1
|
Niu CB, Lv QY, Song X, Guo Q, Ling XQ, Chen J, Cui HF. DNA nanoassembly based turn-on amplification probe for sensitive colorimetric CRISPR/Cas12a-mediated detection of pathogen DNA. Talanta 2024; 277:126348. [PMID: 38852348 DOI: 10.1016/j.talanta.2024.126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) system has been explored as an efficient tool for nucleic acid diagnostics. However, it normally needs instrumentation or produces turn-off signals. Herein, a bulged Y-shape DNA (Y-DNA) nanoassembly was designed and synthesized as a novel turn-on probe. A CRISPR/Cas12a and Y-DNA probe mediated colorimetric assay (named as CYMCOA) strategy was developed for visual detection of pathogen DNA. Upon activating Cas12a with pathogen DNA, the Y-DNA bulge is catalytically trans-cleaved, releasing the G-quadruplex sequence embedded in the Y-DNA nanoassembly as a peroxidase-like DNAzyme. Visible signals with chromogen substrates are thus produced. The CYMCOA strategy was combined with recombinase polymerase amplification (RPA), an isothermal amplification technique, in detecting Helicobacter pylori (Hp) bacteria and SARS-CoV-2 N plasmids as two model pathogens. The bioassay has very excellent detection sensitivity and specificity, owing to the triple cascade amplification reactions and the very low mismatch tolerance. The lower limit of detection values were 0.16 cfu⋅mL-1, 1.5 copies⋅μL-1, and 0.17 copies⋅μL-1 for Hp bacteria, Hp plasmids, and SARS-CoV-2 N plasmids respectively. The detection is fast and accurate. The colorimetric bioassay strategy provides to be a simple, accurate, fast and instrumentation-free platform for nucleic acids detections in various settings, including crude and emergent situations.
Collapse
Affiliation(s)
- Chang-Bin Niu
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Qian Guo
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Xiao-Qing Ling
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Junyang Chen
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Tambong JT, Xu R, Fleitas MC, Wang L, Akuma M, Chi SI, Kutcher HR. TaqMan Real-Time PCR Assay for Specific Detection and Differentiation of Xanthomonas translucens pv. undulosa from Other Pathovars Targeting a Recombination Mediator Gene, recF. PLANT DISEASE 2024; 108:1869-1878. [PMID: 38345539 DOI: 10.1094/pdis-09-23-1827-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bacterial leaf streak and black chaff diseases of wheat caused by Xanthomonas translucens pv. undulosa is becoming a major constraint to growers and trade since it is seedborne. Molecular tools for specific detection/differentiation of pv. undulosa are lacking. We report the development of a TaqMan real-time PCR for specific detection/identification of pv. undulosa targeting the recombination mediator gene (recF). Analysis of the complete recF (1,117 bp) sequences identified the gene as a reliable phylogenetic marker for identification of pv. undulosa, differentiating it from the other pathovars; recF-based sequence homology values among the 11 pathovars correlated well with genome-based DNA-DNA hybridization values. The discriminatory power of recF to differentiate pv. undulosa from the other pathovars is due to nucleotide polymorphic positions. We used these nucleotide polymorphisms to develop a TaqMan PCR for specific detection of pv. undulosa. The specificity of the assay was validated using 67 bacterial and fungal/oomycete strains. The selected primers and the double-quenched FAM-labeled TaqMan probe were specific for the detection of 11 pv. undulosa/secalis strains. The 56 strains of other X. translucens pathovars (n = 39) and non-Xanthomonas spp. (n = 17) did not exhibit any detectable fluorescence. Also, greenhouse-inoculated and naturally infected wheat leaf samples showed positive reactions for the presence of pv. undulosa DNA but not healthy control plants. The TaqMan assay reliably detected as low as 1-pg DNA amount and 10 colony forming units of the target pathogen per reaction. This TaqMan assay could be useful to regulatory agencies with economic benefits to wheat growers.
Collapse
Affiliation(s)
- James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Maria Constanza Fleitas
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Lipu Wang
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Mercy Akuma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | - Sylvia I Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Canadian Blood Services, Ottawa, ON, Canada
| | - Hadley R Kutcher
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
3
|
van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, Tan KL, Zhu D, Monteiro A, Brakefield PM, Marec F, Saccheri IJ. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. SCIENCE ADVANCES 2024; 10:eadj6979. [PMID: 38701204 PMCID: PMC11067997 DOI: 10.1126/sciadv.adj6979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
Collapse
Affiliation(s)
- Arjen E. van’t Hof
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Sam Whiteford
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J. Yung
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Maaike A. de Jong
- Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, Netherlands
| | - Kian-Long Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Dantong Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Sun W, Wang Z, Wen S, Huang A, Li H, Jiang L, Feng Q, Fan D, Tian Q, Han D, Liu X. Technical strategy for monozygotic twin discrimination by single-nucleotide variants. Int J Legal Med 2024; 138:767-779. [PMID: 38197923 DOI: 10.1007/s00414-023-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Monozygotic (MZ) twins are theoretically genetically identical. Although they are revealed to accumulate mutations after the zygote splits, discriminating between twin genomes remains a formidable challenge in the field of forensic genetics. Single-nucleotide variants (SNVs) are responsible for a substantial portion of genetic variation, thus potentially serving as promising biomarkers for the identification of MZ twins. In this study, we sequenced the whole genome of a pair of female MZ twins when they were 27 and 33 years old to approximately 30 × coverage using peripheral blood on an Illumina NovaSeq 6000 Sequencing System. Potentially discordant SNVs supported by whole-genome sequencing were validated extensively by amplicon-based targeted deep sequencing and Sanger sequencing. In total, we found nine bona fide post-twinning SNVs, all of which were identified in the younger genomes and found in the older genomes. None of the SNVs occurred within coding exons, three of which were observed in introns, supported by whole-exome sequencing results. A double-blind test was employed, and the reliability of MZ twin discrimination by discordant SNVs was endorsed. All SNVs were successfully detected when input DNA amounts decreased to 0.25 ng, and reliable detection was limited to seven SNVs below 0.075 ng input. This comprehensive analysis confirms that SNVs could serve as cost-effective biomarkers for MZ twin discrimination.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziwei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Hui Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Lei Jiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| |
Collapse
|
5
|
Hernández-Rollán C, Ehrmann AK, Vlassis A, Kandasamy V, Nørholm MHH. Neq2X7: a multi-purpose and open-source fusion DNA polymerase for advanced DNA engineering and diagnostics PCR. BMC Biotechnol 2024; 24:17. [PMID: 38566117 PMCID: PMC10988834 DOI: 10.1186/s12896-024-00844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.
Collapse
Affiliation(s)
- Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Anja K Ehrmann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Arsenios Vlassis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark.
- Mycropt ApS, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
6
|
Altattan B, Ullrich J, Mattig E, Poppe A, Martins R, Bier FF. Direct TAMRA-dUTP labeling of M. tuberculosis genes using loop-mediated isothermal amplification (LAMP). Sci Rep 2024; 14:5611. [PMID: 38454089 PMCID: PMC10920756 DOI: 10.1038/s41598-024-55289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Fluorescent molecule-based direct labeling of amplified DNA is a sensitive method employed across diverse DNA detection and diagnostics systems. However, using pre-labeled primers only allows for the attachment of a single fluorophore to each DNA strand and any modifications of the system are less flexible, requiring new sets of primers. As an alternative, direct labeling of amplified products with modified nucleotides is available, but still poorly characterized. To address these limitations, we sought a direct and adaptable approach to label amplicons produced through Loop-mediated isothermal amplification (LAMP), using labeled nucleotides (dUTPs) rather than primers. The focus of this study was the development and examination of a direct labeling technique of specific genes, including those associated with drug resistance in Mycobacterium tuberculosis. We used 5-(3-Aminoallyl)-2'-deoxyuridine-5'triphosphate, tagged with 5/6-TAMRA (TAMRA-dUTP) for labeling LAMP amplicons during the amplification process and characterized amplification and incorporation efficiency. The optimal TAMRA-dUTP concentration was first determined based on amplification efficiency (0.5% to total dNTPs). Higher concentrations of modified nucleotides reduced or completely inhibited the amplification yield. Target size also showed to be determinant to the success of amplification, as longer sequences showed lower amplification rates, thus less TAMRA incorporated amplicons. Finally, we were able to successfully amplify all four M. tuberculosis target genes using LAMP and TAMRA-modified dUTPs.
Collapse
Affiliation(s)
- Basma Altattan
- Institute for Molecular Diagnostics und Bioanalysis (IMDB), 14476, Potsdam, Germany.
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Jasmin Ullrich
- Institute for Molecular Diagnostics und Bioanalysis (IMDB), 14476, Potsdam, Germany
| | - Emily Mattig
- Fraunhofer Institute for Cell Therapy and Immunology-Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Aline Poppe
- Fraunhofer Institute for Cell Therapy and Immunology-Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Renata Martins
- Institute for Molecular Diagnostics und Bioanalysis (IMDB), 14476, Potsdam, Germany
| | - Frank F Bier
- Institute for Molecular Diagnostics und Bioanalysis (IMDB), 14476, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Bustin SA, Kirvell S, Nolan T, Shipley GL. FlashPCR: Revolutionising qPCR by Accelerating Amplification through Low ∆T Protocols. Int J Mol Sci 2024; 25:2773. [PMID: 38474020 DOI: 10.3390/ijms25052773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Versatility, sensitivity, and accuracy have made the real-time polymerase chain reaction (qPCR) a crucial tool for research, as well as diagnostic applications. However, for point-of-care (PoC) use, traditional qPCR faces two main challenges: long run times mean results are not available for half an hour or more, and the requisite high-temperature denaturation requires more robust and power-demanding instrumentation. This study addresses both issues and revises primer and probe designs, modified buffers, and low ∆T protocols which, together, speed up qPCR on conventional qPCR instruments and will allow for the development of robust, point-of-care devices. Our approach, called "FlashPCR", uses a protocol involving a 15-second denaturation at 79 °C, followed by repeated cycling for 1 s at 79 °C and 71 °C, together with high Tm primers and specific but simple buffers. It also allows for efficient reverse transcription as part of a one-step RT-qPCR protocol, making it universally applicable for both rapid research and diagnostic applications.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Faculty of Health, Medicine and Social Care Anglia, Ruskin University, Chelmsford CB1 1PT, UK
| | - Sara Kirvell
- Medical Technology Research Centre, Faculty of Health, Medicine and Social Care Anglia, Ruskin University, Chelmsford CB1 1PT, UK
| | - Tania Nolan
- Medical Technology Research Centre, Faculty of Health, Medicine and Social Care Anglia, Ruskin University, Chelmsford CB1 1PT, UK
| | | |
Collapse
|
8
|
Elias M, Guan X, Hudson D, Bose R, Kwak J, Petrounia I, Touah K, Mansour S, Yue P, Errasti G, Delacroix T, Ghosh A, Chakrabarti R. Evolution of Organic Solvent-Resistant DNA Polymerases. ACS Synth Biol 2023; 12:3170-3188. [PMID: 37611245 DOI: 10.1021/acssynbio.2c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The introduction of thermostable polymerases revolutionized the polymerase chain reaction (PCR) and biotechnology. However, many GC-rich genes cannot be PCR-amplified with high efficiency in water, irrespective of temperature. Although polar organic cosolvents can enhance nucleic acid polymerization and amplification by destabilizing duplex DNA and secondary structures, nature has not selected for the evolution of solvent-tolerant polymerase enzymes. Here, we used ultrahigh-throughput droplet-based selection and deep sequencing along with computational free-energy and binding affinity calculations to evolve Taq polymerase to generate enzymes that are both stable and highly active in the presence of organic cosolvents, resulting in up to 10% solvent resistance and over 100-fold increase in stability at 97.5 °C in the presence of 1,4-butanediol, as well as tolerance to up to 10 times higher concentrations of the potent cosolvents sulfolane and 2-pyrrolidone. Using these polymerases, we successfully amplified a broad spectrum of GC-rich templates containing regions with over 90% GC content, including templates recalcitrant to amplification with existing polymerases, even in the presence of cosolvents. We also demonstrated dramatically reduced GC bias in the amplification of genes with widely varying GC content in quantitative polymerase chain reaction (qPCR). By expanding the scope of solvent systems compatible with nucleic acid polymerization, these organic solvent-resistant polymerases enable a dramatic reduction of sequence bias not achievable through thermal resistance alone, with significant implications for a wide range of applications including sequencing and synthetic biology in mixed aqueous-organic media.
Collapse
Affiliation(s)
- Mohammed Elias
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Xiangying Guan
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Devin Hudson
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Rahul Bose
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Joon Kwak
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Ioanna Petrounia
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Kenza Touah
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Sourour Mansour
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Peng Yue
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Gauthier Errasti
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Thomas Delacroix
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Anisha Ghosh
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- McGill University, 845 Rue Sherbrooke Ouest, Montreal, QC H3A 0G4, Canada
| | - Raj Chakrabarti
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| |
Collapse
|
9
|
Li HY, Chu YH. Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review. Molecules 2023; 28:6817. [PMID: 37836660 PMCID: PMC10574798 DOI: 10.3390/molecules28196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Ionic liquids (ILs) are a class of low-melting molten salts (<100 °C) constituted entirely of ions, and their research has gained tremendous attention in line with their remarkably growing applications (>124,000 publications dated 30 August 2023 from the Web of ScienceTM). In this review, we first briefly discussed the recent developments and unique characteristics of ILs and zwitterionic liquids (ZILs). Compared to molecular solvents and other conventional organic compounds, (zwitter) ionic liquids carry negligible volatility and are potentially recyclable and reusable. For structures, both ILs and ZILs can be systematically tailor-designed and engineered and are synthetically fine-tunable. As such, ionic liquids, including chiral, supported, task-specific ILs, have been widely used as powerful ionic solvents as well as valuable additives and catalysts for many chemical reactions. Moreover, ILs have demonstrated their value for use as polymerase chain reaction (PCR) enhancers for DNA amplification, chemoselective artificial olfaction for targeted VOC analysis, and recognition-based affinity extraction. As the major focus of this review, we extensively discussed that small-molecule thermoresponsive ILs (TILs) and ZILs (zwitterionic TILs) are new types of smart materials and can be expeditiously discovered through the structure and phase separation (SPS) relationship study by the combinatorial approach. Using this SPS platform developed in our laboratory, we first depicted the rapid discovery of N,N-dialkylcycloammonium and 1,3,4-trialkyl-1,2,3-triazolium TILs that concomitantly exhibited LCST (lower critical solution temperature) phase transition in water and displayed biochemically attractive Tc values. Both smart IL materials were suited for applications to proteins and other biomolecules. Zwitterionic TILs are ZILs whose cations and anions are tethered together covalently and are thermoresponsive to temperature changes. These zwitterionic TIL materials can serve as excellent extraction solvents, through temperature change, for biomolecules such as proteins since they differ from the common TIL problems often associated with unwanted ion exchanges during extractions. These unique structural characteristics of zwitterionic TIL materials greatly reduce and may avoid the denaturation of proteins under physiological conditions. Lastly, we argued that both rational structural design and combinatorial library synthesis of small-molecule TIL materials should take into consideration the important issues of their cytotoxicity and biosafety to the ecosystem, potentially causing harm to the environment and directly endangering human health. Finally, we would concur that before precise prediction and quantitative simulation of TIL structures can be realized, combinatorial chemistry may be the most convenient and effective technology platform to discover TIL expeditiously. Through our rational TIL design and combinatorial library synthesis and screening, we have demonstrated its power to discover novel chemical structures of both TILs and zwitterionic TILs. Undoubtedly, we will continue developing new small-molecule TIL structures and studying their applications related to other thermoresponsive materials.
Collapse
Affiliation(s)
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan;
| |
Collapse
|
10
|
Brás JP, Jesus TT, Prazeres H, Lima J, Soares P, Vinagre J. TERTmonitor-qPCR Detection of TERTp Mutations in Glioma. Genes (Basel) 2023; 14:1693. [PMID: 37761833 PMCID: PMC10530400 DOI: 10.3390/genes14091693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Telomerase promoter (TERTp) mutations are frequently observed in various types of tumours and commonly characterised by two specific hotspots located at positions -124 and -146 upstream of the start codon. They enhance TERTp activity, resulting in increased TERT expression. In central nervous system (CNS) tumours, they are integrated as biomarkers, aiding in the diagnosis and with a role in prognosis, where, in some settings, they are associated with aggressive behaviour. In this study, we evaluated the performance of TERTmonitor for TERTp genotyping in a series of 185 gliomas in comparison to the traditional method, Sanger sequencing. Against the gold-standard Sanger method, TERTmonitor performed with a 97.8% accuracy. Inaccuracy was mainly due to the over-detection of variants in negative cases (by Sanger) and the presence of variants that can modify the chemistry of the probe detection. The distribution of the mutations was comparable to other series, with the -124 being the most represented (38.92% for Sanger and TERTmonitor) and more prevalent in the higher-grade tumours, gliosarcoma (50.00%) and glioblastoma (52.6%). The non-matched cases are debatable, as we may be dealing with the reduced sensitivity of Sanger in detecting rare alleles, which strengthens the use of the TERTmonitor. With this study, we present a reliable and rapid potential tool for TERTp genotyping in gliomas.
Collapse
Affiliation(s)
- João Paulo Brás
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Hugo Prazeres
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Jorge Lima
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Paula Soares
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
11
|
Yang Z, Yang J, Yue L, Shen B, Wang J, Miao Y, Ouyang R, Hu Y. Enhancement Effects and Mechanism Studies of Two Bismuth-Based Materials Assisted by DMSO and Glycerol in GC-Rich PCR. Molecules 2023; 28:molecules28114515. [PMID: 37298991 DOI: 10.3390/molecules28114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/12/2023] Open
Abstract
Polymerase chain reaction (PCR) has extensive bioanalytical applications in molecular diagnostics and genomic research studies for rapid detection and precise genomic amplification. Routine integrations for analytical workflow indicate certain limitations, including low specificity, efficiency, and sensitivity in conventional PCR, particularly towards amplifying high guanine-cytosine (GC) content. Further, there are many ways to enhance the reaction, for example, using different PCR strategies such as hot-start/touchdown PCR or adding some special modifications or additives such as organic solvents or compatible solutes, which can improve PCR yield. Due to the widespread use of bismuth-based materials in biomedicine, which have not yet been used for PCR optimization, this attracts our attention. In this study, two bismuth-based materials that are inexpensive and readily available were used to optimize GC-rich PCR. The results demonstrated that ammonium bismuth citrate and bismuth subcarbonate effectively enhanced PCR amplification of the GNAS1 promoter region (∼84% GC) and APOE (75.5% GC) gene of Homo sapiens mediated by Ex Taq DNA polymerase within the appropriate concentration range. Combining DMSO and glycerol additives was critical in obtaining the target amplicons. Thus, the solvents mixed with 3% DMSO and 5% glycerol were used in bismuth-based materials. That allowed for better dispersion of bismuth subcarbonate. As for the enhanced mechanisms, the surface interaction of PCR components, including Taq polymerase, primer, and products with bismuth-based materials, was maybe the main reason. The addition of materials can reduce the melting temperature (Tm), adsorb polymerase and modulate the amount of active polymerase in PCR, facilize the dissociation of DNA products, and enhance the specificity and efficiency of PCR. This work provided a class of candidate enhancers for PCR, deepened our understanding of the enhancement mechanisms of PCR, and also explored a new application field for bismuth-based materials.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Junlei Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yihong Hu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
May AK, Wessels SH, Norris SA, Richter LM, Lombard Z, Pitman MM. Early predictors of sensory processing sensitivity in members of the Birth to Twenty Plus cohort. JOURNAL OF RESEARCH IN PERSONALITY 2023. [DOI: 10.1016/j.jrp.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Wessels SH, Macaulay S, Norris SA, Richter LM, May AK. Maternal Education Potentially Moderates the MAOA uVNTR Effects on Externalizing Behavior in Black South African Children. J Genet Psychol 2023; 184:117-132. [PMID: 36259534 DOI: 10.1080/00221325.2022.2134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Interactions between the MAOA uVNTR and rearing environment are suggested to influence the developmental manifestations of childhood internalizing and externalizing behavior. However, few studies in the MAOA literature have included continental African children, or focused on non-clinical samples. We explored the main and interactive effects of the MAOA uVNTR (high and low activity alleles) in Black South African male (n = 478) and female (n = 540) children who were part of the longitudinal Birth to Twenty Plus cohort. Historical data on birth weight, gestational age at delivery, socioeconomic status, and maternal education were combined with genotypic information and analyzed using regression modeling. We found no significant main effects for the MAOA uVNTR on childhood behavior in either sex. A significant interaction (p = .04) was identified between MAOA and maternal education, suggesting that externalizing behavior in boys carrying a low activity MAOA allele varied in direct proportion to the education levels of their mothers. However, the model fit failed to reach significance, possibly due to our inclusion of only non-clinical pre-pubertal males. No significant interactions were detected for female children. Our findings lend tentative credibility to the Environmental Sensitivity metaframework, which suggests that MAOA is an important plasticity factor in childhood development.
Collapse
Affiliation(s)
- Stephan H Wessels
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Shane A Norris
- Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- The DSI-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda M Richter
- The DSI-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew K May
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
14
|
Using Multiplex Amplicon PCR Technology to Efficiently and Timely Generate Rift Valley Fever Virus Sequence Data for Genomic Surveillance. Viruses 2023; 15:v15020477. [PMID: 36851690 PMCID: PMC9961268 DOI: 10.3390/v15020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Rift Valley fever (RVF) is a febrile vector-borne disease endemic in Africa and continues to spread in new territories. It is a climate-sensitive disease mostly triggered by abnormal rainfall patterns. The disease is associated with high mortality and morbidity in both humans and livestock. RVF is caused by the Rift Valley fever virus (RVFV) of the genus Phlebovirus in the family Phenuiviridae. It is a tripartite RNA virus with three genomic segments: small (S), medium (M) and large (L). Pathogen genomic sequencing is becoming a routine procedure and a powerful tool for understanding the evolutionary dynamics of infectious organisms, including viruses. Inspired by the utility of amplicon-based sequencing demonstrated in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Ebola, Zika and West Nile viruses, we report an RVFV sample preparation based on amplicon multiplex polymerase chain reaction (amPCR) for template enrichment and reduction of background host contamination. The technology can be implemented rapidly to characterize and genotype RVFV during outbreaks in a near-real-time manner. To achieve this, we designed 74 multiplex primer sets covering the entire RVFV genome to specifically amplify the nucleic acid of RVFV in clinical samples from an animal tissue. Using this approach, we demonstrate achieving complete RVFV genome coverage even from samples containing a relatively low viral load. We report the first primer scheme approach of generating multiplex primer sets for a tripartite virus which can be replicated for other segmented viruses.
Collapse
|
15
|
Vereecke N, Woźniak A, Pauwels M, Coppens S, Nauwynck H, Cybulski P, Theuns S, Stadejek T. Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (swIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses 2023; 15:435. [PMID: 36851649 PMCID: PMC9962634 DOI: 10.3390/v15020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) is a single-stranded, negative-sense RNA virus and a common cause of seasonal flu in humans. Its genome comprises eight RNA segments that facilitate reassortment, resulting in a great variety of IAV strains. To study these processes, the genetic code of each segment should be unraveled. Fortunately, new third-generation sequencing approaches allow for cost-efficient sequencing of IAV segments. Sequencing success depends on various factors, including proper sample storage and processing. Hence, this work focused on the effect of storage of oral fluids and swIAV sequencing. Oral fluids (n = 13) from 2017 were stored at -22 °C and later transferred to -80 °C. Other samples (n = 21) were immediately stored at -80 °C. A reverse transcription quantitative PCR (RT-qPCR) pre- and post-storage was conducted to assess IAV viral loads. Next, samples were subjected to two IAV long-read nanopore sequencing methods to evaluate success in this complex matrix. A significant storage-associated loss of swIAV loads was observed. Still, a total of 17 complete and 6 near-complete Polish swIAV genomes were obtained. Genotype T, (H1avN2, seven herds), P (H1N1pdm09, two herds), U (H1avN1, three herds), and A (H1avN1, 1 herd) were circulated on Polish farms. In conclusion, oral fluids can be used for long-read swIAV sequencing when considering appropriate storage and segment amplification protocols, which allows us to monitor swIAV in an animal-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Oligo replication advantage driven by GC content and Gibbs free energy. Biotechnol Lett 2022; 44:1189-1199. [PMID: 36029395 DOI: 10.1007/s10529-022-03295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Large scale DNA oligo pools are emerging as a novel material in a variety of advanced applications. However, GC content and length cause significant bias in amplification of oligos. We systematically explored the amplification of one oligo pool comprising of over ten thousand distinct strands with moderate GC content in the range of 35-65%. Uniqual amplification of oligos result to the increased Gini index of the oligo distribution while a few oligos greatly increased their proportion after 60 cycles of PCR. However, the significantly enriched oligos all have relatively high GC content. Further thermodynamic analysis demonstrated that a high value of both GC content and Gibbs free energy could improve the replication of specific oligos during biased amplification. Therefore, this double-G (GC content and Gibbs free energy) driven replication advantage can be used as a guiding principle for the sequence design for a variety of applications, particularly for data storage.
Collapse
|
17
|
Batool SM, Muralidharan K, Hsia T, Falotico S, Gamblin AS, Rosenfeld YB, Khanna SK, Balaj L, Carter BS. Highly sensitive EGFRvIII detection in circulating extracellular vesicle RNA of glioma patients. Clin Cancer Res 2022; 28:4070-4082. [PMID: 35849415 DOI: 10.1158/1078-0432.ccr-22-0444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/01/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Liquid biopsy offers an attractive platform for non-invasive tumor diagnosis, prognostication and prediction of glioblastoma clinical outcomes. Prior studies report that 30-50% of GBM lesions characterized by EGFR amplification also harbor the EGFRvIII mutation. EXPERIMENTAL DESIGN A novel digital droplet PCR (ddPCR) assay for high GC content amplicons was developed and optimized for sensitive detection of EGFRvIII in tumor tissue and circulating extracellular vesicle RNA (EV RNA) isolated from the plasma of glioma patients. RESULTS Our optimized qPCR assay detected EGFRvIII mRNA in 81% (95% CI, 68% - 94%) of EGFR amplified glioma tumor tissue, indicating a higher than previously reported prevalence of EGFRvIII in glioma. Using the optimized ddPCR assay in discovery and blinded validation cohorts, we detected EGFRvIII mutation in 73% (95% CI, 64% - 82%) of patients with a specificity of 98% (95% CI, 87% - 100%), compared with qPCR tumor tissue analysis. Additionally, upon longitudinal monitoring in 4 patients, we report detection of EGFRvIII in the plasma of patients with different clinical outcomes, rising with tumor progression, and decreasing in response to treatment. CONCLUSION This study demonstrates the feasibility of detecting EGFRvIII mutation in plasma using a highly sensitive and specific ddPCR assay. We also show a higher than previously reported EGFRvIII prevalence in glioma tumor tissue. Several features of the assay are favorable for clinical implementation for detection and monitoring of EGFRvIII positive tumors.
Collapse
Affiliation(s)
| | | | - Tiffaney Hsia
- Massachusetts General Hospital, Boston, MA, United States
| | | | | | | | | | - Leonora Balaj
- Massachusetts General Hospital, Boston, United States
| | | |
Collapse
|
18
|
Campbell AG, Seelig DM, Beckman JD, Minor KM, Heinrich DA, Friedenberg SG, Modiano JF, Furrow E. Targeted sequencing of candidate gene regions for myelofibrosis in dogs. J Vet Intern Med 2022; 36:1237-1247. [PMID: 35815881 PMCID: PMC9308436 DOI: 10.1111/jvim.16476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/12/2022] [Indexed: 12/31/2022] Open
Abstract
Background Myelofibrosis often lacks an identifiable cause in dogs. In humans, most primary myelofibrosis cases develop secondary to driver mutations in JAK2, CALR, or MPL. Objectives To determine the prevalence of variants in JAK2, CALR, or MPL candidate regions in dogs with myelofibrosis and in healthy dogs. Animals Twenty‐six dogs with myelofibrosis that underwent bone marrow biopsy between 2010 and 2018 and 25 control dogs matched for age, sex, and breed. Methods Cross‐sectional study. Amplicon sequencing of JAK2 exons 12 and 14, CALR exon 9, and MPL exon 10 was performed on formalin‐fixed, decalcified, paraffin‐embedded bone marrow (myelofibrosis) or peripheral blood (control) DNA. Somatic variants were categorized as likely‐benign or possibly‐pathogenic based on predicted impact on protein function. Within the myelofibrosis group, hematologic variables and survival were compared by variant status (none, likely‐benign only, and ≥1 possibly‐pathogenic). The effect of age on variant count was analyzed using linear regression. Results Eighteen of 26 (69%) myelofibrosis cases had somatic variants, including 9 classified as possibly‐pathogenic. No somatic variants were detected in controls. Within the myelofibrosis group, hematologic variables and survival did not differ by variant status. The number of somatic variants per myelofibrosis case increased with age (estimate, 0.69; SE, 0.29; P = .03). Conclusions and Clinical Importance Somatic variants might initiate or perpetuate myelofibrosis in dogs. Our findings suggest the occurrence of clonal hematopoiesis in dogs, with increasing incidence with age, as observed in humans.
Collapse
Affiliation(s)
- Amelia G Campbell
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Davis M Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Joan D Beckman
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Daniel A Heinrich
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
19
|
Keating SE, Fenelon JC, Pyne M, Pinto BJ, Guzmán-Méndez IA, Johnston SD, Renfree MB, Gamble T. Research Article Genetic sex test for the short-beaked echidna (Tachyglossus aculeatus). CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Chaudhary P, Kumar Y. Recent Advances in Multiplex Molecular Techniques for Meat Species Identification. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
22
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
23
|
Tan LL, Heng E, Zulkarnain N, Hsiao WC, Wong FT, Zhang MM. CRISPR/Cas-Mediated Genome Editing of Streptomyces. Methods Mol Biol 2022; 2479:207-225. [PMID: 35583741 DOI: 10.1007/978-1-0716-2233-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Streptomyces are an important source and reservoir of natural products with diverse applications in medicine, agriculture, and food. Engineered Streptomyces strains have also proven to be functional chassis for the discovery and production of bioactive compounds and enzymes. However, genetic engineering of Streptomyces is often laborious and time-consuming. Here we describe protocols for CRISPR/Cas-mediated genome editing of Streptomyces. Starting from the design and assembly of all-in-one CRISPR/Cas constructs for efficient double-strand break-mediated genome editing, we also present protocols for intergeneric conjugation, CRISPR/Cas plasmid curing, and validation of edited strains.
Collapse
Affiliation(s)
- Lee Ling Tan
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Nadiah Zulkarnain
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Singapore Institute of Food and Biotechnology Innovation, A*STAR, Singapore, Singapore.
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
24
|
Polymorphic Variants in the GRK5 Gene Promoter Are Associated With Diastolic Dysfunction in Coronary Artery Bypass Graft Surgery Patients. Anesth Analg 2021; 134:858-868. [PMID: 34871184 DOI: 10.1213/ane.0000000000005809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The G-protein-coupled receptor kinase 5 (GRK5) is a mediator of cardiovascular homeostasis and participates in inflammation and cardiac fibrosis, both being involved in the development of diastolic dysfunction (DD). While mechanisms of transcriptional regulation of the GRK5 promoter are unclear, we tested the hypotheses, that (1) GRK5 expression varies depending on functional single nucleotide polymorphisms (SNPs) in the GRK5 promoter and (2) this is associated with DD in patients undergoing coronary artery bypass graft (CABG) surgery. METHODS We amplified and sequenced the GRK5 promoter followed by cloning, reporter assays, and electrophoretic mobility shift assays (EMSA). GRK5 messenger ribonucleic acid (mRNA) expression was determined in right atrial tissue sampled from 50 patients undergoing CABG surgery. In another prospective study, GRK5 genotypes were associated with determinants of diastolic function using transesophageal echocardiography in 255 patients with CABG with normal systolic left ventricular (LV) function. Specifically, we measured ejection fraction (EF), transmitral Doppler early filling velocity (E), tissue Doppler early diastolic lateral mitral annular velocity (E' lateral), and calculated E/E', E' norm and the difference of E' lateral and E' norm to account for age-related changes in diastolic function. RESULTS We identified 6 SNPs creating 3 novel haplotypes with the greatest promoter activation in haplotype tagging (ht) SNP T(-678)C T-allele constructs (P < .001). EMSAs showed allele-specific transcription factor binding proving functional activity. GRK5 mRNA expression was greatest in TT genotypes (TT: 131 fg/µg [95% CI, 108-154]; CT: 109 [95% confidence interval {CI}, 93-124]; CC: 83 [95% CI, 54-112]; P = .012). Moreover, GRK5 genotypes were significantly associated with determinants of diastolic function. Grading of DD revealed more grade 3 patients in TT compared to CT and CC genotypes (58% vs 38% vs 4%; P = .023). E´ lateral was lowest in TT genotypes (P = .007) and corresponding E/E' measurements showed 1.27-fold increased values in TT versus CC genotypes (P = .01), respectively. While E' norm values were not different between genotypes (P = .182), the difference between E' lateral and E' norm was significantly higher in TT genotypes compared to CC and CT genotypes (-1.2 [interquartile range {IQR}, 2.7], -0.5 [IQR, 3.4], and -0.4 [IQR, 4.2; P = .035], respectively). CONCLUSIONS A functional GRK5 SNP results in allele-dependent differences in GRK5 promoter activity and mRNA expression. This is associated with altered echocardiographic determinants of diastolic function. Thus, SNPs in the GRK5 promoter are associated with altered perioperative diastolic cardiac function. In the future, preoperative testing for these and other SNPs might allow to initiate more specific diagnostic and perioperative pathways to benefit patients at risk.
Collapse
|
25
|
Sefrioui D, Verdier V, Savoye-Collet C, Beaussire L, Ghomadi S, Gangloff A, Goria O, Riachi G, Montialoux H, Schwarz L, Tuech JJ, Frebourg T, Michel P, Sarafan-Vasseur N, Di Fiore F. Circulating DNA changes are predictive of disease progression after transarterial chemoembolization. Int J Cancer 2021; 150:532-541. [PMID: 34622951 DOI: 10.1002/ijc.33829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Transarterial chemoembolization (TACE) is used to treat patients with unresectable hepatocellular carcinoma (HCC). We evaluated the clinical impact of a-fetoprotein (AFP) and circulating cell-free and tumor DNA (cfDNA and ctDNA) changes around the TACE procedure. Our prospective monocentric study enrolled consecutive patients treated with TACE, with samples collected at baseline (D - 1), Day 2 (D + 2) and 1 month (M + 1) after TACE. cfDNA was quantified by the fluorometric method, and ctDNA was quantified by digital polymerase chain reaction designed for two hotspot TERT mutations. Computerized tomography scans or magnetic resonance imaging were performed at M + 1 every 3 months following TACE and independently reviewed. The objective was to identify thresholds of cfDNA, ctDNA and AFP changes associated with progressive disease (PD) using receiver operating characteristic curves. Thirty-eight patients were included from March 2018 to March 2019. All markers significantly increased from D - 1 to D + 2 (P < .005), and cfDNA and ctDNA significantly decreased from D + 2 to M + 1 (P < .0001). The analysis of changes from D - 1 to M + 1 identified thresholds at +31.4% for cfDNA and 0% for ctDNA that were significantly associated with PD at M + 1 (44.4% [>+31.4%] vs 3.8% [≤+31.4%] and 50.0% [>0%] vs 5.0% [≤0%], respectively). No significant threshold was identified for AFP. Using a score combining cfDNA and ctDNA, the patients were classified into high- or low-risk PD groups at M + 1, with PD rates of 80.0% vs 4.3% (P = .001) and median progression-free survival times of 1.3 vs 10.3 months (P = .002). Our study suggests that cfDNA and ctDNA increases around the TACE procedure and are associated with therapeutic failure.
Collapse
Affiliation(s)
- David Sefrioui
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Vincent Verdier
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Céline Savoye-Collet
- UNIROUEN, Quantif-LITIS EA 4108, Normandie Univ, Rouen, France.,Department of Radiology, Rouen University Hospital, Rouen, France
| | | | - Slim Ghomadi
- Department of Radiology, Rouen University Hospital, Rouen, France.,UNIROUEN, Normandie Univ, Rouen, France
| | - Alice Gangloff
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Odile Goria
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Ghassan Riachi
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Hélène Montialoux
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - Lilian Schwarz
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Digestive Surgery Department, Rouen University Hospital, Rouen, France
| | - Jean-Jacques Tuech
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Digestive Surgery Department, Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Pierre Michel
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | | | - Frédéric Di Fiore
- UNIROUEN, Inserm 1245, IRON group, Normandie Univ, Rouen, France.,Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| |
Collapse
|
26
|
Adachi JI, Shirahata M, Suzuki T, Mishima K, Uchida E, Sasaki A, Nishikawa R. Droplet digital PCR assay for detecting TERT promoter mutations in patients with glioma. Brain Tumor Pathol 2021; 38:201-209. [PMID: 34128111 DOI: 10.1007/s10014-021-00403-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Two hot spot mutations (C228T, C250T) in the telomerase reverse transcriptase (TERT) gene are frequently identified in glioblastoma and oligodendroglioma. TERT mutations predicts an aggressive clinical course in isocitrate dehydrogenase (IDH) wild-type astrocytic tumors. Therefore, it is important to accurately detect TERT promoter mutations in glioma. Sanger DNA sequencing is the currently standard method for analyzing TERT mutations. However, PCR amplification in the first step of the sequencing has proven technically difficult because of the high GC content around the TERT mutation. In this report, we described a novel droplet digital PCR (ddPCR) assay to evaluate TERT hot spot mutations in fresh frozen and formalin-fixed paraffin-embedded (FFPE) specimens of glioma and verified the difference in results from the Sanger DNA sequencing results. We obtained the mutant allele fraction for TERT mutations of in a single ddPCR run in all cases, including the micro-dissected FFPE sections. On the contrary, up to twice the DNA sequences were required from fresh frozen tissue to obtain the results, consistent with ddPCR assay. When FFPE specimens were used, more time was required to evaluate TERT mutations through DNA sequencing. DdPCR is an effective and sensitive assay compared to the conventional standard Sanger DNA sequencing.
Collapse
Affiliation(s)
- Jun-Ichi Adachi
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Mitsuaki Shirahata
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Eita Uchida
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
27
|
Lee H, Lee B, Kim DG, Cho YA, Kim JS, Suh YL. Detection of TERT Promoter Mutations Using Targeted Next-Generation Sequencing: Overcoming GC Bias through Trial and Error. Cancer Res Treat 2021; 54:75-83. [PMID: 33940787 PMCID: PMC8756133 DOI: 10.4143/crt.2021.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Detection of telomerase reverse transcriptase (TERT) promoter mutations is a crucial process in the integrated diagnosis of glioblastomas. However, the TERT promoter region is difficult to amplify because of its high guanine-cytosine (GC) content (> 80%). This study aimed to analyze the capturing of TERT mutations by targeted next-generation sequencing (NGS) using formalin-fixed paraffin-embedded tissues. Materials and Methods We compared the detection rate of TERT mutations between targeted NGS and Sanger sequencing in 25 cases of isocitrate dehydrgenase (IDH)-wildtype glioblastomas and 10 cases of non-neoplastic gastric tissues. Our customized panel consisted of 232 essential glioma-associated genes. Results Sanger sequencing detected TERT mutations in 17 out of 25 glioblastomas, but all TERT mutations were missed by targeted NGS. After the manual visualization of the NGS data using an integrative genomics viewer, 16 cases showed a TERT mutation with a very low read depth (mean, 21.59; median, 25), which revealed false-negative results using auto-filtering. We optimized our customized panel by extending the length of oligonucleotide baits and increasing the number of baits spanning the coverage of the TERT promoter, which did not amplify well due to the high GC content. Conclusion Our study confirmed that it is crucial to consider the recognition of molecular bias and to carefully interpret NGS data.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Deok Geun Kim
- Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Clinical Genomic Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Ah Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
28
|
DeLorenzo DM, Diao J, Carr R, Hu Y, Moon TS. An Improved CRISPR Interference Tool to Engineer Rhodococcus opacus. ACS Synth Biol 2021; 10:786-798. [PMID: 33787248 DOI: 10.1021/acssynbio.0c00591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodococcus opacus is a nonmodel bacterium that is well suited for valorizing lignin. Despite recent advances in our systems-level understanding of its versatile metabolism, studies of its gene functions at a single gene level are still lagging. Elucidating gene functions in nonmodel organisms is challenging due to limited genetic engineering tools that are convenient to use. To address this issue, we developed a simple gene repression system based on CRISPR interference (CRISPRi). This gene repression system uses a T7 RNA polymerase system to express a small guide RNA, demonstrating improved repression compared to the previously demonstrated CRISPRi system (i.e., the maximum repression efficiency improved from 58% to 85%). Additionally, our cloning strategy allows for building multiple CRISPRi plasmids in parallel without any PCR step, facilitating the engineering of this GC-rich organism. Using the improved CRISPRi system, we confirmed the annotated roles of four metabolic pathway genes, which had been identified by our previous transcriptomic analysis to be related to the consumption of benzoate, vanillate, catechol, and acetate. Furthermore, we showed our tool's utility by demonstrating the inducible accumulation of muconate that is a precursor of adipic acid, an important monomer for nylon production. While the maximum muconate yield obtained using our tool was 30% of the yield obtained using gene knockout, our tool showed its inducibility and partial repressibility. Our CRISPRi tool will be useful to facilitate functional studies of this nonmodel organism and engineer this promising microbial chassis for lignin valorization.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rhiannon Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Su Y, Chu H, Tian J, Du Z, Xu W. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Disruptors, a new class of oligonucleotide reagents, significantly improved PCR performance on templates containing stable intramolecular secondary structures. Anal Biochem 2021; 624:114169. [PMID: 33766577 DOI: 10.1016/j.ab.2021.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Intramolecular secondary structures within templates have been shown to lower PCR performance. Whereas many approaches have been developed to mitigate such impairment on PCR, their effects can vary greatly depending on template sequences. Here we present a novel, universally effective approach to improve PCR performance involving specifically designed oligonucleotides called disruptors. A disruptor contained three functional components, an anchor designed to initiate template binding, an effector to disrupt intramolecular secondary structure, and a 3' blocker to prevent its elongation by DNA polymerase. A functional mechanism for a disruptor to improve PCR efficiency was proposed where anchor first binds to template followed by effector-mediated strand displacement to unwind intramolecular secondary structure. Such a mechanism was consistent with the observation that anchor played a more critical role for disruptor function. As an example of potential disruptor applications, inverted terminal repeat sequences of recombinant adeno-associated virus vectors were successfully amplified in the presence of disruptors despite their well-known reputation as some of the most difficult templates for PCR amplification and Sanger sequencing due to their ultra-stable T-shaped hairpin structures. In stark contrast, both DMSO and betaine, two PCR additives routinely used to facilitate PCR amplification and Sanger sequencing of GC-rich templates, did not demonstrate any improving effect.
Collapse
|
31
|
Hu B, Wang Y, Sun S, Luo G, Zhang S, Zhang J, Chen L, Huang Z. Specificity Enhancement of Deoxyribonucleic Acid Polymerization for Sensitive Nucleic Acid Detection. Anal Chem 2020; 92:15872-15879. [PMID: 33236629 DOI: 10.1021/acs.analchem.0c03223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Specificity of DNA polymerization plays a critical role in DNA replication and storage of genetic information. Likewise, biotechnological applications, such as nucleic acid detection, DNA amplification, and gene cloning, require high specificity in DNA synthesis catalyzed by DNA polymerases. However, errors in DNA polymerization (such as mis-incorporation and mis-priming) can significantly jeopardize the specificity. Herein, we report our discovery that the specificity of DNA enzymatic synthesis can be substantially enhanced (up to 100-fold higher) by attenuating DNA polymerase kinetics via the phosphorothioate dNTPs. This specificity enhancement allows convenient and sensitive nucleic acid detection, polymerization, PCR, and gene cloning with complex systems (such as human cDNA and genomic DNA). Further, we found that the specificity enhancement offered higher sensitivity (up to 50-fold better) for detecting nucleic acids, such as COVID-19 viral RNAs. Our findings have revealed a simple and convenient strategy for facilitating specificity and sensitivity of nucleic acid detection, amplification, and gene cloning.
Collapse
Affiliation(s)
- Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yitao Wang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Shichao Sun
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Guangcheng Luo
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Shun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Jun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Lu Chen
- Szostak-CDHT Institute for Large Nucleic Acids, Chengdu 610041, Sichuan, P.R. China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P. R. China.,Szostak-CDHT Institute for Large Nucleic Acids, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
32
|
Assal N, Lin M. PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. J Microbiol Methods 2020; 181:106121. [PMID: 33316290 DOI: 10.1016/j.mimet.2020.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Amplification of high GC content genes by PCR is a major challenge during the creation of recombinant GC-rich DNA constructs. This may be due to the difficulty in DNA denaturation or the possibility of forming secondary structures from DNA templates. Tools have been described to address the technical problems associated with the amplification of shorter sequences (<1000 bp). However, obstacles of synthesizing larger-sized GC-rich sequences by PCR continue to exist. This study aims to investigate the amplification of long and high GC content genes by PCR from the Mycobacterium bovis, a genome with GC content >60%, in comparison to amplifying a gene from the Listeria monocytogenes genome, a genome with a 37.8% GC content. Three PCR protocols were designed and experimented at various conditions with two M. bovis genes, Mb0129, a large gene of 1794 bp with 77.5% GC content, mpb83, a smaller gene of 663 bp in length with moderate GC content of 63%, together with LMHCC_RS00060, a large L. monocytogenes gene of 1617 bp with a lower GC content of 41.5%. The result demonstrated the superiority of the 2-step PCR protocol over other protocols in PCR amplification of Mb0129 when specific high fidelity DNA polymerases were used in the presence of an enhancer. The study highlighted the importance of manipulating the cycling conditions to perform the annealing and extension steps at higher temperatures while adjusting the ramp speed at a lower speed for a successful PCR amplification of a large GC-rich DNA template. A final PCR protocol was developed and enabled the amplification of 51 GC-rich targets. This can be a valuable tool for the amplification of long GC-rich DNA sequences for various downstream applications.
Collapse
Affiliation(s)
- Nadia Assal
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Min Lin
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Ham KA, Aung-Htut MT, Fletcher S, Wilton SD. Nonsequential Splicing Events Alter Antisense-Mediated Exon Skipping Outcome in COL7A1. Int J Mol Sci 2020; 21:ijms21207705. [PMID: 33081018 PMCID: PMC7590164 DOI: 10.3390/ijms21207705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The COL7A1 gene encodes homotrimer fibrils essential for anchoring dermal and epidermal layers, and pathogenic mutations in COL7A1 can cause recessive or dominant dystrophic epidermolysis bullosa. As a monogenic disease gene, COL7A1 constitutes a potential target for antisense oligomer-mediated exon skipping, a therapy applicable to a growing number of other genetic disorders. However, certain characteristics of COL7A1: many exons, low average intron size, and repetitive and guanine-cytosine rich coding sequence, present challenges to the design of specific and effective antisense oligomers. While targeting COL7A1 exons 10 and 73 for excision from the mature mRNA, we discovered that antisense oligomers comprised of 2′-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers produced similar, but distinctive, splicing patterns including excision of adjacent nontargeted exons and/or retention of nearby introns in some transcripts. We found that the nonsequential splicing of certain introns may alter pre-mRNA processing during antisense oligomer-mediated exon skipping and, therefore, additional studies are required to determine if the order of intron removal influences multiexon skipping and/or intron retention in processing of the COL7A1 pre-mRNA.
Collapse
Affiliation(s)
- Kristin A. Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
34
|
Xenoulis PG, Tate NM, Bishop MA, Steiner JM, Suchodolski JS, Furrow E. Sequence analysis of the coding regions of the apolipoprotein C2 (APOC2) gene in Miniature Schnauzers with idiopathic hypertriglyceridemia. Vet J 2020; 265:105559. [PMID: 33129550 DOI: 10.1016/j.tvjl.2020.105559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
It has been hypothesized that idiopathic hypertriglyceridemia in Miniature Schnauzers is hereditary, but the gene responsible has yet to be identified. The objective of this study was to determine if there were coding variants in the apolipoprotein C2 (APOC2) gene in Miniature Schnauzers with idiopathic hypertriglyceridemia. Blood samples from 12 Miniature Schnauzers with idiopathic hypertriglyceridemia were analyzed. Genomic DNA was extracted from whole blood, and the three coding exons of APOC2 were amplified by PCR. The PCR amplicons were sequenced and analyzed for variants relative to the canine reference genome (CanFam3.1 assembly). A second objective was to determine the extent of variation in coding exons of APOC2 in a large and diverse canine population using the Dog Biomedical Variant Database Consortium variant catalog, comprised of whole genome sequencing variant calls from 582 dogs of 126 breeds and eight wolves. There were no variants detected in the coding exons of APOC2 for any of the 12 Miniature Schnauzers with idiopathic hypertriglyceridemia. Variants in the coding exons of APOC2 were also rare in the Dog Biomedical Variant Database Consortium variant catalog; a single synonymous variant was identified in a heterozygous state in a Tibetan Mastiff. Thus, we concluded that coding variants in APOC2 are unlikely to be a major cause of idiopathic hypertriglyceridemia in North American Miniature Schnauzers and furthermore, that such coding variants are rare in the canine population.
Collapse
Affiliation(s)
- Panagiotis G Xenoulis
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A and M University, College Station, TX 77843-4474, USA.
| | - Nicole M Tate
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Micah A Bishop
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A and M University, College Station, TX 77843-4474, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A and M University, College Station, TX 77843-4474, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A and M University, College Station, TX 77843-4474, USA
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
35
|
Liu Z, Sun J, Zhao G, Xiong S, Ma Y, Zheng M. Transient stem-loop structure of nucleic acid template may interfere with polymerase chain reaction through endonuclease activity of Taq DNA polymerase. Gene 2020; 764:145095. [PMID: 32866587 DOI: 10.1016/j.gene.2020.145095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
As a standard molecular biology technique, PCR uses DNA polymerase to detect, amplify and manipulate DNA targets. Due to its effect of exponential amplification, PCR can achieve high sensitivity required for detecting targets of low abundance. Therefore, it has become the method of choice for the majority of nucleic acid-based tests. In PCR reactions, DNA templates are first unwound into single strands, followed by a quick temperature drop when transient intramolecular secondary structures may form first within the single-stranded templates due to reaction kinetics. In this study, we showed that the adverse effects of stem-loop structures on PCR performance were directly correlated with their thermal stability. Moreover, fractions of intermediate PCR products of templates with stable stem-loop structures were significantly shorter than those without. It was further demonstrated that when encountering the duplex region of such a structure during the PCR extension step, the endonuclease activity of Taq DNA polymerase mediated by its 5'-3' exonuclease activity could digest template strand, resulting in stem-loop structure unwinding and subsequent completion of replication to produce truncated products. This work thus provided some new mechanistic insights into the complex nature of PCR assays, a frequently encountered but neglected aspect of this widely used technique.
Collapse
Affiliation(s)
- Zhaocheng Liu
- University of Science and Technology of China, Hefei, Anhui 230027, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Jinli Sun
- University of Science and Technology of China, Hefei, Anhui 230027, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guodong Zhao
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu 215300, China; Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Shangmin Xiong
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, Jiangsu 215300, China; Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China.
| | - Yong Ma
- University of Science and Technology of China, Hefei, Anhui 230027, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Minxue Zheng
- University of Science and Technology of China, Hefei, Anhui 230027, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
36
|
Senba H, Sueoka K, Sato S, Higuchi N, Mizuguchi Y, Sato K, Tanaka M. The impact of parental unaffected allele combination on the diagnostic outcome in the preimplantation genetic testing for myotonic dystrophy type 1 in Japanese ancestry. Reprod Med Biol 2020; 19:265-269. [PMID: 32684825 PMCID: PMC7360966 DOI: 10.1002/rmb2.12327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The objective is to clarify the practical problem of the preimplantation genetic testing (PGT) for myotonic dystrophy type 1 (DM1) in Japanese subjects. METHODS For the 32 couples who consented to participate in PGT for DM1, CTG repeats number on the unaffected alleles was analyzed. Based on the allele combination, they were classified into 3 groups by the number of diagnostic allelic pattern; "full informative," "semi informative," and "noninformative." According to the Japan Society of Obstetrics and Gynecology (JSOG) principle, PGT was performed using the direct diagnosis to the 288 embryos from the 17 couples who received the ethical approval from both our institution and JSOG. RESULTS In the 32 couples, the frequency of CTG repeats on the unaffected alleles showed bimodal distribution. The "full informative," "semi informative," and "noninformative" couples accounted for 46.9% (15/32 couples), 46.9% (15/32 couples) and 6.2% (2/32 couples), respectively. The transferable embryos accounted for 28.9% (33/114 embryos) in the "full informative" couples, although it was limited to 12.6% (22/174 embryos) in the "semi informative" couples. CONCLUSION The loss of unaffected embryos which cannot be diagnosed as transferable was a clinically major problem and implied an increase in oocyte retrieval, especially for "semi informative" couples.
Collapse
Affiliation(s)
- Hiroshi Senba
- Department of Obstetrics and GynecologyTachikawa HospitalTachikawaJapan
| | - Kou Sueoka
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| | - Suguru Sato
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| | - Nobuhiko Higuchi
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| | - Yuki Mizuguchi
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| | - Kenji Sato
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| | - Mamoru Tanaka
- Department of Obstetrics and GynecologySchool of Medicine, Keio UniversityTokyoJapan
| |
Collapse
|
37
|
Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L, Russell AH, McLean TC. Advances in actinomycete research: an ActinoBase review of 2019. MICROBIOLOGY-SGM 2020; 166:683-694. [PMID: 32558638 PMCID: PMC7641383 DOI: 10.1099/mic.0.000944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The actinomycetes are Gram-positive bacteria belonging to the order Actinomycetales within the phylum Actinobacteria. They include members with significant economic and medical importance, for example filamentous actinomycetes such as Streptomyces species, which have a propensity to produce a plethora of bioactive secondary metabolites and form symbioses with higher organisms, such as plants and insects. Studying these bacteria is challenging, but also fascinating and very rewarding. As a Microbiology Society initiative, members of the actinomycete research community have been developing a Wikipedia-style resource, called ActinoBase, the purpose of which is to aid in the study of these filamentous bacteria. This review will highlight 10 publications from 2019 that have been of special interest to the ActinoBase community, covering 4 major components of actinomycete research: (i) development and regulation; (ii) specialized metabolites; (iii) ecology and host interactions; and (iv) technology and methodology.
Collapse
Affiliation(s)
- Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Emily Addington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Laia Castaño-Espriu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
38
|
Mishra A, Dhali A, Reddy IJ, Kolte AP. Sexing of pre-implantation ovine embryos through polymerase chain reaction-based amplification of GAPDH, SRY and AMEL genes. Reprod Domest Anim 2020; 55:885-892. [PMID: 32379910 DOI: 10.1111/rda.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/24/2020] [Indexed: 11/27/2022]
Abstract
The ability to identify the sex of embryo and control of sex ratio has a great commercial importance to livestock industry. Prediction of embryonic sex could be useful in the management decisions of sex selection in breeding programs. Several methods have been attempted to determine the sex but the polymerase chain reaction (PCR)-based sexing method is generally favoured, as it is cost effective, simple and reliable. The aim of the present study was to identify sex of sheep embryos produced in vitro through amplification of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), sex-determining region Y (SRY) and amelogenin genes present in genomic DNA (gDNA) of embryos through PCR. To avoid false interpretation of the result by no amplification of SRY in female embryos, a duplex PCR was approached to amplify combinedly SRY and GAPDH genes. Sex-specific blood was used in PCR as positive control. In vitro sheep embryos were produced as per standardized protocol of laboratory. Sexing of sex-specific blood and in vitro produced embryos were approached though PCR to amplify the respective genes using gDNA present in the sample without its traditional isolation. The accuracy of sex prediction for embryos was 100% by this procedure.
Collapse
Affiliation(s)
- Ashish Mishra
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Arindam Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Ippala J Reddy
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Atul P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
39
|
Fernández-Naval C, Arando M, Espasa M, Antón A, Fernández-Huerta M, Silgado A, Jimenez I, Villatoro AM, González-López JJ, Serra-Pladevall J, Sulleiro E, Pumarola T, Vall-Mayans M, Esperalba J. Enhanced molecular typing and macrolide and tetracycline-resistance mutations of Treponema pallidum in Barcelona. Future Microbiol 2020; 14:1099-1108. [PMID: 31512516 DOI: 10.2217/fmb-2019-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To describe the molecular types of Treponema pallidum and the proportion of macrolide and tetracycline resistance mutations in Barcelona. Materials & methods: Molecular type was determined using the Enhanced-CDC Typing system and antibiotic resistance was determined by sequencing the 23S and 16S rRNA genes. Results: A total of 183 patients were enrolled and 213 specimens (99 ulcers, 114 bloods) were collected. Sixty-two (70.5%) of 88 ulcers and 0 (0%) of bloods T. pallidum-DNA containing samples were fully typed. Up to 21 different strain types were identified (14d/g in 27.4%; 14f/g in 14.5%). Macrolide resistance mutations were present in 95% and tetracycline in 0%. Conclusion: Several different strains co-exist in Barcelona with a high proportion of macrolide resistance and absence of tetracycline resistance.
Collapse
Affiliation(s)
- Candela Fernández-Naval
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maider Arando
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sexually Transmitted Infections Unit Vall d'Hebron-Drassanes, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Mateu Espasa
- Corporació Sanitària Parc Taulí, Sabadell, Spain
| | - Andrés Antón
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Miguel Fernández-Huerta
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Aroa Silgado
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Inmaculada Jimenez
- Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Ana M Villatoro
- Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Juan J González-López
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Judit Serra-Pladevall
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Elena Sulleiro
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Tomàs Pumarola
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Martí Vall-Mayans
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sexually Transmitted Infections Unit Vall d'Hebron-Drassanes, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - Juliana Esperalba
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Microbiology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| |
Collapse
|
40
|
Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes (Basel) 2019; 11:genes11010007. [PMID: 31861815 PMCID: PMC7016576 DOI: 10.3390/genes11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Functional (meta) genomics allows the high-throughput identification of functional genes in a premise-free way. However, it is still difficult to perform Sanger sequencing for high GC DNA templates, which hinders the functional genomic exploration of a high GC genomic library. Here, we developed a procedure to resolve this problem by coupling the Sanger and PacBio sequencing strategies. Identification of cadmium (Cd) resistance genes from a small-insert high GC genomic library was performed to test the procedure. The library was generated from a high GC (75.35%) bacterial genome. Nineteen clones that conferred Cd resistance to Escherichia coli subject to Sanger sequencing directly. The positive clones were in parallel subject to in vivo amplification in host cells, from which recombinant plasmids were extracted and linearized by selected restriction endonucleases. PacBio sequencing was performed to obtain the full-length sequences. As the identities, partial sequences from Sanger sequencing were aligned to the full-length sequences from PacBio sequencing, which led to the identification of seven unique full-length sequences. The unique sequences were further aligned to the full genome sequence of the source strain. Functional screening showed that the identified positive clones were all able to improve Cd resistance of the host cells. The functional genomic procedure developed here couples the Sanger and PacBio sequencing methods and overcomes the difficulties in PCR approaches for high GC DNA. The procedure can be a promising option for the high-throughput sequencing of functional genomic libraries, and realize a cost-effective and time-efficient identification of the positive clones, particularly for high GC genetic materials.
Collapse
|
41
|
Association between serotonin 2A receptor (HTR2A), serotonin transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene polymorphisms and citalopram/sertraline induced sexual dysfunction in MDD patients. THE PHARMACOGENOMICS JOURNAL 2019; 20:443-450. [DOI: 10.1038/s41397-019-0127-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
|
42
|
Tsai TT, Chen CA, Yi-Ju Ho N, Yang S, Chen CF. Fluorescent Double-Stranded DNA-Templated Copper Nanoprobes for Rapid Diagnosis of Tuberculosis. ACS Sens 2019; 4:2885-2892. [PMID: 31576745 DOI: 10.1021/acssensors.9b01163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we investigate highly sensitive fluorescent Cu nanoparticles for use as rapid and specific nucleic acid amplification nanoprobes (NPs) for the diagnosis of tuberculosis. After applying polymerase chain reaction (PCR) to a tuberculosis (TB) sample, we demonstrate that the presence of the targeted IS6110 DNA sequence of TB can be easily and directly detected through the in situ formation of DNA-templated fluorescent Cu NPs and subsequently quantified using only a smartphone. Compared to traditional DNA analysis, this sensing platform does not require purification steps and eliminates the need for electrophoresis to confirm the PCR results. After optimization, this dsDNA-Cu NP-PCR method has the ability to analyze clinical TB nucleic acid samples at a detection limit of 5 fg/μL, and the fluorescent signal can be distinguished in only ∼3 min after the DNA has been amplified. Moreover, with the combination of smartphone-assisted imaging analysis, we can further reduce the instrument size/cost and enhance the portability. In this manner, we are able to eliminate the need for a fluorescent spectrophotometer to measure the clinical sample. These results demonstrate this platform's practical applicability, combining a smartphone and on-site analysis while retaining the detection performance, making it suitable for clinical DNA applications in resource-limited regions of the world.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chung-An Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Natalie Yi-Ju Ho
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shuan Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
43
|
Fu X, Wen J, Li J, Lin H, Liu Y, Zhuang X, Tian C, Chen L. Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. NANOSCALE 2019; 11:15530-15536. [PMID: 31393497 DOI: 10.1039/c9nr04864b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate analysis of prostate cancer specific biomarkers plays an important role in the early diagnosis of prostate cancer. Traditional colorimetric lateral flow assay (LFA) has the limitations of low detection sensitivity and qualitative or semiquantitative detection. In this study, we developed a novel surface-enhanced Raman scattering (SERS)-based competitive LFA for the rapid and highly sensitive quantitative evaluation of prostate cancer antigen 3 (PCA3) mimic DNA. Herein, the competitive hybridization interaction with capture DNA between target PCA3 mimic DNA and reporter DNA-labeled SERS nanotags results in a change in the amount of SERS nanotags on the test line. The quantitative analysis of target PCA3 mimic DNA was realized by monitoring the Raman peak intensity of SERS nanotags on the test line. The limit of detection of PCA3 mimic DNA was estimated to be 3 fM, which is about three orders of magnitude more sensitive than that of a commercially available kit. By combining the outstanding characteristics of the well-established SERS-based competitive strategy and LFA platform, our design has strong potential for the early diagnosis of prostate cancer and other diseases.
Collapse
Affiliation(s)
- Xiuli Fu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jiahui Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Hao Lin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Yongming Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Chunyuan Tian
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
44
|
Min HJ, Cui LH, Oh TR, Kim JH, Kim TW, Kim WT. OsBZR1 turnover mediated by OsSK22-regulated U-box E3 ligase OsPUB24 in rice BR response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:426-438. [PMID: 30920691 DOI: 10.1111/tpj.14332] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 05/28/2023]
Abstract
Oryza sativa BRASSINAZOLE RESISTANT 1 (OsBZR1) is the closest rice homolog of the Arabidopsis BZR1 and bri1-EMS-SUPPRESSOR 1 (BES1)/BZR2 transcription factors. OsBZR1 plays a central role in the rice brassinosteroid signaling pathway. Despite its functional importance, the control mechanism by which the cellular stability of OsBZR1 is regulated has not yet been fully elucidated. Here, we report that a rice U-box E3 ubiquitin (Ub) ligase OsPUB24 acts as a negative regulator in the BR signaling pathway via the 26S proteasome-dependent degradation of OsBZR1. The ospub24 T-DNA knock-out mutant and Ubi:RNAi-OsPUB24 knock-down rice plants displayed enhanced seedling growth, increased lamina joint bending, and hypersensitivity to brassinolide (BL). The expressions of the BR biosynthetic genes suppressed by BR in a negative feedback loop were lower in the mutant progeny than in the wild-type rice plants, which indicated increased BR responses in the mutant line. OsPUB24 ubiquitinated OsBZR1, resulting in the proteasomal degradation of OsBZR1. In addition, the stability of OsPUB24 was downregulated by BL and bikinin, an inhibitor of Oryza sativa Shaggy/GSK3-like kinase 22 (OsSK22). OsSK22, the homolog of Arabidopsis BRASSINOSTEROID INSENSITIVE 2 (BIN2) protein kinase, phosphorylated OsPUB24 and elevated the cellular stability of OsPUB24. Our findings suggest that OsPUB24 participates in OsBZR1 turnover, and that the regulatory networks of OsPUB24, OsSK22 and OsBZR1 are crucial for fine-tuning the BR response in rice.
Collapse
Affiliation(s)
- Hye Jo Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| |
Collapse
|
45
|
Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, Almansour MA, Kikuchi JK, Taira M, Mitsui J, Takahashi Y, Ichikawa Y, Mano T, Iwata A, Harigaya Y, Matsukawa MK, Matsukawa T, Tanaka M, Shirota Y, Ohtomo R, Kowa H, Date H, Mitsue A, Hatsuta H, Morimoto S, Murayama S, Shiio Y, Saito Y, Mitsutake A, Kawai M, Sasaki T, Sugiyama Y, Hamada M, Ohtomo G, Terao Y, Nakazato Y, Takeda A, Sakiyama Y, Umeda-Kameyama Y, Shinmi J, Ogata K, Kohno Y, Lim SY, Tan AH, Shimizu J, Goto J, Nishino I, Toda T, Morishita S, Tsuji S. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 2019; 51:1222-1232. [DOI: 10.1038/s41588-019-0458-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
|
46
|
Green MR, Sambrook J. Polymerase Chain Reaction (PCR) Amplification of GC-Rich Templates. Cold Spring Harb Protoc 2019; 2019:2019/2/pdb.prot095141. [PMID: 30710022 DOI: 10.1101/pdb.prot095141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The efficiency of polymerase chain reaction (PCR) amplification is influenced by the nucleotide composition and sequence of the template DNA. Problematic templates include those with long homopolymeric runs, inverted repeats, or GC-rich tracts-such as those containing >60% G + C residues-that are found in the regulatory regions of many mammalian genes. Localized regions of templates rich in GC residues tend to fold into complex secondary structures that might not melt during the annealing phase of the PCR cycle. Also, the primers used to amplify GC-rich regions often have a high capacity to form self- and cross-dimers and a strong tendency to fold into stem-loop structures that can impede the progress of the DNA polymerase along the template molecule. Predictably, amplification of full-length template DNA is inefficient, and the products of the reaction contain a high proportion of shorter molecules that result from blockage of the DNA polymerase. Altering the design of the primers and using a combination of hot start and touchdown PCR can sometimes improve the efficiency of amplification. More often, a multipronged approach is required, such as the use of enhancers in the amplification reaction, adjustment of the cycling protocol, and, if necessary, designing new sets of primers. This protocol uses a mixture of four additives-betaine, dithiothreitol (DTT), dimethyl sulfoxide (DMSO), and bovine serum albumin (BSA)-for use with Taq DNA polymerase.
Collapse
|
47
|
Corless BC, Chang GA, Cooper S, Syeda MM, Shao Y, Osman I, Karlin-Neumann G, Polsky D. Development of Novel Mutation-Specific Droplet Digital PCR Assays Detecting TERT Promoter Mutations in Tumor and Plasma Samples. J Mol Diagn 2018; 21:274-285. [PMID: 30827467 DOI: 10.1016/j.jmoldx.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022] Open
Abstract
Detecting mutations in the plasma of patients with solid tumors is becoming a valuable method of diagnosing and monitoring cancer. The TERT promoter is mutated at high frequencies in multiple cancer types, most commonly at positions -124 and -146 (designated C228T and C250T, respectively). Detection of these mutations has been challenging because of the high GC content of this region (approximately 80%). We describe development of novel probe-based droplet digital PCR assays that specifically detect and quantify these two mutations, along with the less common 242-243 CC>TT mutation, and demonstrate their application using human tumor and plasma samples from melanoma patients. Assay designs and running conditions were optimized using cancer cell line genomic DNAs with the C228T or C250T mutations. The limits of detection were 0.062% and 0.051% mutant allele fraction for the C228T and C250T assays, respectively. Concordance of 100% was observed between droplet digital PCR and sequencing-based orthogonal methods in the detection of TERT mutant DNA in 32 formalin-fixed, paraffin-embedded melanoma tumors. TERTmutant DNA was also identified in 21 of 27 plasma samples (78%) from patients with TERTmutant tumors, with plasma mutant allele fractions ranging from 0.06% to 15.3%. There were no false positives in plasma. These data demonstrate the potential of these assays to specifically detect and quantify TERTmutant DNA in tumors and plasma of cancer patients.
Collapse
Affiliation(s)
- Broderick C Corless
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Gregory A Chang
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Samantha Cooper
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California
| | - Mahrukh M Syeda
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Yongzhao Shao
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | | | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| |
Collapse
|
48
|
Lade-Keller J, Yuusufi S, Riber-Hansen R, Steiniche T, Stougaard M. Telomerase reverse transcriptase promoter mutations and solar elastosis in cutaneous melanoma. Melanoma Res 2018; 28:398-409. [PMID: 29570169 DOI: 10.1097/cmr.0000000000000446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aims of this study were to assess the prognostic potential of solar elastosis grading and telomerase reverse transcriptase (TERT) promoter mutations (TERTp) in melanoma and to evaluate whether an association between solar elastosis and TERTp exists. Solar elastosis in the dermis was evaluated in hematoxylin and eosin-stained whole slides from 486 malignant melanomas. Pyrosequencing was used to detect TERTp in 189 samples. There was no association between solar elastosis and TERTp (P=0.3). Severe elastosis was associated with older age (P<0.0001), ulceration (P=0.03), and location in the head/neck region (P<0.0001). The absence of elastosis was associated with younger age (P<0.0001), benign nevus remnants (P=0.001), and a positive BRAF V600E expression (P<0.0001). Severe elastosis predicted a worse relapse-free survival (hazard ratio: 2.18; 95% confidence interval: 1.30-3.64; P=0.003). However, it was not independent of age. TERTp was not associated with any adverse prognostic or clinicopathological outcome, nor any mitogen-activated protein kinase-related protein expressions. However, at a cutoff corresponding to the sensitivity of Sanger sequencing, TERTp predicted melanoma-specific death independently of age, and was associated with Breslow thickness, ulceration, tumor stage at diagnosis, BRAF V600E oncoprotein, and absence of p16 expression. In conclusion, TERTp were not related to severe elastosis and may thus be triggered by both chronic and acute intermittent sun exposure, the latter not visible on ordinary hematoxylin and eosin-stained slides. Neither TERTp nor severe elastosis predicted an adverse outcome in melanoma. An absence of elastosis was seen in younger melanoma patients and may be used to select those melanomas originating in a nevus, which often harbors a BRAF mutation.
Collapse
|
49
|
Meyer F, Netzer J, Meinert C, Voigt B, Riedel K, Steinbüchel A. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 2018; 102:6119-6142. [DOI: 10.1007/s00253-018-9061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
|
50
|
Derendinger B, de Vos M, Nathavitharana RR, Dolby T, Simpson JA, van Helden PD, Warren RM, Theron G. Widespread use of incorrect PCR ramp rate negatively impacts multidrug-resistant tuberculosis diagnosis (MTBDRplus). Sci Rep 2018; 8:3206. [PMID: 29453405 PMCID: PMC5816666 DOI: 10.1038/s41598-018-21458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
The scale-up of rapid drug resistance testing for TB is a global priority. MTBDRplus is a WHO-endorsed multidrug-resistant (MDR)-TB PCR assay with suboptimal sensitivities and high indeterminate rates on smear-negative specimens. We hypothesised that widespread use of incorrect thermocycler ramp rate (speed of temperature change between cycles) impacts performance. A global sample of 72 laboratories was surveyed. We tested 107 sputa from Xpert MTB/RIF-positive patients and, separately, dilution series of bacilli, both at the manufacturer-recommended ramp rate (2.2 °C/s) and the most frequently reported incorrect ramp rate (4.0 °C/s). Mycobacterium tuberculosis-complex DNA (TUB-band)-detection, indeterminate results, accuracy, and inter-reader variability (dilution series only) were compared. 32 respondents did a median (IQR) of 41 (20-150) assays monthly. 78% used an incorrect ramp rate. On smear-negative sputa, 2.2 °C/s vs. 4.0 °C/s improved TUB-band positivity (42/55 vs. 32/55; p = 0.042) and indeterminate rates (1/42 vs. 5/32; p = 0.039). The actionable results (not TUB-negative or indeterminate; 41/55 vs. 28/55) hence improved by 21% (95% CI: 9-35%). Widespread use of incorrect ramp rate contributes to suboptimal MTBDRplus performance on smear-negative specimens and hence limits clinical utility. The number of diagnoses (and thus the number of smear-negative patients in whom DST is possible) will improve substantially after ramp rate correction.
Collapse
Affiliation(s)
- B Derendinger
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M de Vos
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - T Dolby
- National Health Laboratory Services, Cape Town, South Africa
| | - J A Simpson
- National Health Laboratory Services, Cape Town, South Africa
| | - P D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Theron
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|