1
|
Li X, Zhao J, Xiao H, Zhang H, Zhou M, Zhang X, Yan X, Tang A, Chen L. Multiparticle Synergistic Electrophoretic Deposition Strategy for High-Efficiency and High-Resolution Displays. ACS NANO 2024; 18:17715-17724. [PMID: 38916440 DOI: 10.1021/acsnano.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Colloidal nanoparticles offer unique photoelectric properties, making them promising for functional applications. Multiparticle systems exhibit synergistic effects on the functional properties of their individual components. However, precisely controlled assembly of multiparticles to form patterned building blocks for solid-state devices remains challenging. Here, we demonstrate a versatile multiparticle synergistic electrophoretic deposition (EPD) strategy to achieve controlled assembly, high-efficiency, and high-resolution patterns. Through elaborate surface design and charge regulation of nanoparticles, we achieve precise control over the particle distribution (gradient or homogeneous structure) in multiparticle films using the EPD technique. The multiparticle system integrates silicon oxide and titanium oxide nanoparticles, synergistically enhancing the emission efficiency of quantum dots to a high level in the field. Furthermore, we demonstrate the superiority of our strategy to integrate multiparticle into large-area full-color display panels with a high resolution over 1000 pixels per inch. The results suggest great potential for developing multiparticle systems and expanding diverse functional applications.
Collapse
Affiliation(s)
- Xuefei Li
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Jinyang Zhao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hui Xiao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hangchuan Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Miao Zhou
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xin Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xiaolin Yan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lixuan Chen
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| |
Collapse
|
2
|
Yuan M, Qiu Y, Gao H, Feng J, Jiang L, Wu Y. Molecular Electronics: From Nanostructure Assembly to Device Integration. J Am Chem Soc 2024; 146:7885-7904. [PMID: 38483827 DOI: 10.1021/jacs.3c14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Integrated electronics and optoelectronics based on organic semiconductors have attracted considerable interest in displays, photovoltaics, and biosensing owing to their designable electronic properties, solution processability, and flexibility. Miniaturization and integration of devices are growing trends in molecular electronics and optoelectronics for practical applications, which requires large-scale and versatile assembly strategies for patterning organic micro/nano-structures with simultaneously long-range order, pure orientation, and high resolution. Although various integration methods have been developed in past decades, molecular electronics still needs a versatile platform to avoid defects and disorders due to weak intermolecular interactions in organic materials. In this perspective, a roadmap of organic integration technologies in recent three decades is provided to review the history of molecular electronics. First, we highlight the importance of long-range-ordered molecular packing for achieving exotic electronic and photophysical properties. Second, we classify the strategies for large-scale integration of molecular electronics through the control of nucleation and crystallographic orientation, and evaluate them based on factors of resolution, crystallinity, orientation, scalability, and versatility. Third, we discuss the multifunctional devices and integrated circuits based on organic field-effect transistors (OFETs) and photodetectors. Finally, we explore future research directions and outlines the need for further development of molecular electronics, including assembly of doped organic semiconductors and heterostructures, biological interfaces in molecular electronics and integrated organic logics based on complementary FETs.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yuchen Qiu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
3
|
Fucetola CP, Wang JT, Bolonduro OA, Lieber CM, Timko BP. Single-Crystal Silicon Nanotubes, Hollow Nanocones, and Branched Nanotube Networks. ACS NANO 2024; 18:3775-3782. [PMID: 38227976 PMCID: PMC11969379 DOI: 10.1021/acsnano.3c11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a general approach for the synthesis of single-crystal silicon nanotubes, involving epitaxial deposition of silicon shells on germanium nanowire templates followed by removal of the germanium template by selective wet etching. By exploiting advances in the synthesis of germanium nanowires, we were able to rationally tune the nanotube internal diameters (5-80 nm), wall thicknesses (3-12 nm), and taper angles (0-9°) and additionally demonstrated branched silicon nanotube networks. Field effect transistors fabricated from p-type nanotubes exhibited a strong gate effect, and fluid transport experiments demonstrated that small molecules could be electrophoretically driven through the nanotubes. These results demonstrate the suitability of silicon nanotubes for the design of nanoelectrofluidic devices.
Collapse
Affiliation(s)
- Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Justin T Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Olurotimi A Bolonduro
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles M Lieber
- Lieber Research Group, Lexington, Massachusetts 02420, United States
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Olšteins D, Nagda G, Carrad DJ, Beznasyuk DV, Petersen CEN, Martí-Sánchez S, Arbiol J, Jespersen TS. Cryogenic multiplexing using selective area grown nanowires. Nat Commun 2023; 14:7738. [PMID: 38007553 PMCID: PMC10676361 DOI: 10.1038/s41467-023-43551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Bottom-up grown nanomaterials play an integral role in the development of quantum technologies but are often challenging to characterise on large scales. Here, we harness selective area growth of semiconductor nanowires to demonstrate large-scale integrated circuits and characterisation of large numbers of quantum devices. The circuit consisted of 512 quantum devices embedded within multiplexer/demultiplexer pairs, incorporating thousands of interconnected selective area growth nanowires operating under deep cryogenic conditions. Multiplexers enable a range of new strategies in quantum device research and scaling by increasing the device count while limiting the number of connections between room-temperature control electronics and the cryogenic samples. As an example of this potential we perform a statistical characterization of large arrays of identical quantum dots thus establishing the feasibility of applying cross-bar gating strategies for efficient scaling of future selective area growth quantum circuits. More broadly, the ability to systematically characterise large numbers of devices provides new levels of statistical certainty to materials/device development.
Collapse
Affiliation(s)
- Dāgs Olšteins
- Center For Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gunjan Nagda
- Center For Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Damon J Carrad
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daria V Beznasyuk
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Christian E N Petersen
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Passeig de Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Thomas S Jespersen
- Center For Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Vogl L, Schweizer P, Denninger P, Richter G, Spiecker E. Sensing Capabilities of Single Nanowires Studied with Correlative In Situ Light and Electron Microscopy. ACS NANO 2022; 16:18110-18118. [PMID: 36282103 PMCID: PMC9706674 DOI: 10.1021/acsnano.2c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Modern devices based on modular designs require versatile and universal sensor components which provide an efficient, sensitive, and compact measurement unit. To improve the space capacity of devices, miniaturized building elements are needed, which implies a turning away from conventional microcantilevers toward nanoscale cantilevers. Nanowires can be seen as high-quality resonators and offer the opportunity to create sensing devices on small scales. To use such a one-dimensional nanostructure as a resonant cantilever, a precise characterization based on the fundamental properties is needed. We present a correlative electron and light microscopy approach to characterize the pressure and environment sensing capabilities of single nanowires by analyzing their resonance behavior in situ. The high vacuum in electron microscopes enables the characterization of the intrinsic vibrational properties and the maximum quality factor. To analyze the damping effect caused by the interaction of the gas molecules with the excited nanowire, the in situ resonance measurements have been performed under non-high-vacuum conditions. For this purpose, single nanowires are mounted in a specifically designed compact gas chamber underneath the light microscope, which enables direct observation of the resonance behavior and evaluation of the quality factor with dependence of the applied gas atmosphere (He, N2, Ar, Air) and pressure level. By using the resonance vibration, we demonstrate the pressure sensing capability of a single nanowire and examine the molar mass of the surrounding atmosphere. Together this shows that even single nanowires can be utilized as versatile nanoscale gas sensors.
Collapse
Affiliation(s)
- Lilian
M. Vogl
- Institute
of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis
and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Schweizer
- Institute
of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis
and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Denninger
- Institute
of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis
and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gunther Richter
- Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Erdmann Spiecker
- Institute
of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis
and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Han J, Niroui F, Lang JH, Bulović V. Scalable Self-Limiting Dielectrophoretic Trapping for Site-Selective Assembly of Nanoparticles. NANO LETTERS 2022; 22:8258-8265. [PMID: 36252238 DOI: 10.1021/acs.nanolett.2c02986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The absence of a versatile, scalable, and defect-free bottom-up assembly of nanoparticles with high precision has been a longstanding roadblock facing the large-scale integration of diverse nanoparticle-based devices. To circumvent this roadblock, we present a self-limiting dielectrophoretic approach to precisely align nanoparticles onto an array of electrodes over a large area, assisted by lithographically defined capacitors in series with the electrodes. We have experimentally verified that the on-chip capacitor can reduce the probability of trapping multiple particles at a given site, as the electric field is greatly weakened after the first nanoparticle bridges the electrodes. A 70% yield of single-nanowire assembly has been achieved, and key factors limiting the current yield are discussed. The yield is expected to further increase by improving the nanoparticle-electrode contact and reducing the capillary force during the drying process. We also demonstrate the versatility of this approach for scalable and site-selective alignment of various nanoparticles.
Collapse
Affiliation(s)
- Jinchi Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Farnaz Niroui
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jeffrey H Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
7
|
Xu B, Zhang P, Zhu J, Liu Z, Eichler A, Zheng XQ, Lee J, Dash A, More S, Wu S, Wang Y, Jia H, Naik A, Bachtold A, Yang R, Feng PXL, Wang Z. Nanomechanical Resonators: Toward Atomic Scale. ACS NANO 2022; 16:15545-15585. [PMID: 36054880 PMCID: PMC9620412 DOI: 10.1021/acsnano.2c01673] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
Collapse
Affiliation(s)
- Bo Xu
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu610054, China
| | - Pengcheng Zhang
- University
of Michigan−Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiankai Zhu
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu610054, China
| | - Zuheng Liu
- University
of Michigan−Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China
| | | | - Xu-Qian Zheng
- Department
of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering, University of Florida, Gainesville, Florida32611, United States
- College
of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Jaesung Lee
- Department
of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering, University of Florida, Gainesville, Florida32611, United States
- Department
of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas79968, United States
| | - Aneesh Dash
- Centre
for
Nano Science and Engineering, Indian Institute
of Science, Bangalore560012, Karnataka, India
| | - Swapnil More
- Centre
for
Nano Science and Engineering, Indian Institute
of Science, Bangalore560012, Karnataka, India
| | - Song Wu
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu610054, China
| | - Yanan Wang
- Department
of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering, University of Florida, Gainesville, Florida32611, United States
- Department
of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| | - Hao Jia
- Shanghai
Institute of Microsystem and Information Technology, Chinese Academy
of Sciences, Shanghai200050, China
| | - Akshay Naik
- Centre
for
Nano Science and Engineering, Indian Institute
of Science, Bangalore560012, Karnataka, India
| | - Adrian Bachtold
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona08860, Spain
| | - Rui Yang
- University
of Michigan−Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China
- School of
Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Philip X.-L. Feng
- Department
of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering, University of Florida, Gainesville, Florida32611, United States
| | - Zenghui Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu610054, China
- State
Key Laboratory of Electronic Thin Films and Integrated Devices, University
of Electronic Science and Technology of China, Chengdu610054, China
| |
Collapse
|
8
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
9
|
Solov'yov IA, Sushko G, Friis I, Solov'yov AV. Multiscale modeling of stochastic dynamics processes with MBN Explorer. J Comput Chem 2022; 43:1442-1458. [PMID: 35708151 DOI: 10.1002/jcc.26948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/09/2022]
Abstract
Stochastic dynamics describes processes in complex systems having the probabilistic nature. They can involve very different dynamical systems and occur on very different temporal and spatial scale. This paper discusses the concept of stochastic dynamics and its implementation in the popular program MBN Explorer. Stochastic dynamics in MBN Explorer relies on the Monte Carlo approach and permits simulations of physical, chemical, and biological processes. The paper presents the basic theoretical concepts underlying stochastic dynamics implementation and provides several examples highlighting its applicability to different systems, such as diffusing proteins seeking an anchor point on a cell membrane, deposition of nanoparticles on a surface leading to structures with fractal morphologies, and oscillations of compounds in an autocatalytic reaction. The chosen examples illustrate the diversity of applications that can be modeled by means of stochastic dynamics with MBN Explorer.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Nanoscale Dynamics (CENAD), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | - Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
10
|
Liu J, Zeng H, Zhang G, Li W, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Kanai M, Yanagida T. Edge-Topological Regulation for in Situ Fabrication of Bridging Nanosensors. NANO LETTERS 2022; 22:2569-2577. [PMID: 35226506 DOI: 10.1021/acs.nanolett.1c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ fabrication of well-defined bridging nanostructures is an interesting and unique approach to three-dimensionally design nanosensor structures, which are hardly attainable by other methods. Here, we demonstrate the significant effect of edge-topological regulation on in situ fabrication of ZnO bridging nanosensors. When employing seed layers with a sharp edge, which is a well-defined structure in conventional lithography, the bridging angles and electrical resistances between two opposing electrodes were randomly distributed. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variation of structural and electrical properties. We propose an edgeless seed layer structure using a two-layers resist method to solve the above uncontrollability of bridging nanosensors. Such bridging nanosensors not only substantially improved the uniformity of structural and electrical properties between two opposing electrodes but also significantly enhanced the sensing responses for NO2 with the smaller variance and the lower limit of detection via in situ controlled electrical contacts.
Collapse
Affiliation(s)
- Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wenjun Li
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
11
|
Feng J, Qiu Y, Jiang L, Wu Y. Long-Range-Ordered Assembly of Micro-/Nanostructures at Superwetting Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106857. [PMID: 34908188 DOI: 10.1002/adma.202106857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
On-chip integration of solution-processable materials imposes stringent and simultaneous requirements of controlled nucleation and growth, tunable geometry and dimensions, and long-range-ordered assembly, which is challenging in solution process far from thermodynamic equilibrium. Superwetting interfaces, underpinned by programmable surface chemistry and topography, are promising for steering transport, dewetting, and microfluid dynamics of liquids, thus opening a new paradigm for micro-/nanostructure assembly in solution process. Herein, assembly methods on the basis of superwetting interfaces are reviewed for constructing long-range-ordered micro-/nanostructures. Confined capillary liquids, including capillary bridges and capillary corner menisci realized by controlling local wettability and surface topography, are highlighted for simultaneously attained deterministic patterning and long-range order. The versatility and robustness of confined capillary liquids are discussed with assembly of single-crystalline micro-/nanostructures of organic semiconductors, metal-halide perovskites, and colloidal-nanoparticle superlattices, which lead to enhanced device performances and exotic functionalities. Finally, a perspective for promising directions in this realm is provided.
Collapse
Affiliation(s)
- Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Yuchen Qiu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
13
|
Zhang H, Kinnear C, Mulvaney P. Fabrication of Single-Nanocrystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904551. [PMID: 31576618 DOI: 10.1002/adma.201904551] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 05/17/2023]
Abstract
To realize the full potential of nanocrystals in nanotechnology, it is necessary to integrate single nanocrystals into addressable structures; for example, arrays and periodic lattices. The current methods for achieving this are reviewed. It is shown that a combination of top-down lithography techniques with directed assembly offers a platform for attaining this goal. The most promising of these directed assembly methods are reviewed: capillary force assembly, electrostatic assembly, optical printing, DNA-based assembly, and electrophoretic deposition. The last of these appears to offer a generic approach to fabrication of single-nanocrystal arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Calum Kinnear
- CSIRO Manufacturing, Ian Wark Laboratories, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
14
|
Molina J, Ramos D, Gil-Santos E, Escobar JE, Ruz JJ, Tamayo J, San Paulo Á, Calleja M. Optical Transduction for Vertical Nanowire Resonators. NANO LETTERS 2020; 20:2359-2369. [PMID: 32191041 PMCID: PMC7146857 DOI: 10.1021/acs.nanolett.9b04909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Indexed: 05/26/2023]
Abstract
We describe an optical transduction mechanism to measure the flexural mode vibrations of vertically aligned nanowires on a flat substrate with high sensitivity, linearity, and ease of implementation. We demonstrate that the light reflected from the substrate when a laser beam strikes it parallel to the nanowires is modulated proportionally to their vibration, so that measuring such modulation provides a highly efficient resonance readout. This mechanism is applicable to single nanowires or arrays without specific requirements regarding their geometry or array pattern, and no fabrication process besides the nanowire generation is required. We show how to optimize the performance of this mechanism by characterizing the split flexural modes of vertical silicon nanowires in their full dynamic range and up to the fifth mode order. The presented transduction approach is relevant for any application of nanowire resonators, particularly for integrating nanomechanical sensing in functional substrates based on vertical nanowires for biological applications.
Collapse
Affiliation(s)
- Juan Molina
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Daniel Ramos
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Eduardo Gil-Santos
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Javier E. Escobar
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - José J. Ruz
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Javier Tamayo
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Álvaro San Paulo
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | - Montserrat Calleja
- Instituto de Micro y Nanotecnología
(IMN-CNM, CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
15
|
Simulation of an electrically actuated cantilever as a novel biosensor. Sci Rep 2020; 10:3385. [PMID: 32099010 PMCID: PMC7042266 DOI: 10.1038/s41598-020-60296-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, detecting biological particles by analyzing their mechanical properties has attracted increasing attention. To detect and identify different bioparticles and estimate their dimensions, a mechanical nanosensor is introduced in this paper. To attract particles, numerous parts of the substrate are coated with different chemicals as probe detectors or receptors. The principal of cell recognition in this sensor is based on applying an electrical excitation and measuring the maximum deflection of the actuated cantilever electrode. Investigating the critical voltage that causes pull-in instability is also important in such highly-sensitive detectors. The governing equation of motion is derived from Hamilton’s principle. A Galerkin approximation is applied to discretize the nonlinear equation, which is solved numerically. Accuracy of the proposed model is validated by comparison studies with available experimental and theoretical data. The coupled effects of geometrical and mechanical properties are included in this model and studied in detail. Moreover, system identification is carried out to distinguish bioparticles by a stability analysis. Due to the absence of a similar concept and device, this research is expected to advance the state-of-the-art biosystems in identifying particles.
Collapse
|
16
|
Singh SK, Rajib MM, Drobitch JL, Atulasimha J, Bandyopadhyay S, Subramanian A. A 3-D NanoMagnetoElectrokinetic model for ultra-high precision assembly of ferromagnetic NWs using magnetic-field assisted dielectrophoresis. RSC Adv 2020; 10:39763-39770. [PMID: 35515396 PMCID: PMC9057435 DOI: 10.1039/d0ra08381j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 10/23/2020] [Indexed: 02/02/2023] Open
Abstract
This report presents a three-dimensional (3-D) magnetoelectrokinetic model to investigate a new approach to magnetic-field assisted dielectrophoresis for ultra-high precision and parallel assembly of ferromagnetic Ni nanowires (NWs) on silicon chips. The underlying assembly methodology relies on a combination of electric and magnetic fields to manipulate single nanowires from a colloidal suspension and yield their assembly on top of electrodes with better than 25 nm precision. The electric fields and the resultant dielectrophoretic forces are generated through the use of patterned gold nanoelectrodes, and deliver long-range forces that attract NWs from farther regions of the workspace and bring them in proximity to the nanoelectrodes. Next, magnetic-fields generated by cobalt magnets, which are stacked on top of the gold nanoelectrodes at their center and pre-magnetized using external magnetic fields, deliver short range forces to capture the nanowires precisely on top of the nanomagnets. The 3-D NanoMagnetoElectrokinetic model, which is built using a finite element code in COMSOL software and with further computations in MATLAB, computes the trajectory and final deposition location as well as orientation for all possible starting locations of a Ni NW within the assembly workspace. The analysis reveals that magnetic-field assisted dielectrophoresis achieves ultra-high precision assembly of NWs on top of the cobalt nanomagnets from a 42% larger workspace volume as compared to pure dielectrophoresis and thereby, establishes the benefits of adding magnetic fields to the assembly workspace. Furthermore, this approach is combined with a strategy to confine the suspension within the reservoir that contains a high density of favorable NW starting locations to deliver high assembly yields for landing NWs on top of contacts that are only twice as wide as the NWs. Magnetic-field assisted dielectrophoresis delivers ultra-high precision assembly of single nanowires.![]()
Collapse
Affiliation(s)
- Sachin K. Singh
- Department of Mechanical and Industrial Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Md Mahadi Rajib
- Department of Mechanical and Nuclear Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Justine L. Drobitch
- Department of Electrical and Computer Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Jayasimha Atulasimha
- Department of Mechanical and Nuclear Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Supriyo Bandyopadhyay
- Department of Electrical and Computer Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Arunkumar Subramanian
- Department of Mechanical and Industrial Engineering
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
17
|
Vlassov S, Mets M, Polyakov B, Bian J, Dorogin L, Zadin V. Abrupt elastic-to-plastic transition in pentagonal nanowires under bending. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2468-2476. [PMID: 31921525 PMCID: PMC6941403 DOI: 10.3762/bjnano.10.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, pentagonal Ag and Au nanowires (NWs) were bent in cantilever beam configuration inside a scanning electron microscope. We demonstrated an unusual, abrupt elastic-to-plastic transition, observed as a sudden change of the NW profile from smooth arc-shaped to angled knee-like during the bending in the narrow range of bending angles. In contrast to the behavior of NWs in the tensile and three-point bending tests, where extensive elastic deformation was followed by brittle fracture, in our case, after the abrupt plastic event, the NW was still far from fracture and enabled further bending without breaking. A possible explanation is that the five-fold twinned structure prevents propagation of critical defects, leading to dislocation pile up that may lead to sudden stress release, which is observed as an abrupt plastic event. Moreover, we found that if the NWs are coated with alumina, the abrupt plastic event is not observed and the NWs can withstand severe deformation in the elastic regime without fracture. The coating may possibly prevent formation of dislocations. Mechanical durability under high and inhomogeneous strain fields is an important aspect of exploiting Ag and Au NWs in applications like waveguiding or conductive networks in flexible polymer composite materials.
Collapse
Affiliation(s)
- Sergei Vlassov
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
- ITMO University, Kronverskiy pr., 49, 197101 Saint-Petersburg, Russia
| | - Magnus Mets
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Boris Polyakov
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063, Riga, Latvia
| | - Jianjun Bian
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6/a, 35131 Padova, Italy
| | - Leonid Dorogin
- ITMO University, Kronverskiy pr., 49, 197101 Saint-Petersburg, Russia
| | - Vahur Zadin
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
18
|
Jin W, Hu L. Review on Quasi One-Dimensional CdSe Nanomaterials: Synthesis and Application in Photodetectors. NANOMATERIALS 2019; 9:nano9101359. [PMID: 31547484 PMCID: PMC6835265 DOI: 10.3390/nano9101359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023]
Abstract
During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties. In this review, recent advancements on diverse synthesis methods of 1D CdSe nanomaterials and the application in photodetectors have been illustrated in detail. First, several bottom-up synthesis methods of 1D CdSe nanomaterials have been introduced, including the vapor-liquid-solid method, the solution-liquid-solid method, and electrochemical deposition, etc. Second, the discussion on photodetectors based on 1D CdSe nanomaterials has been divided into three parts, including photodiodes, photoconductors, and phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect), which can be utilized to enhance the performance of photodetectors, have also been elaborated. Finally, some major challenges and opportunities towards the practical integration and application of 1D CdSe nanomaterials in photodetectors have been discussed, which need to be further investigated in the future.
Collapse
Affiliation(s)
- Weifeng Jin
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Luodan Hu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Yin S, Cheng G, Richter G, Gao H, Zhu Y. Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires. ACS NANO 2019; 13:9082-9090. [PMID: 31305984 DOI: 10.1021/acsnano.9b03311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Twinning and dislocation slip are two competitive deformation mechanisms in face-centered cubic (FCC) metals. For FCC metallic nanowires (NWs), the competition between these mechanisms was found to depend on loading direction and material properties. Here, using in situ transmission electron microscopy tensile tests and molecular dynamics simulations, we report an additional factor, cross-sectional shape, that can affect the competition between the deformation mechanisms in single-crystalline FCC metallic NWs. For a truncated rhombic cross-section, the extent of truncation determines the competition. Specifically, a transition from twinning to localized dislocation slip occurs with increasing extent of truncation. Theoretical and simulation results indicate that the energy barriers for twinning and dislocation slip depend on the cross-sectional shape of the NW. The energy barrier for twinning is proportional to the change of surface energy associated with the twinning. Thus, the transition of deformation modes can be attributed to the change of surface energy as a function of the cross-sectional shape.
Collapse
Affiliation(s)
- Sheng Yin
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| | - Guangming Cheng
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Gunther Richter
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , D-70589 Stuttgart , Germany
| | - Huajian Gao
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
20
|
Abstract
Nanometer-scale structures with high aspect ratios such as nanowires and nanotubes combine low mechanical dissipation with high resonance frequencies, making them ideal force transducers and scanning probes in applications requiring the highest sensitivity. Such structures promise record force sensitivities combined with ease of use in scanning probe microscopes. A wide variety of possible material compositions and functionalizations is available, allowing for the sensing of various kinds of forces. In addition, nanowires possess quasi-degenerate mechanical mode doublets, which allow for sensitive vectorial force and mass detection. These developments have driven researchers to use nanowire cantilevers in various force sensing applications, which include imaging of sample surface topography, detection of optomechanical, electrical, and magnetic forces, and magnetic resonance force microscopy. In this review, we discuss the motivation behind using nanowires as force transducers, explain the methods of force sensing with nanowire cantilevers, and give an overview of the experimental progress so far and future prospects of the field.
Collapse
Affiliation(s)
- F R Braakman
- University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | | |
Collapse
|
21
|
Gao H, Yin B, Wu S, Liu X, Fu T, Zhang C, Lin J, Yao J. Deterministic Assembly of Three-Dimensional Suspended Nanowire Structures. NANO LETTERS 2019; 19:5647-5652. [PMID: 31306029 DOI: 10.1021/acs.nanolett.9b02198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlled assembly of nanowire three-dimensional (3D) geometry in an addressable way can lead to advanced 3D device integration and application. By combining a deterministic planar nanowire assembly and a transfer process, we show here a versatile method to construct vertically protruding and suspending nanowire structures. The method harnesses the merits from both processes to yield positional and geometric control in individual nanowires. Multiple transfers can further lead to hierarchical multiwire 3D structures. Assembled 3D nanowire structures have well-defined on-substrate terminals that allow scalable addressing and integration. Proof-of-concept nanosenors based on assembled 3D nanowire structures can achieve high sensitivity in force detection.
Collapse
Affiliation(s)
- Hongyan Gao
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Bing Yin
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Siyu Wu
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Xiaomeng Liu
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Tianda Fu
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Cheng Zhang
- Department of Mechanical and Aerospace Engineering , University of Missouri , Columbia , Missouri 65211 , United States
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering , University of Missouri , Columbia , Missouri 65211 , United States
| | - Jun Yao
- Department of Electrical Computer and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Institute for Applied Life Sciences (IALS) , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
22
|
Mondal B, Mandal SP, Kundu M, Adhikari U, Roy UK. Synthesis and characterization of nano−zinc wire using a self designed unit galvanic cell in aqueous medium and its reactivity in propargylation of aldehydes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Antsov M, Polyakov B, Zadin V, Mets M, Oras S, Vahtrus M, Lõhmus R, Dorogin L, Vlassov S. Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study. Micron 2019; 124:102686. [PMID: 31202033 DOI: 10.1016/j.micron.2019.102686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
Abstract
Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all three configurations were simulated with a finite element method to obtain better insight into stress distribution inside NWs during bending depending on test conditions. The free-ends configuration yielded elastic modulus similar to a classical fixed-ends approach (88 ± 20 GPa vs 87 ± 16 GPa), indicating the reliability of the proposed method. At the same time, the free-ends configuration benefits from a more favourable NW position relative to the probe with facet facing upwards in contrast to the sharp edge in the case of fixed ends. From the other hand, the free-ends configuration was less suitable for strength measurements, as NW can run into the bottom of the inverted pyramid because of a higher degree of deformation before fracture. The cantilevered-beam configuration was less suitable for mechanical testing with indentation because of the instabilities of the free end under the AFM probe.
Collapse
Affiliation(s)
- Mikk Antsov
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Boris Polyakov
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063, Riga, Latvia
| | - Vahur Zadin
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Magnus Mets
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Sven Oras
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Mikk Vahtrus
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Rünno Lõhmus
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Leonid Dorogin
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia
| | - Sergei Vlassov
- Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, 50412, Tartu, Estonia.
| |
Collapse
|
24
|
Li L, Wu S, Li L, Zhou Z, Ding H, Xiao C, Li X. Gap-mode excitation, manipulation, and refractive-index sensing application by gold nanocube arrays. NANOSCALE 2019; 11:5467-5473. [PMID: 30855617 DOI: 10.1039/c8nr09073d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The challenges in fabricating two-dimensional metallic nanostructures over large areas, which normally involve expensive and time-consuming nanofabrication techniques, have severely limited the exploration of the related applications based on plasmon-induced effects. Here, we cost-efficiently prepared large-area Au nanocube arrays (NCAs) using only the electrostatic forces between colloidal Au nanocubes and polyelectrolyte layers. This method provides a flexible way for obtaining controlled Au NCAs with various fill fractions and single-cube sizes. When the Au NCAs were arranged to be coupled with a continuous Au film, the plasmonic gap mode could be excited and manipulated, leading to significant and tunable light absorbance from the visible to the near-infrared parts of the spectrum. Besides, the as-prepared Au NCAs were used to construct a prototype refractive-index (RI) sensor, which exhibited excellent stability and sensitivity over 560 nm per RI unit.
Collapse
Affiliation(s)
- Liang Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dai Y, Chiu LY, Chen Y, Qin S, Wu X, Liu CC. Neutral Charged Immunosensor Platform for Protein-based Biomarker Analysis with Enhanced Sensitivity. ACS Sens 2019; 4:161-169. [PMID: 30582808 DOI: 10.1021/acssensors.8b01126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A noninvasive, highly sensitive universal immunosensor platform for protein-based biomarker detection is described in this Article. A neutral charged sensing environment is constructed by an antibody with an oppositely charged amino acid as surface charge neutralizer. By adjusting the pH condition of the testing environment, this neutral charged immunosensor (NCI) directly utilizes the electrostatic charges of the analyte for quantification of circulating protein markers, achieving a wide dynamic range covering through the whole picomole level. Comparing with previous studies on electrostatic charges characterization, this NCI demonstrates its capability to analyze not only the negatively charged biomolecules but also positively charged analytes. We applied this NCI for the detection of HE4 antigen with a detection limit at 2.5 pM and Tau antigen with a detection limit at 0.968 pM, demonstrating the high-sensitivity property of this platform. Furthermore, this NCI possesses a simple fabrication method (less than 2 h) and a short testing turnaround time (less than 30 min), providing an excellent potential for further clinical point-of-care applications.
Collapse
|
26
|
Ambhorkar P, Wang Z, Ko H, Lee S, Koo KI, Kim K, Cho DID. Nanowire-Based Biosensors: From Growth to Applications. MICROMACHINES 2018; 9:mi9120679. [PMID: 30572645 PMCID: PMC6316191 DOI: 10.3390/mi9120679] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023]
Abstract
Over the past decade, synthesized nanomaterials, such as carbon nanotube, nanoparticle, quantum dot, and nanowire, have already made breakthroughs in various fields, including biomedical sensors. Enormous surface area-to-volume ratio of the nanomaterials increases sensitivity dramatically compared with macro-sized material. Herein we present a comprehensive review about the working principle and fabrication process of nanowire sensor. Moreover, its applications for the detection of biomarker, virus, and DNA, as well as for drug discovery, are reviewed. Recent advances including self-powering, reusability, sensitivity in high ionic strength solvent, and long-term stability are surveyed and highlighted as well. Nanowire is expected to lead significant improvement of biomedical sensor in the near future.
Collapse
Affiliation(s)
- Pranav Ambhorkar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Zongjie Wang
- Department of Electrical and Computer Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Hyuongho Ko
- Department of Electronics, Chungnam National University, Daejeon 34134, Korea.
| | - Sangmin Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Korea.
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea.
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Dong-Il Dan Cho
- ASRI/ISRC, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
27
|
Bauer MJ, Wen X, Tiwari P, Arnold DP, Andrew JS. Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires. MICROSYSTEMS & NANOENGINEERING 2018; 4:37. [PMID: 31057925 PMCID: PMC6277440 DOI: 10.1038/s41378-018-0038-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 05/31/2023]
Abstract
The fabrication and characterization of the first magnetoelectric sensors utilizing arrays of Janus magnetoelectric composite nanowires composed of barium titanate and cobalt ferrite are presented. By utilizing magnetoelectric nanowires suspended across electrodes above the substrate, substrate clamping is reduced when compared to layered thin-film architectures; this results in enhanced magnetoelectric coupling. Janus magnetoelectric nanowires are fabricated by sol-gel electrospinning, and their length is controlled through the electrospinning and calcination conditions. Using a directed nanomanufacturing approach, the nanowires are then assembled onto pre-patterned metal electrodes on a silicon substrate using dielectrophoresis. Using this process, functional magnetic field sensors are formed by connecting many nanowires in parallel. The observed magnetic field sensitivity from the parallel array of nanowires is 0.514 ± .027 mV Oe-1 at 1 kHz, which translates to a magnetoelectric coefficient of 514 ± 27 mV cm-1 Oe-1.
Collapse
Affiliation(s)
- Matthew J. Bauer
- Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400 USA
| | - Xiao Wen
- Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6200 USA
| | - Prabal Tiwari
- Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400 USA
| | - David P. Arnold
- Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6200 USA
| | - Jennifer S. Andrew
- Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400 USA
| |
Collapse
|
28
|
Wang JL, Hassan M, Liu JW, Yu SH. Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803430. [PMID: 30357968 DOI: 10.1002/adma.201803430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Indexed: 05/20/2023]
Abstract
The fabrication of nanowire (NW)-based flexible electronics including wearable energy storage devices, flexible displays, electrical sensors, and health monitors has received great attention both in fundamental research and market requirements in our daily lives. Other than a disordered state after synthesis, NWs with designed and hierarchical structures would not only optimize the intrinsic performance, but also create new physical and chemical properties, and integration of individual NWs into well-defined structures over large areas is one of the most promising strategies to optimize the performance of NW-based flexible electronics. Here, the recent developments and achievements made in the field of flexible electronics composed of integrated NW structures are presented. The different assembly strategies for the construction of 1D, 2D, and 3D NW assemblies, especially the NW coassembly process for 2D NW assemblies, are comprehensively discussed. The improvements of different NW assemblies on flexible electronics structure and performance are described in detail to elucidate the advantages of well-defined NW assemblies. Finally, a short summary and outlook for future challenges and perspectives in this field are presented.
Collapse
Affiliation(s)
- Jin-Long Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Muhammad Hassan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Prestopino G, Orsini A, Falconi C, Bietti S, Verona-Rinati G, Caselli F, Bisegna P. Length measurement and spatial orientation reconstruction of single nanowires. NANOTECHNOLOGY 2018; 29:375704. [PMID: 29947334 DOI: 10.1088/1361-6528/aacf54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires (NWs) is presented. Those quantities are calculated from a sequence of scanning electron microscope (SEM) images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of SEM images of single GaAs NWs. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the NWs is achieved.
Collapse
Affiliation(s)
- G Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma 'Tor Vergata,' Via del Politecnico 1, I-00133 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang F, Turcheniuk K, Wang B, Song AY, Ren X, Vallamattam A, Park A, Hanley K, Zhu T, Yushin G. Mechanisms of Transformation of Bulk Aluminum–Lithium Alloys to Aluminum Metal–Organic Nanowires. J Am Chem Soc 2018; 140:12493-12500. [DOI: 10.1021/jacs.8b06261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fujia Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kostiantyn Turcheniuk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Baolin Wang
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ah-Young Song
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaolei Ren
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ashok Vallamattam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Angela Park
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kolby Hanley
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Zhu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gleb Yushin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Zhang H, Cadusch J, Kinnear C, James T, Roberts A, Mulvaney P. Direct Assembly of Large Area Nanoparticle Arrays. ACS NANO 2018; 12:7529-7537. [PMID: 30004661 DOI: 10.1021/acsnano.8b02932] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Jasper Cadusch
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Calum Kinnear
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Timothy James
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
- Reserve Bank of Australia , Craigieburn , Victoria 3064 , Australia
| | - Ann Roberts
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
32
|
He Z, Jiang H, Wu L, Liu J, Wang G, Wang X, Wang J, Hou Z, Chen G, Yu S. Real‐Time Probing of Nanowire Assembly Kinetics at the Air–Water Interface by In Situ Synchrotron X‐Ray Scattering. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen He
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Hui‐Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Long‐Long Wu
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jian‐Wei Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Geng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Xiao Wang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jin‐Long Wang
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Zhong‐Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Gang Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Shu‐Hong Yu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
33
|
He Z, Jiang HJ, Wu LL, Liu JW, Wang G, Wang X, Wang JL, Hou ZH, Chen G, Yu SH. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering. Angew Chem Int Ed Engl 2018; 57:8130-8134. [PMID: 29750852 DOI: 10.1002/anie.201803552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 11/07/2022]
Abstract
Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Hui-Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Long Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jin-Long Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
34
|
|
35
|
Pozina G, Gubaydullin AR, Mitrofanov MI, Kaliteevski MA, Levitskii IV, Voznyuk GV, Tatarinov EE, Evtikhiev VP, Rodin SN, Kaliteevskiy VN, Chechurin LS. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy. Sci Rep 2018; 8:7218. [PMID: 29740066 PMCID: PMC5940688 DOI: 10.1038/s41598-018-25647-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 12/02/2022] Open
Abstract
We have developed a method to fabricate GaN planar nanowires and cavities by combination of Focused Ion Beam (FIB) patterning of the substrate followed by Metal Organic Vapor Phase Epitaxy (MOVPE). The method includes depositing a silicon nitride mask on a sapphire substrate, etching of the trenches in the mask by FIB with a diameter of 40 nm with subsequent MOVPE growth of GaN within trenches. It was observed that the growth rate of GaN is substantially increased due to enhanced bulk diffusion of the growth precursor therefore the model for analysis of the growth rate was developed. The GaN strips fabricated by this method demonstrate effective luminescence properties. The structures demonstrate enhancement of spontaneous emission via formation of Fabry-Perot modes.
Collapse
Affiliation(s)
- Galia Pozina
- Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83, Linköping, Sweden.
| | - Azat R Gubaydullin
- St-Petersburg Academic University Khlopina 8/3, 194021, St. Petersburg, Russian Federation.,ITMO University, Kronverkskiy pr. 49, 197101, St. Petersburg, Russian Federation
| | - Maxim I Mitrofanov
- Ioffe Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russian Federation.,SHM R&E Center RAS, 194021, St. Petersburg, Russian Federation
| | - Mikhail A Kaliteevski
- St-Petersburg Academic University Khlopina 8/3, 194021, St. Petersburg, Russian Federation.,ITMO University, Kronverkskiy pr. 49, 197101, St. Petersburg, Russian Federation.,Ioffe Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russian Federation
| | - Iaroslav V Levitskii
- Ioffe Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russian Federation.,SHM R&E Center RAS, 194021, St. Petersburg, Russian Federation
| | - Gleb V Voznyuk
- ITMO University, Kronverkskiy pr. 49, 197101, St. Petersburg, Russian Federation
| | - Evgeniy E Tatarinov
- ITMO University, Kronverkskiy pr. 49, 197101, St. Petersburg, Russian Federation
| | - Vadim P Evtikhiev
- Ioffe Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russian Federation
| | - Sergey N Rodin
- Ioffe Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russian Federation.,SHM R&E Center RAS, 194021, St. Petersburg, Russian Federation
| | | | | |
Collapse
|
36
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
37
|
Wang X, Chen K, Liu L, Xiang N, Ni Z. Dielectrophoresis-based multi-step nanowire assembly on a flexible superstrate. NANOTECHNOLOGY 2018; 29:025301. [PMID: 29130902 DOI: 10.1088/1361-6528/aa9a22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanowire assembly based on dielectrophoresis (DEP) could be a useful and efficient tool for fabricating nanowire-based devices. Although there have been extensive reports on the DEP nanowire assembly, the new approaches that make DEP more facile and affordable are still desirable. Herein, we present an approach using the reusable electrodes to assemble silver nanowires onto a removable, independent polyethylene terephthalate (PET) film. The PET film is placed on the reusable electrodes, and a sinusoidal AC voltage is applied to the electrodes to induce DEP force for nanowire assembly upon the flexible film. We explore the influences of voltage, frequency and film thickness on nanowire assembly and further realize the assembly of silver nanowire arrays. In addition, the induced electric field is rotated in two consecutive steps to assemble the rectangular mesh-like nanowire networks. This reusable and facile approach for DEP nanowire assembly could provide a low-cost, precise, rapid and convenient tool for applications in the fields of flexible electronics.
Collapse
Affiliation(s)
- Xin Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Lu C, Jin Y, Tao X, Yang B, Ye G. Nucleation and growth of zinc crystals on a liquid surface. CrystEngComm 2018. [DOI: 10.1039/c7ce01809f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A catalyst-free preparation method for zinc nanocrystals on a silicone oil surface is developed at room temperature.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Ying Jin
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Xiangming Tao
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bo Yang
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Gaoxiang Ye
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- P. R. China
- Department of Physics
| |
Collapse
|
39
|
Cheng G, Yin S, Chang TH, Richter G, Gao H, Zhu Y. Anomalous Tensile Detwinning in Twinned Nanowires. PHYSICAL REVIEW LETTERS 2017; 119:256101. [PMID: 29303322 DOI: 10.1103/physrevlett.119.256101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 06/07/2023]
Abstract
In spite of numerous studies on mechanical behaviors of nanowires (NWs) focusing on the surface effect, there is still a general lack of understanding on how the internal microstructure of NWs influences their deformation mechanisms. Here, using quantitative in situ transmission electron microscopy based nanomechanical testing and molecular dynamics simulations, we report a transition of the deformation mechanism from localized dislocation slip to delocalized plasticity via an anomalous tensile detwinning mechanism in bitwinned metallic NWs with a single twin boundary (TB) running parallel to the NW length. The anomalous tensile detwinning starts with the detwinning of a segment of the preexisting TB under no resolved shear stress, followed by the propagation of a pair of newly formed TB and grain boundary leading to a large plastic deformation. An energy-based criterion is proposed to describe this transition of the deformation mechanism, which depends on the volume ratio between the two twin variants and the cross-sectional aspect ratio.
Collapse
Affiliation(s)
- Guangming Cheng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sheng Yin
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Tzu-Hsuan Chang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Gunther Richter
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70589 Stuttgart, Germany
| | - Huajian Gao
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
40
|
Choi UH, Kim J. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction. NANOMATERIALS 2017; 7:nano7100335. [PMID: 29048363 PMCID: PMC5666500 DOI: 10.3390/nano7100335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit.
Collapse
Affiliation(s)
- U Hyeok Choi
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea.
| | - Jaekyun Kim
- Department of Advanced Materials Engineering, Hanbat National University, Daejeon 34158, Korea.
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan, Kyunggi-do 15588, Korea.
| |
Collapse
|
41
|
Boehm SJ, Lin L, Brljak N, Famularo NR, Mayer TS, Keating CD. Reconfigurable Positioning of Vertically-Oriented Nanowires Around Topographical Features in an AC Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10898-10906. [PMID: 28915051 DOI: 10.1021/acs.langmuir.7b02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the effect of topographical features on gold nanowire assemblies in a vertically applied AC electric field. Nanowires 300 nm in diameter ×2.5 μm long, and coated with ∼30 nm silica shell, were assembled in aqueous solution between top and bottom electrodes, where the bottom electrode was patterned with cylindrical dielectric posts. Assemblies were monitored in real time using optical microscopy. Dielectrophoretic and electrohydrodynamic forces were manipulated through frequency and voltage variation, organizing nanowires parallel to the field lines, i.e., standing perpendicular to the substrate surface. Field gradients around the posts were simulated and assembly behavior was experimentally evaluated as a function of patterned feature diameter and spacing. The electric field gradient was highest around these topographic features, which resulted in accumulation of vertically oriented nanowires around the post perimeters when dielectrophoresis dominated (high AC frequency) or between the posts when electrohydrodynamics dominated (low AC frequency). This general type of reconfigurable assembly, coupled with judicious choice of nanowire and post materials/dimensions, could ultimately enable new types of optical materials capable of switching between two functional states by changing the applied field conditions.
Collapse
|
42
|
Liu L, Chen K, Huang D, Wang X, Xiang N, Ni Z. A novel 'leadless' dielectrophoresis chip with dot matrix electrodes for patterning nanowires. NANOTECHNOLOGY 2017; 28:285302. [PMID: 28574852 DOI: 10.1088/1361-6528/aa76cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we present a novel 'leadless' dielectrophoresis chip with dot matrix electrodes (LDME-DEP chip) fabricated by stacking three different functional layers. Our LDME-DEP chip excels mainly in two aspects: we for the first time applied the technique of separating the lead and the electrode pattern into two different layers to patterning nanowires which achieves continuous-area manipulation of nanowires without interference from the lead; the use of dot matrix electrodes makes the manipulation more flexible. We firstly detail the fabrication and working principle of our LDME-DEP chip and propose the scheme for washing away the nanowires with unsatisfactorily positioned postures. Then, nanowire patterning applications (e.g., letter E, square and long chain) under the combination of dielectrophoretic force and hydrodynamic force are carried out and the effect of frequency of the electric signal on assembling accuracy of nanowires is discussed.
Collapse
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Fabricate of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Gall OZ, Zhong X, Schulman DS, Kang M, Razavieh A, Mayer TS. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly. NANOTECHNOLOGY 2017; 28:265501. [PMID: 28525391 DOI: 10.1088/1361-6528/aa7456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.
Collapse
Affiliation(s)
- Oren Z Gall
- Materials Research Institute, Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | | | | | | | | | | |
Collapse
|
44
|
Rananavare SB, Morakinyo MK. Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by E-beam Lithography. J Vis Exp 2017. [PMID: 28287523 DOI: 10.3791/54551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.
Collapse
|
45
|
Rossi N, Braakman FR, Cadeddu D, Vasyukov D, Tütüncüoglu G, Fontcuberta I Morral A, Poggio M. Vectorial scanning force microscopy using a nanowire sensor. NATURE NANOTECHNOLOGY 2017; 12:150-155. [PMID: 27749834 DOI: 10.1038/nnano.2016.189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/24/2016] [Indexed: 05/05/2023]
Abstract
Self-assembled nanowire (NW) crystals can be grown into nearly defect-free nanomechanical resonators with exceptional properties, including small motional mass, high resonant frequency and low dissipation. Furthermore, by virtue of slight asymmetries in geometry, a NW's flexural modes are split into doublets oscillating along orthogonal axes. These characteristics make bottom-up grown NWs extremely sensitive vectorial force sensors. Here, taking advantage of its adaptability as a scanning probe, we use a single NW to image a sample surface. By monitoring the frequency shift and direction of oscillation of both modes as we scan above the surface, we construct a map of all spatial tip-sample force derivatives in the plane. Finally, we use the NW to image electric force fields distinguishing between forces arising from the NW charge and polarizability. This universally applicable technique enables a form of atomic force microscopy particularly suited to mapping the size and direction of weak tip-sample forces.
Collapse
Affiliation(s)
- Nicola Rossi
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Floris R Braakman
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Davide Cadeddu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Denis Vasyukov
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Gözde Tütüncüoglu
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Martino Poggio
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
46
|
Keivani M, Koochi A, Sedighi HM, Abadian A, Abadyan M. A Nonlinear Model for Incorporating the Coupled Effects of Surface Energy and Microstructure on the Electromechanical Stability of NEMS. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Kim H, Kim T, Kim D, Shim W. Wave-Tunable Lattice Equivalents toward Micro- and Nanomanipulation. NANO LETTERS 2016; 16:6472-6479. [PMID: 27580002 DOI: 10.1021/acs.nanolett.6b02973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The assembly of micro- and nanomaterials is a key issue in the development of potential bottom-up construction of building blocks, but creating periodic arrays of such materials in an efficient and scalable manner still remains challenging. Here, we show that a cymatic assembly approach in which micro- and nanomaterials in a liquid medium that resonate at low-frequency standing waves can be used for the assembly in a spatially periodic and temporally stationary fashion that emerges from the wave displacement antinodes of the standing wave. We also show that employing a two-dimensional liquid, rather than a droplet, with a coffee-ring effect yields a result that exhibits distinct lattice equivalents comprising the materials. The crystallographic parameters, such as the lattice parameters, can be adjusted, where the parameters along the x- and y-axes are controlled by the applied wave frequencies, and the one along z-axis is controlled by a transparent layer as a spacer to create three-dimensional crystal equivalents. This work represents an advancement in assembling micro- and nanomaterials into macroscale architectures on the centimeter-length scale, thus establishing that a standing wave can direct micro- and nanomaterial assembly to mimic plane and space lattices.
Collapse
Affiliation(s)
- Hyeohn Kim
- Department of Materials Science and Engineering, Yonsei University , Seoul 120-749, Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Yonsei University , Seoul 120-749, Korea
| | - Dohun Kim
- Department of Physics and Astronomy, Seoul National University , Seoul 08826, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
48
|
|
49
|
Celano TA, Hill DJ, Zhang X, Pinion CW, Christesen JD, Flynn CJ, McBride JR, Cahoon JF. Capillarity-Driven Welding of Semiconductor Nanowires for Crystalline and Electrically Ohmic Junctions. NANO LETTERS 2016; 16:5241-5246. [PMID: 27459319 DOI: 10.1021/acs.nanolett.6b02361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconductor nanowires (NWs) have been demonstrated as a potential platform for a wide-range of technologies, yet a method to interconnect functionally encoded NWs has remained a challenge. Here, we report a simple capillarity-driven and self-limited welding process that forms mechanically robust and Ohmic inter-NW connections. The process occurs at the point-of-contact between two NWs at temperatures 400-600 °C below the bulk melting point of the semiconductor. It can be explained by capillarity-driven surface diffusion, inducing a localized geometrical rearrangement that reduces spatial curvature. The resulting weld comprises two fused NWs separated by a single, Ohmic grain boundary. We expect the welding mechanism to be generic for all types of NWs and to enable the development of complex interconnected networks for neuromorphic computation, battery and solar cell electrodes, and bioelectronic scaffolds.
Collapse
Affiliation(s)
- Thomas A Celano
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - David J Hill
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Xing Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Christopher W Pinion
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Joseph D Christesen
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Cory J Flynn
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
50
|
Ramos A, García-Sánchez P, Morgan H. AC electrokinetics of conducting microparticles: A review. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|