOI: 10.1093/cercor/bhz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Measuring brain morphology with non-invasive structural magnetic resonance imaging is common practice, and can be used to investigate neuroplasticity. Brain morphology changes have been reported over the course of weeks, days, and hours in both animals and humans. If such short-term changes occur even faster, rapid morphological changes while being scanned could have important implications. In a randomized within-subject study on 47 healthy individuals, two high-resolution T1-weighted anatomical images were acquired (á 263 s) per individual. The images were acquired during passive viewing of pictures or a fixation cross. Two common pipelines for analyzing brain images were used: voxel-based morphometry on gray matter (GM) volume and surface-based cortical thickness. We found that the measures of both GM volume and cortical thickness showed increases in the visual cortex while viewing pictures relative to a fixation cross. The increase was distributed across the two hemispheres and significant at a corrected level. Thus, brain morphology enlargements were detected in less than 263 s. Neuroplasticity is a far more dynamic process than previously shown, suggesting that individuals’ current mental state affects indices of brain morphology. This needs to be taken into account in future morphology studies and in everyday clinical practice.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, SE-17177 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE-75142 Uppsala, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Amir Manzouri
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention and Technology, Division of Functional Imaging and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.,Department of Medical Radiation and Nuclear Medicine, C2-76, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Stephan Hau
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
10
|
Kim WS, Shen G, Liu C, Kang NI, Lee KH, Sui J, Chung YC. Altered amygdala-based functional connectivity in individuals with attenuated psychosis syndrome and first-episode schizophrenia. Sci Rep 2020; 10:17711. [PMID: 33077769 PMCID: PMC7573592 DOI: 10.1038/s41598-020-74771-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Medical School, Jeonbuk National University, Geonjiro 20, Jeonju, Korea
| | - Guangfan Shen
- Department of Psychiatry, Medical School, Jeonbuk National University, Geonjiro 20, Jeonju, Korea
| | - Congcong Liu
- Department of Psychiatry, Medical School, Jeonbuk National University, Geonjiro 20, Jeonju, Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Jeollabuk-do, Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Jeollabuk-do, Korea
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Young-Chul Chung
- Department of Psychiatry, Medical School, Jeonbuk National University, Geonjiro 20, Jeonju, Korea. .,Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
11
|
Acosta H, Kantojärvi K, Tuulari JJ, Lewis JD, Hashempour N, Scheinin NM, Lehtola SJ, Fonov VS, Collins DL, Evans A, Parkkola R, Lähdesmäki T, Saunavaara J, Merisaari H, Karlsson L, Paunio T, Karlsson H. Sex-specific association between infant caudate volumes and a polygenic risk score for major depressive disorder. J Neurosci Res 2020; 98:2529-2540. [PMID: 32901998 DOI: 10.1002/jnr.24722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Polygenic risk scores for major depressive disorder (PRS-MDD) have been identified in large genome-wide association studies, and recent findings suggest that PRS-MDD might interact with environmental risk factors to shape human limbic brain development as early as in the prenatal period. Striatal structures are crucially involved in depression; however, the association of PRS-MDD with infant striatal volumes is yet unknown. In this study, 105 Finnish mother-infant dyads (44 female, 11-54 days old) were investigated to reveal how infant PRS-MDD is associated with infant dorsal striatal volumes (caudate, putamen) and whether PRS-MDD interacts with prenatal maternal depressive symptoms (Edinburgh Postnatal Depression Scale, gestational weeks 14, 24, 34) on infant striatal volumes. A robust sex-specific main effect of PRS-MDD on bilateral infant caudate volumes was observed. PRS-MDD were more positively associated with caudate volumes in boys compared to girls. No significant interaction effects of genotype PRS-MDD with the environmental risk factor "prenatal maternal depressive symptoms" (genotype-by-environment interaction) nor significant interaction effects of genotype with prenatal maternal depressive symptoms and sex (genotype-by-environment-by-sex interaction) were found for infant dorsal striatal volumes. Our study showed that a higher PRS-MDD irrespective of prenatal exposure to maternal depressive symptoms is associated with smaller bilateral caudate volumes, an indicator of greater susceptibility to major depressive disorder, in female compared to male infants. This sex-specific polygenic effect might lay the ground for the higher prevalence of depression in women compared to men.
Collapse
Affiliation(s)
- Henriette Acosta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Katri Kantojärvi
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Helsinki, Finland.,Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Turku Collegium for Science and Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Niloofar Hashempour
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Vladimir S Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland.,Center of Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Tiina Paunio
- Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Helsinki, Finland.,Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Dipasquale O, Martins D, Sethi A, Veronese M, Hesse S, Rullmann M, Sabri O, Turkheimer F, Harrison NA, Mehta MA, Cercignani M. Unravelling the effects of methylphenidate on the dopaminergic and noradrenergic functional circuits. Neuropsychopharmacology 2020; 45:1482-1489. [PMID: 32473593 PMCID: PMC7360745 DOI: 10.1038/s41386-020-0724-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022]
Abstract
Functional magnetic resonance imaging (fMRI) can be combined with drugs to investigate the system-level functional responses in the brain to such challenges. However, most psychoactive agents act on multiple neurotransmitters, limiting the ability of fMRI to identify functional effects related to actions on discrete pharmacological targets. We recently introduced a multimodal approach, REACT (Receptor-Enriched Analysis of functional Connectivity by Targets), which offers the opportunity to disentangle effects of drugs on different neurotransmitters and clarify the biological mechanisms driving clinical efficacy and side effects of a compound. Here, we focus on methylphenidate (MPH), which binds to the dopamine transporter (DAT) and the norepinephrine transporter (NET), to unravel its effects on dopaminergic and noradrenergic functional circuits in the healthy brain at rest. We then explored the relationship between these target-enriched resting state functional connectivity (FC) maps and inter-individual variability in behavioural responses to a reinforcement-learning task encompassing a novelty manipulation to disentangle the molecular systems underlying specific cognitive/behavioural effects. Our main analysis showed a significant MPH-induced FC increase in sensorimotor areas in the functional circuit associated with DAT. In our exploratory analysis, we found that MPH-induced regional variations in the DAT and NET-enriched FC maps were significantly correlated with some of the inter-individual differences on key behavioural responses associated with the reinforcement-learning task. Our findings show that main MPH-related FC changes at rest can be understood through the distribution of DAT in the brain. Furthermore, they suggest that when compounds have mixed pharmacological profiles, REACT may be able to capture regional functional effects that are underpinned by the same cognitive mechanism but are related to engagement of distinct molecular targets.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arjun Sethi
- Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
13
|
Voineskos AN, Mulsant BH, Dickie EW, Neufeld NH, Rothschild AJ, Whyte EM, Meyers BS, Alexopoulos GS, Hoptman MJ, Lerch JP, Flint AJ. Effects of Antipsychotic Medication on Brain Structure in Patients With Major Depressive Disorder and Psychotic Features: Neuroimaging Findings in the Context of a Randomized Placebo-Controlled Clinical Trial. JAMA Psychiatry 2020; 77:674-683. [PMID: 32101271 PMCID: PMC7330722 DOI: 10.1001/jamapsychiatry.2020.0036] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Prescriptions for antipsychotic medications continue to increase across many brain disorders, including off-label use in children and elderly individuals. Concerning animal and uncontrolled human data suggest antipsychotics are associated with change in brain structure, but to our knowledge, there are no controlled human studies that have yet addressed this question. OBJECTIVE To assess the effects of antipsychotics on brain structure in humans. DESIGN, SETTING, AND PARTICIPANTS Prespecified secondary analysis of a double-blind, randomized, placebo-controlled trial over a 36-week period at 5 academic centers. All participants, aged 18 to 85 years, were recruited from the multicenter Study of the Pharmacotherapy of Psychotic Depression II (STOP-PD II). All participants had major depressive disorder with psychotic features (psychotic depression) and were prescribed olanzapine and sertraline for a period of 12 to 20 weeks, which included 8 weeks of remission of psychosis and remission/near remission of depression. Participants were then were randomized to continue receiving this regimen or to be switched to placebo and sertraline for a subsequent 36-week period. Data were analyzed between October 2018 and February 2019. INTERVENTIONS Those who consented to the imaging study completed a magnetic resonance imaging (MRI) scan at the time of randomization and a second MRI scan at the end of the 36-week period or at time of relapse. MAIN OUTCOMES AND MEASURES The primary outcome measure was cortical thickness in gray matter and the secondary outcome measure was microstructural integrity of white matter. RESULTS Eighty-eight participants (age range, 18-85 years) completed a baseline scan; 75 completed a follow-up scan, of which 72 (32 men and 40 women) were useable for final analyses. There was a significant treatment-group by time interaction in cortical thickness (left, t = 3.3; P = .001; right, t = 3.6; P < .001) but not surface area. No significant interaction was found for fractional anisotropy, but one for mean diffusivity of the white matter skeleton was present (t = -2.6, P = .01). When the analysis was restricted to those who sustained remission, exposure to olanzapine compared with placebo was associated with significant decreases in cortical thickness in the left hemisphere (β [SE], 0.04 [0.009]; t34.4 = 4.7; P <.001), and the right hemisphere (β [SE], 0.03 [0.009]; t35.1 = 3.6; P <.001). Post hoc analyses showed that those who relapsed receiving placebo experienced decreases in cortical thickness compared with those who sustained remission. CONCLUSIONS AND RELEVANCE In this secondary analysis of a randomized clinical trial, antipsychotic medication was shown to change brain structure. This information is important for prescribing in psychiatric conditions where alternatives are present. However, adverse effects of relapse on brain structure support antipsychotic treatment during active illness. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01427608.
Collapse
Affiliation(s)
- Aristotle N. Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erin W. Dickie
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas H. Neufeld
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Matthew J. Hoptman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York,Department of Psychiatry, New York University School of Medicine, New York
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England
| | - Alastair J. Flint
- University Health Network, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
15
|
Copersino ML, Patel R, Price JS, Visser KF, Vitaliano G, Plitman E, Lukas SE, Weiss RD, Janes AC, Chakravarty MM. Interactive effects of age and recent substance use on striatal shape morphology at substance use disorder treatment entry. Drug Alcohol Depend 2020; 206:107728. [PMID: 31740207 PMCID: PMC6980652 DOI: 10.1016/j.drugalcdep.2019.107728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/28/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Striatal neuroadaptations are regarded to play an important role in the progression from voluntary to compulsive use of addictive substances and provide a promising target for the identification of neuroimaging biomarkers. Recent advances in surface-based computational analysis enable morphological assessment linking variations in global and local striatal shape to duration and magnitude of substance use with a degree of sensitivity that exceeds standard volumetric analysis. METHODS This study used a new segmentation methodology coupled with local surface-based indices of surface area and displacement to provide a comprehensive structural characterization of the striatum in 34 patients entering treatment for substance use disorder (SUD) and 49 controls, and to examine the influence of recent substance use on abnormal age-related striatal deformation in SUD patients. RESULTS Patients showed a small reduction in striatal volume and no difference in surface area or shape in comparison to controls. Between-group differences in shape were likely neutralized by the bidirectional influence of recent substance use on striatal shape in SUD patients. Specifically, there was an interaction between age and substance such that among older patients more drug use was associated with greater inward striatal contraction but more alcohol use was associated with greater outward expansion. CONCLUSIONS This study builds on previous work and advances our understanding of the nature of striatal neuroadaptations as a potential biomarker of disease progression in addiction.
Collapse
Affiliation(s)
- Marc L. Copersino
- Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author: Marc L. Copersino, Ph.D., McLean Hospital, 115 Mill Street, Mail Stop #103, Belmont, MA 02478, Phone: (617) 855-2853, Fax: (617) 855-4055,
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada.
| | - Jenessa S. Price
- Division of Transplant Surgery, Dept of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Gordana Vitaliano
- Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Scott E. Lukas
- Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Roger D. Weiss
- Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Amy C. Janes
- Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada;,Department of Psychiatry, McGill University, Montreal, QC, Canada,Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Cui L, Yin H, Lyu S, Shen Q, Wang Y, Li X, Li J, Li Y, Zhu L. Tai Chi Chuan vs General Aerobic Exercise in Brain Plasticity: A Multimodal MRI Study. Sci Rep 2019; 9:17264. [PMID: 31754170 PMCID: PMC6872722 DOI: 10.1038/s41598-019-53731-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
This study contrasted the impact of Tai Chi Chuan and general aerobic exercise on brain plasticity in terms of an increased grey matter volume and functional connectivity during structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI), explored the advantages of Tai Chi Chuan in improving brain structure and function. Thirty-six college students were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking) and control groups. Individuals were assessed with a sMRI and rs-fMRI scan before and after an 8-week training period. The VBM toolbox was used to conduct grey matter volume analyses. The CONN toolbox was used to conduct several seed-to-voxel functional connectivity analyses. We can conclude that compared with general aerobic exercise, eight weeks of Tai Chi Chuan exercise has a stronger effect on brain plasticity, which is embodied in the increase of grey matter volume in left middle occipital gyrus, left superior temporal gyrus and right middle temporal gyrus and the enhancement of functional connectivity between the left middle frontal gyrus and left superior parietal lobule. These findings demonstrate the potential and advantages of Tai Chi Chuan exercises in eliciting brain plasticity.
Collapse
Affiliation(s)
- Lei Cui
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - HengChan Yin
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China.
| | - ShaoJun Lyu
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China.
| | - QiQi Shen
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Yuan Wang
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - XiuJuan Li
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Jing Li
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - YunFei Li
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - LiNa Zhu
- College of P. E. and Sports, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Le BD, Stein JL. Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: Current status and future directions. Psychiatry Clin Neurosci 2019; 73:357-369. [PMID: 30864184 PMCID: PMC6625892 DOI: 10.1111/pcn.12839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Imaging genetics aims to identify genetic variants associated with the structure and function of the human brain. Recently, collaborative consortia have been successful in this goal, identifying and replicating common genetic variants influencing gross human brain structure as measured through magnetic resonance imaging. In this review, we contextualize imaging genetic associations as one important link in understanding the causal chain from genetic variant to increased risk for neuropsychiatric disorders. We provide examples in other fields of how identifying genetic variant associations to disease and multiple phenotypes along the causal chain has revealed a mechanistic understanding of disease risk, with implications for how imaging genetics can be similarly applied. We discuss current findings in the imaging genetics research domain, including that common genetic variants can have a slightly larger effect on brain structure than on risk for disorders like schizophrenia, indicating a somewhat simpler genetic architecture. Also, gross brain structure measurements share a genetic basis with some, but not all, neuropsychiatric disorders, invalidating the previously held belief that they are broad endophenotypes, yet pinpointing brain regions likely involved in the pathology of specific disorders. Finally, we suggest that in order to build a more detailed mechanistic understanding of the effects of genetic variants on the brain, future directions in imaging genetics research will require observations of cellular and synaptic structure in specific brain regions beyond the resolution of magnetic resonance imaging. We expect that integrating genetic associations at biological levels from synapse to sulcus will reveal specific causal pathways impacting risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Brandon D. Le
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| | - Jason L. Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
18
|
McCutcheon RA, Nour MM, Dahoun T, Jauhar S, Pepper F, Expert P, Veronese M, Adams RA, Turkheimer F, Mehta MA, Howes OD. Mesolimbic Dopamine Function Is Related to Salience Network Connectivity: An Integrative Positron Emission Tomography and Magnetic Resonance Study. Biol Psychiatry 2019; 85:368-378. [PMID: 30389131 PMCID: PMC6360933 DOI: 10.1016/j.biopsych.2018.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND A wide range of neuropsychiatric disorders, from schizophrenia to drug addiction, involve abnormalities in both the mesolimbic dopamine system and the cortical salience network. Both systems play a key role in the detection of behaviorally relevant environmental stimuli. Although anatomical overlap exists, the functional relationship between these systems remains unknown. Preclinical research has suggested that the firing of mesolimbic dopamine neurons may activate nodes of the salience network, but in vivo human research is required given the species-specific nature of this network. METHODS We employed positron emission tomography to measure both dopamine release capacity (using the D2/3 receptor ligand 11C-PHNO, n = 23) and dopamine synthesis capacity (using 18F-DOPA, n = 21) within the ventral striatum. Resting-state functional magnetic resonance imaging was also undertaken in the same individuals to investigate salience network functional connectivity. A graph theoretical approach was used to characterize the relationship between dopamine measures and network connectivity. RESULTS Dopamine synthesis capacity was associated with greater salience network connectivity, and this relationship was particularly apparent for brain regions that act as information-processing hubs. In contrast, dopamine release capacity was associated with weaker salience network connectivity. There was no relationship between dopamine measures and visual and sensorimotor networks, indicating specificity of the findings. CONCLUSIONS Our findings demonstrate a close relationship between the salience network and mesolimbic dopamine system, and they are relevant to neuropsychiatric illnesses in which aberrant functioning of both systems has been observed.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Tarik Dahoun
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom
| | - Paul Expert
- Department of Mathematics, Imperial College London, London, United Kingdom; EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom
| | - Rick A Adams
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Division of Psychiatry, University College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Lin Y, Li M, Zhou Y, Deng W, Ma X, Wang Q, Guo W, Li Y, Jiang L, Hu X, Zhang N, Li T. Age-Related Reduction in Cortical Thickness in First-Episode Treatment-Naïve Patients with Schizophrenia. Neurosci Bull 2019; 35:688-696. [PMID: 30790217 DOI: 10.1007/s12264-019-00348-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/25/2018] [Indexed: 02/05/2023] Open
Abstract
Substantial evidence supports the neurodevelopmental hypothesis of schizophrenia. Meanwhile, progressive neurodegenerative processes have also been reported, leading to the hypothesis that neurodegeneration is a characteristic component in the neuropathology of schizophrenia. However, a major challenge for the neurodegenerative hypothesis is that antipsychotic drugs used by patients have profound impact on brain structures. To clarify this potential confounding factor, we measured the cortical thickness across the whole brain using high-resolution T1-weighted magnetic resonance imaging in 145 first-episode and treatment-naïve patients with schizophrenia and 147 healthy controls. The results showed that, in the patient group, the frontal, temporal, parietal, and cingulate gyri displayed a significant age-related reduction of cortical thickness. In the control group, age-related cortical thickness reduction was mostly located in the frontal, temporal, and cingulate gyri, albeit to a lesser extent. Importantly, relative to healthy controls, patients exhibited a significantly smaller age-related cortical thickness in the anterior cingulate, inferior temporal, and insular gyri in the right hemisphere. These results provide evidence supporting the existence of neurodegenerative processes in schizophrenia and suggest that these processes already occur in the early stage of the illness.
Collapse
Affiliation(s)
- Yin Lin
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Psychology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhou
- Department of Radiology, Hospital for Chengdu Office of Tibetan Autonomous Region, Branch Hospital of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. .,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V. The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 2018; 32:1264-1272. [PMID: 30126329 DOI: 10.1177/0269881118788830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered microglial markers and morphology have been demonstrated in patients with schizophrenia in post-mortem and in vivo studies. However, it is unclear if changes are due to antipsychotic treatment. AIMS Here we aimed to determine whether antipsychotic medication affects microglia in vivo. METHODS To investigate this we administered two clinically relevant doses (0.05 mg n=12 and 2.5 mg n=7 slow-release pellets, placebo n=20) of haloperidol, over 2 weeks, to male Sprague Dawley rats to determine the effect on microglial cell density and morphology (area occupied by processes and microglial cell area). We developed an analysis pipeline for the automated assessment of microglial cells and used lipopolysaccharide (LPS) treatment ( n=13) as a positive control for analysis. We also investigated the effects of haloperidol ( n=9) or placebo ( n=10) on the expression of the translocator protein 18 kDa (TSPO) using autoradiography with [3H]PBR28, a TSPO ligand used in human positron emission tomography (PET) studies. RESULTS Here we demonstrated that haloperidol at either dose does not alter microglial measures compared with placebo control animals ( p > 0.05). Similarly there was no difference in [3H]PBR28 binding between placebo and haloperidol tissue ( p > 0.05). In contrast, LPS was associated with greater cell density ( p = 0.04) and larger cell size ( p = 0.01). CONCLUSION These findings suggest that haloperidol does not affect microglial cell density, morphology or TSPO expression, indicating that clinical study alterations are likely not the consequence of antipsychotic treatment. The automated cell evaluation pipeline was able to detect changes in microglial morphology induced by LPS and is made freely available for future use.
Collapse
Affiliation(s)
- Peter S Bloomfield
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Bonsall
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Sciences, London, UK
| | - Dirk Dormann
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Howes
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,4 The Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vincenzo De Paola
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
21
|
McQueen G, Lally J, Collier T, Zelaya F, Lythgoe DJ, Barker GJ, Stone JM, McGuire P, MacCabe JH, Egerton A. Effects of N-acetylcysteine on brain glutamate levels and resting perfusion in schizophrenia. Psychopharmacology (Berl) 2018; 235:3045-3054. [PMID: 30141055 PMCID: PMC6182588 DOI: 10.1007/s00213-018-4997-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023]
Abstract
RATIONALE N-Acetylcysteine (NAC) is currently under investigation as an adjunctive treatment for schizophrenia. The therapeutic potential of NAC may involve modulation of brain glutamate function, but its effects on brain glutamate levels in schizophrenia have not been evaluated. OBJECTIVES The aim of this study was to examine whether a single dose of NAC can alter brain glutamate levels. A secondary aim was to characterise its effects on regional brain perfusion. METHODS In a double-blind placebo-controlled crossover study, 19 patients with a diagnosis of schizophrenia underwent two MRI scans, following oral administration of 2400 mg NAC or matching placebo. Proton magnetic resonance spectroscopy was used to investigate the effect of NAC on glutamate and Glx (glutamate plus glutamine) levels scaled to creatine (Cr) in the anterior cingulate cortex (ACC) and in the right caudate nucleus. Pulsed continuous arterial spin labelling was used to assess the effects of NAC on resting cerebral blood flow (rCBF) in the same regions. RESULTS Relative to the placebo condition, the NAC condition was associated with lower levels of Glx/Cr, in the ACC (P < 0.05), but not in the caudate nucleus. There were no significant differences in CBF in the NAC compared to placebo condition. CONCLUSIONS These data provide preliminary evidence that NAC can modulate ACC glutamate in patients with schizophrenia. In contrast, physiological effects of NAC on the brain were not detectable as between session changes in rCBF. Future studies assessing the effects of a course of treatment with NAC on glutamate metabolites in schizophrenia are indicated.
Collapse
Affiliation(s)
- Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tracy Collier
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Experimental Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| |
Collapse
|
22
|
Latronico N. Haloperidol and delirium in the ICU: the finger pointing to the moon. Intensive Care Med 2018; 44:1346-1348. [PMID: 29936581 DOI: 10.1007/s00134-018-5276-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy. .,Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Piazzale Ospedali Civili, 1, 25123, Brescia, Italy.
| |
Collapse
|
23
|
Bogdan R, Baranger DAA, Agrawal A. Polygenic Risk Scores in Clinical Psychology: Bridging Genomic Risk to Individual Differences. Annu Rev Clin Psychol 2018; 14:119-157. [PMID: 29579395 PMCID: PMC7772939 DOI: 10.1146/annurev-clinpsy-050817-084847] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomewide association studies (GWASs) across psychiatric phenotypes have shown that common genetic variants generally confer risk with small effect sizes (odds ratio < 1.1) that additively contribute to polygenic risk. Summary statistics derived from large discovery GWASs can be used to generate polygenic risk scores (PRS) in independent, target data sets to examine correlates of polygenic disorder liability (e.g., does genetic liability to schizophrenia predict cognition?). The intuitive appeal and generalizability of PRS have led to their widespread use and new insights into mechanisms of polygenic liability. However, when currently applied across traits they account for small amounts of variance (<3%), are relatively uninformative for clinical treatment, and, in isolation, provide no insight into molecular mechanisms. Larger GWASs are needed to increase the precision of PRS, and novel approaches integrating various data sources (e.g., multitrait analysis of GWASs) may improve the utility of current PRS.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAINLab, Department of Psychological and Brain Sciences, and Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| | - David A A Baranger
- BRAINLab, Department of Psychological and Brain Sciences, and Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
24
|
Zanderigo F, Pantazatos S, Rubin-Falcone H, Ogden RT, Chhetry BT, Sullivan G, Oquendo M, Miller JM, Mann JJ. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct Funct 2018; 223:2609-2625. [PMID: 29550938 DOI: 10.1007/s00429-018-1649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
Serotonin 1A (5-HT1A) receptors mediate serotonin trophic role in brain neurogenesis. Gray matter volume (GMV) loss and 5-HT1A receptor binding alterations have been identified in major depressive disorder (MDD). Here we investigated the relationship between 5-HT1A receptor binding and GMV in 40 healthy controls (HCs) and, for the first time, 47 antidepressant-free MDD patients using Voxel-Based Morphometry and [11C]WAY100635 Positron Emission Tomography. Values of GMV and 5-HT1A binding (expressed as BPF, one of the types of binding potentials that refer to displaceable or specific binding that can be quantified in vivo with PET) were obtained in 13 regions of interest, including raphe, and at the voxel level. We used regression analysis within each group to predict GMV from BPF, while covarying for age, sex, total gray matter volume and medication status. In the HCs group, we found overall a positive correlation between terminal field 5-HT1A receptor binding and GMV, which reached statistical significance in regions such as hippocampus, insula, orbital prefrontal cortex, and parietal lobe. We observed a trend towards inverse correlation between raphe 5-HT1A autoreceptor binding and anterior cingulate GMV in both groups, and a statistically significant positive correlation between raphe 5-HT1A binding and temporal GMV in MDD. Analysis of covariance at the voxel-level revealed a trend towards interaction between diagnosis and raphe 5-HT1A binding in predicting GMV in cerebellum and supramarginal gyrus (higher correlation in HCs compared with MDD). Our results replicated previous findings in the normative brain, but did not extend them to the brain in MDD, and indicated a trend towards dissociation between MDD and HCs in the relationship of raphe 5-HT1A binding with postsynaptic GMV. These results suggest that 5-HT1A receptors contribute to altered neuroplasticity in MDD, possibly via effects predating depression onset.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA. .,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Spiro Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Harry Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - R Todd Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Biostatistics, Columbia University, Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Binod Thapa Chhetry
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Gregory Sullivan
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Maria Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Radiology, Columbia University, 622 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
25
|
Dai XJ, Jiang J, Zhang Z, Nie X, Liu BX, Pei L, Gong H, Hu J, Lu G, Zhan Y. Plasticity and Susceptibility of Brain Morphometry Alterations to Insufficient Sleep. Front Psychiatry 2018; 9:266. [PMID: 29997530 PMCID: PMC6030367 DOI: 10.3389/fpsyt.2018.00266] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Background: Insufficient sleep is common in daily life and can lead to cognitive impairment. Sleep disturbance also exists in neuropsychiatric diseases. However, whether and how acute and chronic sleep loss affect brain morphology remain largely unknown. Methods: We used voxel-based morphology method to study the brain structural changes during sleep deprivation (SD) at six time points of rested wakefulness, 20, 24, 32, 36 h SD, and after one night sleep in 22 healthy subjects, and in 39 patients with chronic primary insomnia relative to 39 status-matched good sleepers. Attention network and spatial memory tests were performed at each SD time point in the SD Procedure. The longitudinal data were analyzed using one-way repeated measures ANOVA, and post-hoc analysis was used to determine the between-group differences. Results: Acute SD is associated with widespread gray matter volume (GMV) changes in the thalamus, cerebellum, insula and parietal cortex. Insomnia is associated with increased GMV in temporal cortex, insula and cerebellum. Acute SD is associated with brain atrophy and as SD hours prolong more areas show reduced GMV, and after one night sleep the brain atrophy is restored and replaced by increased GMV in brain areas. SD has accumulative negative effects on attention and working memory. Conclusions: Acute SD and insomnia exhibit distinct morphological changes of GMV. SD has accumulative negative effects on brain morphology and advanced cognitive function. The altered GMV may provide neurobiological basis for attention and memory impairments following sleep loss. STATEMENT OF SIGNIFICANCE Sleep is less frequently studied using imaging techniques than neurological and psychiatric disorders. Whether and how acute and chronic sleep loss affect brain morphology remain largely unknown. We used voxel-based morphology method to study brain structural changes in healthy subjects over multiple time points during sleep deprivation (SD) status and in patients with chronic insomnia. We found that prolonged acute SD together with one night sleep recovery exhibits accumulative atrophic effect and recovering plasticity on brain morphology, in line with behavioral changes on attentional tasks. Furthermore, acute SD and chronic insomnia exhibit distinct morphological changes of gray matter volume (GMV) but they also share overlapping GMV changes. The altered GMV may provide structural basis for attention and memory impairments following sleep loss.
Collapse
Affiliation(s)
- Xi-Jian Dai
- Department of Medical Imaging, Medical School of Nanjing University, Jinling Hospital, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Xiao Nie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, China.,Department of Radiology, Yiyang Central Hospital, Yiyang, China
| | - Bi-Xia Liu
- Department of ICU, Jiangxi Cancer Hospital, Nanchang, China
| | - Li Pei
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, China
| | - Jianping Hu
- Department of Medical Imaging, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
26
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
27
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Emsley R, Asmal L, du Plessis S, Chiliza B, Phahladira L, Kilian S. Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment. Psychol Med 2017; 47:2187-2196. [PMID: 28347393 DOI: 10.1017/s0033291717000642] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Progressive brain volume reductions have been described in schizophrenia, and an association with antipsychotic exposure has been reported. METHODS We compared percentage changes in grey and white matter volume from baseline to month 12 in 23 previously antipsychotic-naïve patients with a first episode of schizophrenia or schizophreniform disorder who were treated with the lowest effective dose of flupenthixol decanoate depot formulation, with 53 matched healthy individuals. Total antipsychotic dose was precisely calculated and its relationship with brain volume changes investigated. Relationships between volumetric changes and treatment were further investigated in terms of treatment response (changes in psychopathology and functionality) and treatment-related adverse-events (extrapyramidal symptoms and weight gain). RESULTS Excessive cortical volume reductions were observed in patients [-4.6 (6.6)%] v. controls [-1.12 (4.0)%] (p = 0.009), with no significant group differences for changes in subcortical grey matter and white matter volumes. In a multiple regression model, the only significant predictor of cortical volume change was total antipsychotic dose received (p = 0.04). Cortical volume change was not significantly associated with the changes in psychopathology, functionality, extrapyramidal symptoms and body mass index or age, gender and duration of untreated psychosis. CONCLUSIONS Brain volume reductions associated with antipsychotic treatment are not restricted to poor outcome patients and occur even with the lowest effective dose of antipsychotic. The lack of an association with poor treatment response or treatment-related adverse effects counts against cortical volume reductions reflecting neurotoxicity, at least in the short term. On the other hand, the volume reductions were not linked to the therapeutic benefits of antipsychotics.
Collapse
Affiliation(s)
- R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| | - B Chiliza
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| | - S Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences,Stellenbosch University,Cape Town,South Africa
| |
Collapse
|
29
|
Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, Kalin NH, Goldman D. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biol Psychiatry 2017; 82:165-175. [PMID: 28283186 PMCID: PMC5505787 DOI: 10.1016/j.biopsych.2016.12.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022]
Abstract
Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri.
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, University of New Mexico, Albuquerque, New Mexico; Departments of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, New Mexico; Electronic and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Andreas Heinz
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; Neuroscience Training Program (NHK, RK, PHR, DPMT, MEE), University of Wisconsin, Madison, Wisconsin; Wisconsin National Primate Research Center (NHK, MEE), Madison, Wisconsin
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
30
|
The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder. Neuropsychopharmacology 2017; 42:1739-1746. [PMID: 28272497 PMCID: PMC5518908 DOI: 10.1038/npp.2017.49] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022]
Abstract
Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy (1H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen's d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.
Collapse
|
31
|
Elvsåshagen T, Zak N, Norbom LB, Pedersen PØ, Quraishi SH, Bjørnerud A, Alnæs D, Doan NT, Malt UF, Groote IR, Westlye LT. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation. Neuroimage 2017; 156:214-223. [PMID: 28526620 DOI: 10.1016/j.neuroimage.2017.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/29/2022] Open
Abstract
Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with MRI. Further studies are needed to clarify whether cortical thinning is one neural substrate of sleepiness after sleep deprivation.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Inge R Groote
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Short Latency Gray Matter Changes in Voxel-Based Morphometry following High Frequent Visual Stimulation. Neural Plast 2017; 2017:1397801. [PMID: 28293437 PMCID: PMC5331306 DOI: 10.1155/2017/1397801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Magnetic resonance imaging studies using voxel-based morphometry (VBM) detected structural changes in the human brain within periods of months or weeks. The underlying molecular mechanisms of VBM findings remain unresolved. We showed that simple visual stimulation by an alternating checkerboard leads to instant, short-lasting alterations of the primary and secondary visual cortex detected by VBM. The rapidness of occurrence (i.e., within 10 minutes) rather excludes most of the proposed physiological mechanism such as neural or glial cell genesis/degeneration or synapse turnover. We therefore favour cerebral fluid shifts to be the underlying correlate of the here observed VBM gray matter changes. Fast onset gray matter changes might be one important explanation for the inconsistency of VBM study results that often raise concern in regard to the validity of presented data. This study shows that changes detectable by VBM may occur within a few minutes after physiological stimulation and must be considered in future VBM experiments to avoid misinterpretation of results.
Collapse
|
33
|
Huhtaniska S, Jääskeläinen E, Hirvonen N, Remes J, Murray GK, Veijola J, Isohanni M, Miettunen J. Long-term antipsychotic use and brain changes in schizophrenia - a systematic review and meta-analysis. Hum Psychopharmacol 2017; 32. [PMID: 28370309 DOI: 10.1002/hup.2574] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The association between long-term antipsychotic treatment and changes in brain structure in schizophrenia is unclear. Our aim was to conduct a systematic review and a meta-analysis on long-term antipsychotic effects on brain structures in schizophrenia focusing on studies with at least 2 years of follow-up between MRI scans. DESIGN Studies were systematically collected using 4 databases, and we also contacted authors for unpublished data. We calculated correlations between antipsychotic dose and/or type and brain volumetric changes and used random effect meta-analysis to study correlations by brain area. RESULTS Thirty-one publications from 16 samples fulfilled our inclusion criteria. In meta-analysis, higher antipsychotic exposure associated statistically significantly with parietal lobe decrease (studies, n = 4; r = -.14, p = .013) and with basal ganglia increase (n = 4; r = .10, p = .044). Most of the reported correlations in the original studies were statistically nonsignificant. There were no clear differences between typical and atypical exposure and brain volume change. The studies were often small and highly heterogeneous in their methods and seldom focused on antipsychotic medication and brain changes as the main subject. CONCLUSIONS Antipsychotic medication may associate with brain structure changes. More long-term follow-up studies taking into account illness severity measures are needed to make definitive conclusions.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Noora Hirvonen
- Information Studies, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Jukka Remes
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Isohanni
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
34
|
Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control. Neuroimage 2016; 147:198-203. [PMID: 27986606 DOI: 10.1016/j.neuroimage.2016.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
In the last years a plethora of studies have investigated morphological changes induced by behavioural or pharmacological interventions using structural T1-weighted MRI and voxel-based morphometry (VBM). Ketamine is thought to exert its antidepressant action by restoring neuroplasticity. In order to test for acute impact of a single ketamine infusion on grey matter volume we performed a placebo-controlled, double-blind investigation in healthy volunteers using VBM. 28 healthy individuals underwent two MRI sessions within a timeframe of 2 weeks, each consisting of two structural T1-weighted MRIs within a single session, one before and one 45min after infusion of S-ketamine (bolus of 0.11mg/kg, followed by an maintenance infusion of 0.12mg/kg) or placebo (0.9% NaCl infusion) using a crossover design. In the repeated-measures ANOVA with time (post-infusion/pre-infusion) and medication (placebo/ketamine) as factors, no significant effect of interaction and no effect of medication was found (FWE-corrected). Importantly, further post-hoc t-tests revealed a strong "decrease" of grey matter both in the placebo and the ketamine condition over time. This effect was evident mainly in frontal and temporal regions bilaterally with t-values ranging from 4.95 to 5.31 (FWE-corrected at p<0.05 voxel level). The vulnerabilities of VBM have been repeatedly demonstrated, with reports of influence of blood flow, tissue water and direct effects of pharmacological compounds on the MRI signal. Here again, we highlight that the relationship between intervention and VBM results is apparently subject to a number of physiological influences, which are partly unknown. Future studies focusing on the effects of ketamine on grey matter should try to integrate known influential factors such as blood flow into analysis. Furthermore, the results of this study highlight the importance of a carefully performed placebo condition in pharmacological fMRI studies.
Collapse
|
35
|
Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:108-16. [PMID: 27381554 DOI: 10.1016/j.pnpbp.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia.
Collapse
Affiliation(s)
- Madeleine Uys
- Division of Pharmacology, North-West University (Potchefstroom Campus), Potchefstroom 2520, South Africa.
| | | | | | - Walter Dreyer
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Marike Cockeran
- Medicines Usage in South Africa, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
36
|
de Bartolomeis A, Marmo F, Buonaguro EF, Latte G, Tomasetti C, Iasevoli F. Switching antipsychotics: Imaging the differential effect on the topography of postsynaptic density transcripts in antipsychotic-naïve vs. antipsychotic-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:24-38. [PMID: 27177972 DOI: 10.1016/j.pnpbp.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 10/24/2022]
Abstract
The postsynaptic density (PSD) has been regarded as a functional switchboard at the crossroads of a dopamine-glutamate interaction, and it is putatively involved in the pathophysiology of psychosis. Indeed, it has been demonstrated that antipsychotics may modulate several PSD transcripts, such as PSD-95, Shank, and Homer. Despite switching antipsychotics is a frequent strategy to counteract lack of efficacy and/or side effect onset in clinical practice, no information is available on the effects of sequential treatments with different antipsychotics on PSD molecules. The aim of this study was to evaluate whether a previous exposure to a typical antipsychotic and a switch to an atypical one may affect the expression of PSD transcripts, in order to evaluate potential neurobiological correlates of this common clinical practice, with specific regards to putative synaptic plasticity processes. We treated male Sprague-Dawley rats intraperitoneally for 15days with haloperidol or vehicle, then from the sixteenth day we switched the animals to amisulpride or continued to treat them with vehicle or haloperidol for 15 additional days. In this way we got six first treatment/second treatment groups: vehicle/vehicle, vehicle/haloperidol, vehicle/amisulpride, haloperidol/vehicle, haloperidol/haloperidol, haloperidol/amisulpride. In this paradigm, we evaluated the expression of brain transcripts belonging to relevant and interacting PSD proteins, both of the Immediate-Early Gene (Homer1a, Arc) and the constitutive classes (Homer1b/c and PSD-95). The major finding was the differential effect of amisulpride on gene transcripts when administered in naïve vs. antipsychotic-pretreated rats, with modifications of the ratio between Homer1a/Homer1b transcripts and differential effects in cortex and striatum. These results suggest that the neurobiological effects on PSD transcripts of amisulpride, and possibly of other antipsychotics, may be greatly affected by prior antipsychotic treatments and may impact significantly on the switching procedure.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy.
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| |
Collapse
|
37
|
Akintunde JK, Irechukwu CA. Differential protection of black-seed oil on econucleotidase, cholinesterases and aminergic catabolizing enzyme in haloperidol-induced neuronal damage of male rats. Ther Adv Drug Saf 2016; 7:132-46. [PMID: 27493717 PMCID: PMC4959635 DOI: 10.1177/2042098616656812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The antipsychotic, haloperidol, is extremely efficient in the treatment of schizophrenia but its application is constrained because of irreversible adverse drug reactions. Hence, in this study, we investigate the differential effects of black seed oil on cholinesterase [acetylcholinesterase (AChE) and butrylcholinesterase (BuChE), ectonucleotidase (5'-nucleotidase), lactate dehydrogenase (LDH) and monoamine oxidase (MAO)] activities and relevant markers of oxidative stress in the cerebrum of haloperidol-induced neuronal-damaged rats. METHODS The animals were divided into six groups (n = 10): normal control rats; haloperidol-induced rats: induced rats were pre-, co- and post-treated with black-seed oil respectively, while the last group was treated with extract oil only. The treatment was performed via oral administration and the experiment lasted 14 days. RESULTS The results revealed an increase in 5(I) nucleotidase, a marker of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis, as well as AChE, BuChE and MAO activities, with concomitant decrease in LDH activity of cerebrum in induced rats when compared with controls. Also, administration of haloperidol caused systemic oxidative damage and adverse histopathological changes in neuronal cells, indications of mental disorder. The differential treatments with black-seed oil prevented these alterations by increasing LDH and decreasing 5(I) nucleotidase, AChE, BuChE and MAO activities in the cerebrum. Essential oil post-treatment is most efficacious in reversing haloperidol-induced neuronal damage in rat; followed by pre- and cotreatment, respectively. CONCLUSIONS We concluded that essential black-seed oil enhanced the wellness of aminergic, purinergic and cholinergic neurotransmissions of haloperidol-induced neuronal damage in rats.
Collapse
Affiliation(s)
- Jacob K. Akintunde
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, 200284-23402, Nigeria
| | - C. Abigail Irechukwu
- Biochemistry Unit, Department of Biosciences and Biotechnology, College of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete, Nigeria
| |
Collapse
|
38
|
Zheng L, Cleppien D, Gass N, Falfan-Melgoza C, Vollmayr B, Hesser J, Weber-Fahr W, Sartorius A. Influence of regional cerebral blood volume on voxel-based morphometry. NMR IN BIOMEDICINE 2016; 29:787-795. [PMID: 27074152 DOI: 10.1002/nbm.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/23/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The investigation of structural brain alterations is one focus in research of brain diseases like depression. Voxel-based morphometry (VBM) based on high-resolution 3D MRI images is a widely used non-invasive tool for such investigations. However, the result of VBM might be sensitive to local physiological parameters such as regional cerebral blood volume (rCBV) changes. In order to investigate whether rCBV changes may contribute to variation in VBM, we performed analyses in a study with the congenital learned helplessness (cLH) model for long-term findings. The 3D structural and rCBV data were acquired with T2 -weighted rapid acquisition with relaxation enhancement (RARE) pulse sequences. The group effects were determined by standard statistical parametric mapping (SPM) and biological parametric mapping (BPM) and examined further using atlas-based regions. In our genetic animal model of depression, we found co-occurrence of differences in gray matter volume and rCBV, while there was no evidence of significant interaction between both. However, the multimodal analysis showed similar gray matter differences compared with the standard VBM approach. Our data corroborate the idea that two group VBM differences might not be influenced by rCBV differences in genetically different strains. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lei Zheng
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Dirk Cleppien
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Barbara Vollmayr
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jürgen Hesser
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
39
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
40
|
Single-dose intravenous administration of antiepileptic drugs induces rapid and reversible remodeling in the brain: Evidence from a voxel-based morphometry evaluation of valproate and levetiracetam in rhesus monkeys. Neuroscience 2015. [DOI: 10.1016/j.neuroscience.2015.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Uhlhaas PJ, Singer W. Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol Psychiatry 2015; 77:1001-9. [PMID: 25676489 DOI: 10.1016/j.biopsych.2014.11.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/29/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
A considerable body of work over the last 10 years combining noninvasive electrophysiology (electroencephalography/magnetoencephalography) in patient populations with preclinical research has contributed to the conceptualization of schizophrenia as a disorder associated with aberrant neural dynamics and disturbances in excitation/inhibition balance. This complements previous research that has largely focused on the identification of abnormalities in circumscribed brain regions and on disturbances of dopaminergic mechanisms as a cause of positive symptoms and executive deficits. In the current review, we provide an update on studies focusing on aberrant neural dynamics. First, we discuss the role of rhythmic activity in neural dynamics and in the coordination of distributed neuronal activity into organized neural states. This is followed by an overview on the current evidence for impaired neural oscillations and synchrony in schizophrenia and associated abnormalities in gamma-aminobutyric acidergic and glutamatergic neurotransmission. Finally, we discuss the distinction between fundamental symptoms, which are reflected in cognitive deficits, and psychotic, accessory symptoms, the latter likely constituting a compensatory response for aberrant neuronal dynamics.
Collapse
Affiliation(s)
- Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research; Ernst Strüngmann Institute for Neuroscience, in Cooperation with Max Planck Society; Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015; 40:1742-51. [PMID: 25601228 PMCID: PMC4915258 DOI: 10.1038/npp.2015.22] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023]
Abstract
Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7-83.5%) and a specificity of 80.3% (95% CI: 76.9-83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9-88.2%) and similar specificity (76.9%, 95% CI: 71.3-81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9-80.4%, specificity of 79.0%, 95% CI: 74.6-82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity.
Collapse
|
43
|
Li M, Deng W, He Z, Wang Q, Huang C, Jiang L, Gong Q, Ziedonis DM, King JA, Ma X, Zhang N, Li T. A splitting brain: Imbalanced neural networks in schizophrenia. Psychiatry Res 2015; 232:145-53. [PMID: 25819347 PMCID: PMC4704446 DOI: 10.1016/j.pscychresns.2015.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 11/04/2014] [Accepted: 03/03/2015] [Indexed: 02/05/2023]
Abstract
Dysconnectivity between key brain systems has been hypothesized to underlie the pathophysiology of schizophrenia. The present study examined the pattern of functional dysconnectivity across whole-brain neural networks in 121 first-episode, treatment-naïve patients with schizophrenia by using resting-state functional magnetic resonance imaging (rsfMRI). Group independent component analysis (ICA) was first applied to rsfMRI data to extract 90 functional components of the brain. The functional connectivity between these ICA components was then evaluated and compared between the patient and control groups. To examine the functional roles of significantly altered between-component connections in patients, each ICA component was ascribed to one of 10 previously well-defined brain networks/areas. Relative to findings in healthy controls (n=103), 29 altered functional connections including 19 connections with increased connectivity and 10 connections with decreased connectivity in schizophrenia patients were found. Increased connectivity was mainly within the default mode network (DMN) and between the DMN and cognitive networks, whereas decreased connectivity was predominantly associated with sensory networks. Given the key roles of the DMN in internal mental processes and sensory networks in inputs from the external environment, these patterns of altered brain network connectivity could suggest imbalanced neural processing of internal and external information in schizophrenia.
Collapse
Affiliation(s)
- Mingli Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongling He
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chaohua Huang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lijun Jiang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Doug M Ziedonis
- Department of Psychiatry, University of Massachusetts Medical School/UMass Memorial Health Care, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jean A King
- Department of Psychiatry, University of Massachusetts Medical School/UMass Memorial Health Care, 55 Lake Avenue North, Worcester, MA 01655, USA; Center for Comparative Neuroimaging (CCNI), Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, USA
| | - Xiaohong Ma
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nanyin Zhang
- Department of Psychiatry, University of Massachusetts Medical School/UMass Memorial Health Care, 55 Lake Avenue North, Worcester, MA 01655, USA; Center for Comparative Neuroimaging (CCNI), Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, USA; Department of Biomedical Engineering, The Huck Institute of Life Sciences, The Pennsylvania State University, W-341 Millennium Science Complex, University Park, PA 16802, USA.
| | - Tao Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Elvsåshagen T, Norbom LB, Pedersen PØ, Quraishi SH, Bjørnerud A, Malt UF, Groote IR, Westlye LT. Widespread changes in white matter microstructure after a day of waking and sleep deprivation. PLoS One 2015; 10:e0127351. [PMID: 26020651 PMCID: PMC4447359 DOI: 10.1371/journal.pone.0127351] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Elucidating the neurobiological effects of sleep and waking remains an important goal of the neurosciences. Recently, animal studies indicated that sleep is important for cell membrane and myelin maintenance in the brain and that these structures are particularly susceptible to insufficient sleep. Here, we tested the hypothesis that a day of waking and sleep deprivation would be associated with changes in diffusion tensor imaging (DTI) indices of white matter microstructure sensitive to axonal membrane and myelin alterations. Methods Twenty-one healthy adult males underwent DTI in the morning [7:30AM; time point (TP)1], after 14 hours of waking (TP2), and then after another 9 hours of waking (TP3). Whole brain voxel-wise analysis was performed with tract based spatial statistics. Results A day of waking was associated with widespread increases in white matter fractional anisotropy, which were mainly driven by radial diffusivity reductions, and sleep deprivation was associated with widespread fractional anisotropy decreases, which were mainly explained by reductions in axial diffusivity. In addition, larger decreases in axial diffusivity after sleep deprivation were associated with greater sleepiness. All DTI changes remained significant after adjusting for hydration measures. Conclusions This is the first DTI study of sleep deprivation in humans. Although previous studies have observed localized changes in DTI indices of cerebral microstructure over the course of a few hours, further studies are needed to confirm widespread DTI changes within hours of waking and to clarify whether such changes in white matter microstructure serve as neurobiological substrates of sleepiness.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Department of Psychosomatic Medicine, Institution of Oslo University Hospital, Oslo, Norway
- Department of Neurology, Institution of Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT)/KG Jebsen Centre for Psychosis Research, Institution of Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Linn B. Norbom
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Per Ø. Pedersen
- Department of Psychosomatic Medicine, Institution of Oslo University Hospital, Oslo, Norway
| | - Sophia H. Quraishi
- Barnard College, Columbia University, New York, NY, United States of America
| | - Atle Bjørnerud
- The Intervention Centre, Institution of Oslo University Hospital, Oslo, Norway
- Department of Physics (AB), University of Oslo, Oslo, Norway
| | - Ulrik F. Malt
- Department of Psychosomatic Medicine, Institution of Oslo University Hospital, Oslo, Norway
- Department of Research and Education, Institution of Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inge R. Groote
- The Intervention Centre, Institution of Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT)/KG Jebsen Centre for Psychosis Research, Institution of Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
de Bartolomeis A, Iasevoli F, Marmo F, Buonaguro EF, Eramo A, Rossi R, Avvisati L, Latte G, Tomasetti C. Progressive recruitment of cortical and striatal regions by inducible postsynaptic density transcripts after increasing doses of antipsychotics with different receptor profiles: insights for psychosis treatment. Eur Neuropsychopharmacol 2015; 25:566-82. [PMID: 25649681 DOI: 10.1016/j.euroneuro.2015.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
Antipsychotics may modulate the transcription of multiple gene programs, including those belonging to postsynaptic density (PSD) network, within cortical and subcortical brain regions. Understanding which brain region is activated progressively by increasing doses of antipsychotics and how their different receptor profiles may impact such an activation could be relevant to better correlate the mechanism of action of antipsychotics both with their efficacy and side effects. We analyzed the differential topography of PSD transcripts by incremental doses of two antipsychotics: haloperidol, the prototypical first generation antipsychotic with prevalent dopamine D2 receptors antagonism, and asenapine, a second generation antipsychotic characterized by multiple receptors occupancy. We investigated the expression of PSD genes involved in synaptic plasticity and previously demonstrated to be modulated by antipsychotics: Homer1a, and its related interacting constitutive genes Homer1b/c and PSD95, as well as Arc, C-fos and Zif-268, also known to be induced by antipsychotics administration. We found that increasing acute doses of haloperidol induced immediate-early genes (IEGs) expression in different striatal areas, which were progressively recruited by incremental doses with a dorsal-to-ventral gradient of expression. Conversely, increasing acute asenapine doses progressively de-recruited IEGs expression in cortical areas and increased striatal genes signal intensity. These effects were mirrored by a progressive reduction in locomotor animal activity by haloperidol, and an opposite increase by asenapine. Thus, we demonstrated for the first time that antipsychotics may progressively recruit PSD-related IEGs expression in cortical and subcortical areas when administered at incremental doses and these effects may reflect a fine-tuned dose-dependent modulation of the PSD.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Anna Eramo
- Medical Affairs & Phase IV Clinical Affair. Lundbeck Pharmaceutical Services LLC, Deerfield, IL, United States
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Livia Avvisati
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University Medical School of Naples Federico II, Italy
| |
Collapse
|
47
|
Manza P, Zhang S, Hu S, Chao HH, Leung HC, Li CSR. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood. Neuroimage 2015; 107:311-322. [PMID: 25514518 PMCID: PMC4300261 DOI: 10.1016/j.neuroimage.2014.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction.
Collapse
Affiliation(s)
- Peter Manza
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA; Department of Psychology, Stony Brook University, Stony Brook, NY 11790, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, CT 06519, USA; Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA
| | - Hoi-Chung Leung
- Department of Psychology, Stony Brook University, Stony Brook, NY 11790, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA; Department of Neurobiology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Phillips KG, Uhlhaas PJ. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol 2015; 29:155-68. [PMID: 25567552 DOI: 10.1177/0269881114562093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neural oscillations have received recently a great deal of interest in schizophrenia research because of the possibility to integrate findings from non-invasive electro/magnetoencephalographical recordings with pre-clinical research, which could potentially lead to the identification of pathophysiological mechanisms and novel treatment targets. In the current paper, we review the potential as well as the challenges of this approach by summarizing findings on alterations in rhythmic activity from both animal models and human data which have implicated dysfunctional neural oscillations in the explanation of cognitive deficits and certain clinical symptoms of schizophrenia. Specifically, we will focus on findings that have examined neural oscillations during 1) perceptual processing, 2) working memory and executive processes and 3) spontaneous activity. The importance of the development of paradigms suitable for human and animal models is discussed as well as the search for mechanistic explanation for oscillatory dysfunctions.
Collapse
Affiliation(s)
- Keith G Phillips
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company, Windlesham, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Roiz-Santiañez R, Suarez-Pinilla P, Crespo-Facorro B. Brain Structural Effects of Antipsychotic Treatment in Schizophrenia: A Systematic Review. Curr Neuropharmacol 2015; 13:422-34. [PMID: 26412062 PMCID: PMC4790397 DOI: 10.2174/1570159x13666150429002536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 04/05/2015] [Indexed: 11/22/2022] Open
Abstract
The findings about the progressive brain changes in schizophrenia are controversial, and the potential confounding effect of antipsychotics on brain structure is still under debate. The goal of the current article was to review the existing longitudinal neuroimaging studies addressing the impact of antipsychotic drug treatment on brain changes in schizophrenia. A comprehensive search of PubMed was performed using combinations of key terms distributed into four blocks: "MRI", "longitudinal", "schizophrenia" and "antipsychotic". Studies were considered to be eligible for the review if they were original articles. Studies that examined only changes in brain density were excluded. A total of 41 MRI studies were identified and reviewed. Longitudinal MRI studies did not provide a consistent notion of the effects of antipsychotic treatment on the pattern of brain changes over time in schizophrenia. Overall, most of the included articles did not find a linear relationship between the degree of exposure and progressive brain changes. Further short- and longterm studies are warranted to a better understanding of the influence of antipsychotics in brain structural changes in schizophrenia and also to verify whether first and second generation antipsychotics may differentially affect brain morphometry.
Collapse
Affiliation(s)
- Roberto Roiz-Santiañez
- Unidad Investigación Psiquiatría, Hospital Universitario Marqués de Valdecilla, CIBERSAM, Avda. Valdecilla s/n, 39008, Santander, Spain.
| | | | | |
Collapse
|
50
|
Chakravarty MM, Rapoport JL, Giedd JN, Raznahan A, Shaw P, Collins DL, Lerch JP, Gogtay N. Striatal shape abnormalities as novel neurodevelopmental endophenotypes in schizophrenia: a longitudinal study. Hum Brain Mapp 2014; 36:1458-69. [PMID: 25504933 DOI: 10.1002/hbm.22715] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/15/2014] [Accepted: 11/30/2014] [Indexed: 01/04/2023] Open
Abstract
There are varying, often conflicting, reports with respect to altered striatal volume and morphometry in the major psychoses due to the influences of antipsychotic medications on striatal volume. Thus, disassociating disease effects from those of medication become exceedingly difficult. For the first time, using a longitudinally studied sample of structural magnetic resonance images from patients with childhood onset schizophrenia (COS; neurobiologically contiguous with the adult onset form of schizophrenia), their nonpsychotic siblings (COSSIBs), and novel shape mapping algorithms that are volume independent, we report the familial contribution of striatal morphology in schizophrenia. The results of our volumetric analyses demonstrate age-related increases in overall striatal volumes specific only to COS. However, both COS and COSSIBs showed overlapping shape differences in the striatal head, which normalized in COSSIBs by late adolescence. These results mirror previous studies from our group, demonstrating cortical thickness deficits in COS and COSSIBs as these deficits normalize in COSSIBs in the same age range as our striatal findings. Finally, there is a single region of nonoverlapping outward displacement in the dorsal aspect of the caudate body, potentially indicative of a response to medication. Striatal shape may be considered complimentary to volume as an endophenotype, and, in some cases may provide information that is not detectable using standard volumetric techniques. Our striatal shape findings demonstrate the striking localization of abnormalities in striatal the head. The neuroanatomical localization of these findings suggest the presence of abnormalities in the striatal-prefrontal circuits in schizophrenia and resilience mechanisms in COSSIBs with age dependent normalization.
Collapse
Affiliation(s)
- M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada; Department of Psychiatry, McGill University, Montreal, Canada; Department of Biomedical Engineering, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|