1
|
Xu X, Xuan S, Chen S, Liu D, Xiao Q, Tu J. Increased excitatory amino acid transporter 2 levels in basolateral amygdala astrocytes mediate chronic stress-induced anxiety-like behavior. Neural Regen Res 2025; 20:1721-1734. [PMID: 39104111 PMCID: PMC11688569 DOI: 10.4103/nrr.nrr-d-23-01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00024/figure1/v/2024-08-05T133530Z/r/image-tiff The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions. Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress-induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2 agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice. After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
Collapse
Affiliation(s)
- Xirong Xu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Shoumin Xuan
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Shuai Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Dan Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Qian Xiao
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Jie Tu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
3
|
Nehls S, Dukart J, Enzensberger C, Stickeler E, Eickhoff SB, Chechko N. [Prediction and timely identification of postpartum depression: results of the longitudinal RiPoD study in the context of the literature]. DER NERVENARZT 2025; 96:176-184. [PMID: 39186106 DOI: 10.1007/s00115-024-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
The first 4-6 weeks after childbirth are defined as the onset time for postpartum depression (PPD). Despite this known time frame there are significant gaps in the identification and treatment of PPD. The risk for postpartum depression (RiPoD) study investigated specific risk factors and predictors of postpartum psychological adjustment processes and the results are presented within the framework of a state of the art review of research. The dynamic neuroplastic changes in the maternal brain during pregnancy and the postpartum period appear to be closely linked to peripartum hormone fluctuations, which jointly influence the development of postpartum mood disorders. Hormonal risk factors such as baby blues and premenstrual syndrome have been found to have a bearing on PPD. The combination of these two factors predicts the risk of PPD with 83% sensitivity within the first week postpartum. Follow-up digital monitoring of symptom development in the first 6 weeks postpartum has enabled an accurate identification of women with PPD. Understanding the interaction between hormone fluctuations, neuroplasticity and psychiatric disorders should be an important target for future research. Early identification and diagnosis of PPD can be easily integrated into the clinical routine and everyday life.
Collapse
Affiliation(s)
- Susanne Nehls
- Klinik für Psychiatrie, Psychotherapie and Psychosomatik, Uniklinik RWTH Aachen, Deutschland.
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM-10), Forschungszentrum Jülich, Jülich, Deutschland.
- Klinik für Psychiatrie, Psychotherapie and Psychosomatik, Uniklinik RWTH Aachen, Pauwelsstraße 23, 52070, Aachen, Deutschland.
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Forschungszentrum Jülich, Jülich, Deutschland
- Institute of Systems Neuroscience, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | | | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtshilfe, Uniklinik RWTH Aachen, Aachen, Deutschland
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Forschungszentrum Jülich, Jülich, Deutschland
- Institute of Systems Neuroscience, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Natalia Chechko
- Klinik für Psychiatrie, Psychotherapie and Psychosomatik, Uniklinik RWTH Aachen, Deutschland.
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM-10), Forschungszentrum Jülich, Jülich, Deutschland.
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Forschungszentrum Jülich, Jülich, Deutschland.
- Klinik für Psychiatrie, Psychotherapie and Psychosomatik, Uniklinik RWTH Aachen, Pauwelsstraße 23, 52070, Aachen, Deutschland.
| |
Collapse
|
4
|
Festini SB, McDonough IM. Impact of individual differences in cognitive reserve, stress, and busyness on episodic memory: an fMRI analysis of the Alabama Brain Study On Risk for Dementia. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:63-88. [PMID: 39702727 DOI: 10.3758/s13415-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Cognitive reserve (CR) and busyness can boost memory, whereas stress can impair memory. Nevertheless, extant research has not yet examined busyness in conjunction with CR and stress, nor whether CR or stress moderate the relationship between busyness and episodic memory. Middle-aged and older adult participants (N = 71; ages 50-74; 31% African-American) answered lifestyle questionnaires and completed a visual paired-associate memory fMRI task. Dimension reduction techniques identified two latent CR factors-personal CR (own education; occupation complexity; socioeconomic status) and parental education (mother's/father's education), and identified two latent stress factors-external stress (neighborhood stress/violence; financial strain) and personal stress (perceived stress; work/personal stress). We cast these latent factors into a series of regression models, revealing that (1) in isolation, higher busyness predicted better episodic memory, (2) higher external stress predicted worse memory, (3) both greater personal CR and greater parental education predicted better memory, (4) busyness did not interact with stress nor with CR, and (5) in a combined model, higher parental education and lower external stress were significant independent predictors. Neuroimaging data revealed that higher CR was associated with more efficient brain activity in the hippocampus and posterior cingulate during successful episodic memory retrieval, whereas higher personal stress was associated with heightened activity in the precuneus. No interactions or main effects of busyness were observed for the fMRI data. Thus, although busyness was associated with superior episodic memory, busyness did not modulate brain activity during episodic memory retrieval, nor did CR or stress moderate the relationship between busyness and associative memory.
Collapse
Affiliation(s)
- Sara B Festini
- Department of Psychology, University of Tampa, 401 W. Kennedy Blvd., Tampa, FL, 33606, USA.
| | - Ian M McDonough
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Ma Y, Xu D, Gan Y, Chen Z, Chen Y, Han X. Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125322. [PMID: 39549990 DOI: 10.1016/j.envpol.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.
Collapse
Affiliation(s)
- Yuhan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dihui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zining Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
6
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Forastieri C, Romito E, Paplekaj A, Battaglioli E, Rusconi F. Dissecting the Hippocampal Regulation of Approach-Avoidance Conflict: Integrative Perspectives From Optogenetics, Stress Response, and Epigenetics. Hippocampus 2024; 34:753-766. [PMID: 39494726 DOI: 10.1002/hipo.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Psychiatric disorders are multifactorial conditions without clear biomarkers, influenced by genetic, environmental, and developmental factors. Understanding these disorders requires identifying specific endophenotypes that help break down their complexity. Here, we undertake an in-depth analysis of one such endophenotype, namely imbalanced approach-avoidance conflict (AAC), reviewing its significant dependency on the hippocampus. Imbalanced AAC is a transdiagnostic endophenotype, being a feature of many psychiatric conditions in humans. However, it is predominantly examined in preclinical research through paradigms that subject rodents to conflict-laden scenarios. This review offers an original perspective by discussing the AAC through three distinct lights: optogenetic modulation of the AAC, which updates our understanding of the hippocampal contribution to behavioral inhibition; the impact of environmental stress, which exacerbates conflict and strengthens the stress-psychopathology axis; and inherent epigenetic aspects, which uncover crucial molecular underpinnings of environmental (mal) adaptation. By integrating these perspectives, in this review we aim to underline a cross-species causal nexus between heightened hippocampal activity and avoidance behavior. In addition, we suggest a rationale to explore epigenetic pharmacology as a potential strategy to tackle AAC-related psychopathology. This review assumes greater significance when viewed through the lens of advancing AAC-centric diagnostics in human subjects. Unlike traditional questionnaires, which struggle to accurately measure individual differences in AAC-related dimensions, new approaches using virtual reality and computer games show promise in better focusing the magnitude of AAC contribution to psychopathology.
Collapse
Affiliation(s)
- C Forastieri
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Romito
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - A Paplekaj
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Battaglioli
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - F Rusconi
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Herzberg MP, Smyser CD. Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development. Pediatr Res 2024; 96:1417-1428. [PMID: 38961164 DOI: 10.1038/s41390-024-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
The Social Determinants of Health, a set of social factors including socioeconomic status, community context, and neighborhood safety among others, are well-known predictors of mental and physical health across the lifespan. Recent research has begun to establish the importance of these social factors at the earliest points of brain development, including during the prenatal period. Prenatal socioeconomic status, perceived stress, and neighborhood safety have all been reported to impact neonatal brain structure and function, with exploratory work suggesting subsequent effects on infant and child behavior. Secondary effects of the Social Determinants of Health, such as maternal sleep and psychopathology during pregnancy, have also been established as important predictors of infant brain development. This research not only establishes prenatal Social Determinants of Health as important predictors of future outcomes but may be effectively applied even before birth. Future research replicating and extending the effects in this nascent literature has great potential to produce more specific and mechanistic understanding of the social factors that shape early neurobehavioral development. IMPACT: This review synthesizes the research to date examining the effects of the Social Determinants of Health during the prenatal period and neonatal brain outcomes. Structural, functional, and diffusion-based imaging methodologies are included along with the limited literature assessing subsequent infant behavior. The degree to which results converge between studies is discussed, in combination with the methodological and sampling considerations that may contribute to divergence in study results. Several future directions are identified, including new theoretical approaches to assessing the impact of the Social Determinants of Health during the perinatal period.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Pediatrics, and Radiology, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Perry RN, Ethier-Gagnon MA, Helmick C, Spinella TC, Tibbo PG, Stewart SH, Barrett SP. The impact of cannabidiol placebo on amygdala-based neural responses to an acute stressor. J Psychopharmacol 2024; 38:935-948. [PMID: 39400103 PMCID: PMC11528970 DOI: 10.1177/02698811241287557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Cannabidiol (CBD) impacts brain regions implicated in anxiety reactivity and stress reactivity (e.g., amygdala, anterior cingulate cortex (ACC), anterior insula (AI)); however, placebo-controlled studies are mixed regarding CBD's anxiolytic effects. We previously reported that CBD expectancy alone can alter subjective, physiological, and endocrine markers of stress/anxiety; however, it is unclear whether these findings reflect altered brain reactivity. This study evaluated whether CBD expectancy independently alters amygdala resting-state functional connectivity (rsFC) with the ACC and AI following acute stress. METHOD Thirty-eight (20 females) healthy adults were randomly assigned to receive accurate or inaccurate information regarding the CBD content of a CBD-free oil administered during a single experimental session. Following a baseline resting state MRI scan, participants administered their assigned oil sublingually, engaged in a stress task (serial subtraction with negative feedback) inside the scanner, and underwent another resting state MRI scan. Amygdala rsFC with the ACC and AI was measured during each scan, and the subjective state was assessed at six time points. Outcomes were analyzed using ANCOVA. RESULTS CBD expectancy (vs CBD-free expectancy) was associated with significantly weaker rsFC between the left amygdala and right ACC (p = 0.042), but did not systematically alter amygdala-AI rsFC (p-values > 0.05). We also replicated our previously reported CBD expectancy effects on subjective stress/anxiety in the scanner context. CONCLUSION CBD placebo effects may be sufficient to alter neural responses relevant to its purported anxiolytic and stress-relieving properties. Future work is needed to replicate these results and determine whether CBD expectancy and pharmacology interact to alter neural anxiety reactivity and stress reactivity.
Collapse
Affiliation(s)
- Robin N Perry
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Toni C Spinella
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sherry H Stewart
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sean P Barrett
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Xiao S, Lu G, Liu J, Su W, Li C, Liu Y, Meng F, Zhao J, Gao N, Chang Y, Guo X, Yu S, Liu R. Brain-wide mapping of c-Fos expression in nitroglycerin-induced models of migraine. J Headache Pain 2024; 25:136. [PMID: 39169303 PMCID: PMC11337778 DOI: 10.1186/s10194-024-01837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Migraine is a neurological disorder characterized by complex, widespread, and sudden attacks with an unclear pathogenesis, particularly in chronic migraine (CM). Specific brain regions, including the insula, amygdala, thalamus, and cingulate, medial prefrontal, and anterior cingulate cortex, are commonly activated by pain stimuli in patients with CM and animal models. This study employs fluorescence microscopy optical sectioning tomography (fMOST) technology and AAV-PHP.eB whole-brain expression to map activation patterns of brain regions in CM mice, thus enhancing the understanding of CM pathogenesis and suggesting potential treatment targets. METHODS By repeatedly administering nitroglycerin (NTG) to induce migraine-like pain in mice, a chronic migraine model (CMM) was established. Olcegepant (OLC) was then used as treatment and its effects on mechanical pain hypersensitivity and brain region activation were observed. All mice underwent mechanical withdrawal threshold, light-aversive, and elevated plus maze tests. Viral injections were administered to the mice one month prior to modelling, and brain samples were collected 2 h after the final NTG/vehicle control injection for whole-brain imaging using fMOST. RESULTS In the NTG-induced CMM, mechanical pain threshold decreased, photophobia, and anxiety-like behavior were observed, and OLC was found to improve these manifestations. fMOST whole-brain imaging results suggest that the isocortex-cerebral cortex plate region, including somatomotor areas (MO), somatosensory areas (SS), and main olfactory bulb (MOB), appears to be the most sensitive area of activation in CM (P < 0.05). Other brain regions such as the inferior colliculus (IC) and intermediate reticular nucleus (IRN) were also exhibited significant activation (P < 0.05). The improvement in migraine-like symptoms observed with OLC treatment may be related to its effects on these brain regions, particularly SS, MO, ansiform lobule (AN), IC, spinal nucleus of the trigeminal, caudal part (Sp5c), IRN, and parvicellular reticular nucleus (PARN) (P < 0.05). CONCLUSIONS fMOST whole-brain imaging reveals c-Fos + cells in numerous brain regions. OLC improves migraine-like symptoms by modulating brain activity in some brain regions. This study demonstrates the activation of the specific brain areas in NTG-induced CMM and suggests some regions as a potential treatment mechanism according to OLC.
Collapse
Affiliation(s)
- Shaobo Xiao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, 650100, Yunnan, China
| | - Guangshuang Lu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Pediatrics, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, 237005, China
| | - Jiayi Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenhao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yingyuan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Fanchao Meng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jinjing Zhao
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Nan Gao
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinghao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
11
|
Wang CY, Jiang SY, Liao SM, Tian-Liu, Wu QS, Pan HQ, Wei-Nie, Zhang WH, Pan BX, Liu WZ. Dimethyl fumarate ameliorates chronic stress-induced anxiety-like behaviors by decreasing neuroinflammation and neuronal activity in the amygdala. Int Immunopharmacol 2024; 137:112414. [PMID: 38897132 DOI: 10.1016/j.intimp.2024.112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1β. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1β signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1β signaling pathway and alleviating hyperactivity of BLA neurons.
Collapse
Affiliation(s)
- Chun-Yan Wang
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Si-Ying Jiang
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shuang-Mei Liao
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tian-Liu
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi-Sheng Wu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Wei-Nie
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Wen-Hua Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Wei-Zhu Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; Department of Pathology, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
12
|
Nostadt A, Schlaffke L, Merz CJ, Wolf OT, Nitsche MA, Tegenthoff M, Lissek S. Microstructural differences in the cingulum and the inferior longitudinal fasciculus are associated with (extinction) learning. BMC Psychol 2024; 12:324. [PMID: 38831468 PMCID: PMC11149371 DOI: 10.1186/s40359-024-01800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.
Collapse
Affiliation(s)
- Alina Nostadt
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany.
- Ruhr University Bochum, Bochum, Germany.
| | - Lara Schlaffke
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, 44139, Germany
- German Centre for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, 33617, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| |
Collapse
|
13
|
Kanamaru H, Zhu S, Dong S, Takemoto Y, Huang L, Sherchan P, Suzuki H, Tang J, Zhang JH. UDP-Glucose/P2Y14 Receptor Signaling Exacerbates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Stroke 2024; 55:1381-1392. [PMID: 38525592 PMCID: PMC11039370 DOI: 10.1161/strokeaha.123.044422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe subtype of stroke with poor outcomes. Abnormal glucose metabolism often occurs after SAH, but the strict control of blood glucose levels is not always beneficial. This study aimed to investigate the contribution of uridine diphosphate glucose (UDP-G), an intermediate of glucose/glycogen metabolism, and its receptor P2Y14 (P2Y purinoceptor 14) to SAH pathology and explored the potential targeted treatments in rats. METHODS A total of 218 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Brain expressions of P2Y14, uridine diphosphate glucose (UDP-G), and its converting enzyme UGP2 (UDP-G pyrophosphorylase-2) were evaluated. Exogenous UDP-G or selective P2Y14 inhibitor was administered intranasally at 1 hour after SAH to explore their potential effects. Intranasal Ugp2 or P2ry14 siRNA was delivered 24 hours before SAH for mechanistic evaluation. Primary neuron culture and hemoglobin stimulation were used as in vitro model of SAH. Post-SAH evaluation included liquid chromatography-mass spectrometry measurement of brain endogenous UDP-G level, neurobehavioral assessments, Western blotting, immunohistochemistry, TUNEL staining, and Nissl staining. RESULTS There was an acute elevation of endogenous brain UDP-G and UGP2 after SAH, and P2Y14 was expressed in neurons. Although P2Y14 inhibitor decreased neurological dysfunction, neuronal apoptosis, and proapoptotic molecules, exogenous UDP-G exacerbated these outcomes at 24 hours after SAH. Early inhibition of P2Y14 preserved long-term neuronal survival in the hippocampus, amygdala, and cortex with improved neurocognition and depressive-like behavior. In addition, in vivo knockdown of Ugp2- and P2ry14-reduced neurological deficits and proapoptotic molecules at 24 hours after SAH, and furthermore in vitro knockdown of P2ry14-reduced apoptosis in hemoglobin stimulated primary neuron. CONCLUSIONS These findings suggest a detrimental role of brain UDP-G/P2Y14 signaling in SAH, as a part of glucose metabolic pathology at the tissue level. P2Y14 inhibitor 4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid hydrochloride may serve as a potential therapeutic target in treating patients with SAH.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Shiyi Zhu
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Siyuan Dong
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Yushin Takemoto
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan (Y.T.)
| | - Lei Huang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
| | - Prativa Sherchan
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Jiping Tang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - John H Zhang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
- Anesthesiology (J.H.Z.), Loma Linda University, CA
| |
Collapse
|
14
|
Kershner JR. Early life stress, literacy and dyslexia: an evolutionary perspective. Brain Struct Funct 2024; 229:809-822. [PMID: 38436668 PMCID: PMC11003919 DOI: 10.1007/s00429-024-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Stress and learning co-evolved in parallel, with their interdependence critical to the survival of the species. Even today, the regulation of moderate levels of stress by the central autonomic network (CAN), especially during pre- and post-natal periods, facilitates biological adaptability and is an essential precursor for the cognitive requisites of learning to read. Reading is a remarkable evolutionary achievement of the human brain, mysteriously unusual, because it is not pre-wired with a genetic address to facilitate its acquisition. There is no gene for reading. The review suggests that reading co-opts a brain circuit centered in the left hemisphere ventral occipital cortex that evolved as a domain-general visual processor. Its adoption by reading depends on the CAN's coordination of the learning and emotional requirements of learning to read at the metabolic, cellular, synaptic, and network levels. By stabilizing a child's self-control and modulating the attention network's inhibitory controls over the reading circuit, the CAN plays a key role in school readiness and learning to read. In addition, the review revealed two beneficial CAN evolutionary adjustments to early-life stress "overloads" that come with incidental costs of school under-performance and dyslexia. A short-term adaptation involving methylation of the FKBP5 and NR3C1 genes is a liability for academic achievement in primary school. The adaptation leading to dyslexia induces alterations in BDNF trafficking, promoting long-term adaptive fitness by protecting against excessive glucocorticoid toxicity but risks reading difficulties by disruptive signaling from the CAN to the attention networks and the reading circuit.
Collapse
Affiliation(s)
- John R Kershner
- Department of Applied Psychology and Human Resources, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
15
|
Tamta K, Kumar A, Arya H, Arya S, Maurya RC. Neuronal plasticity in hippocampal neurons due to chronic mild stress and after stress removal in postnatal chicks. J Anat 2024; 244:831-860. [PMID: 38153009 PMCID: PMC11021661 DOI: 10.1111/joa.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
The avian dorsomedial surface of the cerebral hemisphere is occupied by the hippocampal complex (HCC), which plays an important role in learning, memory, cognitive functions, and regulating instinctive behavior patterns. The objective of the study was to evaluate the effect of chronic mild stress (CMS) in 4, 6, and 8 weeks and after chronic stress removal (CSR) in 6 and 8 weeks, on neuronal plasticity in HCC neurons of chicks through the Golgi-Cox technique. Further, behavioral study and open field test were conducted to test of exploration or of anxiety. The study revealed that the length of CMS and CSR groups shows a similar pattern as in nonstressed (NS) chicks, while weight shows nonsignificant decrease due to CMS as compared to NS and after CSR. The behavioral test depicts that the CMS group took more time to reach the food as compared to the NS and CSR groups. Due to CMS, the dendritic field of multipolar neurons shows significant decrease in 4 weeks, but in 6- and 8-week-old chicks, the multipolar, pyramidal, and stellate neurons depict significant decrease, whereas after CSR all neurons show significant increase in 8-week-old chicks. In 4- and 8-week-old chicks, all neurons depict significant decrease in their spine number, whereas in 6 weeks only multipolar neurons show significant decrease, but after CSR significant increase in 8-week-old chicks was observed. The study revealed that HCC shows continuous neuronal plasticity, which plays a significant role in normalizing and re-establishing the homeostasis in animals to survive.
Collapse
Affiliation(s)
- Kavita Tamta
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Adarsh Kumar
- Department of Applied Sciences, Dr. K. N. Modi University, Newai-Tonk, India
| | - Hemlata Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Shweta Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| |
Collapse
|
16
|
Wang C, Wang Q, Xu G, Sun Z, Zhang D, Ma C, Li Y, Wen D, Zhang X, Cong B. Circular RNA expression profiles and functional predication after restraint stress in the amygdala of rats. Front Mol Neurosci 2024; 17:1381098. [PMID: 38685915 PMCID: PMC11056511 DOI: 10.3389/fnmol.2024.1381098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Prolonged or repeated exposure to stress elevates the risk of various psychological diseases, many of which are characterized by central nervous system dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are highly abundant in the mammalian brain. Although their precise expression and function remain unknown, they have been hypothesized to regulate transcriptional and post-transcriptional gene expression. In this investigation, we comprehensively analyzed whether restraint stress for 2 days altered the circRNA expression profile in the amygdala of male rats. The impact of restraint stress on behavior was evaluated using an elevated plus maze and open field test. Serum corticosterone levels were measured using an enzyme-linked immunosorbent assay. A total of 10,670 circRNAs were identified using RNA sequencing. Ten circRNAs were validated by reverse transcription and quantitative polymerase chain reaction analysis. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyzes supported the notion that genes associated with differentially expressed circRNAs are primarily implicated in neuronal activity and neurotransmitter transport. Moreover, the three differentially expressed circRNAs showed high specificity in the amygdala. Overall, these findings indicate that differentially expressed circRNAs are highly enriched in the amygdala and offer a potential direction for further research on restraint stress.
Collapse
Affiliation(s)
- Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, The National Police University for Criminal Justice, Baoding, China
| | - Zhaoling Sun
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| |
Collapse
|
17
|
Gaynor AM, Ahsan A, Jung D, Schofield E, Li Y, Ryan E, Ahles TA, Root JC. Novel computerized neurocognitive test battery is sensitive to cancer-related cognitive deficits in survivors. J Cancer Surviv 2024; 18:466-478. [PMID: 35939254 PMCID: PMC11274167 DOI: 10.1007/s11764-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE There is increasing interest in developing new methods to improve sensitivity in detecting subtle cognitive deficits associated with cancer and its treatments. The current study aimed to evaluate the ability of a novel computerized battery of cognitive neuroscience-based tests to discriminate between cognitive performance in breast cancer survivors and controls. METHODS Breast cancer survivors (N = 174) and age-matched non-cancer controls (N = 183) completed the Enformia Cogsuite Battery of cognitive assessments, comprised of 7 computerized tests of multiple cognitive domains. Primary outcome measures included accuracy, reaction times (RT), and coefficients of variation (CV) for each task, as well as global scores of accuracy, RT, and CV aggregated across tests. RESULTS Linear regressions adjusting for age, education, and remote vs. in-office administration showed that compared to non-cancer controls, survivors had significantly lower performance on measures of attention, executive function, working memory, verbal ability, visuospatial ability, and motor function. Survivors had significantly greater CV on measures of attention, working memory, and processing speed, and significantly slower RT on measures of verbal fluency. CONCLUSIONS The Cogsuite battery demonstrates sensitivity to cancer-related cognitive dysfunction across multiple domains, and is capable of identifying specific cognitive processes that may be affected in survivors. IMPLICATIONS FOR CANCER SURVIVORS The sensitivity of these tasks to subtle cognitive deficits has advantages for initial diagnosis of cancer-related cognitive dysfunction, as well as detecting changes in survivors' cognitive function over time. The remote delivery of the battery may help overcome barriers associated with in-office administration and increase access to neurocognitive evaluation.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA.
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, USA.
| | - Anam Ahsan
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| | | | - Elizabeth Schofield
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| | - Yuelin Li
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| | - Elizabeth Ryan
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Neurocognitive Research Laboratory, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave., 7thFloor, New York, NY, 10022, USA
| |
Collapse
|
18
|
Kumar A, Tamta K, Arya H, Arya S, Maurya RC. Investigating the impact of nutritional insufficiency on parahippocampal neurons in domestic chickens, Gallus gallus domesticus. J Chem Neuroanat 2024; 137:102401. [PMID: 38382581 DOI: 10.1016/j.jchemneu.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Over time, scientists have been fascinated by the complex connections among nutrition, brain development, and behavior. It's been well understood that the brain's peak performance relies on having the right nutrients available. Thus, nutritional insufficiency, where an organism lacks vital nutrients crucial for optimal growth and function, can upset the body's balance, potentially triggering stress responses. However, our grasp of how the brain reacts to insufficient nutrition, particularly in avian species like domestic chickens, has shown inconsistencies in our understanding. Domestic chickens have frequently served as subjects for studying memory and learning, primarily focusing on the hippocampus-a region highly responsive to environmental changes. Yet, another critical brain region, the parahippocampal region, integral to memory and spatial cognition, had received relatively little attention concerning the consequences of inadequate nutrition and hydration. To address this knowledge gap, our study sought to investigate the impact of stress induced by nutritional insufficiency on the neuronal cells within the region parahippocampalis in two distinct age groups of domestic chickens, Gallus gallus domesticus: fifteen and thirty days old. We employed the Golgi-Cox-Impregnation technique to explore whether the structural characteristics of neuronal cells, specifically the dendritic spines, underwent changes under transient stressful conditions during these crucial developmental stages. The results were intriguing. Stress evidently induced observable alterations in the dendritic spines of the parahippocampal neuronal cells, with the extent of these changes being age-dependent. In fifteen-day-old chickens, stress prompted substantial modifications in the dendritic spines of parahippocampal multipolar and pyramidal neurons. In contrast, among thirty-day-old chickens, the response to stress was less comprehensive, with only specific parahippocampal multipolar neurons displaying such alterations. These findings underscored the influential role of stress in reshaping the structure of parahippocampal neurons and emphasized the importance of considering age when studying the impact of stress on the brain. Through this research, we aim to enhance our understanding of the intricate interplay between stress, brain structure, and the critical role of adequate nutrition, especially during pivotal developmental stages. Our future research objectives include a deeper investigation into the intracellular events including cellular and molecular mechanisms precipitating these changes and determining whether these alterations have downstream effects on crucial brain functions like learning and memory.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Zoology (DST-FIST SPONSORED), Soban Singh Jeena Campus Almora, Kumaun University, Nainital, Uttarakhand, India; Department of Zoology (DST-FIST SPONSORED), Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Kavita Tamta
- Department of Zoology (DST-FIST SPONSORED), Soban Singh Jeena Campus Almora, Kumaun University, Nainital, Uttarakhand, India
| | - Hemlata Arya
- Department of Zoology (DST-FIST SPONSORED), Soban Singh Jeena Campus Almora, Kumaun University, Nainital, Uttarakhand, India
| | - Shweta Arya
- Department of Zoology, Soban Singh Jeena University Almora, Uttarakhand, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST SPONSORED), Soban Singh Jeena Campus Almora, Kumaun University, Nainital, Uttarakhand, India.
| |
Collapse
|
19
|
Nehls S, Losse E, Enzensberger C, Frodl T, Chechko N. Time-sensitive changes in the maternal brain and their influence on mother-child attachment. Transl Psychiatry 2024; 14:84. [PMID: 38331939 PMCID: PMC10853535 DOI: 10.1038/s41398-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Pregnancy and the postpartum period are characterized by an increased neuroplasticity in the maternal brain. To explore the dynamics of postpartum changes in gray matter volume (GMV), magnetic resonance imaging was performed on 20 healthy postpartum women immediately after childbirth and at 3-week intervals for 12 postpartum weeks. The control group comprised 20 age-matched nulliparous women. The first 6 postpartum weeks (constituting the subacute postpartum period) are associated with decreasing progesterone levels and a massive restructuring in GMV, affecting the amygdala/hippocampus, the prefrontal/subgenual cortex, and the insula, which approach their sizes in nulliparous women only around weeks 3-6 postpartum. Based on the amygdala volume shortly after delivery, the maternal brain can be reliably distinguished from the nulliparous brain. Even 12 weeks after childbirth, the GMV in the dorsomedial prefrontal cortex, and the cortical thickness of the subgenual and lateral prefrontal cortices do not reach the pre-pregnancy levels. During this period, a volume decrease is seen in the cerebellum, the thalamus, and the dorsal striatum. A less hostile behavior toward the child at 6-12 weeks postpartum is predicted by the GMV change in the amygdala, the temporal pole, the olfactory gyrus, the anterior cingulate, the thalamus and the cerebellum in the same period. In summary, the restructuring of the maternal brain follows time-dependent trajectories. The fact that the volume changes persist at 12 weeks postpartum indicates that the maternal brain does not fully revert to pre-pregnancy physiology. Postpartum neuroplasticity suggests that these changes may be particularly significant in the regions important for parenting.
Collapse
Affiliation(s)
- Susanne Nehls
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich, Jülich, Germany.
| | - Elena Losse
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | | | - Thomas Frodl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich, Jülich, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich, Jülich, Germany.
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany.
| |
Collapse
|
20
|
Howland MA. Recalibration of the stress response system over adult development: Is there a perinatal recalibration period? Dev Psychopathol 2023; 35:2315-2337. [PMID: 37641984 PMCID: PMC10901284 DOI: 10.1017/s0954579423000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During early life-sensitive periods (i.e., fetal, infancy), the developing stress response system adaptively calibrates to match environmental conditions, whether harsh or supportive. Recent evidence suggests that puberty is another window when the stress system is open to recalibration if environmental conditions have shifted significantly. Whether additional periods of recalibration exist in adulthood remains to be established. The present paper draws parallels between childhood (re)calibration periods and the perinatal period to hypothesize that this phase may be an additional window of stress recalibration in adult life. Specifically, the perinatal period (defined here to include pregnancy, lactation, and early parenthood) is also a developmental switch point characterized by heightened neural plasticity and marked changes in stress system function. After discussing these similarities, lines of empirical evidence needed to substantiate the perinatal stress recalibration hypothesis are proposed, and existing research support is reviewed. Complexities and challenges related to delineating the boundaries of perinatal stress recalibration and empirically testing this hypothesis are discussed, as well as possibilities for future multidisciplinary research. In the theme of this special issue, perinatal stress recalibration may be a mechanism of multilevel, multisystem risk, and resilience, both intra-individually and intergenerationally, with implications for optimizing interventions.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Li Q, Jia X, Zhong Q, Zhong Z, Wang Y, Tang C, Zhao B, Feng H, Hao J, Zhao Z, He J, Zhang Y. Combination of Walnut Peptide and Casein Peptide alleviates anxiety and improves memory in anxiety mices. Front Nutr 2023; 10:1273531. [PMID: 37867495 PMCID: PMC10588484 DOI: 10.3389/fnut.2023.1273531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and Results Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.
Collapse
Affiliation(s)
- Qinxi Li
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Qixing Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Tang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bangcheng Zhao
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Rojas-Thomas F, Artigas C, Wainstein G, Morales JP, Arriagada M, Soto D, Dagnino-Subiabre A, Silva J, Lopez V. Impact of acute psychosocial stress on attentional control in humans. A study of evoked potentials and pupillary response. Neurobiol Stress 2023; 25:100551. [PMID: 37362419 PMCID: PMC10285563 DOI: 10.1016/j.ynstr.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Psychosocial stress has increased considerably in our modern lifestyle, affecting global mental health. Deficits in attentional control are cardinal features of stress disorders and pathological anxiety. Studies suggest that changes in the locus coeruleus-norepinephrine system could underlie the effects of stress on top-down attentional control. However, the impact of psychosocial stress on attentional processes and its underlying neural mechanisms are poorly understood. This study aims to investigate the effect of psychosocial stress on attentional processing and brain signatures. Evoked potentials and pupillary activity related to the oddball auditory paradigm were recorded before and after applying the Montreal Imaging Stress Task (MIST). Electrocardiogram (ECG), salivary cortisol, and subjective anxiety/stress levels were measured at different experimental periods. The control group experienced the same physical and cognitive effort but without the psychosocial stress component. The results showed that stressed subjects exhibited decreased P3a and P3b amplitude, pupil phasic response, and correct responses. On the other hand, they displayed an increase in Mismatch Negativity (MMN). N1 amplitude after MIST only decreased in the control group. We found that differences in P3b amplitude between the first and second oddball were significantly correlated with pupillary dilation and salivary cortisol levels. Our results suggest that under social-evaluative threat, basal activity of the coeruleus-norepinephrine system increases, enhancing alertness and decreasing voluntary attentional resources for the cognitive task. These findings contribute to understanding the neurobiological basis of attentional changes in pathologies associated with chronic psychosocial stress.
Collapse
Affiliation(s)
- F. Rojas-Thomas
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - C. Artigas
- Departamento de Biología, Universidad Autónoma de Chile, Santiago, Chile
| | - G. Wainstein
- Departamento de Psiquiatría, Escuela de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Pablo Morales
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - M. Arriagada
- College of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O'Higgins University, Santiago, Chile
| | - D. Soto
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - A. Dagnino-Subiabre
- Laboratorio de Neurobiología del Estrés, Instituto de Fisiología, CENFI, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - J. Silva
- Instituto de Bienestar Socioemocional (IBEM), Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - V. Lopez
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Datta S, Rashid Z, Naskar S, Chattarji S. Administration of the glutamate-modulating drug, riluzole, after stress prevents its delayed effects on the amygdala in male rats. PNAS NEXUS 2023; 2:pgad166. [PMID: 37266396 PMCID: PMC10230288 DOI: 10.1093/pnasnexus/pgad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Extracellular glutamate levels are elevated across brain regions immediately after stress. Despite sharing common features in their genesis, the patterns of stress-induced plasticity that eventually take shape are strikingly different between these brain areas. While stress causes structural and functional deficits in the hippocampus, it has the opposite effect on the amygdala. Riluzole, an FDA-approved drug known to modulate glutamate release and facilitate glutamate clearance, prevents stress-induced deficits in the hippocampus. But whether the same drug is also effective in countering the opposite effects of stress in the amygdala remains unexplored. We addressed this question by using a rat model wherein even a single 2-h acute immobilization stress causes a delayed expression of anxiety-like behavior, 10 days later, alongside stronger excitatory synaptic connectivity in the basolateral amygdala (BLA). This temporal profile-several days separating the acute stressor and its delayed impact-allowed us to test if these effects can be prevented by administering riluzole in drinking water after acute stress. Poststress riluzole not only prevented the delayed increase in anxiety-like behavior on the elevated plus maze but also blocked the increase in spine density on BLA neurons 10 days later. Further, stress-induced increase in the frequency of miniature excitatory postsynaptic currents recorded in BLA slices, 10 days later, was also blocked by the same poststress riluzole administration. Together, these findings underscore the importance of therapeutic strategies, aimed at glutamate uptake and modulation, in correcting the delayed behavioral, physiological, and morphological effects of stress on the amygdala.
Collapse
Affiliation(s)
| | | | - Saptarnab Naskar
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
24
|
Gigliotta A, Trontti K, Väänänen J, Hovatta I. Gene expression profiling reveals a role of immune system and inflammation in innate and stress-induced anxiety-like behavior. Front Genet 2023; 14:1173376. [PMID: 37260777 PMCID: PMC10229056 DOI: 10.3389/fgene.2023.1173376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Anxiety is an evolutionarily conserved response that is essential for survival. Pathological anxiety, however, is a maladaptive response to nonthreatening situations and greatly affects quality of life. The recent COVID-19 pandemic has increased the prevalence of anxiety symptoms and highlighted the urge to identify the molecular events that initiate pathological anxiety. To this aim, we investigated the extent of similarity of brain region-specific gene expression patterns associated with innate and stress-induced anxiety-like behavior. We compared the cortico-frontal (FCx) and hippocampal (Hpc) gene expression patterns of five inbred mouse strains with high or low levels of innate anxiety-like behavior with gene expression patterns of mice subjected to chronic social defeat stress. We found significantly large overlap of the Hpc but small overlap of the FCx gene expression patterns in innate and stress-induced anxiety, that however, converged onto common inflammation and immune system canonical pathways. Comparing the gene expression data with drug-gene interaction datasets revealed drug candidates, including medrysone, simvastatin, captopril, and sulpiride, that produced gene expression changes opposite to those observed in innate or stress-induced anxiety-like behavior. Together, our data provide a comprehensive overview of FCx and Hpc gene expression differences between innate and stress-induced anxiety and support the role of inflammation and immune system in anxiety-like behavior.
Collapse
|
25
|
Forti L, Ndoj E, Mingardi J, Secchi E, Bonifacino T, Schiavon E, Carini G, La Via L, Russo I, Milanese M, Gennarelli M, Bonanno G, Popoli M, Barbon A, Musazzi L. Dopamine-Dependent Ketamine Modulation of Glutamatergic Synaptic Plasticity in the Prelimbic Cortex of Adult Rats Exposed to Acute Stress. Int J Mol Sci 2023; 24:ijms24108718. [PMID: 37240064 DOI: 10.3390/ijms24108718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic stress is the main environmental risk factor for the development of psychiatric disorders. We have previously shown that acute footshock (FS) stress in male rats induces rapid and long-lasting functional and structural changes in the prefrontal cortex (PFC), which are partly reversed by acute subanesthetic ketamine. Here, we asked if acute FS may also induce any changes in glutamatergic synaptic plasticity in the PFC 24 h after stress exposure and whether ketamine administration 6 h after stress may have any effect. We found that the induction of long-term potentiation (LTP) in PFC slices of both control and FS animals is dependent on dopamine and that dopamine-dependent LTP is reduced by ketamine. We also found selective changes in ionotropic glutamate receptor subunit expression, phosphorylation, and localization at synaptic membranes induced by both acute stress and ketamine. Although more studies are needed to understand the effects of acute stress and ketamine on PFC glutamatergic plasticity, this first report suggests a restoring effect of acute ketamine, supporting the potential benefit of ketamine in limiting the impact of acute traumatic stress.
Collapse
Affiliation(s)
- Lia Forti
- Department of Biotechnology and Life Sciences, Center for Neuroscience Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Emanuele Secchi
- Department of Biotechnology and Life Sciences, Center for Neuroscience Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Tiziana Bonifacino
- Unit of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Emanuele Schiavon
- Department of Biotechnology and Life Sciences, Center for Neuroscience Research, University of Insubria, 21052 Busto Arsizio, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- Unit of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Giambattista Bonanno
- Unit of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, 20133 Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Liang H, Ernst T, Oishi K, Ryan MC, Herskovits E, Cunningham E, Wilson E, Kottilil S, Chang L. Abnormal brain diffusivity in participants with persistent neuropsychiatric symptoms after COVID-19. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:37-48. [PMID: 37067870 PMCID: PMC10091517 DOI: 10.1515/nipt-2022-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Objectives We aimed to compare brain white matter integrity in participants with post-COVID-19 conditions (PCC) and healthy controls. Methods We compared cognitive performance (NIH Toolbox®), psychiatric symptoms and diffusion tensor imaging (DTI) metrics between 23 PCC participants and 24 controls. Fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities were measured in 9 white matter tracts and 6 subcortical regions using MRICloud. Results Compared to controls, PCC had similar cognitive performance, but greater psychiatric symptoms and perceived stress, as well as higher FA and lower diffusivities in multiple white matter tracts (ANCOVA-p-values≤0.001-0.048). Amongst women, PCC had higher left amygdala-MD than controls (sex-by-PCC p=0.006). Regardless of COVID-19 history, higher sagittal strata-FA predicted greater fatigue (r=0.48-0.52, p<0.001) in all participants, and higher left amygdala-MD predicted greater fatigue (r=0.61, p<0.001) and anxiety (r=0.69, p<0.001) in women, and higher perceived stress (r=0.45, p=0.002) for all participants. Conclusions Microstructural abnormalities are evident in PCC participants averaged six months after COVID-19. The restricted diffusivity (with reduced MD) and higher FA suggest enhanced myelination or increased magnetic susceptibility from iron deposition, as seen in stress conditions. The higher amygdala-MD in female PCC suggests persistent neuroinflammation, which might contribute to their fatigue, anxiety, and perceived stress.
Collapse
Affiliation(s)
- Huajun Liang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas Ernst
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meghann C. Ryan
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward Herskovits
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Cunningham
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eleanor Wilson
- Department of Medicine, Division of Infectious Disease, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shyamasundaran Kottilil
- Department of Medicine, Division of Infectious Disease, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
28
|
Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology 2023; 224:109344. [PMID: 36402246 DOI: 10.1016/j.neuropharm.2022.109344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling psychiatric condition that may arise after exposure to acute and severe trauma. It is a highly prevalent mental disorder worldwide, and the current treatment options for these patients remain limited due to low effectiveness. The time window right after traumatic events provides clinicians with a unique opportunity for preventive interventions against potential deleterious alterations in brain function that lead to PTSD. Some studies pointed out that PTSD patients present an abnormal function of the hypothalamic-pituitary-adrenal axis that may contribute to a vulnerability toward PTSD. Moreover, glucocorticoids have arisen as a promising option for preventing the disorder's development when administered in the aftermath of trauma. The present work compiles the recent findings of glucocorticoid administration for the prevention of a PTSD phenotype, from human studies to animal models of PTSD. Overall, glucocorticoid-based therapies for preventing PTSD demonstrated moderate evidence in terms of efficacy in both clinical and preclinical studies. Although clinical studies point out that glucocorticoids may not be effective for all patients' subpopulations, those with adequate traits might greatly benefit from them. Preclinical studies provide precise insight into the mechanisms mediating this preventive effect, showing glucocorticoid-based prevention to reduce long-lasting behavioral and neurobiological abnormalities caused by traumatic stress. However, further research is needed to delineate the precise mechanisms and the extent to which these interventions can translate into lower PTSD rates and morbidity. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
29
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Li C, Dai W, Miao S, Xie W, Yu S. Medication overuse headache and substance use disorder: A comparison based on basic research and neuroimaging. Front Neurol 2023; 14:1118929. [PMID: 36937526 PMCID: PMC10017752 DOI: 10.3389/fneur.2023.1118929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
It has yet to be determined whether medication overuse headache (MOH) is an independent disorder or a combination of primary headache and substance addiction. To further explore the causes of MOH, we compared MOH with substance use disorder (SUD) in terms of the brain regions involved to draw more targeted conclusions. In this review, we selected alcohol use disorder (AUD) as a representative SUD and compared MOH and AUD from two aspects of neuroimaging and basic research. We found that in neuroimaging studies, there were many overlaps between AUD and MOH in the reward circuit, but the extensive cerebral cortex damage in AUD was more serious than that in MOH. This difference was considered to reflect the sensitivity of the cortex structure to alcohol damage. In future research, we will focus on the central amygdala (CeA), prefrontal cortex (PFC), orbital-frontal cortex (OFC), hippocampus, and other brain regions for interventions, which may have unexpected benefits for addiction and headache symptoms in MOH patients.
Collapse
|
31
|
Kero K, Halter CM, Moll AC, Hanna SM, Woodard JL, Giordani B, Daugherty AM, Kavcic V. Metacognition in Community-Dwelling Older Black and African American Adults During the COVID-19 Pandemic. J Alzheimers Dis 2023; 96:301-311. [PMID: 37742635 PMCID: PMC10757653 DOI: 10.3233/jad-221140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cognitive assessment of older adults typically includes symptom reports and objective evaluations. However, there is often poor agreement between these measures. Cultural norms, stress, and anxiety may also influence cognitive self-appraisal and performance. Little research describes how other factors affect the self-report/objective test discrepancies noted in the literature. OBJECTIVE This study investigated whether the disparity between subjective cognitive concerns and objective cognitive performance is related to measures of anxiety and stress in older Black and African American adults. METHODS Telephone screenings were administered to 206 older adults (ages 64-94) during the first year of the pandemic. Demographic data, objective memory (Telephone Interview for Cognitive Status [TICS-m]), an adaptation of the subjective memory measure, the Cognitive Change Questionnaire, emphasizing executive functioning in everyday life [CCQ-e]), Generalized Anxiety Disorder-7 (GAD-7), and Perceived Stress Scale-4 (PSS4) were measured. Metacognition Discrepancy Index (MDI) was calculated from the standardized residual after regressing TICS-m on CCQ-e scores to quantify the discrepancy between cognitive self-appraisal and objective cognitive functioning. RESULTS Neither GAD-7 nor PSS-4 moderated the relationship between TICS-m and CCQ-e, and TICS-m scores weakly predicted subjective CCQ-e scores (F(1, 197)=4.37, p = 0.038, R2 = 0.022). The MDI correlated with stress and anxiety (rs = 0.294, 0.396, ps < 0.001). CONCLUSION Discrepancies exist between objectively measured and self-evaluated cognition. Elevations in stress and anxiety are associated with greater overestimation of cognitive difficulties relative to objective performance. Pandemic-related stressors may have worsened anxiety and diminished self-appraisal of cognitive abilities for some individuals, while others may remain reluctant to acknowledge impairments. Social and emotional factors are meaningful considerations in assessing cognitive difficulties.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruno Giordani
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI, USA
- University of Michigan, Ann Arbor, MI, USA
| | | | - Voyko Kavcic
- Wayne State University, Detroit, MI, USA
- International Institute of Applied Gerontology, Ljubljana, Slovenia
| |
Collapse
|
32
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
33
|
Bassil K, De Nijs L, Rutten BPF, Van Den Hove DLA, Kenis G. In vitro modeling of glucocorticoid mechanisms in stress-related mental disorders: Current challenges and future perspectives. Front Cell Dev Biol 2022; 10:1046357. [DOI: 10.3389/fcell.2022.1046357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
In the last decade, in vitro models has been attracting a great deal of attention for the investigation of a number of mechanisms underlying neurological and mental disorders, including stress-related disorders, for which human brain material has rarely been available. Neuronal cultures have been extensively used to investigate the neurobiological effects of stress hormones, in particular glucocorticoids. Despite great advancements in this area, several challenges and limitations of studies attempting to model and investigate stress-related mechanisms in vitro exist. Such experiments often come along with non-standardized definitions stress paradigms in vitro, variations in cell models and cell types investigated, protocols with differing glucocorticoid concentrations and exposure times, and variability in the assessment of glucocorticoid-induced phenotypes, among others. Hence, drawing consensus conclusions from in-vitro stress studies is challenging. Addressing these limitations and aligning methodological aspects will be the first step towards an improved and standardized way of conducting in vitro studies into stress-related disorders, and is indispensable to reach the full potential of in vitro neuronal models. Here, we consider the most important challenges that need to be overcome and provide initial guidelines to achieve improved use of in vitro neuronal models for investigating mechanisms underlying the development of stress-related mental disorders.
Collapse
|
34
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Effects of estrogen receptor β or G protein-coupled receptor 30 activation on anxiety-like behaviors in relation to GABAergic transmission in stress-ovariectomized rats. Neurosci Lett 2022; 789:136885. [PMID: 36152742 DOI: 10.1016/j.neulet.2022.136885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
For mental disorders such as anxiety and depression, stress and stressful events are considered as precipitating causes that may be enhanced by estrogen variability. This condition is proven by the higher vulnerability of women than men. Despite the complexity of underlying mechanisms, the gamma-aminobutyric acid (GABA) system piques interest as its receptor contains multiple psychoactive modulatory sites including neurosteroids. Moreover, according to clinical and experimental reports, GABA-associated genes can be altered by stress and hormonal status. Therefore, this study investigated the effects of estrogen receptor β (ERβ) or G protein-coupled receptor 30 (GPR30) activation on anxiety/depression-like behaviors and the alterations in the GABA-associated gene of ovariectomized rats under chronic mild stress (CMS). Mild stressors were focused on because they represent a realistic simulation of daily life stress. In this study, ovariectomized rats were treated with vehicle, estradiol (E2), diarylpropionitrile (DPN; ERβ agonist) or G1 (GPR30 agonist) and exposed to 4-week CMS. The results showed that E2, DPN, and G1 treatments reduced anxiety-like behaviors without affecting depression-like behaviors. Concurrently, the GABA level and most GABA- and neurosteroid-associated mRNAs were altered by E2. Similar mRNA profiles were observed in DPN- and E2-administrations but not in G1 treatment. Collectively, these data suggest that estrogen exerts an anxiolytic-like action through either ERβ and/or GPR30 activation, and the modulatory effects of estrogen on GABAergic system are likely to be modulated through ERβ. The findings of this study therefore further provide insights into the roles of estrogen and daily mild stressors in GABA-related activity and behavioral responses, especially anxiety.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | | |
Collapse
|
35
|
Doğan A, Bayar Muluk N, Inanç Y. Peripheral and Central Smell Regions in Migraine Patients using Maraş Powder (Smokeless Tobacco): A Magnetic Resonance Imaging Evaluation. Skull Base Surg 2022; 83:461-469. [DOI: 10.1055/s-0041-1729907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Abstract
Objective In the present study, we investigated the efficacy of Maraş powder (smokeless tobacco) use on smell regions in migraine patients.
Methods The cranial magnetic resonance imaging images of 58 adult patients were included in this retrospective study. Thirty-eight of them were migraine patients (18 of them using Maraş powder and 20 of them not using Maraş powder) and 20 of them were healthy controls. Bilateral peripheral (olfactory bulb [OB] volume and olfactory sulcus depth) and central smell regions (insular gyrus area and corpus amygdala area) as well as nasal septal deviation were evaluated.
Results In migraine patients (using or not using Maraş powder), OB volumes, and in Maraş powder using migraine patients, corpus amygdala areas were lower than those in the control group (p < 0.05). In Maraş powder-using migraine patients, left insular gyrus areas of the females were significantly lower than the males (p < 0.05).
Conclusion We concluded that the peripheral smell region of the OB volume decreased in migraine patients (using or not using Maraş powder). However, the central smell region of corpus amygdala area decreased in Maraş powder using migraine patients. Maraş powder usage may increase vascular shrinkage, and the decrease in OB volume and corpus amygdala area becomes prominent. It can be said that Maraş powder usage may cause a size decrease in the peripheral and central smell regions in migraine patients. Therefore, migraine patients and non-migrainous people should be noticed for the harmful effects of Maraş powder on the vascular system and smell system in the aspects of OB volume and corpus amygdala area decrease.
Collapse
Affiliation(s)
- Adil Doğan
- Radiology Department, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Nuray Bayar Muluk
- ENT Department, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Yılmaz Inanç
- Neurology Department, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
36
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Bini J, Parikh L, Lacadie C, Hwang JJ, Shah S, Rosenberg SB, Seo D, Lam K, Hamza M, De Aguiar RB, Constable T, Sherwin RS, Sinha R, Jastreboff AM. Stress-level glucocorticoids increase fasting hunger and decrease cerebral blood flow in regions regulating eating. Neuroimage Clin 2022; 36:103202. [PMID: 36126514 PMCID: PMC9486604 DOI: 10.1016/j.nicl.2022.103202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
CONTEXT The neural regulation of appetite and energy homeostasis significantly overlaps with the neurobiology of stress. Frequent exposure to repeated acute stressors may cause increased allostatic load and subsequent dysregulation of the cortico-limbic striatal system leading to inefficient integration of postprandial homeostatic and hedonic signals. It is therefore important to understand the neural mechanisms by which stress generates alterations in appetite that may drive weight gain. OBJECTIVE To determine glucocorticoid effects on metabolic, neural and behavioral factors that may underlie the association between glucocorticoids, appetite and obesity risk. METHODS A randomized double-blind cross-over design of overnight infusion of hydrocortisone or saline followed by a fasting morning perfusion magnetic resonance imaging to assess regional cerebral blood flow (CBF) was completed. Visual Analog Scale (VAS) hunger, cortisol and metabolic hormones were also measured. RESULTS Hydrocortisone relative to saline significantly decreased whole brain voxel based CBF responses in the hypothalamus and related cortico-striatal-limbic regions. Hydrocortisone significantly increased hunger VAS pre-scan, insulin, glucose and leptin, but not other metabolic hormones versus saline CBF groups. Hydrocortisone related increases in hunger were predicted by less reduction of CBF (hydrocortisone minus saline) in the medial OFC, medial brainstem and thalamus, left primary sensory cortex and right superior and medial temporal gyrus. Hunger ratings were also positively associated with plasma insulin on hydrocortisone but not saline day. CONCLUSIONS Increased glucocorticoids at levels akin to those experienced during psychological stress, result in increased fasting hunger and decreased regional cerebral blood flow in a distinct brain network of prefrontal, emotional, reward, motivation, sensory and homeostatic regions that underlie control of food intake.
Collapse
Affiliation(s)
- Jason Bini
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Lisa Parikh
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Janice J Hwang
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Saloni Shah
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel B Rosenberg
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Katherine Lam
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Muhammad Hamza
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Renata Belfort De Aguiar
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Robert S Sherwin
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Ania M Jastreboff
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
38
|
Chenani A, Weston G, Ulivi AF, Castello-Waldow TP, Huettl RE, Chen A, Attardo A. Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. Transl Psychiatry 2022; 12:381. [PMID: 36096987 PMCID: PMC9468341 DOI: 10.1038/s41398-022-02107-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress. We found that several days of repeated stress led to a substantial increase in neuronal activity followed by disruption of the temporal structure of this activity and spatial coding. We then tracked dynamics of structural excitatory connectivity as a potential underlying cause of the changes in activity induced by repeated stress. We thus discovered that exposure to repeated stress leads to an immediate decrease in spinogenesis followed by decrease in spine stability. By comparison, acute stress led to stabilization of the spines born in temporal proximity to the stressful event. Importantly, the temporal relationship between changes in activity levels, structural connectivity and activity patterns, suggests that loss of structural connectivity mediates the transition between increased activity and impairment of temporal organization and spatial information content in dorsal CA1 upon repeated stress exposure.
Collapse
Affiliation(s)
| | - Ghabiba Weston
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
| | - Alessandro F Ulivi
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | | | | | - Alon Chen
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
- Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alessio Attardo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany.
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| |
Collapse
|
39
|
Webb EK, Cardenas-Iniguez C, Douglas R. Radically reframing studies on neurobiology and socioeconomic circumstances: A call for social justice-oriented neuroscience. Front Integr Neurosci 2022; 16:958545. [PMID: 36118113 PMCID: PMC9479322 DOI: 10.3389/fnint.2022.958545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 01/29/2023] Open
Abstract
Socioeconomic circumstances are associated with symptoms and diagnostic status of nearly all mental health conditions. Given these robust relationships, neuroscientists have attempted to elucidate how socioeconomic-based adversity "gets under the skin." Historically, this work emphasized individual proxies of socioeconomic position (e.g., income, education), ignoring the effects of broader socioeconomic contexts (e.g., neighborhood socioeconomic disadvantage) which may uniquely contribute to chronic stress. This omission represented a disconnect between neuroscience and other allied fields that have recognized health is undeniably linked to interactions between systems of power and individual characteristics. More recently, neuroscience work has considered how sociopolitical context affects brain structure and function; however, the products of this exciting line of research have lacked critical sociological and historical perspectives. While empirical evidence on this topic is burgeoning, the cultural, ethical, societal, and legal implications of this work have been elusive. Although the mechanisms by which socioeconomic circumstances impact brain structure and function may be similar across people, not everyone is exposed to these factors at similar rates. Individuals from ethnoracially minoritized groups are disproportionally exposed to neighborhood disadvantage. Thus, socioeconomic inequities examined in neuroscience research are undergirding with other forms of oppression, namely structural racism. We utilize a holistic, interdisciplinary approach to interpret findings from neuroscience research and interweave relevant theories from the fields of public health, social sciences, and Black feminist thought. In this perspective piece, we discuss the complex relationship that continues to exist between academic institutions and underserved surrounding communities, acknowledging the areas in which neuroscience research has historically harmed and/or excluded structurally disadvantaged communities. We conclude by envisioning how this work can be used; not just to inform policymakers, but also to engage and partner with communities and shape the future direction of human neuroscience research.
Collapse
Affiliation(s)
- E. Kate Webb
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, United States
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robyn Douglas
- Department of Psychological and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Youssef MMM, Hamada HT, Lai ESK, Kiyama Y, El-Tabbal M, Kiyonari H, Nakano K, Kuhn B, Yamamoto T. TOB is an effector of the hippocampus-mediated acute stress response. Transl Psychiatry 2022; 12:302. [PMID: 35906220 PMCID: PMC9338090 DOI: 10.1038/s41398-022-02078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.
Collapse
Affiliation(s)
- Mohieldin M M Youssef
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Esther Suk King Lai
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuji Kiyama
- Laboratory of Biochemistry and Molecular Biology, Graduate school of medical and dental sciences, Kagoshima University, Kagoshima, Japan
| | - Mohamed El-Tabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
41
|
Sachett A, Gallas-Lopes M, Benvenutti R, Marcon M, Linazzi AM, Aguiar GPS, Herrmann AP, Oliveira JV, Siebel AM, Piato A. Non-micronized and micronized curcumin do not prevent the behavioral and neurochemical effects induced by acute stress in zebrafish. Pharmacol Rep 2022; 74:736-744. [DOI: 10.1007/s43440-022-00389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
|
42
|
Shridhar S, Mishra P, Narayanan R. Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells. Hippocampus 2022; 32:488-516. [PMID: 35561083 PMCID: PMC9322436 DOI: 10.1002/hipo.23422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023]
Abstract
Neurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, which have been implicated in context‐specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic physiologically constrained parametric search to identify the cellular mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We used heterogeneous model populations to ensure that our conclusions were not biased by parametric choices in a single hand‐tuned model. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneities in synaptic plasticity profiles obtained with two different induction protocols. However, among the disparate forms of neural‐circuit heterogeneities, our analyses demonstrated the dominance of neurogenesis‐induced structural heterogeneities in driving plasticity heterogeneity in granule cells. We found that strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult neurogenesis‐induced heterogeneities in neural structure were accounted for. Importantly, our analyses showed that it was not imperative that the manifestation of neural‐circuit heterogeneities must translate to heterogeneities in plasticity profiles. Specifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable across all models through synergistic interactions among these heterogeneities. We assessed the parametric combinations required for the manifestation of such degeneracy in the expression of plasticity profiles. We found that immature cells showed physiological plasticity profiles despite receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability of immature granule cells was sufficient to counterbalance their low excitatory drive in the expression of plasticity profile degeneracy. Together, our analyses demonstrate that disparate forms of neural‐circuit heterogeneities could mechanistically drive plasticity heterogeneity, but also caution against treating neural‐circuit heterogeneities as proxies for plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing the relationship between neural‐circuit and plasticity heterogeneities across brain regions.
Collapse
Affiliation(s)
- Sameera Shridhar
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
43
|
Bose M, Nawaz MS, Pal R, Chattarji S. Stress Elicits Contrasting Effects on Rac1-Cofilin Signaling in the Hippocampus and Amygdala. Front Mol Neurosci 2022; 15:880382. [PMID: 35592113 PMCID: PMC9110925 DOI: 10.3389/fnmol.2022.880382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is accumulating evidence for contrasting patterns of stress-induced morphological and physiological plasticity in glutamatergic synapses of the hippocampus and amygdala. The same chronic stress that leads to the formation of dendritic spines in the basolateral amygdala (BLA) of rats, leads to a loss of spines in the hippocampus. However, the molecular underpinnings of these divergent effects of stress on dendritic spines are not well understood. Since the activity of the Rho GTPase Rac1 and the actin-depolymerizing factor cofilin are known to play a pivotal role in spine morphogenesis, we investigated if alterations in this signaling pathway reflect the differential effects of stress on spine plasticity in the hippocampus and amygdala. A day after the end of chronic immobilization stress (2 h/day for 10 days), we found a reduction in the activity of Rac1, as well as its effector p21-activated kinase 1 (PAK1), in the rat hippocampus. These changes, in turn, decreased cofilin phosphorylation alongside a reduction in the levels of profilin isoforms. In striking contrast, the same chronic stress increased Rac1, PAK1 activity, cofilin phosphorylation, and profilin levels in the BLA, which is consistent with enhanced actin polymerization leading to spinogenesis in the BLA. In the hippocampus, on the other hand, the same stress caused the opposite changes, the functional consequences of which would be actin depolymerization leading to the elimination of spines. Together, these findings reveal a role for brain-region specific differences in the dysregulation of Rac1-to-cofilin signaling in the effects of repeated stress on two brain areas that are implicated in the emotional and cognitive symptoms of stress-related psychiatric disorders.
Collapse
|
44
|
Naskar S, Datta S, Chattarji S. Riluzole prevents stress-induced spine plasticity in the hippocampus but mimics it in the amygdala. Neurobiol Stress 2022; 18:100442. [PMID: 35330860 PMCID: PMC8938913 DOI: 10.1016/j.ynstr.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Stress elicits divergent patterns of structural plasticity in the amygdala and hippocampus. Despite these contrasting effects, at least one of the immediate consequences of stress - elevated levels of extracellular glutamate - is similar in both brain areas. This raises the possibility that the contrasting effects of stress on neuronal plasticity is shaped by differences in astrocytic glutamate clearance in these two brain areas. Although astrocytes play a key role in glutamate reuptake, past analyses of, and interventions against, stress-induced plasticity have focused largely on neurons. Hence, we tested the impact of riluzole, which potentiates glutamate clearance by astrocytic glutamate transporters, on principal neurons and astrocytes in the basal amygdala (BA) and hippocampal area CA1. Chronic immobilization stress reduced spine-density on CA1 pyramidal neurons of male rats. Riluzole, administered in the drinking water during chronic stress, prevented this decrease; but, the drug by itself had no effect. In contrast, the same chronic stress enhanced spine-density on BA principal neurons, and this effect, unlike area CA1, was not reversed by riluzole. Strikingly, riluzole treatment alone also caused spinogenesis in the BA. Thus, the same riluzole treatment that prevented the effect of stress on spines in the hippocampus, mimicked its effect in the amygdala. Further, chronic stress and riluzole alone decreased the neuropil volume occupied by astrocytes in both the BA and CA1 area. Riluzole treatment in stressed animals, however, did not reverse or further add to this reduction in either region. Thus, while the effects on astrocytes were similar, neuronal changes were distinct between the two areas following stress, riluzole and the two together. Therefore, similar to the impact of repeated stress, pharmacological potentiation of glutamate clearance, with or without stress, also leads to differential effects on dendritic spines in principal neurons of the amygdala and hippocampus. This highlights differences in the astrocytic glutamate reuptake machinery that are likely to have important functional consequences for stress-induced dysfunction, and its reversal, in two brain areas implicated in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Saptarnab Naskar
- National Centre for Biological Sciences, Bangalore, 560065, India
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60610, USA
| | - Siddhartha Datta
- National Centre for Biological Sciences, Bangalore, 560065, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, 560065, India
- Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH89XD, UK
| |
Collapse
|
45
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
46
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
47
|
Kwan C, Wong C, Chen Z, Yip PSF. Youth Bullying and Suicide: Risk and Protective Factor Profiles for Bullies, Victims, Bully-Victims and the Uninvolved. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052828. [PMID: 35270521 PMCID: PMC8910292 DOI: 10.3390/ijerph19052828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Bullying is closely associated with suicide. This study validates mixed evidence on whether young bullies, victims, bully-victims, and those uninvolved in bullying differ in suicidality, risk, protective factor profiles, and predictors of suicide. A total of 2004 Hong Kong adolescents and young adults completed the Hong Kong Online Survey on Youth Mental Health and Internet Usage in 2018. Bullies, victims, and bully victims, as opposed to the uninvolved, were found to possess higher tendencies of suicidal thoughts and behaviors. They had more distinct rather than overlapping risk and protective factor profiles yet shared psychological distress and diagnosis of a psychiatric disorder as common predictors of suicide. The results indicate that suicide screening assessments and training to detect common suicide predictors can benefit youngsters regardless of their bullying involvement. From the discussion, group-specific interventions include restorative justice approaches to promote reintegration and help-seeking among bullies, peer, and professional support programs geared towards lowering victim isolation and equipping gatekeepers such as teachers with skills to connect with both bullies and victims.
Collapse
Affiliation(s)
- Ching Kwan
- HKJC Centre for Suicide Research and Prevention, Hong Kong 999077, China; (C.K.); (C.W.)
| | - Clifford Wong
- HKJC Centre for Suicide Research and Prevention, Hong Kong 999077, China; (C.K.); (C.W.)
| | - Zhansheng Chen
- Department of Psychology, University of Hong Kong, Hong Kong 999077, China;
| | - Paul S. F. Yip
- HKJC Centre for Suicide Research and Prevention, Hong Kong 999077, China; (C.K.); (C.W.)
- Correspondence: ; Tel.: +852-2831-5232
| |
Collapse
|
48
|
Qin X, Pan HQ, Huang SH, Zou JX, Zheng ZH, Liu XX, You WJ, Liu ZP, Cao JL, Zhang WH, Pan BX. GABA A(δ) receptor hypofunction in the amygdala-hippocampal circuit underlies stress-induced anxiety. Sci Bull (Beijing) 2022; 67:97-110. [PMID: 36545966 DOI: 10.1016/j.scib.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023]
Abstract
Dysregulated GABAergic inhibition in the amygdala has long been implicated in stress-related neuropsychiatric disorders. However, the molecular and circuit mechanisms underlying the dysregulation remain elusive. Here, by using a mouse model of chronic social defeat stress (CSDS), we observed that the dysregulation varied drastically across individual projection neurons (PNs) in the basolateral amygdala (BLA), one of the kernel amygdala subregions critical for stress coping. While persistently reducing the extrasynaptic GABAA receptor (GABAAR)-mediated tonic current in the BLA PNs projecting to the ventral hippocampus (BLA → vHPC PNs), CSDS increased the current in those projecting to the anterodorsal bed nucleus of stria terminalis (BLA → adBNST PNs), suggesting projection-based dysregulation of tonic inhibition in BLA PNs by CSDS. Transcriptional and electrophysiological analysis revealed that the opposite CSDS influences were mediated by loss- and gain-of-function of δ-containing GABAARs (GABAA(δ)Rs) in BLA → vHPC and BLA → adBNST PNs, respectively. Importantly, it was the lost inhibition in the former population but not the augmentation in the latter population that correlated with the increased anxiety-like behavior in CSDS mice. Virally mediated maintenance of GABAA(δ)R currents in BLA → vHPC PNs occluded CSDS-induced anxiety-like behavior. These findings clarify the molecular substrate for the dysregulated GABAergic inhibition in amygdala circuits for stress-associated psychopathology.
Collapse
Affiliation(s)
- Xia Qin
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Shou-He Huang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhi-Heng Zheng
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Jie You
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhi-Peng Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Jun-Li Cao
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China; Department of Ophthalmology, The Second Affiliated Hospital, Medical School of Nanchang University, Nanchang 330031, China.
| |
Collapse
|
49
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
50
|
DePasquale CE, Herzberg MP, Gunnar MR. The Pubertal Stress Recalibration Hypothesis: Potential Neural and Behavioral Consequences. CHILD DEVELOPMENT PERSPECTIVES 2021; 15:249-256. [PMID: 34925549 PMCID: PMC8680280 DOI: 10.1111/cdep.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent research has suggested that the pubertal period provides an opportunity for recalibrating the stress-responsive systems in youth whose responses to stress have been altered by early adversity. Such recalibration may have cascading effects that affect brain and behavioral development. In this article, we consider a large, cross-species literature to demonstrate the potential importance of pubertal stress recalibration for understanding the development of psychopathology following early deprivation by caregivers. We review the evidence for recalibration of the hypothalamic-pituitary-adrenal axis in humans, examine research on rodents that has established mechanisms through which stress hormones affect brain structure and function, and summarize the literature on human neuroimaging to assess how these mechanisms may translate into changes in human behavior. Finally, we suggest ideas for elucidating the consequences of pubertal stress recalibration that will improve our understanding of adaptive and maladaptive adolescent behavior following early adversity.
Collapse
|