1
|
Sun J, Li W, Lu Y, Zhou Z, Tian L, Si T, Wang Z, Xu Y, Sun D, Chen CH, Yang M. Size and shape control of microgel-encapsulating tumor spheroid via a user-friendly solenoid valve-based sorter and its application on precise drug testing. Biosens Bioelectron 2024; 264:116614. [PMID: 39126904 DOI: 10.1016/j.bios.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation. A simple off-chip solenoid valve-based sorting actuation module was proposed to sort out target tumor spheroids with the desired size and shape. Utilizing the developed sorter, we successfully uncovered the drug response variations on cisplatin of lung tumor spheroids in the same population but with different sizes and shapes. Moreover, with this sorter, the precision of drug testing on the spheroid population level was improved to a level comparable to the precise but complex single spheroid analysis. The developed sorter also exhibits significant potential for organoid morphology and sorting for precision medicine research.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Li Tian
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Tongxu Si
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zesheng Wang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ying Xu
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chia-Hung Chen
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Zhu Q, He X, Liu J, Wang H, Shan X, Song G, Zhang L, Zhao Y, Yin X. DNA origami assembled spheroid for evaluating cytotoxicity and infiltration of chimeric antigen receptor macrophage (CAR-M). Commun Biol 2024; 7:1302. [PMID: 39390143 PMCID: PMC11467189 DOI: 10.1038/s42003-024-07009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have shown remarkable results in patients with hematological malignancies. However, their success in treating solid tumors has been limited. As an alternative candidate for the CAR therapy, CAR-macrophages (CAR-M) have demonstrated activation and phagocytosis directed by tumor-associated antigen (TAA), showing promise in the treatment of solid tumors. Nevertheless, the mechanisms by which CARs direct tumor chemotaxis and invasion of CAR-M remain poorly understood. In this study, we aim to investigate the role of CARs in CAR-M attachment and infiltration using 3D tumor spheroids, which were created by utilizing a novel self-assembling nucleic acid nanostructure decorated living cells (NAC). Our results demonstrated that CAR-M exhibited higher invasion and killing capacity in 2D model and 3D tumor spheroids. In summary, the 3D NAC assembled tumor spheroid model provides a suitable platform for target screening and pharmacodynamic evaluation of CAR-M.
Collapse
Affiliation(s)
- Qinyao Zhu
- RocRock Biotechnology Co. Ltd, Suzhou, China
| | - Xiaofang He
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou, China
| | - Junhua Liu
- RocRock Biotechnology Co. Ltd, Suzhou, China
| | - Heming Wang
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou, China
| | | | - Guangqi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou, China.
| | - Luo Zhang
- Research Center of Bioengineering, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
| | - Yicheng Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xiushan Yin
- RocRock Biotechnology Co. Ltd, Suzhou, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Madrid MF, Mendoza EN, Padilla AL, Choquenaira-Quispe C, de Jesus Guimarães C, de Melo Pereira JV, Barros-Nepomuceno FWA, Lopes Dos Santos I, Pessoa C, de Moraes Filho MO, Rocha DD, Ferreira PMP. In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-27. [PMID: 39363148 DOI: 10.1080/10937404.2024.2407452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.
Collapse
Affiliation(s)
- Maria Fernanda Madrid
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Eleicy Nathaly Mendoza
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Lizeth Padilla
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Celia Choquenaira-Quispe
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
- Catholic University of Santa María, Arequipa, Perú
| | - Celina de Jesus Guimarães
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - João Victor de Melo Pereira
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
4
|
Masuda A, Kurashina Y, Tani H, Soma Y, Muramatsu J, Itai S, Tohyama S, Onoe H. Maturation of Human iPSC-Derived Cardiac Microfiber with Electrical Stimulation Device. Adv Healthc Mater 2024; 13:e2303477. [PMID: 38768494 DOI: 10.1002/adhm.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Here an electrical stimulation system is described for maturing microfiber-shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber-shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.
Collapse
Affiliation(s)
- Akari Masuda
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Jumpei Muramatsu
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shun Itai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, 1-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
5
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
6
|
Nakagawa R, Beardsley A, Durney S, Hayward MK, Subramanyam V, Meyer NP, Wismer H, Goodarzi H, Weaver VM, Van de Mark D, Goga A. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615226. [PMID: 39386679 PMCID: PMC11463411 DOI: 10.1101/2024.09.26.615226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRASG12C (G12Ci) pathway inhibition remain poorly understood. Our study reveals that acute response to EGFR/RAS/RAF-pathway inhibition is spatial and culture context specific. In vivo, EGFR mutant tumor xenografts shrink by > 90% following acute EGFRi therapy, and residual tumor cells are associated with dense stroma and have increased nuclear YAP. Interestingly, in vitro EGFRi induced cell cycle arrest in NSCLC cells grown in monolayer, while 3D spheroids preferentially die upon inhibitor treatment. We find differential YAP nuclear localization and activity, driven by the distinct culture conditions, as a common resistance mechanism for selective EGFR/KRAS/BRAF pathway therapies. Forced expression of the YAPS127A mutant partially protects cells from EGFR-mediated cell death in spheroid culture. These studies identify YAP activation in monolayer culture as a non-genetic mechanism of acute EGFR/KRAS/BRAF therapy resistance, highlighting that monolayer vs spheroid cell culture systems can model distinct stages of patient cancer progression.
Collapse
Affiliation(s)
- Rachel Nakagawa
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrew Beardsley
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sophia Durney
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Mary-Kate Hayward
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Nathaniel P. Meyer
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Harrison Wismer
- Biological Imaging Development CoLab, UCSF, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
8
|
Wedler V, Stiegler LMS, Gandziarowski T, Walter J, Peukert W, Distel LVR, Hirsch A, Klein S. Shell-by-Shell functionalized nanoparticles as radiosensitizers and radioprotectors in radiation therapy of cancer cells and tumor spheroids. Colloids Surf B Biointerfaces 2024; 245:114276. [PMID: 39353348 DOI: 10.1016/j.colsurfb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Shell-by-Shell (SbS)-functionalized NPs can be tailor-made by combining a metal oxide NP core of choice with any desired phosphonic acids and amphiphiles as 1st or 2nd ligand shell building blocks. The complementary composition of such highly hierarchical structures makes them interesting candidates for various biomedical applications, as certain active ingredients can be incorporated into the structure. Here, we used TiO2 and CoFe2O4 NPs as drug delivery tools and coated them with a hexadecylphosphonic acid and with hexadecyl ammonium phenolates (caffeate, p-coumarate, ferulate), that possess anticancer as well as antioxidant properties. These architectures were then incubated in 2D and 3D cell cultures of non-tumorigenic and tumorigenic breast cells and irradiated to study their anticancer effect. It was found that both, the functionalized TiO2 and CoFe2O4 NPs acted as strong protective agents in non-tumorigenic spheroids. In contrast, the functionalized CoFe2O4 NPs induce a higher damage in irradiated tumor spheroids compared to the functionalized TiO2 NPs. CoFe3O4 NPs act additionally as radiosensitizing agents to the tumor spheroids. The radio-enhancement of the CoFe2O4 NPs is due to the generation of highly toxic hydroxyl radicals during X-ray irradiation. The irradiation exposed the CoFe2O4 surface, releasing the anticancer drugs into the cytoplasm and making the surface Co2+ ions accessible. These surface ions catalyze the Fenton reaction. This combination of radiosensitizer and anticancer drug delivery proved to be a very effective nanotherapeutic in 2D and 3D cell cultures of breast cancer cells.
Collapse
Affiliation(s)
- Vincent Wedler
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen D-91058, Germany.
| | - Lisa M S Stiegler
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstrasse 9a, Erlangen 91058, Germany.
| | - Teresa Gandziarowski
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander, Universität Erlangen-Nürnberg, Egerlandstr.3, Erlangen D-91058, Germany.
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstrasse 9a, Erlangen 91058, Germany.
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstrasse 9a, Erlangen 91058, Germany.
| | - Luitpold V R Distel
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, Erlangen D-91054, Germany.
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen D-91058, Germany.
| | - Stefanie Klein
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander, Universität Erlangen-Nürnberg, Egerlandstr.3, Erlangen D-91058, Germany.
| |
Collapse
|
9
|
Lencioni G, Gregori A, Toledo B B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024:S1044-579X(24)00075-0. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belen Toledo B
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, E-23071 Jaén, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoit Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, E-23071 Jaén, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Patra A, Arora A, Ghosh SS, Kaur Saini G. Beauvericin Reverses Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through Regulation of Notch Signaling and Autophagy. ACS Pharmacol Transl Sci 2024; 7:2878-2893. [PMID: 39296261 PMCID: PMC11406685 DOI: 10.1021/acsptsci.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Metastasis stands as a prime contributor to triple-negative breast cancer (TNBC) associated mortality worldwide, presenting heightened severity and significant challenges due to limited treatment options. Addressing TNBC metastasis necessitates innovative approaches and novel therapeutics to specifically target its propensity for dissemination to distant organs. Targeted therapies capable of reversing epithelial-to-mesenchymal transition (EMT) play a crucial role in suppressing metastasis and enhancing the treatment response. Beauvericin, a promising fungal secondary metabolite, exhibits significant potential in diminishing the viability of EMT-induced TNBC cells by triggering intracellular oxidative stress, as evidenced by an enhanced reactive oxygen species level and reduced mitochondrial transmembrane potential. In monolayer cultures, it has exhibited an IC50 of 2.3 μM in both MDA-MB-468 and MDA-MB-231 cells, while in 3D spheroids, the IC50 values are 9.7 and 7.1 μM, respectively. Beauvericin has also reduced the migratory capability of MDA-MB-468 and MDA-MB-231 cells by 1.5- and 1.7-fold, respectively. Both qRT-PCR and Western blot analysis have shown significant upregulation in the expression of epithelial marker (E-cadherin) and downregulation in the expression of mesenchymal markers (N-cadherin, vimentin, Snail, Slug, and β-catenin), following treatment, indicating reversal of EMT. Furthermore, beauvericin has suppressed the Notch signaling pathway by substantially downregulating Notch-1, Notch-3, Hes-1, and cyclinD3 expression and induced autophagy as observed by elevated expression of autophagy markers LC3 and Beclin-1. In conclusion, beauvericin has successfully downregulated TNBC cell survival by inducing oxidative stress and suppressed their migratory potential by reversing EMT through the inhibition of Notch signaling and activation of autophagy.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Saemundsson SA, Curry SD, Bower BM, DeBoo EJ, Goodwin AP, Cha JN. Controlling cellular packing and hypoxia in 3D tumor spheroids via DNA interactions. Biomater Sci 2024; 12:4759-4769. [PMID: 39136101 PMCID: PMC11320176 DOI: 10.1039/d4bm00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Tumor spheroids represent valuable in vitro models for studying cancer biology and evaluating therapeutic strategies. In this study, we investigated the impact of varying lengths of DNA-modified cell surfaces on spheroid formation, cellular adhesion molecule expression, and hypoxia levels within 4T1 mouse breast cancer spheroids. Through a series of experiments, we demonstrated that modifying cell surfaces with biotinylated DNA strands of different lengths facilitated spheroid formation without significantly altering the expression of fibronectin and e-cadherin, key cellular adhesion molecules. However, our findings revealed a notable influence of DNA length on hypoxia levels within the spheroids. As DNA length increased, hypoxia levels decreased, indicating enhanced intercellular spacing and porosity within the spheroid structure. These results contribute to a better understanding of how DNA modification of cell surfaces can modulate spheroid architecture and microenvironmental conditions. Such insights may have implications for developing therapeutic interventions targeting the tumor microenvironment to improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Sven A Saemundsson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Bryce M Bower
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Ethan J DeBoo
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
- Biomedical Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
| |
Collapse
|
12
|
Vitkūnaitė E, Žymantaitė E, Mlynska A, Andrijec D, Limanovskaja K, Kaszynski G, Matulis D, Šakalys V, Jonušauskas L. Advancing 3D Spheroid Research through 3D Scaffolds Made by Two-Photon Polymerization. Bioengineering (Basel) 2024; 11:902. [PMID: 39329644 PMCID: PMC11429241 DOI: 10.3390/bioengineering11090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional cancer cell cultures have been a valuable research model for developing new drug targets in the preclinical stage. However, there are still limitations to these in vitro models. Scaffold-based systems offer a promising approach to overcoming these challenges in cancer research. In this study, we show that two-photon polymerization (TPP)-assisted printing of scaffolds enhances 3D tumor cell culture formation without additional modifications. TPP is a perfect fit for this task, as it is an advanced 3D-printing technique combining a μm-level resolution with complete freedom in the design of the final structure. Additionally, it can use a wide array of materials, including biocompatible ones. We exploit these capabilities to fabricate scaffolds from two different biocompatible materials-PEGDA and OrmoClear. Cubic spheroid scaffolds with a more complex architecture were produced and tested. The biological evaluation showed that the human ovarian cancer cell lines SKOV3 and A2780 formed 3D cultures on printed scaffolds without a preference for the material. The gene expression evaluation showed that the A2780 cell line exhibited substantial changes in CDH1, CDH2, TWIST, COL1A1, and SMAD3 gene expression, while the SKOV3 cell line had slight changes in said gene expression. Our findings show how the scaffold architecture design impacts tumor cell culture 3D spheroid formation, especially for the A2780 cancer cell line.
Collapse
Affiliation(s)
- Eglė Vitkūnaitė
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Eglė Žymantaitė
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
| | - Dovilė Andrijec
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Karolina Limanovskaja
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Grzegorz Kaszynski
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Vidmantas Šakalys
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Linas Jonušauskas
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| |
Collapse
|
13
|
Cho Y, Laird MS, Bishop T, Li R, Jazwinska DE, Ruffo E, Lohmueller J, Zervantonakis IK. CAR T cell infiltration and cytotoxic killing within the core of 3D breast cancer spheroids under the control of antigen sensing in microwell arrays. APL Bioeng 2024; 8:036105. [PMID: 39049849 PMCID: PMC11268919 DOI: 10.1063/5.0207941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The success of chimeric antigen receptor (CAR) T cells in blood cancers has intensified efforts to develop CAR T therapies for solid cancers. In the solid tumor microenvironment, CAR T cell trafficking and suppression of cytotoxic killing represent limiting factors for therapeutic efficacy. Here, we present a microwell platform to study CAR T cell interactions with 3D breast tumor spheroids and determine predictors of anti-tumor CAR T cell function. To precisely control antigen sensing, we utilized a switchable adaptor CAR system that covalently attaches to co-administered antibody adaptors and mediates antigen recognition. Following the addition of an anti-HER2 adaptor antibody, primary human CAR T cells exhibited higher infiltration, clustering, and secretion of effector cytokines. By tracking CAR T cell killing in individual spheroids, we showed the suppressive effects of spheroid size and identified the initial CAR T cell to spheroid area ratio as a predictor of cytotoxicity. We demonstrate that larger spheroids exhibit higher hypoxia levels and are infiltrated by CAR T cells with a suppressed activation state, characterized by reduced expression of IFN-γ, TNF-α, and granzyme B. Spatiotemporal analysis revealed lower CAR T cell numbers and cytotoxicity in the spheroid core compared to the periphery. Finally, increasing CAR T cell seeding density resulted in higher CAR T cell infiltration and cancer cell elimination in the spheroid core. Our findings provide new quantitative insight into CAR T cell function within 3D cancer spheroids. Given its miniaturized nature and live imaging capabilities, our microfabricated system holds promise for screening cellular immunotherapies.
Collapse
Affiliation(s)
- Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Matthew S. Laird
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Teddi Bishop
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
14
|
van Goor IW, Raymakers L, Andel DS, Brosens LA, Kranenburg O, Leusen JH, Meijer GJ, Molenaar IQ, van Santvoort HC, de Vries JW, Wopereis AJ, Intven MP, Daamen LA. Radiation response assessment of organoids derived from patients with pancreatic cancer. Clin Transl Radiat Oncol 2024; 48:100829. [PMID: 39192878 PMCID: PMC11347840 DOI: 10.1016/j.ctro.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background The effectiveness of radiotherapy for pancreatic cancer is debated. Patient-derived organoids (PDOs) already mimicked clinical radiation response in other cancer types, which could be valuable in pancreatic cancer as well. This study aimed to investigate whether PDOs can be used to model RT response in pancreatic cancer and to explore the presence of a dose-response correlation. Methods PDOs derived from two pancreatic cancer patients (HUB-08-B2-022A and HUB-08-B2-026B) were irradiated with doses ranging from 0 to 40 Gray. Viability assessments were conducted after seven and 10 days by measuring ATP-levels. Results were normalized, defining the viability at 0 Gray as 100 % and an absolute viability of 0 as 0 %. The relative area under the curve (rAUC) was calculated (0 = total sensitivity, 1 = total resistance). Results With a readout time of seven days, both HUB-08-B2-022A and HUB-08-B2-026B exhibited viability above 50 % at the highest dose of 12 Gy (rAUC of 0.79 and 0.69, respectively). With a readout time of 10 days, both PDOs showed a dose-response relation although HUB-08-B2-022A was more sensitive than HUB-08-B2-026B (rAUC of 0.37 and 0.51, respectively). Increasing the radiation dose to 40 Gy did not further affect viability, but the dose-response relation remained present (rAUC of 0.13 and 0.26, respectively). In the final experiment with a readout time of 10 days and a maximum dose of 14 Gy, the dose-response correlation was paramount in both PDOs (rAUC 0.28 and 0.45, respectively), with HUB-08-B2-022A being most sensitive. Conclusions In this setup, both pancreatic cancer PDOs showed an irradiation dose-response correlation. These preliminary findings suggest that pancreatic cancer PDOs are suitable for assessing radiation response in vitro. Further experiments are needed to eventually simulate treatment responses to personalized treatment strategies.
Collapse
Affiliation(s)
- Iris W.J.M. van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Leon Raymakers
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daan S.H. Andel
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeanette H.W. Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - J.H. Wilfred de Vries
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Andre J.M. Wopereis
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Martijn P.W. Intven
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Lois A. Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Imaging Division, University Medical Center Utrecht Cancer Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Montesdeoca N, Ni K, Karges J. Encapsulation of Cu(II) Terpyridine Complexes into Polymeric Nanoparticles for Enhanced Anticancer Therapy. Chemistry 2024; 30:e202401988. [PMID: 38923696 DOI: 10.1002/chem.202401988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Cancer is one of the deadliest diseases worldwide. One of the most commonly applied therapeutic techniques to combat this disease is chemotherapy. Despite its success, the majority of clinically applied chemotherapeutic agents are associated with strong side effects and drug resistance. To overcome this limitation, much research efforts are devoted toward the development of new anticancer agents. Among the most promising class of compounds, Cu(II) complexes have emerged. Despite their strong cytotoxic effect, these agents are typically associated with low water solubility, low stability, and poor tumor selectivity. To overcome these limitations, herein, we report on the encapsulation of a promising Cu(II) terpyridine complex with the Pluronic F-127/Poloxamer-407 polymeric carrier into nanoparticles. Besides overcoming the pharmacological drawbacks, the nanoparticles were able to eradicate human breast adenocarcinoma monolayer cells as well as challenging multicellular tumor spheroids at nanomolar concentrations.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
16
|
Wu X, Ma L, Zhang Y, Liu S, Cheng L, You C, Dong Z. Application progress of nanomaterials in the treatment of prostate cancer. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00131-7. [PMID: 39187009 DOI: 10.1016/j.pharma.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Prostate cancer is one of the most common malignant tumors in men, which seriously threatens the survival and quality of life of patients. At present, there are serious limitations in the treatment of prostate cancer, such as drug tolerance, drug resistance and easy recurrence. Sonodynamic therapy and chemodynamic therapy are two emerging tumor treatment methods, which activate specific drugs or sonosensitizers through sound waves or chemicals to produce reactive oxygen species and kill tumor cells. Nanomaterials are a kind of nanoscale materials with many excellent physical properties such as high targeting, drug release regulation and therapeutic monitoring. Sonodynamic therapy and chemodynamic therapy combined with the application of nanomaterials can improve the therapeutic effect of prostate cancer, reduce side effects and enhance tumor immune response. This article reviews the application progress of nanomaterials in the treatment of prostate cancer, especially the mechanism, advantages and challenges of nanomaterials in sonodynamic therapy and chemodynamic therapy, which provides new ideas and prospects for research in this field.
Collapse
Affiliation(s)
- Xuewu Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Longtu Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shuai Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Long Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Chengyu You
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China.
| |
Collapse
|
17
|
Lee J, Lim CT. 3D cellular self-assembly on optical disc-imprinted nanopatterns. LAB ON A CHIP 2024; 24:4161-4171. [PMID: 39078315 DOI: 10.1039/d4lc00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
18
|
Li W, Huang M, Wu Z, Zhang Y, Cai Y, Su J, Xia J, Yang F, Xiao D, Yang W, Xu Y, Liu Z. mRNA-Lipid Nanoparticle-Mediated Restoration of PTPN14 Exhibits Antitumor Effects by Overcoming Anoikis Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309988. [PMID: 39189475 PMCID: PMC11348215 DOI: 10.1002/advs.202309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a challenging prognosis due to early metastasis driven by anoikis resistance. Identifying crucial regulators to overcome this resistance is vital for improving patient outcomes. In this study, a genome-wide CRISPR/Cas9 knockout screen in TNBC cells has identified tyrosine-protein phosphatase nonreceptor type 14 (PTPN14) as a key regulator of anoikis resistance. PTPN14 expression has shown a progressive decrease from normal breast tissue to metastatic tumors. Overexpressing PTPN14 has induced anoikis and inhibited cell proliferation in TNBC cells, while normal human breast cells are unaffected. Mechanistically, PTPN14 is identified as a key factor in dephosphorylating breast cancer antiestrogen resistance 3, a novel substrate, leading to the subsequent inhibition of PI3K/AKT and ERK signaling pathways. Local delivery of in vitro transcribed PTPN14 mRNA encapsulated by lipid nanoparticles in a TNBC mouse model has effectively inhibited tumor growth and metastasis, prolonging survival. The study underscores PTPN14 as a potential therapeutic target for metastatic TNBC, with the therapeutic strategy based on mRNA expression of PTPN14 demonstrating clinical application prospects in alleviating the burden of both primary tumors and metastatic disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoping Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangsha410008P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Ying Cai
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Juncheng Su
- Department of Gastrointestinal SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jia Xia
- Department of NephrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Fan Yang
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250011P. R. China
| | - Desheng Xiao
- Department of PathologySchool of Basic MedicineXiangya HospitalCentral South UniversityChangsha410013P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
19
|
Husch JFA, Araújo-Gomes N, Willemen NGA, Cofiño-Fabrés C, van Creij N, Passier R, Leijten J, van den Beucken JJJP. Upscaling Osteoclast Generation by Enhancing Macrophage Aggregation Using Hollow Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403272. [PMID: 39087382 DOI: 10.1002/smll.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Osteoclasts, the bone resorbing cells of hematopoietic origin formed by macrophage fusion, are essential in bone health and disease. However, in vitro research on osteoclasts remains challenging due to heterogeneous cultures that only contain a few multinucleated osteoclasts. Indeed, a strategy to generate homogeneous populations of multinucleated osteoclasts in a scalable manner has remained elusive. Here, the investigation focuses on whether microencapsulation of human macrophages in microfluidically generated hollow, sacrificial tyramine-conjugated dextran (Dex-TA) microgels could facilitate macrophage precursor aggregation and formation of multinucleated osteoclasts. Therefore, human mononuclear cells are isolated from buffy coats and differentiated toward macrophages. Macrophages are encapsulated in microgels using flow focus microfluidics and outside-in enzymatic oxidative phenolic crosslinking, and differentiated toward osteoclasts. Morphology, viability, and osteoclast fusion of microencapsulated cells are assessed. Furthermore, microgels are degraded to allow cell sorting of released cells based on osteoclastic marker expression. The successful encapsulation and osteoclast formation of human macrophages in Dex-TA microgels are reported for the first time using high-throughput droplet microfluidics. Intriguingly, osteoclast formation within these 3D microenvironments occurs at a significantly higher level compared to the conventional 2D culture system. Furthermore, the feasibility of establishing a pure osteoclast culture from cell transfer and release from degradable microgels is demonstrated.
Collapse
Affiliation(s)
- Johanna F A Husch
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nuno Araújo-Gomes
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Niels G A Willemen
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Carla Cofiño-Fabrés
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nils van Creij
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen J J P van den Beucken
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| |
Collapse
|
20
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
21
|
Wei J, Sun Y, Wang H, Zhu T, Li L, Zhou Y, Liu Q, Dai Z, Li W, Yang T, Wang B, Zhu C, Shen X, Yao Q, Song G, Zhao Y, Pei H. Designer cellular spheroids with DNA origami for drug screening. SCIENCE ADVANCES 2024; 10:eado9880. [PMID: 39028810 PMCID: PMC11259176 DOI: 10.1126/sciadv.ado9880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Current in vitro models struggle to balance the complexity of human diseases with suitability for large-scale drug tests. While 3D cultures simulate human tissues, they lack cellular intricacy, and integrating these models with high-throughput drug screening remains a challenge. Here, we introduce a method that uses self-assembling nucleic acid nanostructures decorated living cells, termed NACs, to create spheroids with a customizable 3D layout. To demonstrate its uniqueness, our method effectively creates designer 3D spheroids by combining parenchymal cells, stromal cells, and immune cells, leading to heightened physiological relevance and detailed modeling of complex chronic diseases and immune-stromal interactions. Our approach achieves a high level of biological fidelity while being standardized and straightforward to construct with the potential for large-scale drug discovery applications. By merging the precision of DNA nanotechnology with advanced cell culture techniques, we are streamlining human-centric models, striking a balance between complexity and standardization, to boost drug screening efficiency.
Collapse
Affiliation(s)
- Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjuan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Guangqi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou 215000, China
| | - Yicheng Zhao
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
- China-Japan Union Hospital of Jilin University, 130012 Changchun, Jilin, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Li X, Zhou Y, Luo L, Zheng S, Deng J, Luan T. Chlorinated Anthracenes Induced Pulmonary Immunotoxicity in 3D Coculture Spheroids Simulating the Lung Microenvironment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11923-11934. [PMID: 38918172 DOI: 10.1021/acs.est.4c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Chlorinated anthracenes (Cl-Ants), persistent organic pollutants, are widely detected in the environment, posing potential lung toxicity risks due to frequent respiratory exposure. However, direct evidence and a comprehensive understanding of their toxicity mechanisms are lacking. Building on our prior findings of Cl-Ants' immunotoxic risks, this study developed a three-dimensional coculture spheroid model mimicking the lung's immune microenvironment. The objective is to explore the pulmonary immunotoxicity and comprehend its mechanisms, taking into account the heightened immune reactivity and frequent lung exposure of Cl-Ants. The results demonstrated that Cl-Ants exposure led to reduced spheroid size, increased macrophage migration outward, lowered cell viability, elevated 8-OHdG levels, disturbed anti-infection balance, and altered cytokine production. Specifically, the chlorine substituent number correlates with the extent of disruption of spheroid indicators caused by Cl-Ants, with stronger immunotoxic effects observed in dichlorinated Ant compared to those in monochlorinated Ant. Furthermore, we identified critical regulatory genes associated with cell viability (ALDOC and ALDOA), bacterial response (TLR5 and MAP2K6), and GM-CSF production (CEBPB). Overall, this study offers initial in vitro evidence of low-dose Cl-PAHs' pulmonary immunotoxicity, advancing the understanding of Cl-Ants' structure-related toxicity and improving external toxicity assessment methods for environmental pollutants, which holds significance for future monitoring and evaluation.
Collapse
Affiliation(s)
- Xinyan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiluan Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
24
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
25
|
Jiang M, Yan Q, Fu Y, Meng L, Gai S, Pan X, Qin Y, Jiang C. Development of Cu(II) 4-hydroxybenzoylhydrazone complexes that induce mitochondrial DNA damage and mitochondria-mediated apoptosis in liver cancer. J Inorg Biochem 2024; 256:112550. [PMID: 38599004 DOI: 10.1016/j.jinorgbio.2024.112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Cisplatin remains the most widely used chemotherapeutic agent in cancer treatment; however, its inherent drawbacks have fueled the development of novel metalloanticancer drugs. In this study, two novel Cu(II) complexes (Cu1 and Cu2) were designed and synthesized. Notably, these Cu(II) complexes showed higher cytotoxicity against HL-7402 cells than cisplatin. Moreover, Cu(II) complexes significantly inhibited liver cancer growth in a xenograft model. A mechanism study revealed that the Cu(II) complexes reduced the mitochondrial membrane potential of cancer cells, produced excessive reactive oxygen species (ROS), induced mitochondrial DNA (mtDNA) damage, and ultimately facilitated cancer cell apoptosis.
Collapse
Affiliation(s)
- Ming Jiang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China.
| | - Qiwei Yan
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yuanping Fu
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Lili Meng
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Shuangshuang Gai
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Xiaohui Pan
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yiming Qin
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Caiyun Jiang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China.
| |
Collapse
|
26
|
Coelho LL, Vianna MM, da Silva DM, Gonzaga BMDS, Ferreira RR, Monteiro AC, Bonomo AC, Manso PPDA, de Carvalho MA, Vargas FR, Garzoni LR. Spheroid Model of Mammary Tumor Cells: Epithelial-Mesenchymal Transition and Doxorubicin Response. BIOLOGY 2024; 13:463. [PMID: 39056658 PMCID: PMC11273983 DOI: 10.3390/biology13070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
Collapse
Affiliation(s)
- Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Matheus Menezes Vianna
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Debora Moraes da Silva
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University (UFF), Rio de Janeiro 24020-150, Brazil;
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Adriana Cesar Bonomo
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Pedro Paulo de Abreu Manso
- Laboratory of Pathology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | | | - Fernando Regla Vargas
- Laboratory of Epidemiology of Congenital Malformations, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| |
Collapse
|
27
|
Patel M, Vernon B, Jeong B. Low-Molecular-Weight PEGs for Cryopreservation of Stem Cell Spheroids. Biomater Res 2024; 28:0037. [PMID: 38845843 PMCID: PMC11156479 DOI: 10.34133/bmr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024] Open
Abstract
Stem cell spheroids (SCSs) are a valuable tool in stem cell research and regenerative medicine. SCSs provide a platform for stem cell behavior in a more biologically relevant context with enhanced cell-cell communications. In this study, we investigated the recovery of SCSs after cryopreservation at -196 °C for 7 days. Prior to cryopreservation, the SCSs were preincubated for 0 h (no preincubation), 2 h, 4 h, and 6 h at 37 °C in the presence of low-molecular-weight poly(ethylene glycol) (PEG) with molecular weights of 200, 400, and 600 Da. The recovery rate of SCSs was markedly affected by both the PEG molecular weight and the preincubation time. Specifically, when SCSs were preincubated with a PEG200 solution for 2 to 6 h, it significantly enhanced the recovery rate of the SCSs. Internalization of PEG200 through simple diffusion into the SCSs may be the cryoprotective mechanism. The PEG200 diffuses into the SCSs, which not only suppresses osmotic pressure development inside the cell but also inhibits ice formation. The recovered SCSs demonstrated both fusibility and capabilities for proliferation and differentiation comparable to SCSs recovered after dimethyl sulfoxide 10% cryopreservation. This study indicates that PEG200 serves as an effective cryoprotectant for SCSs. A simple preincubation procedure in the presence of the polymer greatly improves the recovery rate of SCSs from cryopreservation.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Brent Vernon
- School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ 85287-9709, USA
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
28
|
Lopez A, Holbrook JH, Kemper GE, Lukowski JK, Andrews WT, Hummon AB. Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models. Anal Chem 2024; 96:9254-9261. [PMID: 38778440 DOI: 10.1021/acs.analchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Targeted therapy to the tumor would greatly advance precision medicine. Many drug delivery vehicles have emerged, but liposomes are cited as the most successful to date. Recent efforts to develop liposomal drug delivery systems focus on drug distribution in tissues and ignore liposomal fate. In this study, we developed a novel method to elucidate both drug and liposomal bilayer distribution in a three-dimensional cell culture model using quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI qMSI) alongside fluorescence microscopy. Imaging liposomal distribution in a cell culture model is challenging, as lipids forming the bilayer are endogenous to the model system. To resolve this issue, we functionalized the bilayer by chemically cross-linking a fluorescent tag to the alkyne-containing lipid hexynoyl phosphoethanolamine (HPE). We synthesized liposomes incorporating the tagged HPE lipid and encapsulated within them doxorubicin, yielding a theranostic liposome capable of both drug delivery and monitoring liposomal uptake. We employed an "in-tissue" MALDI qMSI approach to generate a calibration curve with R2 = 0.9687, allowing for quantification of doxorubicin within spheroid sections at multiple time points. After 72 h of treatment with the theranostic liposomes, full doxorubicin penetration was observed. The metabolites doxorubicinone and 7-deoxydoxorubicinone were also detected after 48 h. Modification of the bilayer allowed for fluorescence microscopy tracking of liposomes, while MALDI MSI simultaneously permitted the imaging of drugs and metabolites. While we demonstrated the utility of our method with doxorubicin, this system could be applied to examine the uptake, release, and metabolism of many other liposome-encapsulated drugs.
Collapse
Affiliation(s)
- Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - William T Andrews
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
30
|
Chen Y, Li X, Luo K, Wang T, Liu T, Lu E, Wang R, Luo Y, Sha X. Hyperthermia/glutathione-triggered ferritin nanoparticles amplify the ferroptosis for synergistic tumor therapy. Mater Today Bio 2024; 26:101085. [PMID: 38765248 PMCID: PMC11098959 DOI: 10.1016/j.mtbio.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer is the most diagnosed malignancy in women globally, and drug resistance is among the major obstacles to effective breast cancer treatment. Emerging evidence indicates that photothermal therapy and ferroptosis are both promising therapeutic techniques for the treatment of drug-resistant breast tumors. In this study, we proposed a thermal/ferroptosis/magnetic resonance imaging (MRI) triple functional nanoparticle (I@P-ss-FRT) in which ferritin, an iron storage material with excellent cellular uptake capacity, was attached via disulfide bonds onto polydopamine coated iron oxide nanoparticle (I@P) as photothermal transduction agent and MRI probe. I@P-ss-FRT converted the near-infrared light (NIR) into localized heat which accelerated the release of ferrous ions from ferritin accomplished by glutathione reduction and subsequently induced ferroptosis. The drug-resistant cancer cell lines exhibited a more significant uptake of I@P-ss-FRT and sensitivity to PTT/ferroptosis compared with normal cancer cell lines. In vivo, I@P-ss-FRT plus NIR displayed the best tumor-killing potential with inhibitory rate of 83.46 %, along with a decline in GSH/GPX-4 content and an increase in lipid peroxides generation at tumor sites. Therefore, I@P-ss-FRT can be applied to combat drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yiting Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xinhong Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Kuankuan Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Tao Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Tongyao Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Enhao Lu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Rui Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Yu Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery (Ministry of Education), School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200030, China
| |
Collapse
|
31
|
Butch E, Prideaux M, Holland M, Phan JT, Trent C, Soon V, Hutchins G, Smith L. The 'bIUreactor': An Open-Source 3D Tissue Research Platform. Ann Biomed Eng 2024; 52:1678-1692. [PMID: 38532173 PMCID: PMC11082015 DOI: 10.1007/s10439-024-03481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
We developed the open-source bIUreactor research platform for studying 3D structured tissues. The versatile and modular platform allows a researcher to generate 3D tissues, culture them with oxygenated perfusion, and provide cyclic loading, all in their own lab (in laboratorium) for an all in cost of $8,000 including 3D printer, printing resin, and electronics. We achieved this by applying a design philosophy that leverages 3D printing, open-source software and hardware, and practical techniques to produce the following: 1. perfusible 3D tissues, 2. a bioreactor chamber for tissue culture, 3. a module for applying cyclic compression, 4. a peristaltic pump for providing oxygenated perfusion to 3D tissues, 5. motor control units, and 6. open-source code for running the control units. By making it widely available for researchers to investigate 3D tissue models and easy for them to use, we intend for the bIUreactor to democratize 3D tissue research, therefore increasing the pace and scale of biomedical research discoveries using 3D tissue models.
Collapse
Affiliation(s)
- Elizabeth Butch
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Holland
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin-Thuy Phan
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cole Trent
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victor Soon
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester Smith
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Tung Y, Chen Y, Derr K, Wilson K, Song MJ, Ferrer M. A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth. Adv Healthc Mater 2024; 13:e2302831. [PMID: 38394389 PMCID: PMC11176035 DOI: 10.1002/adhm.202302831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Indexed: 02/25/2024]
Abstract
A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
Collapse
Affiliation(s)
- Yen‐Ting Tung
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Yu‐Chi Chen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Min Jae Song
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| |
Collapse
|
33
|
Batista JEDS, Rodrigues MB, Bristot IJ, Silva V, Bernardy S, Rodrigues OED, Dornelles L, Carvalho FB, de Sousa FJF, Fernandes MDC, Zanatta G, Soares FAA, Klamt F. Systematic screening of synthetic organochalcogen compounds with anticancer activity using human lung adenocarcinoma spheroids. Chem Biol Interact 2024; 396:111047. [PMID: 38735454 DOI: 10.1016/j.cbi.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.
Collapse
Affiliation(s)
- Jéssica Eduarda Dos Santos Batista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | | | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Valquíria Silva
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Silvia Bernardy
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Luciano Dornelles
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | | | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Geancarlo Zanatta
- Department of Biophysics, UFRGS, Porto Alegre, RS, 91501-970, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil.
| |
Collapse
|
34
|
Ribeiro D, Latancia M, de Souza I, Ariwoola AB, Mendes D, Rocha CRR, Lengert A, Menck C. Temozolomide resistance mechanisms: unveiling the role of translesion DNA polymerase kappa in glioblastoma spheroids in vitro. Biosci Rep 2024; 44:BSR20230667. [PMID: 38717250 PMCID: PMC11139666 DOI: 10.1042/bsr20230667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 μM); (iii) exerts antiproliferative effects (≤25 μM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Teatin Latancia
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Abu-Bakr Adetayo Ariwoola
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - André Van Helvoort Lengert
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
35
|
Wu L, Vllasaliu D, Cui Q, Raimi-Abraham BT. In Situ Self-Assembling Liver Spheroids with Synthetic Nanoscaffolds for Preclinical Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25610-25621. [PMID: 38741479 PMCID: PMC11129140 DOI: 10.1021/acsami.3c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool. This study investigated the extent to which nanoscaffold concentration may have on spheroid size and viability and liver-specific biofunctionality. The efficacy of our model was further validated using a comprehensive dose-dependent acetaminophen toxicity protocol. Our findings show the strong potential of PCL-based nanoscaffolds to facilitate in situ self-assembly of liver spheroids with sizes under 350 μm. The presence of the PCL-based nanoscaffolds (0.005 and 0.01% w/v) improved spheroid viability and the secretion of critical liver-specific biomarkers, namely, albumin and urea. Liver spheroids with nanoscaffolds showed improved drug-metabolizing enzyme activity and greater sensitivity to acetaminophen compared to two-dimensional monolayer cultures and scaffold-free liver spheroids. These promising findings highlight the potential of our nanoscaffold-based liver spheroids as an in vitro liver model for drug-induced hepatotoxicity and drug screening.
Collapse
Affiliation(s)
- Lina Wu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Driton Vllasaliu
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Qi Cui
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bahijja Tolulope Raimi-Abraham
- King’s College London,
Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical
Sciences, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
36
|
Pan R, Lin C, Yang X, Xie Y, Gao L, Yu L. The influence of spheroid maturity on fusion dynamics and micro-tissue assembly in 3D tumor models. Biofabrication 2024; 16:035016. [PMID: 38663395 DOI: 10.1088/1758-5090/ad4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.
Collapse
Affiliation(s)
- Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenyu Lin
- Institute for Developmental and Biology and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
37
|
Gotnayer Lilian L, Nahmias Y, Yazbek Grobman G, Friedlander L, Aranovich D, Yoel U, Vidavsky N. The interplay between crystallinity and the levels of Zn and carbonate in synthetic microcalcifications directs thyroid cell malignancy. J Mater Chem B 2024; 12:4509-4520. [PMID: 38647022 DOI: 10.1039/d3tb02256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.
Collapse
Affiliation(s)
- Lotem Gotnayer Lilian
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Yarden Nahmias
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Gabriel Yazbek Grobman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Lonia Friedlander
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Uri Yoel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Endocrinology, Soroka University Medical Center, Beer Sheva, Israel
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
38
|
Vitali E, Valente G, Panzardi A, Laffi A, Zerbi A, Uccella S, Mazziotti G, Lania A. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 2024; 47:1101-1117. [PMID: 37882947 DOI: 10.1007/s40618-023-02221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs' progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells. METHODS We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells. RESULTS We found that the increased NF-kB expression correlates with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1. CONCLUSION Since the NF-kB pathway is implicated in Pa-NETs' progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - G Valente
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Panzardi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Laffi
- Oncology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Surgery Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - S Uccella
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, ilan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| |
Collapse
|
39
|
Adachi Y, Noguchi R, Yoshimatsu Y, Sin Y, Osaki J, Ono T, Iwata S, Akiyama T, Tsuchiya R, Toda Y, Ishihara S, Ogura K, Kobayashi E, Kojima N, Yoshida A, Yokoo H, Kawai A, Kondo T. Establishment and characterization of two novel patient-derived cell lines from giant cell tumor of bone: NCC-GCTB8-C1 and NCC-GCTB9-C1. Hum Cell 2024; 37:874-885. [PMID: 38466561 DOI: 10.1007/s13577-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Giant cell tumor of bone (GCTB) is a rare osteolytic bone tumor consisting of mononuclear stromal cells, macrophages, and osteoclast-like giant cells. Although GCTB predominantly exhibits benign behavior, the tumor carries a significant risk of high local recurrence. Furthermore, GCTB can occasionally undergo malignant transformation and distal metastasis, making it potentially fatal. The standard treatment is complete surgical resection; nonetheless, an optimal treatment strategy for advanced GCTB remains unestablished, necessitating expanded preclinical research to identify appropriate therapeutic options. However, only one GCTB cell line is publicly available from a cell bank for research use worldwide. The present study reports the establishment of two novel cell lines, NCC-GCTB8-C1 and NCC-GCTB9-C1, derived from the primary tumor tissues of two patients with GCTB. Both cell lines maintained the hallmark mutation in the H3-3A gene, which is associated with tumor formation and development in GCTB. Characterization of these cell lines revealed their steady growth, spheroid-formation capability, and invasive traits. Potential therapeutic agents were identified via extensive drug screening of the two cell lines and seven previously established GCTB cell lines. Among the 214 antitumor agents tested, romidepsin, a histone deacetylase inhibitor, and mitoxantrone, a topoisomerase inhibitor, were identified as potential therapeutic agents against GCTB. Conclusively, the establishment of NCC-GCTB8-C1 and NCC-GCTB9-C1 provides novel and crucial resources that are expected to advance GCTB research and potentially revolutionize treatment strategies.
Collapse
Affiliation(s)
- Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-8670, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-8670, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shin Ishihara
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideki Yokoo
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
40
|
Temma K, Oketani R, Kubo T, Bando K, Maeda S, Sugiura K, Matsuda T, Heintzmann R, Kaminishi T, Fukuda K, Hamasaki M, Nagai T, Fujita K. Selective-plane-activation structured illumination microscopy. Nat Methods 2024; 21:889-896. [PMID: 38580844 DOI: 10.1038/s41592-024-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.
Collapse
Affiliation(s)
- Kenta Temma
- Department of Applied Physics, Osaka University, Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ryosuke Oketani
- Department of Applied Physics, Osaka University, Osaka, Japan
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Toshiki Kubo
- Department of Applied Physics, Osaka University, Osaka, Japan
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, Osaka, Japan
| | - Shunsuke Maeda
- Department of Applied Physics, Osaka University, Osaka, Japan
| | - Kazunori Sugiura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Tatsuya Kaminishi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koki Fukuda
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takeharu Nagai
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Osaka, Japan.
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
41
|
Montesdeoca N, Borkar RL, Sathiyendiran M, Karges J. Dinuclear Rhenium(I) Tricarbonyl Complexes as Anticancer Drug Candidates. Chemistry 2024:e202400217. [PMID: 38574234 DOI: 10.1002/chem.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Cancer is one of the deadliest diseases worldwide. Chemotherapy remains one of the most dominant forms for anticancer treatment. Despite their clinical success, the used chemotherapeutic agents are associated with severe side effect and pharmacological limitations. To overcome these drawbacks there is a need for the development of new types of chemotherapeutic agents. Herein, the chemical synthesis and biological evaluation of dinuclear rhenium(I) complexes as potential chemotherapeutic drug candidates are proposed. The metal complexes were found to be internalized by an energy dependent endocytosis pathway, primary accumulating in the mitochondria. The rhenium(I) complexes demonstrated to induce cell death against a variety of cancer cells in the micromolar range through apoptosis. The lead compound showed to eradicate a pancreatic carcinoma multicellular tumor spheroid at micromolar concentrations.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Reema L Borkar
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | | | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
42
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
43
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
44
|
Jin M, Liu B, Zhang Z, Mu Y, Ma L, Yao H, Wang DA. Catechin-Functionalized Cationic Lipopolymer Based Multicomponent Nanomicelles for Lung-Targeting Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302985. [PMID: 37558506 DOI: 10.1002/adma.202302985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Catechins from green tea are one of the most effective natural compounds for cancer chemoprevention and have attracted extensive research. Cancer cell-selective apoptosis-inducing properties of catechins depend on efficient intracellular delivery. However, the low bioavailability limits the application of catechins. Herein, a nano-scaled micellar composite composed of catechin-functionalized cationic lipopolymer and serum albumin is constructed. Cationic liposomes tend to accumulate in the pulmonary microvasculature due to electrostatic effects and are able to deliver the micellar system intracellularly, thus improving the bioavailability of catechins. Albumin in the system acts as a biocompatible anti-plasma absorbent, forming complexes with positively charged lipopolymer under electrostatic interactions, contributing to prolonged in vivo retention. The physicochemical properties of the nano-micellar complexes are characterized, and the antitumor properties of catechin-functionalized materials are confirmed by reactive oxygen species (ROS), caspase-3, and cell apoptosis measurements. The role of each functional module, cationic polymeric liposome, and albumin is revealed by cell penetration, in vivo animal assays, etc. This multicomponent micellar nanocomposite has the potential to become an effective vehicle for the treatment of lung diseases such as pneumonia, lung tumors, sepsis-induced lung injury, etc. This study also demonstrates that it is a great strategy to create a delivery system that is both tissue-targeted and biologically active by combining cationic liposomes with the native bioactive compound catechins.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
45
|
Wang G, Cui Z, Tian J, Li X, Tang W, Jing W, Li A, Zhang Y. Paucatalinone A from Paulownia Catalpifolia Gong Tong Elicits mitochondrial-mediated cancer cell death to combat osteosarcoma. Front Pharmacol 2024; 15:1367316. [PMID: 38590635 PMCID: PMC10999585 DOI: 10.3389/fphar.2024.1367316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
As the global cancer burden escalates, the search for alternative therapies becomes increasingly vital. Natural products, particularly plant-derived compounds, have emerged as promising alternatives to conventional cancer treatments due to their diverse bioactivities and favorable biosafety profiles. Here, we investigate Paucatalinone A, a newly discovered geranylated flavanone derived from the fruit of Paulownia Catalpifolia Gong Tong, notable for its significant anti-cancer properties. We revealed the capability of Paucatalinone A to induce apoptosis in osteosarcoma cells and deciphered its underlying mechanisms. Our findings demonstrate that Paucatalinone A substantially augments apoptosis, inhibits cell proliferation, and demonstrates a pronounced anti-tumor effect in a murine model of osteosarcoma. Mechanistically, Paucatalinone A disrupts calcium homeostasis and exacerbates intracellular reactive oxygen species accumulation, leading to mitochondrial impairment, cytoskeletal collapse, and caspase-dependent apoptotic cell death. This study underscores the potential of Paucatalinone A in initiating apoptosis in cancer cells and highlights the therapeutic efficacy of plant-derived agents in treating osteosarcoma, offering a viable approach for managing other intractable cancers.
Collapse
Affiliation(s)
- Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiwei Cui
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jinqiu Tian
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenzhao Tang
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare Uncommon Diseases of Shandong Province, Jinan, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
46
|
Wu T, Shi Y, Yang T, Zhao P, Yang Z, Yang B. Polymer-DNA assembled nanoflower for targeted delivery of dolastatin-derived microtubule inhibitors. RSC Adv 2024; 14:9602-9608. [PMID: 38516154 PMCID: PMC10956646 DOI: 10.1039/d3ra08146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Dolastatin derivatives possess excellent anticancer activity and have been translated into clinical trials for cancer therapy. Drug delivery systems enable dolastatin derivatives to break the limitation of instability during blood circulation and ineffective cell internalization in the application. Nevertheless, their potential has not been thoroughly established because of the limited loading efficacy and complicated chemical modification. Herein, we rationally propose a rolling circle amplification-based polymer-DNA assembled nanoflower for targeted and efficient delivery of dolastatin-derived drugs to achieve efficient anticancer therapy. The polymer-DNA assembled nanoflower with targeted aptamer conjugate is widely applicable for loading dolastatin-derived drugs with high encapsulation efficiency. The developed monomethyl auristatin E (MMAE) loaded PN@M exhibited increased cellular uptake and enhanced inhibitory effect, especially in multidrug-resistant tumor cells. The results of in vivo anticancer effects indicate that nanoflower as a dolastatin derivatives delivery system holds considerable potential for the treatment of malignant cancer.
Collapse
Affiliation(s)
- Tiantian Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Yanqiang Shi
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Pengxuan Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Zhu Yang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University Fuzhou 350212 China
| | - Bin Yang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
| |
Collapse
|
47
|
Fujiike AY, de Oliveira LCB, Ribeiro DL, Pereira ÉR, Okuyama NCM, Dos Santos AGP, de Syllos Cólus IM, Serpeloni JM. Effects of docetaxel on metastatic prostate (DU-145) carcinoma cells cultured as 2D monolayers and 3D multicellular tumor spheroids. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:227-244. [PMID: 38095149 DOI: 10.1080/15287394.2023.2293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Docetaxel (DTX) is one of the chemotherapeutic drugs indicated as a first-line treatment against metastatic prostate cancer (mPCa). This study aimed to compare the impact of DTX on mPCa (DU-145) tumor cells cultured as 2D monolayers and 3D multicellular tumor spheroids (MCTS) in vitro. The cells were treated with DTX (1-96 µM) at 24, 48, or 72 hr in cell viability assays (resazurin, phosphatase acid, and lactate dehydrogenase). Cell death was assessed with fluorescent markers and proliferation by clonogenic assay (2D) and morphology, volume, and integrity assay (3D). The cell invasion was determined using transwell (2D) and extracellular matrix (ECM) (3D). Results showed that DTX decreased cell viability in both culture models. In 2D, the IC50 (72 hr) values were 11.06 μM and 14.23 μM for resazurin and phosphatase assays, respectively. In MCTS, the IC50 values for the same assays were 114.9 μM and 163.7 μM, approximately 10-fold higher than in the 2D model. The % of viable cells decreased, while the apoptotic cell number was elevated compared to the control in 2D. In 3D spheroids, only DTX 24 μM induced apoptosis. DTX (≥24 μM at 216 hr) lowered the volume, and DTX 96 μM completely disintegrated the MCTS. DTX reduced the invasion of mPCa cells to matrigel (2D) and migration from MCTS to the ECM. Data demonstrated significant differences in drug response between 2D and 3D cell culture models using mPCa DU-145 tumor cells. MCTS resembles the early stages of solid tumors in vivo and needs to be considered in conjunction with 2D cultures when searching for new therapeutic targets.
Collapse
Affiliation(s)
- Andressa Yuri Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Larissa Cristina Bastos de Oliveira
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Diego Luis Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
48
|
Cho Y, Laird M, Bishop T, Li R, Ruffo E, Lohmueller J, Zervantonakis IK. CAR T cell infiltration and cytotoxic killing within the core of 3D breast cancer spheroids under control of antigen sensing in microwell arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585033. [PMID: 38654820 PMCID: PMC11037865 DOI: 10.1101/2024.03.14.585033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The success of chimeric antigen receptor (CAR) T cells in blood cancers has intensified efforts to develop CAR T therapies for solid cancers. In the solid tumor microenvironment, CAR T cell trafficking and suppression of cytotoxic killing represent limiting factors for therapeutic efficacy. Here, we present a microwell platform to study CAR T cell interactions with 3D tumor spheroids and determine predictors of anti-tumor CAR T cell function. To precisely control antigen sensing by CAR T cells, we utilized a switchable adaptor CAR system, that instead of directly binding to an antigen of interest, covalently attaches to co-administered antibody adaptors that mediate tumor antigen recognition. Following addition of an anti-HER2 adaptor antibody, primary human CAR T cells exhibited higher infiltration and clustering compared to the no adaptor control. By tracking CAR T cell killing at the individual spheroid level, we showed the suppressive effects of spheroid size and identified the initial CAR T cell : spheroid area ratio as a predictor of cytotoxicity. Spatiotemporal analysis revealed lower CAR T cell numbers and cytotoxicity in the spheroid core compared to the periphery. Finally, increasing CAR T cell seeding density, resulted in higher CAR T cell infiltration and cancer cell elimination in the spheroid core. Our findings provide new quantitative insights into CAR T cell-mediated killing of HER2+ breast tumor cells. Given the miniaturized nature and live imaging capabilities, our microfabricated system holds promise for discovering cell-cell interaction mechanisms that orchestrate antitumor CAR T cell functions and screening cellular immunotherapies in 3D tumor models.
Collapse
|
49
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
50
|
de Oliveira Silva N, de Lima LVA, de Oliveira LM, da Silva MF, de Aguiar AP, Semprebon SC, Favaron PO, Lepri SR, Felicidade I, Mantovani MS. Cellular and molecular antiproliferative effects in 2D monolayer and 3D-cultivated HT-29 cells treated with zerumbone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1561-1573. [PMID: 37672080 DOI: 10.1007/s00210-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.
Collapse
Affiliation(s)
- Nayane de Oliveira Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Liana Martins de Oliveira
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Amanda Passuello de Aguiar
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Phelipe Oliveira Favaron
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|