1
|
Krishnan N, Gorman C, Stewart J, Bradbury S, Jurenka R. Using insecticidal compounds to elucidate the potential role of neurotransmitters in Lepidoptera pupal ecdysis. Sci Rep 2025; 15:4763. [PMID: 39922881 PMCID: PMC11807194 DOI: 10.1038/s41598-025-88623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Previously, we reported final-instar lepidopteran larvae exposed to low doses of imidacloprid, clothianidin, and thiamethoxam had arrest in pupal ecdysis, which is a novel adverse outcome for neonicotinoid insecticides. Since neonicotinoids disrupt acetylcholine signaling, we hypothesized that the excitatory neurotransmitter acetylcholine plays a critical role in regulation of pupal ecdysis, likely by modulating the release of peptides from crustacean cardioactive peptide (CCAP) neurons. In this paper, using two lepidopteran species, we undertook studies with five additional nicotinic acetylcholine receptor (nAChR) agonists and three muscarinic acetylcholine receptor (mAChR) agonists to hypothesize the putative nAChR subunits that mediate pupal ecdysis. We also explored the potential role of mAChRs in regulation of pupal ecdysis. These findings, along with toxicokinetic analyses, suggest that pupal ecdysis may be mediated by the α1, β1, and β2 subunits of nAChRs without involvement of mAChRs. An analysis of ecdysis movements showed that neonicotinoid-treated lepidopteran larvae exhibited similar disruptions as observed in CCAP neuron-knockout Drosophila larvae. Based on findings to date, we hypothesize that acetylcholine regulates lepidopteran pupal ecdysis directly through CCAP neurons or by activating their upstream efferent inhibitory (likely GABA-releasing) neurons. Further studies are needed to elucidate the interplay between neuroendocrine hormones and neurotransmitters in lepidopteran pupal ecdysis.
Collapse
Affiliation(s)
- Niranjana Krishnan
- Department of Entomology, University of Maryland, College Park, MD, USA.
| | - Cassandra Gorman
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, USA
- North Carolina Aquarium, Pine Knoll Shores, NC, USA
| | - Jillian Stewart
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Steven Bradbury
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, USA
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Ongnok B, Prathumsap N, Chunchai T, Pantiya P, Arunsak B, Chattipakorn N, Chattipakorn SC. Nicotinic and Muscarinic Acetylcholine Receptor Agonists Counteract Cognitive Impairment in a Rat Model of Doxorubicin-Induced Chemobrain via Attenuation of Multiple Programmed Cell Death Pathways. Mol Neurobiol 2024; 61:8831-8850. [PMID: 38568417 DOI: 10.1007/s12035-024-04145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/21/2024] [Indexed: 10/23/2024]
Abstract
Chemotherapy causes undesirable long-term neurological sequelae, chemotherapy-induced cognitive impairment (CICI), or chemobrain in cancer survivors. Activation of programmed cell death (PCD) has been proposed to implicate in the development and progression of chemobrain. Neuronal apoptosis has been extensively recognized in experimental models of chemobrain, but little is known about alternative forms of PCD in response to chemotherapy. Activation of acetylcholine receptors (AChRs) is emerging as a promising target in attenuating a wide variety of the neuronal death associated with neurodegeneration. Thus, this study aimed to investigate the therapeutic capacity of AChR agonists on cognitive function and molecular hallmarks of multiple PCD against chemotherapy neurotoxicity. To establish the chemobrain model, male Wistar rats were assigned to receive six doses of doxorubicin (DOX: 3 mg/kg) via intraperitoneal injection. The DOX-treated rats received either an a7nAChR agonist (PNU-282987: 3 mg/kg/day), mAChR agonists (bethanechol: 12 mg/kg/day), or the two as a combined treatment. DOX administration led to impaired cognitive function via neuroinflammation, glial activation, reduced synaptic/blood-brain barrier integrity, defective mitochondrial ROS-detoxifying capacity, and dynamic imbalance. DOX insult also mediated hyperphosphorylation of Tau and simultaneously induced various PCD, including apoptosis, necroptosis, and pyroptosis in the hippocampus. Concomitant treatment with either PNU-282987, bethanechol, or a combination of the two potently attenuated neuroinflammation, mitochondrial dyshomeostasis, and Tau hyperphosphorylation, thereby suppressing excessive apoptosis, necroptosis, and pyroptosis and improving cognitive function in DOX-treated rats. Our findings suggest that activation of AChRs using their agonists effectively protected against DOX-induced neuronal death and chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nanthip Prathumsap
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Engers J, Baker LA, Chang S, Luscombe VB, Rodriguez AL, Niswender CM, Cho HP, Bubser M, Gray AT, Jones CK, Peng W, Rook JM, Bridges TM, Boutaud O, Conn PJ, Engers DW, Lindsley CW, Temple KJ. Discovery of VU6016235: A Highly Selective, Orally Bioavailable, and Structurally Distinct Tricyclic M 4 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator (PAM). ACS Chem Neurosci 2024; 15:3744-3754. [PMID: 39316465 PMCID: PMC11487561 DOI: 10.1021/acschemneuro.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Herein, we report structure-activity relationship (SAR) studies to develop novel tricyclic M4 PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace a 5-amino-2,4-dimethylthieno[2,3-d]pyrimidine-6-carboxamide core, which led to the discovery of two novel tricyclic cores. While both tricyclic cores displayed low nanomolar potency against both human and rat M4 and were highly brain-penetrant, the 2,4-dimethylpyrido[4',3':4,5]thieno[2,3-d]pyrimidine tricycle core provided lead compound, VU6016235, with an overall superior pharmacological and drug metabolism and pharmacokinetics (DMPK) profile, as well as efficacy in a preclinical antipsychotic animal model.
Collapse
Affiliation(s)
- Julie
L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Logan A. Baker
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Vincent B. Luscombe
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Analisa Thompson Gray
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Weinstein JJ, Moeller SJ, Perlman G, Gil R, Van Snellenberg JX, Wengler K, Meng J, Slifstein M, Abi-Dargham A. Imaging the Vesicular Acetylcholine Transporter in Schizophrenia: A Positron Emission Tomography Study Using [ 18F]-VAT. Biol Psychiatry 2024; 96:352-364. [PMID: 38309322 DOI: 10.1016/j.biopsych.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Despite longstanding interest in the central cholinergic system in schizophrenia (SCZ), cholinergic imaging studies with patients have been limited to receptors. Here, we conducted a proof-of-concept positron emission tomography study using [18F]-VAT, a new radiotracer that targets the vesicular acetylcholine transporter as a proxy measure of acetylcholine transmission capacity, in patients with SCZ and explored relationships of vesicular acetylcholine transporter with clinical symptoms and cognition. METHODS A total of 18 adult patients with SCZ or schizoaffective disorder (the SCZ group) and 14 healthy control participants underwent a positron emission tomography scan with [18F]-VAT. Distribution volume (VT) for [18F]-VAT was derived for each region of interest, and group differences in VT were assessed with 2-sample t tests. Functional significance was explored through correlations between VT and scores on the Positive and Negative Syndrome Scale and a computerized neurocognitive battery (PennCNB). RESULTS No group differences in [18F]-VAT VT were observed. However, within the SCZ group, psychosis symptom severity was positively associated with VT in multiple regions of interest, with the strongest effects in the hippocampus, thalamus, midbrain, cerebellum, and cortex. In addition, in the SCZ group, working memory performance was negatively associated with VT in the substantia innominata and several cortical regions of interest including the dorsolateral prefrontal cortex. CONCLUSIONS In this initial study, the severity of 2 important features of SCZ-psychosis and working memory deficit-was strongly associated with [18F]-VAT VT in several cortical and subcortical regions. These correlations provide preliminary evidence of cholinergic activity involvement in SCZ and, if replicated in larger samples, could lead to a more complete mechanistic understanding of psychosis and cognitive deficits in SCZ and the development of therapeutic targets.
Collapse
Affiliation(s)
- Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York.
| | - Scott J Moeller
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York; Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jiayan Meng
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York
| |
Collapse
|
5
|
Capstick RA, Bollinger SR, Engers JL, Long MF, Chang S, Luscombe VB, Rodriguez AL, Niswender CM, Bridges TM, Boutaud O, Conn PJ, Engers DW, Lindsley CW, Temple KJ. Discovery of VU6008677: A Structurally Distinct Tricyclic M 4 Positive Allosteric Modulator with Improved CYP450 Profile. ACS Med Chem Lett 2024; 15:1358-1366. [PMID: 39140069 PMCID: PMC11318023 DOI: 10.1021/acsmedchemlett.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
This Letter details our efforts to develop novel tricyclic muscarinic acetylcholine receptor subtype 4 (M4) positive allosteric modulator (PAM) scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3-amino-5-chloro-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide core, which led to the discovery of two novel tricyclic cores: an 8-chloro-9-methylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine core and 8-chloro-7,9-dimethylpyrido[3',2':4,5]furo[3,2-d]pyrimidin-4-amine core. Both tricyclic cores displayed low nanomolar potency against human M4 and greatly reduced cytochrome P450 inhibition when compared with parent compound ML253.
Collapse
Affiliation(s)
- Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sean R. Bollinger
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Julie L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Madeline F. Long
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Vincent B. Luscombe
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Schulz J, Brandl F, Grothe MJ, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Priller J, Sorg C, Avram M. Basal-Forebrain Cholinergic Nuclei Alterations are Associated With Medication and Cognitive Deficits Across the Schizophrenia Spectrum. Schizophr Bull 2023; 49:1530-1541. [PMID: 37606273 PMCID: PMC10686329 DOI: 10.1093/schbul/sbad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS The cholinergic system is altered in schizophrenia. Particularly, patients' volumes of basal-forebrain cholinergic nuclei (BFCN) are lower and correlated with attentional deficits. It is unclear, however, if and how BFCN changes and their link to cognitive symptoms extend across the schizophrenia spectrum, including individuals with at-risk mental state for psychosis (ARMS) or during first psychotic episode (FEP). STUDY DESIGN To address this question, we assessed voxel-based morphometry (VBM) of structural magnetic resonance imaging data of anterior and posterior BFCN subclusters as well as symptom ratings, including cognitive, positive, and negative symptoms, in a large multi-site dataset (n = 4) comprising 68 ARMS subjects, 98 FEP patients (27 unmedicated and 71 medicated), 140 patients with established schizophrenia (SCZ; medicated), and 169 healthy controls. RESULTS In SCZ, we found lower VBM measures for the anterior BFCN, which were associated with the anticholinergic burden of medication and correlated with patients' cognitive deficits. In contrast, we found larger VBM measures for the posterior BFCN in FEP, which were driven by unmedicated patients and correlated at-trend with cognitive deficits. We found no BFCN changes in ARMS. Altered VBM measures were not correlated with positive or negative symptoms. CONCLUSIONS Results demonstrate complex (posterior vs. anterior BFCN) and non-linear (larger vs. lower VBM) differences in BFCN across the schizophrenia spectrum, which are specifically associated both with medication, including its anticholinergic burden, and cognitive symptoms. Data suggest an altered trajectory of BFCN integrity in schizophrenia, influenced by medication and relevant for cognitive symptoms.
Collapse
Affiliation(s)
- Julia Schulz
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Felix Brandl
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Marder SR, Umbricht D. Negative symptoms in schizophrenia: Newly emerging measurements, pathways, and treatments. Schizophr Res 2023; 258:71-77. [PMID: 37517366 DOI: 10.1016/j.schres.2023.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The negative symptoms of schizophrenia, which often appear earlier than any other symptom, are prominent and clinically relevant in the majority of patients. As a result, interest in their treatment has increased. Patients who exhibit significant negative symptoms have worse functional outcomes than those without, resulting in impairments in occupational, household, and recreational functioning, as well as difficulties in relationships. Yet treatment with currently available medications does not lead to any significant improvements in this core component of schizophrenia. An increased understanding of the pathophysiology underlying negative symptoms and the discovery of novel treatments that do not directly target dopamine offer the potential to develop therapies that may reduce negative symptoms and increase quality of life for patients. The current article will discuss the impact of negative symptoms, outline current measurement tools for the assessment of negative symptoms, and examine how these measures may be improved. Insights into the neural circuitry underlying negative symptoms will be discussed, and promising targets for the development of effective treatments for these symptoms will be identified. As more prospective, large-scale, randomized studies focus on the effects of treatments on negative symptoms, progress in this area is foreseeable. However, improvements in clinical assessment instruments, a better understanding of the underlying neural mechanisms, development of novel treatments with varied targets, and a greater focus on personalized treatment are all important to produce significant benefits for patients with negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Stephen R Marder
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States of America; Veterans Affairs Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States of America.
| | - Daniel Umbricht
- Xperimed LLC, Basel, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Meyer JM, Correll CU. Increased Metabolic Potential, Efficacy, and Safety of Emerging Treatments in Schizophrenia. CNS Drugs 2023; 37:545-570. [PMID: 37470979 PMCID: PMC10374807 DOI: 10.1007/s40263-023-01022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Patients with schizophrenia experience a broad range of detrimental health outcomes resulting from illness severity, heterogeneity of disease, lifestyle behaviors, and adverse effects of antipsychotics. Because of these various factors, patients with schizophrenia have a much higher risk of cardiometabolic abnormalities than people without psychiatric illness. Although exposure to many antipsychotics increases cardiometabolic risk factors, mortality is higher in patients who are not treated versus those who are treated with antipsychotics. This indicates both direct and indirect benefits of adequately treated illness, as well as the need for beneficial medications that result in fewer cardiometabolic risk factors and comorbidities. The aim of the current narrative review was to outline the association between cardiometabolic dysfunction and schizophrenia, as well as discuss the confluence of factors that increase cardiometabolic risk in this patient population. An increased understanding of the pathophysiology of schizophrenia has guided discovery of novel treatments that do not directly target dopamine and that not only do not add, but may potentially minimize relevant cardiometabolic burden for these patients. Key discoveries that have advanced the understanding of the neural circuitry and pathophysiology of schizophrenia now provide possible pathways toward the development of new and effective treatments that may mitigate the risk of metabolic dysfunction in these patients. Novel targets and preclinical and clinical data on emerging treatments, such as glycine transport inhibitors, nicotinic and muscarinic receptor agonists, and trace amine-associated receptor-1 agonists, offer promise toward relevant therapeutic advancements. Numerous areas of investigation currently exist with the potential to considerably progress our knowledge and treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan M Meyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
9
|
Hassani S, Neumann A, Russell J, Jones C, Womelsdorf T. M 1-selective muscarinic allosteric modulation enhances cognitive flexibility and effective salience in nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2216792120. [PMID: 37104474 PMCID: PMC10161096 DOI: 10.1073/pnas.2216792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Acetylcholine (ACh) in cortical neural circuits mediates how selective attention is sustained in the presence of distractors and how flexible cognition adjusts to changing task demands. The cognitive domains of attention and cognitive flexibility might be differentially supported by the M1 muscarinic acetylcholine receptor (mAChR) subtype. Understanding how M1 mAChR mechanisms support these cognitive subdomains is of highest importance for advancing novel drug treatments for conditions with altered attention and reduced cognitive control including Alzheimer's disease or schizophrenia. Here, we tested this question by assessing how the subtype-selective M1 mAChR positive allosteric modulator (PAM) VU0453595 affects visual search and flexible reward learning in nonhuman primates. We found that allosteric potentiation of M1 mAChRs enhanced flexible learning performance by improving extradimensional set shifting, reducing latent inhibition from previously experienced distractors and reducing response perseveration in the absence of adverse side effects. These procognitive effects occurred in the absence of apparent changes of attentional performance during visual search. In contrast, nonselective ACh modulation using the acetylcholinesterase inhibitor (AChEI) donepezil improved attention during visual search at doses that did not alter cognitive flexibility and that already triggered gastrointestinal cholinergic side effects. These findings illustrate that M1 mAChR positive allosteric modulation enhances cognitive flexibility without affecting attentional filtering of distraction, consistent with M1 activity boosting the effective salience of relevant over irrelevant objects specifically during learning. These results suggest that M1 PAMs are versatile compounds for enhancing cognitive flexibility in disorders spanning schizophrenia and Alzheimer's diseases.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Adam Neumann
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Jason Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN37240
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
10
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
13
|
Premkumar T, Sajitha Lulu S. Molecular Mechanisms of Emerging Therapeutic Targets in Alzheimer’s Disease: A Systematic Review. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry 2022; 179:611-627. [PMID: 35758639 DOI: 10.1176/appi.ajp.21101083] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia remains a challenging disease to treat effectively with current antipsychotic medications due to their limited efficacy across the entire spectrum of core symptoms as well as their often burdensome side-effect profiles and poor tolerability. An unmet need remains for novel, mechanistically unique, and better tolerated therapeutic agents for treating schizophrenia, especially those that treat not only positive symptoms but also the negative and cognitive symptoms of the disease. Almost 25 years ago, the muscarinic acetylcholine receptor (mAChR) agonist xanomeline was reported to reduce psychotic symptoms and improve cognition in patients with Alzheimer's disease. The antipsychotic and procognitive properties of xanomeline were subsequently confirmed in a small study of acutely psychotic patients with chronic schizophrenia. These unexpected clinical findings have prompted considerable efforts across academia and industry to target mAChRs as a new approach to potentially treat schizophrenia and other psychotic disorders. The authors discuss recent advances in mAChR biology and pharmacology and the current understanding of the relative roles of the various mAChR subtypes, their downstream cellular effectors, and key neural circuits mediating the reduction in the core symptoms of schizophrenia in patients treated with xanomeline. They also provide an update on the status of novel mAChR agonists currently in development for potential treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
|
15
|
Xu J, Zhang Z, Zhao J, Meyers CA, Lee S, Qin Q, James AW. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736. [PMID: 36111341 PMCID: PMC9468661 DOI: 10.3389/fcell.2022.976736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton’s role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Education, Incheon National University, Incheon, South Korea
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Aaron W. James,
| |
Collapse
|
16
|
Eickhoff S, Franzen L, Korda A, Rogg H, Trulley VN, Borgwardt S, Avram M. The Basal Forebrain Cholinergic Nuclei and Their Relevance to Schizophrenia and Other Psychotic Disorders. Front Psychiatry 2022; 13:909961. [PMID: 35873225 PMCID: PMC9299093 DOI: 10.3389/fpsyt.2022.909961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
The basal forebrain cholinergic nuclei (BFCN) provide the main cholinergic input to prefrontal cortices, the hippocampi, and amygdala. These structures are highly relevant for the regulation and maintenance of many cognitive functions, such as attention and memory. In vivo neuroimaging studies reported alterations of the cholinergic system in psychotic disorders. Particularly, a downregulation of nicotinic and muscarinic acetylcholine receptors has been found. Crucially, such alterations in neurotransmission have been associated with cognitive impairments and positive and negative symptoms. Recent pharmacological studies support these findings, as they demonstrated an association between the manipulation of cholinergic transmission and an attenuation in symptom severity. Targeting acetylcholine receptors has therefore become a focus for the development of novel psychopharmacological drugs. However, many open questions remain. For instance, it remains elusive what causes such alterations in neurotransmission. While evidence supports the idea that BFCN structural integrity is altered in schizophrenia, it remains to be determined whether this is also present in other psychotic disorders. Furthermore, it is unclear when throughout the course of the disorder these alterations make their appearance and whether they reflect changes in the BFCN alone or rather aberrant interactions between the BFCN and other brain areas. In this review, the specific role of the BFCN and their projections are discussed from a neuroimaging perspective and with a focus on psychotic disorders alongside future directions. These directions set the stage for the development of new treatment targets for psychotic disorders.
Collapse
Affiliation(s)
- Sofia Eickhoff
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Design, Synthesis, and Biological Evaluation of 4,4’-Difluorobenzhydrol Carbamates as Selective M1 Antagonists. Pharmaceuticals (Basel) 2022; 15:ph15020248. [PMID: 35215360 PMCID: PMC8879200 DOI: 10.3390/ph15020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their important role in mediating a broad range of physiological functions, muscarinic acetylcholine receptors (mAChRs) have been a promising target for therapeutic and diagnostic applications alike; however, the list of truly subtype-selective ligands is scarce. Within this work, we have identified a series of twelve 4,4’-difluorobenzhydrol carbamates through a rigorous docking campaign leveraging commercially available amine databases. After synthesis, these compounds have been evaluated for their physico–chemical property profiles, including characteristics such as HPLC-logD, tPSA, logBB, and logPS. For all the synthesized carbamates, these characteristics indicate the potential for BBB permeation. In competitive radioligand binding experiments using Chinese hamster ovary cell membranes expressing the individual human mAChR subtype hM1-hM5, the most promising compound 2 displayed a high binding affinitiy towards hM1R (1.2 nM) while exhibiting modest-to-excellent selectivity versus the hM2-5R (4–189-fold). All 12 compounds were shown to act in an antagonistic fashion towards hM1R using a dose-dependent calcium mobilization assay. The structural eligibility for radiolabeling and their pharmacological and physico–chemical property profiles render compounds 2, 5, and 7 promising candidates for future position emission tomography (PET) tracer development.
Collapse
|
18
|
Abstract
OBJECTIVE Acetylcholinesterase inhibitors are the focus of interest in the management of schizophrenia. We aimed to investigate the effects of acute galangin administration, a flavonoid compound with acetylcholinesterase inhibiting activity, on schizophrenia-associated cognitive deficits in rats and schizophrenia models in mice. METHODS Apomorphine-induced prepulse inhibition (PPI) disruption for cognitive functions, nicotinic, muscarinic, and serotonergic mechanism involvement, and brain acetylcholine levels were investigated in Wistar rats. Apomorphine-induced climbing, MK-801-induced hyperlocomotion, and catalepsy tests were used as schizophrenia models in Swiss albino mice. The effects of galangin were compared with acetylcholinesterase inhibitor donepezil, and typical and atypical antipsychotics haloperidol and olanzapine, respectively. RESULTS Galangin (50,100 mg/kg) enhanced apomorphine-induced PPI disruption similar to donepezil, haloperidol, and olanzapine (p < 0.05). This effect was not altered in the combination of galangin with the nicotinic receptor antagonist mecamylamine (1 mg/kg), the muscarinic receptor antagonist scopolamine (0.05 mg/kg), or the serotonin-1A receptor antagonist WAY-100635 (1 mg/kg) (p > 0.05). Galangin (50,100 mg/kg) alone increased brain acetylcholine concentrations (p < 0.05), but not in apomorphine-injected rats (p > 0.05). Galangin (50 mg/kg) decreased apomorphine-induced climbing and MK-801-induced hyperlocomotion similar to haloperidol and olanzapine (p < 0.05), but did not induce catalepsy, unlike them. CONCLUSION We suggest that galangin may help enhance schizophrenia-associated cognitive deficits, and nicotinic, muscarinic cholinergic, and serotonin-1A receptors are not involved in this effect. Galangin also exerted an antipsychotic-like effect without inducing catalepsy and may be considered as an advantageous antipsychotic agent.
Collapse
|
19
|
Long MF, Capstick RA, Spearing PK, Engers JL, Gregro AR, Bollinger SR, Chang S, Luscombe VB, Rodriguez AL, Cho HP, Niswender CM, Bridges TM, Conn PJ, Lindsley CW, Engers DW, Temple KJ. Discovery of structurally distinct tricyclic M 4 positive allosteric modulator (PAM) chemotypes - Part 2. Bioorg Med Chem Lett 2021; 53:128416. [PMID: 34710625 DOI: 10.1016/j.bmcl.2021.128416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
This Letter details our efforts to develop novel tricyclic M4 PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3-amino-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide core which lead to the discovery of two novel tricyclic cores: a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core and 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core. Both tricyclic cores displayed low nanomolar potency against the human M4 receptor.
Collapse
Affiliation(s)
- Madeline F Long
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rory A Capstick
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul K Spearing
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julie L Engers
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alison R Gregro
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sean R Bollinger
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sichen Chang
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vincent B Luscombe
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hyekyung P Cho
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas M Bridges
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Darren W Engers
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kayla J Temple
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
21
|
Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer's disease and schizophrenia in rhesus monkey. Neuropharmacology 2021; 197:108754. [PMID: 34389398 DOI: 10.1016/j.neuropharm.2021.108754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/19/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a profoundly debilitating neurodegenerative disorder characterized most notably by progressive cognitive decline, but also agitation and behavioral disturbances that are extremely disruptive to patient and caregiver. Current pharmacological treatments for these symptoms have limited efficacy and significant side effects. We have recently reported the discovery of Compound 24, an M4 positive allosteric modulator (PAM) that is potent, highly selective, and devoid of cholinergic-like side effects in rats. In order to further evaluate the translatability of the effects of compound 24 in primates, here we describe the effect of Compound 24 on three behavioral and cognition assays in rhesus monkeys, the stimulant induced motor activity (SIMA) assay, the object retrieval detour task (ORD), and the visuo-spatial paired-associates learning (vsPAL) task. As far as we know, this is the first such characterization of an M4 PAM in non-human primate. Compound 24 and the clinical standard olanzapine attenuated amphetamine induced hyperactivity to a similar degree. In addition, Compound 24 demonstrated procognitive effects in scopolamine-impaired ORD and vsPAL, and these effects were of similar magnitude to donepezil. These findings suggest that M4 PAMs may be beneficial to diseases such as Alzheimer's disease and schizophrenia, which are marked by behavioral disturbances as well as deficits in cognitive function.
Collapse
|
22
|
Cooper SY, Akers AT, Journigan VB, Henderson BJ. Novel Putative Positive Modulators of α4β2 nAChRs Potentiate Nicotine Reward-Related Behavior. Molecules 2021; 26:4793. [PMID: 34443380 PMCID: PMC8398432 DOI: 10.3390/molecules26164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The popular tobacco and e-cigarette chemical flavorant (-)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs' important role in nicotine dependence, as well as various neurological disorders including Parkinson's disease, the identification of these ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.
Collapse
Affiliation(s)
- Skylar Y. Cooper
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Austin T. Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| | - Velvet Blair Journigan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25701, USA
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA; (S.Y.C.); (A.T.A.); (V.B.J.)
| |
Collapse
|
23
|
Zhao X, Wilson K, Uteshev V, He JJ. Activation of α7 nicotinic acetylcholine receptor ameliorates HIV-associated neurology and neuropathology. Brain 2021; 144:3355-3370. [PMID: 34196664 PMCID: PMC8677536 DOI: 10.1093/brain/awab251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy are primarily manifested as impaired behaviours, glial activation/neuroinflammation and compromised neuronal integrity, for which there are no effective treatments currently available. In the current study, we used doxycycline-inducible astrocyte-specific HIV Tat transgenic mice (iTat), a surrogate HAND model, and determined effects of PNU-125096, a positive allosteric modulator of α7 nicotinic acetylcholine receptor (α7 nAChR) on Tat-induced behavioural impairments and neuropathologies. We showed that PNU-125096 treatment significantly improved locomotor, learning and memory deficits of iTat mice while inhibited glial activation and increased PSD-95 expression in the cortex and hippocampus of iTat mice. Using α7 nAChR knockout mice, we showed that α7 nAChR knockout eliminated the protective effects of PNU-125096 on iTat mice. In addition, we showed that inhibition of p38 phosphorylation by SB239063, a p38 MAPK-specific inhibitor exacerbated Tat neurotoxicity in iTat mice. Last, we used primary mouse cortical individual cultures and neuron-astrocytes co-cultures and in vivo staining of iTat mouse brain tissues and showed that glial activation was directly involved in the interplay among Tat neurotoxicity, α7 nAChR activation and the p38 MAPK signalling pathway. Taken together, these findings demonstrated for the first time that α7 nAChR activation led to protection against HAND and suggested that α7 nAChR modulator PNU-125096 holds significant promise for development of therapeutics for HAND.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Kelly Wilson
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Victor Uteshev
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences of University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
24
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
25
|
JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-κB-mediated inflammation. Int Immunopharmacol 2021; 96:107726. [PMID: 33975230 DOI: 10.1016/j.intimp.2021.107726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 01/20/2023]
Abstract
Neuroinflammation plays an early and prominent role in the pathology of Alzheimer's disease (AD). Studies have shown that cholinergic lesion is a contributor for the pathophysiology of AD. The α7 nicotinic acetylcholine receptors (nAChRs), a subtype of nAChRs, are abundantly expressed in the brain regions related to cognition and memory, such as hippocampus and frontal cortex. The α7 nAChR is rapidly activated and desensitized by agonists. JWX-A0108 is a type I positive allosteric modulator (PAM) of α7 nAChR, which mainly enhances agonist-evoked peak currents. Here, we used the Morris Water Maze to evaluate the effect of JWX-A0108 on cognition and memory functions in APP/PS1 mice, and the mechanism related to anti-inflammatory effect. The results showed that JWX-A0108 could improve the learning and memory function of APP/PS1 transgenic mice in Morris water maze, decrease the expression of IL-1β, TNF-α, IL-6 in the brain and lower the phosphorylation level of IκBα (Ser32/36) and NF-κB p65 (Ser536), decrease the expression of Iba1, the microglia activation marker. Nissl staining showed that the CA3 and DG regions of hippocampus were damaged in APP/PS1 mice, which was improved by JWX-A0108. All of these effects of JWX-A0108 were reversed by MLA (α7 nAChR specific blocker). Taken together, the results reveal that JWX-A0108 improved the learning and memory function of APP/PS1 mice by enhancing the anti-inflammatory effect of the endogenous choline system through α7 nAChR, inhibited the activation of the NF-κB signaling pathway by inhibiting IκB phosphorylation, and ultimately inhibited inflammatory responses.
Collapse
|
26
|
Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res 2021; 405:113201. [PMID: 33647377 PMCID: PMC8006961 DOI: 10.1016/j.bbr.2021.113201] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by a diverse range of symptoms that can have profound impacts on the lives of patients. Currently available antipsychotics target dopamine receptors, and while they are useful for ameliorating the positive symptoms of the disorder, this approach often does not significantly improve negative and cognitive symptoms. Excitingly, preclinical and clinical research suggests that targeting specific muscarinic acetylcholine receptor subtypes could provide more comprehensive symptomatic relief with the potential to ameliorate numerous symptom domains. Mechanistic studies reveal that M1, M4, and M5 receptor subtypes can modulate the specific brain circuits and physiology that are disrupted in schizophrenia and are thought to underlie positive, negative, and cognitive symptoms. Novel therapeutic strategies for targeting these receptors are now advancing in clinical and preclinical development and expand upon the promise of these new treatment strategies to potentially provide more comprehensive relief than currently available antipsychotics.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Zoey K Bryant
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
27
|
Gomes FV, Grace AA. Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. Int J Mol Sci 2021; 22:4467. [PMID: 33922888 PMCID: PMC8123139 DOI: 10.3390/ijms22094467] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil;
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Dual-target compounds for Alzheimer's disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 2021; 221:113492. [PMID: 33984802 DOI: 10.1016/j.ejmech.2021.113492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and represents the major cause of dementia worldwide. Currently, there are no available treatments capable to deliver disease-modifying effects, and the available drugs can only alleviate the symptoms. The exact pathology of AD is not yet fully understood and several hallmarks such as the presence of amyloid-β (Aβ) senile plaques, neurofibrillary tangles (NFTs) as well as the loss of cholinergic function have been associated to AD. Distinct pharmacological targets have been validated to address AD, with acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) being two of the most explored ones. A great deal of research has been devoted to the development of new AChE and BACE-1 effective inhibitors, tackled separately or in combination of both. The multi-factorial nature of AD conducted to the development of multi-target directed ligands (MTDLs), defined as single molecules capable to modulate more than one biological target, as an alternative approach to the old paradigm one-target one-drug. In this context, this review describes a collection of natural and synthetic compounds with dual-inhibitory properties towards both AChE and BACE-1 in the MTDLs context. Furthermore, this review also provides a critical comprehensive analysis of structure-activity relationships (SAR) of the synthetic compounds.
Collapse
|
29
|
Vijayraghavan S, Everling S. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors. Front Neural Circuits 2021; 15:648624. [PMID: 33790746 PMCID: PMC8005543 DOI: 10.3389/fncir.2021.648624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by acetylcholine plays a vital role in shaping the physiology and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state transitions, controls the gating of cortical sensory stimulus responses, and has been shown to influence the generation and maintenance of persistent activity in prefrontal cortex. Here we review our current understanding of the role of muscarinic cholinergic receptors in primate prefrontal cortex during its engagement in the performance of working memory tasks. We summarize the localization of muscarinic receptors in prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working memory and cognitive control tasks, and describe the effects of muscarinic M1 receptor stimulation and blockade on the generation and maintenance of persistent activity of prefrontal neurons encoding working memory representations. Recent studies describing the pharmacological effects of M1 receptors on prefrontal persistent activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected modulatory effects discovered in primate prefrontal cortex when compared with studies in rodents. Understanding the underlying mechanisms by which muscarinic receptors regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based therapeutic targets in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
30
|
Chu C, Parkhurst CN, Zhang W, Zhou L, Yano H, Arifuzzaman M, Artis D. The ChAT-acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. Sci Immunol 2021; 6:6/57/eabe3218. [PMID: 33674322 DOI: 10.1126/sciimmunol.abe3218] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in multiple tissues, including lymphoid organs and barrier surfaces, and secrete type 2 cytokines including interleukin-5 (IL-5), IL-9, and IL-13. These cells participate in multiple physiological processes including allergic inflammation, tissue repair, metabolic homeostasis, and host defense against helminth infections. Recent studies indicate that neurotransmitters and neuropeptides can play an important role in regulating ILC2 responses; however, the mechanisms that underlie these processes in vivo remain incompletely defined. Here, we identify that activated ILC2s up-regulate choline acetyltransferase (ChAT)-the enzyme responsible for the biosynthesis of acetylcholine (ACh)-after infection with the helminth parasite Nippostrongylus brasiliensis or treatment with alarmins or cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). ILC2s also express acetylcholine receptors (AChRs), and ACh administration promotes ILC2 cytokine production and elicits expulsion of helminth infection. In accordance with this, ChAT deficiency in ILC2s leads to defective ILC2 responses and impaired immunity against helminth infection. Together, these results reveal a previously unrecognized role of the ChAT-ACh pathway in promoting type 2 innate immunity to helminth infection.
Collapse
Affiliation(s)
- Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA. .,Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| |
Collapse
|
31
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
32
|
Dempsey LM, Kavanagh JJ. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions. J Neurophysiol 2021; 125:1269-1278. [PMID: 33625939 DOI: 10.1152/jn.00673.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.
Collapse
Affiliation(s)
- Lisa M Dempsey
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
33
|
Oda H, Kihara K, Morimoto Y, Takeuchi S. Cell-Based Biohybrid Sensor Device for Chemical Source Direction Estimation. CYBORG AND BIONIC SYSTEMS 2021; 2021:8907148. [PMID: 36285129 PMCID: PMC9494699 DOI: 10.34133/2021/8907148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/31/2020] [Indexed: 02/03/2023] Open
Abstract
This paper describes a method to estimate the direction from which the signal molecule reaches the sensor by using living cells. In this context, biohybrid sensors that utilize a sophisticated sensing system of cells can potentially offer high levels of chemical-detection sensitivity and selectivity. However, biohybrid-sensor-based chemical-source-direction estimation has not received research attention because the cellular response to chemicals has not been examined in the context of directional information. In our approach, we fabricated a device that can limit the interface between the cell-laden hydrogel and the chemical solution of interest to enhance the time difference over which the chemical solution reaches the cells. Chemical detection by cells that express specific receptors is reflected as the fluorescence of the calcium indicator within the cells. Our device has eight chambers that each house 3D cell-laden collagen hydrogels facing circularly outward. The device also works as a cover to prevent chemicals from permeating the hydrogel from above. In our study, by observing the time course of the fluorescence emission of each chamber, we were able to successfully estimate the chemical-source direction within an error range of 7–13°. Our results suggest that a combination of microstructure devices embedded with living cells can be used to exploit cell functionalities to yield chemical-source directional information.
Collapse
Affiliation(s)
- H. Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
| | - K. Kihara
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
| | - Y. Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
| | - S. Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
| |
Collapse
|
34
|
Rajendran K, Chellappan DR, Sankaranarayanan S, Ramakrishnan V, Krishnan UM. Investigations on a polyherbal formulation for treatment of cognitive impairment in a cholinergic dysfunctional rodent model. Neurochem Int 2020; 141:104890. [PMID: 33122033 DOI: 10.1016/j.neuint.2020.104890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
|
35
|
Modulation of arousal and sleep/wake architecture by M 1 PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology 2020; 45:2219-2228. [PMID: 32868847 PMCID: PMC7784923 DOI: 10.1038/s41386-020-00812-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023]
Abstract
Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.
Collapse
|
36
|
McCulloch KA, Jin Y. Novel actions of arecoline in the C. elegans motor circuit. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000275. [PMID: 32666042 PMCID: PMC7351583 DOI: 10.17912/micropub.biology.000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katherine A McCulloch
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093,
Correspondence to: Jin ()
| |
Collapse
|
37
|
McCulloch KA, Jin Y. The muscarinic agonist arecoline suppresses motor circuit hyperactivity in C. elegans. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32626844 PMCID: PMC7326331 DOI: 10.17912/micropub.biology.000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine A McCulloch
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
38
|
Chen WN, Yeong KY. Scopolamine, a Toxin-Induced Experimental Model, Used for Research in Alzheimer’s Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:85-93. [DOI: 10.2174/1871527319666200214104331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Scopolamine as a drug is often used to treat motion sickness. Derivatives of scopolamine
have also found applications as antispasmodic drugs among others. In neuroscience-related research, it
is often used to induce cognitive disorders in experimental models as it readily permeates the bloodbrain
barrier. In the context of Alzheimer’s disease, its effects include causing cholinergic dysfunction
and increasing amyloid-β deposition, both of which are hallmarks of the disease. Hence, the application
of scopolamine in Alzheimer’s disease research is proven pivotal but seldom discussed. In this review,
the relationship between scopolamine and Alzheimer’s disease will be delineated through an
overall effect of scopolamine administration and its specific mechanisms of action, discussing mainly
its influences on cholinergic function and amyloid cascade. The validity of scopolamine as a model of
cognitive impairment or neurotoxin model will also be discussed in terms of advantages and limitations
with future insights.
Collapse
Affiliation(s)
- Win Ning Chen
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
39
|
Xin R, Chen Z, Fu J, Shen F, Zhu Q, Huang F. Xanomeline Protects Cortical Cells From Oxygen-Glucose Deprivation via Inhibiting Oxidative Stress and Apoptosis. Front Physiol 2020; 11:656. [PMID: 32595528 PMCID: PMC7303960 DOI: 10.3389/fphys.2020.00656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Xanomeline, a muscarinic acetylcholine receptor agonist, is one of the first compounds that was found to be effective in the treatment of schizophrenics and attenuating behavioral disturbances of patients with Alzheimer's disease (AD). However, its role in ischemia-induced injury due to oxygen and glucose deprivation (OGD) remains unclear. Primary rat neuronal cells were exposed to OGD and treated with xanomeline. The effects of xanomeline on apoptosis, cell viability, lactate dehydrogenase (LDH) levels, and reactive oxygen species (ROS) were determined using an Annexin V Apoptosis Detection Kit, a non-radioactive cell counting kit-8 (CCK-8) assay, colorimetric LDH cytotoxicity assay kit, and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay, respectively, and the expressions of Sirtuin 1, haem oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), poly ADP-ribose polymerase (PARP), and hypoxia-inducible factor α (HIF-1α) as well as the level of phosphorylated kinase B (p-Akt) were determined by Western blotting. Compared with the control, xanomeline pretreatment increased the viability of isolated cortical neurons and decreased the LDH release induced by OGD. Compared with OGD-treated cells, xanomeline inhibited apoptosis, reduced ROS production, attenuated the OGD-induced HIF-1α increase and partially reversed the reduction of HO-1, Sirtuin-1, Bcl-2, PARP, and p-Akt induced by OGD. In conclusion, xanomeline treatment protects cortical neuronal cells possibly through the inhibition of apoptosis after OGD.
Collapse
Affiliation(s)
- Rujuan Xin
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Fu
- Department of Pharmacy, Ninghai First Hospital, Zhejiang, China
| | - Fuming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Antonio-Tolentino K, Hopkins CR. Selective α7 nicotinic receptor agonists and positive allosteric modulators for the treatment of schizophrenia - a review. Expert Opin Investig Drugs 2020; 29:603-610. [PMID: 32396418 DOI: 10.1080/13543784.2020.1764938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) partial agonists, agonists, and positive allosteric modulators (PAMs) have been in development for over a decade. The initial candidates were in clinical trials for a wide variety of diseases including schizophrenia, but there has yet to be a successful compound to make it to the market for any disorder. Although difficult to assess the cause of all the clinical failures, the lack of efficacy played a major role. The development of more selective compounds, may bring a successful compound to long-suffering schizophrenia patients. AREAS COVERED This article examines investigational agonists and positive allosteric modulators of the α7 nicotinic receptor in preclinical studies as well as clinical trials. Our search included the use of SciFinder, Google, and clinicaltrials.gov with search dates of 2015 to the present. EXPERT OPINION Researchers must rethink their approach should look more closely at the selectivity of new compounds and how to tackle the translational gap. Perhaps new positive allosteric modulators that can help minimize receptor desensitization and selectivity profiles can be a path forward for α7 nAChRs in schizophrenia.
Collapse
Affiliation(s)
- Kirsten Antonio-Tolentino
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, NE, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , Omaha, NE, USA
| |
Collapse
|
41
|
Deng J, Wang M, Guo Y, Fischer H, Yu X, Kem D, Li H. Activation of α7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med Hypotheses 2020; 140:109671. [PMID: 32182560 DOI: 10.1016/j.mehy.2020.109671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Obesity is a major risk factor for type 2 diabetes mellitus and insulin resistance (IR). In the state of obesity, excess fat accumulates in the liver, a key organ in systemic metabolism, altering the inflammatory and metabolic signals contributing substantially to the development of hepatic IR. Current therapies for these metabolic disorders have not been able to reverse their rapidly rising prevalence. One of the reasons is that the effects of existing drugs are predominantly non-lasting [1,2]. The vagus nerve (VN) is known to play an essential role in maintaining metabolic homeostasis while decreased VN activity has been suggested to contribute to obesity associated metabolic syndrome [3,4]. Several studies have reported that activation of α7 nicotinic acetylcholine receptor (α7nAChR) cholinergic signaling with or without VN intervention has protective effects against obesity-related inflammation and other metabolic complications [5]. However, the molecular mechanisms are still not elucidated. Exaggerated endoplasmic reticulum (ER) stress and consequent dysregulated inflammation has been implicated in the development of lipid accumulation and IR [6]. Whether targeting α7nAChR can regulate IR through these pathways is rarely reported. Accordingly, the present proposal posits that activation of the α7nAChR by VNS attenuates ER stress induced inflammation, thus ameliorating hepatic IR in Kupffer cell. We will focus on the specific interaction between vagal cholinergic activity and the modulation of ER stress induced inflammation via the α7nAChR associated pathway during IR development. Recently, the Endocrine Society has emphasized the absence of specific evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding underlying mechanisms of obesity [7]. In this proposal, we assign a significant role to α7nAChR in obesity-induced hepatic IR, and suggest a possible therapeutic strategy with VNS intervention.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankai Guo
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Cardiac Pacing and Electrophysiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hayley Fischer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Xichun Yu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - David Kem
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Hongliang Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China.
| |
Collapse
|
42
|
Cox MA, Bassi C, Saunders ME, Nechanitzky R, Morgado-Palacin I, Zheng C, Mak TW. Beyond neurotransmission: acetylcholine in immunity and inflammation. J Intern Med 2020; 287:120-133. [PMID: 31710126 DOI: 10.1111/joim.13006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Acetylcholine (ACh) is best known as a neurotransmitter and was the first such molecule identified. ACh signalling in the neuronal cholinergic system has long been known to regulate numerous biological processes (reviewed by Beckmann and Lips). In actuality, ACh is a ubiquitous signalling molecule that is produced by numerous non-neuronal cell types and even by some single-celled organisms. Within multicellular organisms, a non-neuronal cholinergic system that includes the immune system functions in parallel with the neuronal cholinergic system. Several immune cell types both respond to ACh signals and can directly produce ACh. Recent work from our laboratory has demonstrated that the capacity to produce ACh is an intrinsic property of T cells responding to viral infection, and that this ability to produce ACh is dependent upon IL-21 signalling to the T cells. Furthermore, during infection this immune-derived ACh is necessary for the T cells to migrate into infected tissues. In this review, we will discuss the various sources of ACh that are relevant during immune responses and describe how ACh acts on immune cells to influence their functions. We will also address the clinical implications of this fascinating aspect of immunity, focusing on ACh's role in the migration of T cells during infection and cancer.
Collapse
Affiliation(s)
- M A Cox
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Bassi
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - M E Saunders
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - R Nechanitzky
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - I Morgado-Palacin
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Zheng
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
43
|
Gillet C, Kurth S, Kuenzel T. Muscarinic modulation of M and h currents in gerbil spherical bushy cells. PLoS One 2020; 15:e0226954. [PMID: 31940388 PMCID: PMC6961914 DOI: 10.1371/journal.pone.0226954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.
Collapse
Affiliation(s)
- Charlène Gillet
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Stefanie Kurth
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- * E-mail:
| |
Collapse
|
44
|
Deutsch SI, Burket JA. An Evolving Therapeutic Rationale for Targeting the α 7 Nicotinic Acetylcholine Receptor in Autism Spectrum Disorder. Curr Top Behav Neurosci 2020; 45:167-208. [PMID: 32468495 DOI: 10.1007/7854_2020_136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormalities of cholinergic nuclei, cholinergic projections, and cholinergic receptors, as well as abnormalities of growth factors involved in the maturation and maintenance of cholinergic neurons, have been described in postmortem brains of persons with autism spectrum disorder (ASD). Further, microdeletions of the 15q13.3 locus that encompasses CHRNA7, the gene coding the α7 nicotinic acetylcholine receptor (α7 nAChR), are associated with a spectrum of neurodevelopmental disorders, including ASD. The heterozygous 15q13.3 microdeletion syndrome suggests that diminished or impaired transduction of the acetylcholine (ACh) signal by the α7 nAChR can be a pathogenic mechanism of ASD. The α7 nAChR has a role in regulating the firing and function of parvalbumin (PV)-expressing GABAergic projections, which synchronize the oscillatory output of assemblies of pyramidal neurons onto which they project. Synchronous oscillatory output is an electrophysiological substrate for higher executive functions, such as working memory, and functional connectivity between discrete anatomic areas of the brain. The α7 nAChR regulates PV expression and works cooperatively with the co-expressed NMDA receptor in subpopulations of GABAergic interneurons in mouse models of ASD. An evolving literature supports therapeutic exploration of selectively targeted cholinergic interventions for the treatment of ASD, especially compounds that target the α7 nAChR subtype. Importantly, development and availability of high-affinity, brain-penetrable, α7 nAChR-selective agonists, partial agonists, allosteric agonists, and positive allosteric modulators (PAMs) should facilitate "proof-of-principle/concept" clinical trials. nAChRs are pentameric allosteric proteins that function as ligand-gated ion channel receptors constructed from five constituent polypeptide subunits, all of which share a common structural motif. Importantly, in addition to α7 nAChR-gated Ca2+ conductance causing membrane depolarization, there are emerging data consistent with possible metabotropic functions of this ionotropic receptor. The ability of α7-selective type II PAMs to "destabilize" the desensitized state and promote ion channel opening may afford them therapeutic advantages over orthosteric agonists. The current chapter reviews historic and recent literature supporting selective therapeutic targeting of the α7 nAChR in persons affected with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, USA
| |
Collapse
|
45
|
Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M 4 positive allosteric modulator (PAM) chemotype. Bioorg Med Chem Lett 2019; 30:126812. [PMID: 31784320 DOI: 10.1016/j.bmcl.2019.126812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
This Letter details our efforts to discover structurally unique M4 PAMs containing 5,6-heteroaryl ring systems. In an attempt to improve the DMPK profiles of the 2,3-dimethyl-2H-indazole-5-carboxamide and 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide cores, we investigated a plethora of core replacements. This exercise identified a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide core that provided improved M4 PAM activity and CNS penetration.
Collapse
|
46
|
Temple KJ, Long MF, Engers JL, Watson KJ, Chang S, Luscombe VB, Rodriguez AL, Niswender CM, Bridges TM, Conn PJ, Engers DW, Lindsley CW. Discovery of structurally distinct tricyclic M 4 positive allosteric modulator (PAM) chemotypes. Bioorg Med Chem Lett 2019; 30:126811. [PMID: 31787491 DOI: 10.1016/j.bmcl.2019.126811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023]
Abstract
This Letter details our efforts to develop new M4 PAM scaffolds with improved pharmacological properties. This endeavor involved replacing the 3,4-dimethylpyridazine core with two novel cores: a 2,3-dimethyl-2H-indazole-5-carboxamide core or a 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide core. Due to shallow SAR, these cores were further evolved into two unique tricyclic cores: an 8,9-dimethyl-8H-pyrazolo[3,4-h]quinazoline core and an 1-methyl-1H-[1,2,3]triazolo[4,5-h]quinazoline core. Both tricyclic cores displayed low nanomolar potency against both human and rat M4.
Collapse
Affiliation(s)
- Kayla J Temple
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Madeline F Long
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julie L Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine J Watson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vincent B Luscombe
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Thomas M Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren W Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Ryan AE, Mowry BJ, Kesby JP, Scott JG, Greer JM. Is there a role for antibodies targeting muscarinic acetylcholine receptors in the pathogenesis of schizophrenia? Aust N Z J Psychiatry 2019; 53:1059-1069. [PMID: 31347380 DOI: 10.1177/0004867419864438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Muscarinic receptor dysfunction has been suggested to play an important role in the pathophysiology of schizophrenia. Recently, it has also become clear that immune reactivity directed against neurotransmitter receptors may play a pathogenic role in some cases of schizophrenia. The aim of this review is to summarize the case for muscarinic receptor dysfunction in schizophrenia and the evidence supporting the hypothesis that this dysfunction is related to the development of muscarinic receptor-targeting antibodies. METHOD The article reviews studies of muscarinic receptors and the presence and potential role(s) of anti-muscarinic acetylcholine receptor antibodies in people with schizophrenia. RESULTS There is accumulating evidence that altered or deficient muscarinic signalling underlies some of the key clinical features of schizophrenia. Although the number of studies investigating anti-muscarinic acetylcholine receptor antibodies in schizophrenia is relatively small, they consistently demonstrate that such antibodies are present in a proportion of patients. This evidence suggests that these antibodies could have pathogenic effects or exist as a biomarker to an unknown pathophysiological process in schizophrenia. CONCLUSION The presence of elevated levels of anti-muscarinic acetylcholine receptor antibodies may identify a subgroup of people with schizophrenia, potentially informing aetiopathogenesis, clinical presentation and treatment. To date, all studies have examined antibodies in participants with chronic schizophrenia, who have likely received antipsychotic medication for many years. As these medications modulate immune functions and regulate receptor densities, it is recommended that future studies screen for the presence of anti-muscarinic antibodies in people experiencing their first episode of psychosis.
Collapse
Affiliation(s)
- Alexander E Ryan
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Bryan J Mowry
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James P Kesby
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James G Scott
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.,School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Metro North Mental Health, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Judith M Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Discovery of a novel 3,4-dimethylcinnoline carboxamide M 4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg Med Chem Lett 2019; 29:126678. [PMID: 31537424 DOI: 10.1016/j.bmcl.2019.126678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/29/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022]
Abstract
This Letter details our efforts to replace the 2,4-dimethylquinoline carboxamide core of our previous M4 PAM series, which suffered from high predicted hepatic clearance and protein binding. A scaffold hopping exercise identified a novel 3,4-dimethylcinnoline carboxamide core that provided good M4 PAM activity and improved clearance and protein binding profiles.
Collapse
|
49
|
Falk S, Lund C, Clemmensen C. Muscarinic receptors in energy homeostasis: Physiology and pharmacology. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:66-76. [PMID: 31464050 DOI: 10.1111/bcpt.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
Despite increased awareness and intensified biomedical research efforts, the prevalence of obesity continues to rise worldwide. This is alarming, because obesity accelerates the progression of several chronic disorders, including type 2 diabetes, cancer and cardiovascular disease. Individuals who experience significant weight loss must combat powerful counter-regulatory energy homeostatic processes, and, typically, most individuals regain the lost weight. Therefore, decoding the neural mechanisms underlying the regulation of energy homeostasis is necessary for developing breakthroughs in obesity management. It has been known for decades that cholinergic neurotransmission both directly and indirectly modulates energy homeostasis and metabolic health. Despite this insight, the molecular details underlying the modulation remain ill-defined, and the potential for targeting cholinergic muscarinic receptors for treating metabolic disease is largely uncharted. In this MiniReview, we scrutinize the literature that has formed our knowledge of muscarinic acetylcholine receptors (mAChRs) in energy homeostasis. The role of mAChRs in canonical appetite-regulating circuits will be discussed as will the more indirect regulation of energy homoeostasis via neurocircuits linked to motivated behaviours and emotional states. Finally, we discuss the therapeutic prospects of targeting mAChRs for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sarah Falk
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Yabuki Y, Wu L, Fukunaga K. Cognitive enhancer ST101 improves schizophrenia-like behaviors in neonatal ventral hippocampus-lesioned rats in association with improved CaMKII/PKC pathway. J Pharmacol Sci 2019; 140:263-272. [PMID: 31474557 DOI: 10.1016/j.jphs.2019.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Atypical antipsychotics improve positive and negative symptoms but are not effective for treating cognitive impairments in patients with schizophrenia. We previously reported that cognitive impairments in neonatal ventral hippocampus (NVH)-lesioned rats show resistance to atypical antipsychotics risperidone and are associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) signaling in memory-related regions. The cognitive enhancer ST101 (spiro[imi-dazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) stimulates CaMKII activity in the hippocampus and medial prefrontal cortex (mPFC). We thus tested ST101 on cognitive impairments in NVH-lesioned rats. Chronic ST101 administration (0.1 and/or 0.5 mg/kg, p.o.) significantly improved deficits in prepulse inhibition (PPI), social interaction, and cognitive function in NVH-lesioned rats. ST101 administration (0.5 mg/kg, p.o.) significantly restored the decreased CaMKII autophosphorylation (Thr-286) in the mPFC and hippocampal CA1 regions of NVH-lesioned rats when assessed by immunohistochemistry. Chronic ST101 administration (0.1 mg/kg, p.o.) improved the decline in phosphorylation levels of CaMKII (Thr-286), PKCα (Ser-657), α-amino-3-hydroxy-5-methyl-4-isoxazol- propionic acid (AMPA)-type glutamate receptor subunit 1 (GluA1: Ser-831), and N-methyl-d-aspartate (NMDA) receptor subunit 1 (GluN1: Ser-896) in the mPFC and hippocampal CA1 regions. Taken together, these results suggest that ST101 improves schizophrenia-like behaviors and cognitive impairment by enhancing CaMKII/PKCα signaling in the mPFC and hippocampus in NVH-lesioned rats.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lei Wu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|