1
|
Wu X, Chen Z, Wang J, Li L, Guo Y, Xu Z, Kuang Y, Liao T, Li C. Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy. Colloids Surf B Biointerfaces 2025; 249:114530. [PMID: 39862755 DOI: 10.1016/j.colsurfb.2025.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA. PB-CD-PLL(NF)-FA can be enriched in tumor tissues by passive targeting with enhanced permeability and retention (EPR) effect and active targeting with FA, and can promote the decomposition of NF under UV light irradiation to achieve the precise release of nitric oxide (NO). PB has a good photothermal conversion efficiency in the NIR region and can be used for PTT. The results of in vivo and in vitro studies showed that PB-CD-PLL(NF)-FA has high photothermal conversion efficiency under NIR laser irradiation, and can release NO on demand under UV light irradiation, which shows a good synergistic therapeutic effect of tumor PTT/GT.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhongyin Chen
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinyu Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Linwei Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhao Guo
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ying Kuang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Tao Liao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Cao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Rehman MU, Zuo Y, Tu N, Guo J, Liu Z, Cao S, Long S. Diverse pharmacological activities of β-carbolines: Substitution patterns, SARs and mechanisms of action. Eur J Med Chem 2025; 287:117350. [PMID: 39933403 DOI: 10.1016/j.ejmech.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
β-Carbolines, a class of indole-containing heterocyclic alkaloids, are widely distributed in nature and possess diverse bioactivities, making them promising drug candidates against a wide range of diseases. The remarkable medicinal potential of β-carbolines has spurred the pharmaceutical research community to study their derivatives extensively. This review updates the development of β-carboline derivatives in recent years (2015-2024), particularly with a focus on their anticancer, antiparasitic, antimicrobial, antiviral, and neuroprotective properties, based on the modification approaches such as substitution on indole N (ring B), pyridine or its reduced forms (ring C), and dimerization of β-carbolines. Moreover, the mechanisms of action and structure-activity relationships of these β-carboline derivatives are highlighted to offer valuable insights on the design and development of new β-carbolines with better pharmacological activities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Yujie Zuo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ni Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
3
|
Zhao J, Wang B, Yan M, Liu Y, Zhao R, Wang X, Shao T, Li Y, Imran M, Ji M, Zhao H, Guimarães CF, Li G, Zhou Q, Reis RL. Progress in enzyme-powered micro/nanomotors in diagnostics and therapeutics. Bioact Mater 2025; 46:555-568. [PMID: 39896991 PMCID: PMC11782855 DOI: 10.1016/j.bioactmat.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Enzyme-powered micro/nanomotors (EMNMs) represent cutting-edge research taking advantage of enzymes as biocatalysts to provide a driving force for micro/nanomotors. Up to now, EMNMs have been designed to be powered by catalase, urease, lipase, collagenase, compound enzymes, etc. They not only have good biocompatibility and biosafety but also possess the unique ability to utilize physiologically relevant fuel to achieve autonomous propulsion through in vivo catalytic reactions. This innovation has opened exciting possibilities for medical applications of EMNMs. Given the fact that the human body is naturally abundant with substrates available for enzymatic reactions, EMNMs can effectively exploit the complex microenvironment associated with diseases, enabling the diagnosis and treatment of various medical conditions. In this review, we first introduce different kinds of EMNMs applied in specific environments for the diagnosis and treatment of diseases, while highlighting their advancements for revolutionizing healthcare practices. Then, we address the challenges faced in this rapidly evolving field, and at last, the potential future development directions are discussed. As the potential of EMNMs becomes increasingly evident, continued research and exploration are essential to unlock their full capabilities and to ensure their successful integration into clinical applications.
Collapse
Affiliation(s)
- Jinpeng Zhao
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Banghui Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Mingzhe Yan
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yuxin Liu
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Ruizhe Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Xuezhe Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Tianyi Shao
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yifei Li
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Muhammad Imran
- Department of Biosciences, COMSATS University, Islamabad Park Road, Islamabad, Pakistan
| | - Mingze Ji
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Hong Zhao
- Department of Bone, Huangdao District Central Hospital, Qingdao, 266555, China
| | - Carlos F. Guimarães
- 3B's Research Group-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
- ICVS/3B's – Portuguese Government Associate Laboratory, University of Minho, Braga, Guimarães, Portugal
| | - Guotai Li
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Rui L. Reis
- 3B's Research Group-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
- ICVS/3B's – Portuguese Government Associate Laboratory, University of Minho, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Dong JH, Chen BH, Jiang S, Wu XY, Feng WW, Li JH, Pan ZY, Liu Y, He L. Phototherapeutic activity of polypyridyl ruthenium(II) complexes through synergistic action of nitric oxide and singlet oxygen. Dalton Trans 2025; 54:5753-5763. [PMID: 40062910 DOI: 10.1039/d5dt00038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photodynamic therapy (PDT) and gas therapy (GT) have emerged as research hotspots due to their excellent cancer treatment efficacy. By combining the advantages of both, the simultaneous and controllable release of reactive oxygen species (ROS) and nitric oxide (NO) has become a possibility. This paper describes the design of two Ru(II) complexes, [Ru(bpy)2(NFIP)](PF6)2 (Ru1, bpy = 2,2'-bipyridine, NFIP = 4-nitro-3-trifluoromethylaniline-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ru(phen)2(NFIP)](PF6)2 (Ru2, phen = 1,10-phenanthroline), through the integration of the polypyridyl ruthenium structure and a photoresponsive NO donor. The structures and purity of the complexes were confirmed by several methods, including 1H NMR, mass spectrometry, elemental analysis, high performance liquid chromatography (HPLC) and UV-Vis absorption spectra. Both complexes were demonstrated to efficiently generate singlet oxygen (1O2) (ΦΔ = 0.40 and 0.44 in phosphate buffered saline (PBS) for Ru1 and Ru2, respectively) and release NO under visible light irradiation. Upon light exposure, Ru2 exhibited significant phototoxicity against human cervical cancer HeLa cells. In vitro experiments indicated that Ru2 elevated the levels of ROS and NO in HeLa cells when exposed to light, resulting in mitochondrial impairment and caspase-mediated cell death. Overall, Ru2 proves to be a potent phototherapeutic compound, capable of producing ROS and NO, thus providing precision in cancer phototherapy.
Collapse
Affiliation(s)
- Jia-Hao Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiao-Yin Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Wen Feng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Hao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wang Y, Wu Q, Guo W, Chen Z, Tan L, Fu C, Ren X, Zhang J, Meng X, Gu B. Dual-upregulation of p53 for self-sensitized cuproptosis via microwave dynamic and NO gas therapy. J Colloid Interface Sci 2025; 691:137421. [PMID: 40154167 DOI: 10.1016/j.jcis.2025.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Cuproptosis-a novel cell death mechanism-is an innovative strategy for tumor therapy. However, the insufficient efficacy of cuproptosis, primarily owing to the low sensitivity of tumor cells to Cu ions, remains a major challenge. In this study, we design TiCuMOF@PEG@l-Arg@TPP (TCPAT) nanoparticles to facilitate self-sensitized cuproptosis for anti-tumor therapy through the dual upregulation of p53. TiMOF serves as a microwave sensitizer by generating reactive oxygen species (ROS). Notably, the uniformly distributed Cu ions within the MOF serve as co-catalysts to provide reactive sites that enhance ROS generation. Additionally, the ROS generated are utilized to oxidize l-arginine, thus resulting in the release of nitric oxide (NO), which has a long half-life and diffusion distance, thereby enabling it to penetrate deep into the tumor regions that are typically inaccessible to ROS. Furthermore, TCPAT not only induces cuproptosis but also leverages the efficiently generated ROS and cascade-released NO for the dual upregulation of p53. This upregulation subsequently inhibits glycolysis, increases cellular sensitivity to Cu ions, and facilitates self-sensitized cuproptosis. Consequently, the self-sensitized cuproptosis strategy, dependent on the efficient generation of ROS, presents a promising avenue for tumor therapy based on cuproptosis mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiong Wu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenna Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zengzhen Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Longfei Tan
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Changhui Fu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangling Ren
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiqing Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xianwei Meng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bin Gu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
6
|
Ilhan H, Şeker M, Gülseren G, Bakırcı ME, Boyacı Aİ, Cakmak Y. Nitric Oxide Activatable Photodynamic Therapy Agents Based on BODIPY-Copper Complexes. ACS Pharmacol Transl Sci 2025; 8:679-689. [PMID: 40109755 PMCID: PMC11915034 DOI: 10.1021/acsptsci.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 03/22/2025]
Abstract
In this work, two BODIPY-bipyridine Cu2+ ion complexes for targeted nitric oxide (NO) activatable photodynamic therapy are reported. The design is based on the relatively high concentration of these small gas molecules in the tumor microenvironment. Copper(II) ion complexation to the photosensitizer renders it in the OFF position in terms of fluorescence and reactive oxygen species (ROS) production. The interaction of the Cu2+-BODIPY complex with nitric oxide interchanges both fluorescence and therapy mode into the ON state through the detachment of the cation. Therefore, targeting the cancer cells would be expected to be achieved in this way. Moreover, one of the compounds, AP5, has increased aqueous solubility due to the polar structure. The designed structures also have near-infrared (IR) absorption ability up to 800 nm aqueous solutions. In addition, through using in vitro cell culture studies with HeLa and RAW264.7 cell lines, we confirmed that AP5 and AP6 could be activated in the presence of NO, and cell photocytotoxicity occurred extensively compared with the NO-absent cells. We believe that this work will provide new opportunities for the increased efficacy of the photodynamic treatment of cancer and smart photosensitizer design.
Collapse
Affiliation(s)
- Huriye Ilhan
- Department of Biotechnology, Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, 42080 Konya, Turkey
- Department of Metallurgical and Materials Engineering & Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42090 Konya, Turkey
| | - Merve Şeker
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Gülcihan Gülseren
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Melike Ebrar Bakırcı
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Ayşe İlayda Boyacı
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Yusuf Cakmak
- Department of Metallurgical and Materials Engineering & Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42090 Konya, Turkey
| |
Collapse
|
7
|
Liu H, Yao K, Hu M, Li S, Yang S, Zhao A. On-Chip Electrochemical Sensor Based on 3D Graphene Assembly Decorated Ultrafine RuCu Alloy Nanocatalyst for In Situ Detection of NO in Living Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:417. [PMID: 40137592 PMCID: PMC11946219 DOI: 10.3390/nano15060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
In this work, we developed 3D ionic liquid (IL) functionalized graphene assemblies (GAs) decorated by ultrafine RuCu alloy nanoparticles (RuCu-ANPs) via a one-step synthesis process, and integrated it into a microfluidic sensor chip for in situ electrochemical detection of NO released from living cells. Our findings have demonstrated that RuCu-ANPs on 3D IL-GA exhibit high density, uniform distribution, lattice-shaped arrangement of atoms, and extremely ultrafine size, and possess high electrocatalytic activity to NO oxidation on the electrode. Meanwhile, the 3D IL-GA with hierarchical porous structures can facilitate the efficient electron/mass transfer at the electrode/electrolyte interface and the cell culture. Moreover, the graft of IL molecules on GA endows it with high hydrophilicity for facile and well-controllable printing on the electrode. Consequently, the resultant electrochemical microfluidic sensor demonstrated excellent sensing performances including fast response time, high sensitivity, good anti-interference ability, high reproducibility, long-term stability, as well as good biocompatibility, which can be used as an on-chip sensing system for cell culture and real-time in situ electrochemical detection of NO released from living cells with accurate and stable characteristics in physiological conditions.
Collapse
Affiliation(s)
- Haibo Liu
- Technology Inspection Center of ShengLi Oil Filed, China Petrochemical Corporation, Dongying 257000, China;
| | - Kaiyuan Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China;
| | - Min Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China (S.L.); (S.Y.)
| | - Shanting Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China (S.L.); (S.Y.)
| | - Shengxiong Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China (S.L.); (S.Y.)
| | - Anshun Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China;
| |
Collapse
|
8
|
Khan AA, Dewald HD. Nitric oxide and peroxynitrite as new biomarkers for early diagnosis of autism. Brain Res 2025; 1850:149438. [PMID: 39793916 DOI: 10.1016/j.brainres.2024.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Autism spectrum disorder, or autism, is a neurodevelopmental disorder of the developing child's brain with a genetic causality. It can be diagnosed at about three years after birth when it begins to present itself via a range of neuropsychiatric symptoms. Nitric oxide is a crucial small molecule of life synthesized within cells of our body systems, including cells of our brain. Peroxynitrite is the product of reaction between superoxide anion and nitric oxide. It normally isomerizes into harmless nitrates or nitrites. However, when excessive superoxide anion is present, the cellular concentration of peroxynitrite can increase to a toxic level. Autism has been suggested to cause oxidative damage to brain cells. Until now, it is impossible to sample tissue from a live brain. Instead, stem cells can be derived (from an autism patient's somatic cells) which can then be differentiated and chemically directed to grow into miniature 3-dimensional tissue masses resembling specific brain regions (e.g., the cortex) called brain organoids. This review discusses utilizing nitric oxide and peroxynitrite as biomarkers and comparing their relative concentrations in stem cells and stem cell derived brain organoids of healthy and autistic individuals to develop a bioanalytical process for early diagnosis of autism.
Collapse
Affiliation(s)
- Abdullah Asif Khan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
| |
Collapse
|
9
|
Ferreirar FDS, Martins TNDO, Pappis L, Moura SWD, Machado AK, Pivetta HMF. Cumulative effect of photobiomodulation by blue and red light on tumor cells: in vitro study with mammary adenocarcinoma cells - MCF-7. Lasers Med Sci 2025; 40:119. [PMID: 40014152 DOI: 10.1007/s10103-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Although the mechanism of action of photobiomodulation (PBM) on tumor cells is already well described in the literature, its cumulative effect is not. The purpose of this study was to evaluate the cumulative effect of photobiomodulation (PBM) with blue (470 nm) and red (658 nm) light at doses of 6 J/cm² and 19 J/cm², respectively, in mammary adenocarcinoma (MCF-7) tumor cells. The study analyzed how single and sequential exposures to these lights modulated cell viability, proliferation, dsDNA release, nitric oxide (NO) production, and reactive oxygen species (ROS). Experimental analyses were carried out to verify cell viability and proliferation, release of dsDNA into the extracellular environment, production of nitric oxide (NO), and formation of reactive oxygen species (ROS). Exposures caused a reduction in cell viability and/or proliferation and there was no increase in mitosis at any of the wavelengths tested. Blue light promoted a reduction in the production of NO and ROS in all analyses. Red light, in a single irradiation at 6 J/cm², was able to promote an increase in NO rates and two cumulative doses at 19 J/cm² increased the formation of ROS. In this study, PBM with blue and red LED, at doses of 6 J/cm² and 19 J/cm² did not cause an increase in cell proliferation but rather reduced the viability and division capacity of breast adenocarcinoma cells.
Collapse
Affiliation(s)
- Fabiana Dos Santos Ferreirar
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil.
| | - Thaís Nogueira de Oliveira Martins
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| | - Lauren Pappis
- Pharmaceutical Science Graduate Program,, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | | | - Alencar Kolinski Machado
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
- Nanosciences Graduate Program, Franciscan University, Santa Maria, RS, Brazil
| | - Hedioneia Maria Foletto Pivetta
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| |
Collapse
|
10
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
11
|
Xu S, Xie X, He P, Zhu S, Li X, Chen Q, Ma X, Liang X. Nitric Oxide-Producing Multiple Functional Nanoparticle Remodeling Tumor Microenvironment for Synergistic Photodynamic Immunotherapy against Hypoxic Tumor. ACS NANO 2025; 19:6371-6387. [PMID: 39913864 DOI: 10.1021/acsnano.4c16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The treatment of pancreatic cancer faces significant challenges due to connective tissue hyperplasia and severe hypoxia. Unlike oxygen-dependent Type II photosensitizers, Type I photosensitizers can produce a substantial amount of reactive oxygen species, even under hypoxic conditions, making them more suitable for photodynamic therapy of pancreatic cancer. However, the dense extracellular matrix of pancreatic cancer limits the penetration efficiency of photosensitizers, and the presence of immunosuppressive cells in the tumor microenvironment reduces the therapeutic effect. To address these challenges, we designed the photoimmunotherapeutic M1@PAP nanoparticles composed of Type I photosensitizer and anti-PD-L1 siRNA (siPD-L1), which was encapsulated into M1 macrophage membrane vesicles. In this system, pyropheophorbide-a (PPA) was covalently conjugated to poly-l-arginine (Arg9). Notably, it was capable of generating sufficient superoxide anions under hypoxic conditions, thereby functioning as a Type I photosensitizer. Furthermore, Arg9 acted as a nitric oxide (NO) donor, enhancing the penetration efficiency of the nanophotosensitizer by inhibiting cancer-associated fibroblast (CAF) activation and decomposing the tumor extracellular matrix. Additionally, M1 macrophage membrane vesicles provided active targeting capabilities and reeducated immunosuppressed M2 macrophages. The reversal of immunosuppressive microenvironment further promoted the efficacy of anti-PD-L1 siRNA immunotherapy, showing great potential in synergistic photodynamic immunotherapy against hypoxic pancreatic tumor.
Collapse
Affiliation(s)
- Shuyu Xu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xinxin Xie
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ping He
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiwei Zhu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoda Li
- Peking University Health Science Center, Beijing 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Xiaotu Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications†. Biol Reprod 2025; 112:204-224. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization, and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia, gestational diabetes mellitus, preterm birth, and fetal growth restriction, may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction, and gene transcription. In this review, we focus on the impact of various post-translational modifications on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li T, Cheng D, Xu X, Wang B, Xing W, Xu Y, Qian X, Yang Y, Zhu W. Transferrin-targeting pH-responsive and biodegradable mesoporous silica nanohybrid for nitric oxide-sensitized chemotherapy of cancer. Colloids Surf B Biointerfaces 2025; 246:114409. [PMID: 39612521 DOI: 10.1016/j.colsurfb.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Weakly acidic pH, low oxygen and high glutathione levels are the main characteristics of tumor cells. Taking advantage of the unique acidic microenvironment of tumor cells, acid-responsive mesoporous organosilica nanoparticles (AMON) were designed for nitric oxide (NO)-sensitized chemotherapy of tumors. AMON served as a nanocarrier co-loaded with a nitric oxide donor (NOD) and chemotherapeutic drug doxorubicin (DOX). Transferrin (Tf) was modified on the surface as a targeting ligand to form NOD&DOX@AMON. In vitro experiments showed that AMON could be completely degraded under acidic conditions (pH 5.0) after 48 h. NOD&DOX@AMON entered cells via transferrin receptor-mediated internalization and degraded in the acidic microenvironment to release its payloads. NOD released NO in presence of one-electron reducing substances like Glutathione (GSH) and ascorbic acid, inhibiting P-glycoprotein(P-gp) function and thereby increasing the intracellular concentration of DOX. In vivo distribution studies revealed that the nanohybrids accumulated maximally in tumor tissue 12 h after intravenous injection and exhibited significant inhibitory effects on HepG2 xenograft tumors. Western blot experiments demonstrated that NOD&DOX@AMON could inhibit the expression of drug resistance-associated proteins and was expected to be employed as a therapeutic approach for drug-resistant ttumors.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Di Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiu Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqian Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
14
|
Patel A, Tong S, Roosan MR, Syed B, Awasthi A, Silverman RB, Yang S. Crosstalk Between nNOS/NO and COX-2 Enhances Interferon-Gamma-Stimulated Melanoma Progression. Cancers (Basel) 2025; 17:477. [PMID: 39941844 PMCID: PMC11816268 DOI: 10.3390/cancers17030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Interferon gamma (IFN-γ) in the melanoma tumor microenvironment plays opposing roles, orchestrating both pro-tumorigenic activity and anticancer immune responses. Our previous studies demonstrated the role of neuronal nitric oxide synthase (nNOS) in IFN-γ-stimulated melanoma progression. However, the underlying mechanism has not been well defined. This study determined whether the nNOS/NO and COX-2/PGE2 signaling pathways crosstalk and augment the pro-tumorigenic effects of IFN-γ in melanoma. Methods: Bioinformatic analysis of patient and cellular proteomic data was conducted to identify proteins of interest associated with IFN-γ treatment in melanoma. Changes in protein expression were determined using various analytical techniques including western blot, flow cytometry, and confocal microscopy. The levels of PGE2 and nitric oxide (NO) were analyzed by HPLC chromatography and flow cytometry. In vivo antitumor efficacy was determined utilizing a human melanoma xenograft mouse model. Results: Our omics analyses revealed that the induction of COX-2 was significantly predictive of IFN-γ treatment in melanoma cells. In the presence of IFN-γ, PGE2 further enhanced PD-L1 expression and amplified the induction of nNOS, which increased intracellular NO levels. Cotreatment with celecoxib effectively diminished these changes induced by PGE2. In addition, nNOS blockade using a selective small molecule inhibitor (HH044), efficiently inhibited IFN-γ-induced PGE2 and COX-2 expression levels in melanoma cells. STAT3 inhibitor napabucasin also inhibited COX-2 expression both in the presence and absence of IFN-γ. Furthermore, celecoxib was shown to enhance HH044 cytotoxicity in vitro and effectively inhibit human melanoma tumor growth in vivo. HH044 treatment also significantly reduced tumor PGE2 levels in vivo. Conclusions: Our study demonstrates the positive feedback loop linking nNOS-mediated NO signaling to the COX-2/PGE2 signaling axis in melanoma, which further potentiates the pro-tumorigenic activity of IFN-γ.
Collapse
Affiliation(s)
- Anika Patel
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Shirley Tong
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Moom R. Roosan
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Basir Syed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Amardeep Awasthi
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Richard B. Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|
15
|
Józwiak M, Bauer M, Kamysz W, Kleczkowska P. Multifunctionality and Possible Medical Application of the BPC 157 Peptide-Literature and Patent Review. Pharmaceuticals (Basel) 2025; 18:185. [PMID: 40005999 PMCID: PMC11859134 DOI: 10.3390/ph18020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BPC 157, known as the "Body Protection Compound", is a pentadecapeptide isolated from human gastric juice that demonstrated its pleiotropic beneficial effects in various preclinical models mimicking medical conditions, such as tissue injury, inflammatory bowel disease, or even CNS disorders. Unlike many other drugs, BPC 157 has a desirable safety profile, since only a few side effects have been reported following its administration. Nevertheless, this compound was temporarily banned by the World Anti-Doping Agency (WADA) in 2022 (it is not currently listed as banned by the WADA). However, it has not been approved for use in standard medicine by the FDA and other global regulatory authorities due to the absence of sufficient and comprehensive clinical studies confirming its health benefits in humans. In this review, we summarize information on the biological activities of BPC 157, with particular reference to its mechanism of action and probable toxicity. This generated the attention of experts, as BPC 157 has been offered for sale on many websites. We also present recent interest in BPC 157 as reflected in a number of patent applications and granted patents.
Collapse
Affiliation(s)
- Michalina Józwiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland;
| | - Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | | |
Collapse
|
16
|
Badawy AA, El-Hofey SM, Shaban AM, Orif SE, Uyanıkgil Y, El-Magd MA. Camel milk extracellular vesicles/exosomes: a fascinating frontier in isolation and therapeutic potential. Food Funct 2025; 16:344-365. [PMID: 39714264 DOI: 10.1039/d4fo04331f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Camel milk has a unique composition that sets it apart from other types of animal milk, which has captured the interest of medical and scientific communities. Extracellular vesicles (EVs) mainly contain exosomes (Exos, 30-200 nm) and microvesicles (MVs, 200-1000 nm). Camel milk EVs, particularly Exos, which we named EVs/Exos, have arisen as a fascinating area of scientific inquiry, holding enormous potential for the future of biomedicine due to their anticancer, antibacterial, antidiabetic nephropathy, and immunostimulatory impacts. Camel milk EVs/Exos affect the antioxidant status and oxidative stress differently depending on the target cells. They boosted ROS in cancer cells but improved the antioxidant state in healthy cells. Camel milk EVs/Exos have distinct exosomal lactoferrin and kappa casein mRNAs, which could be responsible for their anticancer and immunomodulatory effects. Due to the high fat content of milk, there is a lack of established protocols for the precise isolation of EVs/Exos from milk, despite the increasing interest in this area of study. This review highlighted the techniques employed for milk EV/Exo isolation and characterization, acknowledging the challenges faced by researchers and the latest advancements in overcoming these hurdles. This review also detailed the potential of camel milk EVs/Exos in therapeutic applications. This comprehensive analysis positions camel milk EVs/Exos at the forefront of scientific inquiry, paving the way for groundbreaking discoveries in the years to come.
Collapse
Affiliation(s)
- Abdelnaser A Badawy
- Biochemistry Department, Faculty of Medicine, Northern Border University, Arar City, Saudi Arabia
| | - Salma M El-Hofey
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Amira M Shaban
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University 62511, Egypt
| | - Sahar E Orif
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Stem Cells, Institute of Health Sciences, Ege University, İzmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Stem Cells, Institute of Health Sciences, Ege University, İzmir, Türkiye
- Cord Blood Cell - Tissue Research and Application Center, Ege University, İzmir, 35100, Turkiye
| | - Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| |
Collapse
|
17
|
Nie G, Mei Y, Long M, Xu X, Liu M, Xu Z, Wang H. Endoplasmic reticulum-targeting fluorescence turn-on probe for nitric oxide detection in living cells and serum samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125172. [PMID: 39316861 DOI: 10.1016/j.saa.2024.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Nitric oxide (NO) is an important gas signaling molecule, and endoplasmic reticulum (ER) stress induced by NO may be related to the pathogenesis of many diseases. Therefore, the development of ER-targeted fluorescent probes for NO is of great significance to investigate the relationship between ER stress and NO concentration changes in related diseases. Herein, an ER-targeted fluorescent probe (ER-Np) for sensing NO was constructed. ER-Np was served as an excellent tool for detection NO with high selectivity, sensitivity and ER-targetable ability. Moreover, fluorescence imaging experiments indicated that ER-Np is capable of imaging NO in living cells. Impressively, visualization of endogenous NO production during dithiothreitol (DTT)-induced ER stress in living cells was successfully observed. In addition, we found that serum NO levels were upregulated in epilepsy children, which opens up a new avenue for further understanding the relationship between the diagnostic of epilepsy.
Collapse
Affiliation(s)
- Gang Nie
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016 Wuhan, PR China
| | - Yan Mei
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016 Wuhan, PR China
| | - Min Long
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430205 Wuhan, PR China
| | - Xinlan Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430205 Wuhan, PR China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016 Wuhan, PR China.
| | - Zhiqiang Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430205 Wuhan, PR China.
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, 430079 Wuhan, PR China.
| |
Collapse
|
18
|
Dai W, Zhou X, Zhao J, Lei L, Huang Y, Jia F, Tang Z, Ji J, Jin Q. Tumor microenvironment-modulated nanoparticles with cascade energy transfer as internal light sources for photodynamic therapy of deep-seated tumors. Biomaterials 2025; 312:122743. [PMID: 39111233 DOI: 10.1016/j.biomaterials.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.
Collapse
Affiliation(s)
- Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinchao Zhao
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China
| | - Lei Lei
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China.
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China; Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
19
|
Lu C, Liao S, Chen B, Xu L, Wu N, Lu D, Kang H, Zhang XB, Song G. Responsive probes for in vivo magnetic resonance imaging of nitric oxide. NATURE MATERIALS 2025; 24:133-142. [PMID: 39587281 DOI: 10.1038/s41563-024-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Nitric oxide (NO), a pivotal signalling molecule, plays multifaceted roles in physiological and pathological processes, including cardiovascular and immune functions, neurotransmission and cancer progression. Nevertheless, measuring NO in vivo is challenging due to its transient nature and the complexity of the biological environment. Here we describe NO-responsive magnetic probes made of crosslinked superparamagnetic iron oxide nanoparticles tethered to a NO-sensitive cleavable linker for highly sensitive and selective NO magnetic resonance imaging in vivo. These probes enable the detection of NO at concentrations as low as 0.147 μM, allowing for the imaging and quantification of NO in mouse tumour models, studying its effects on tumour progression and immunity and assessing the response of tumour-associated macrophages to cancer immunotherapeutic agents. Additionally, they facilitate concurrent anatomical and molecular imaging of organs, helping to identify pathological alterations in the liver. Overall, these probes represent promising non-invasive tools for investigating the dose-dependent conflicting role of NO in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Baode Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Na Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dingyou Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Korea
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
20
|
Guadalupe Hernández J, Thangarasu P. Chromium Complex of Macrocyclic Ligands as Precursor for Nitric Oxide Release: A Theoretical Study. Chemphyschem 2024; 25:e202400700. [PMID: 39413354 DOI: 10.1002/cphc.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Our research on the chromium complex of macrocyclic ligands as a precursor for nitric oxide release makes a significant contribution to the field of chemistry. We conduct a detailed analysis of nitrito chromium complexes, specifically trans-[M(III)L1-5(ONO)2]+, where M=Cr(III) and L1-L5 represent different ligands such as L1=1,4,8,11-tetraazacyclotetradecane, L2= (5,7-dimethyl-6-benzylcyclam), L3= (5,7-dimethyl-6-anthracylcyclam), L4= (5,7-dimethyl-6-(p-hydroxymethylbenzyl)-1,4, 8,11-cyclam) and L5= (5,7-dimethyl-6-(1¢-methyl-4'-(1"-carboxymethylpyrene) benzyl)-1,4,8,11-tetraazacyclotetradecane). Our objective is to comprehensively understand the mechanism of NO release and identify the key factors influencing NO delivery. The optimized structure of the complexes at spin states S=1/2 or 3/2 indicates a decrease in the Cr(III)-O bond length (1.669-1.671 Å) along with an increase in the Cr(III)O-NO bond length (2.735-2.741 Å), which facilitates the release of NO. Furthermore, there is a significant change in the bond angle (Cr-O-NO), from 120.4° to 116.9°, to S=3/2, thus enlarging the O-NO bond and supporting the β-cleavage of NO from the complex. The calculated activation energy for the complexes reflects the energy difference between the low-spin doublet and high-spin quartet state due to spin crossover (SCO). Moreover, the Natural Transition Orbitals (NTOs) confirm the involvement of a hole-particle in the excitation. Additionally, TD-DFT reveals the pendant chromophore's role in generating NO, as the chromophore antenna effectively enhances light absorption.
Collapse
Affiliation(s)
- José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM), Estado de México, CP 57130, México
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, 04510, México, D.F., México
| |
Collapse
|
21
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
22
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
23
|
Yu Y, Zhang L, Jia H, Ji C, Liu Y, Zhao Z, Dai C, Ding D, Tang BZ, Feng G. Dual-Mode Reactive Oxygen Species-Stimulated Carbon Monoxide Release for Synergistic Photodynamic and Gas Tumor Therapy. ACS NANO 2024; 18:31286-31299. [PMID: 39475554 DOI: 10.1021/acsnano.4c10277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Controllable carbon monoxide (CO) release simulated by light-generated reactive oxygen species (ROS) represents a promising approach for cancer therapy but is hampered by low CO release rate and low ROS generation of conventional photosensitizers in hypoxia tumor microenvironments. In this study, we developed a highly efficient nanoplatform (TPyNO2-FeCO NPs) through co-encapsulating organic AIE photosensitizers (PSs) and CO prodrug (Fe3(CO)12), which are capable of light-triggered robust ROS generation and CO release for synergistic photodynamic therapy (PDT) and CO gas therapy. The success of this nanoplatform leverages the design of a PS, TPyNO2, with exceptional type I and type II ROS generation capabilities, achieved through the introduction of the α-photoinduced electron transfer (α-PET) process. With the incorporation of a 4-nitrobenzyl unit as a typical PET donor, the intramolecular α-PET process not only suppresses the radiative decay to redirect the excited-state energy to intersystem crossing for more triplet-state formation but also promotes electron separation and transfer processes for radical-type ROS generation. The resultant TPyNO2 demonstrates superior singlet oxygen, superoxide anion, and hydroxyl radial generation capabilities in the aggregate state. Upon light irradiation, TPyNO2-FeCO NPs release CO via the type I and type II dual-mode ROS-mediated processes in a controlled and targeted manner, overcoming the limitations of conventional CO release systems. TPyNO2-FeCO NPs also demonstrate a self-accelerating ROS-CO-ROS loop as the released CO induces intracellular oxidative stress, depolarizes mitochondria membrane potentials, and inhibits ATP production, leading to further intracellular ROS generation. Both in vitro and in vivo experiments validated the excellent antitumor performance of the combined PDT and CO gas therapy. This study provides valuable insights into the development of advanced PSs and establishes TPyNO2-FeCO NPs as promising nanoplatforms for safe and effective antitumor applications.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Hanyu Jia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Yucheng Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Zexian Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
24
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
25
|
Zhang F, Cheng K, Zhang XS, Zhou S, Zou JH, Tian MY, Hou XL, Hu YG, Yuan J, Fan JX, Zhao YD, Liu TC. Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer. J Nanobiotechnology 2024; 22:680. [PMID: 39506777 PMCID: PMC11542379 DOI: 10.1186/s12951-024-02948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The abnormal structure of tumor vascular seriously hinders the delivery and deep penetration of drug in tumor therapy. Herein, an integrated and tumor microenvironment (TME)-responsive nanocarrier is designed, which can dilate vessle and improve the drug penetration by in situ releasing nitric oxide (NO). Briefly, S-nitroso-glutathione (GSNO) and curcumin (Cur) were encapsulatd into the Cu-doped zeolite imidazole framework-8 (Cu-ZIF-8) and modified with hyaluronic acid. The nanocarrier degradation in the weakly acidic of TME releases Cu2+, then deplete overexpressed intratumourally glutathione and transformed into Cu+, thus disrupting the balance between nicotinamide adenine dinucleotide phosphate and flavin adenine dinucleotide (NADPH/FAD) during the metabolism homeostasis of tumor. The Cu+ can generate highly toxic hydroxyl radical through the Fenton-like reaction, enhancing the chemodynamic therapeutic effect. In addition, Cu+ also decomposes GSNO to release NO by ionic reduction, leading to vasodilation and increased vascular permeability, significantly promoting the deep penetration of Cur in tumor. Afterwards, the orderly operation of cell cycle is disrupted and arrested in the S-phase to induce tumor cell apoptosis. Deep-hypothermia potentiated 2D/3D fluorescence imaging demonstrated nanocarrier regulated endogenous metabolism homeostasis of tumor. The cascade-catalysed multifunctional nanocarrier provides an approach to treat orthotopic tumor.
Collapse
Affiliation(s)
- Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Shuai Zhang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, Hubei, 430081, P.R. China
| | - Sui Zhou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jia-Hua Zou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei, 438000, P.R. China
| | - Ming-Yu Tian
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
26
|
Shi J, Liu Y, Jiao S, Wu T, Wang A, Wang W, Xie L, Liu Y, Wang H. Synthesis, structure, spectra, cytotoxicity and photo induced NO release of four isomeric nitrosylruthenium complexes. Nitric Oxide 2024; 152:58-68. [PMID: 39313019 DOI: 10.1016/j.niox.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Four isomeric nitrosyl ruthenium complexes [RuCl(2mqn)(Val)(NO)] (1-4) were prepared (2mqn, 2-methyl-8-hydroxyquinoline; Val, l-valine) and characterized by 1H NMR, 13C NMR, absorption spectrum, electrospray ionization mass spectrometry, and X-ray crystal diffraction. Time-resolved FT-IR and fluorescence spectroscopy were used to monitor photo-induced NO release in solution, while NO released in living cells was imaged using a selective fluorescent probe. The isomeric complexes showed different levels of cytotoxicity against HeLa cells, and slightly photo-enhanced anti-proliferative activity was observed. The isomeric complexes 1-4 inhibited the growth of HeLa cells by inducing apoptosis and promoted cell cycle arrest in the S phase. Furthermore, they showed relatively lower cytotoxicity against the human liver cell line HL-7702. The different spatial configurations of the complexes is close related with the selective binding of the isomeric complexes with serum albumin, which provide insight into the potential applications of the nitrosyl ruthenium complexes.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China; Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Leilei Xie
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing, 100190, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
27
|
Sun M, Wang T, Zhu Y, Ling F, Bai J, Tang C. Gas immnuo-nanomedicines fight cancers. Biomed Pharmacother 2024; 180:117595. [PMID: 39476762 DOI: 10.1016/j.biopha.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
Certain gas molecules, including hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), oxygen (O2) and sulfur dioxide (SO2) exhibit significant biological functionalities that can modulate the immune response. Strategies pertaining to gas-based immune therapy have garnered considerable attention in recent years. Nevertheless, delivering various gas molecules precisely into tumors, which leads to enhanced anti-tumor immunotherapeutic effect, is still a main challenge. The advent of gas treatment modality with desirable immunotherapeutic efficiency has been made possible by the rapid development of nanotechnology, which even derives the concept of the gas immnuo-nanomedicines (GINMs). In light of the fact, we herein aim to furnish a cutting-edge review on the latest progress of GINMs. The underlying mechanisms of action for several gases utilized in cancer immunotherapy are initially outlined. Additionally, it provides a succinct overview of the current clinical landscape of gas therapy, and introduces GINMs specifically designed for cancer treatment based on immunotherapeutic principles across multiple strategies. Last but not least, we address the challenges and opportunities associated with GINMs, exploring the potential future developments and clinical applications of this innovative approach.
Collapse
Affiliation(s)
- Mengchi Sun
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Tianye Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yinmei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Feng Ling
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
28
|
Cheng Y, Zhong W, Chen Y, Tan BSN, Zhao Y, Guo J, Ma M, Zhao Y. Bimetal-Biligand Frameworks for Spatiotemporal Nitric Oxide-Enhanced Sono-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408242. [PMID: 39225414 DOI: 10.1002/adma.202408242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy can trigger immunogenic cell death to augment immunotherapy, benefiting from its superior spatiotemporal selectivity and non-invasiveness. However, the practical applications of sonosensitizers are hindered by their low efficacy in killing cancer cells and activating immune responses. Here, two US Food and Drug Administration-approved drug ligands (ferricyanide and nitroprusside) and two types of metals (copper/iron) are selected to construct a bimetal-biligand framework (Cu[PBA-NO]). Through elaborate regulation of multiple metal/ligand coordination, the systemically administered Cu[PBA-NO] nanoagent shows sono-catalytic and NO release ability under ultrasound irradiation, which can be used for effective sono-immunotherapy. Moreover, Cu[PBA-NO] can downregulate intracellular glutathione levels that would destroy intracellular redox homeostasis and facilitate reactive oxygen species accumulation. The released tumor-associated antigens subsequently facilitate dendritic cell maturation within the tumor-draining lymph node, effectively initiating a T cell-mediated immune response and thereby bolstering the capacity to identify and combat cancer cells. This study paves a new avenue for the efficient cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
29
|
Zhang Y, Wang S, Zhang L, Peng T. Development of a urea-bond cleavage reaction induced by nitric oxide for fluorescence imaging. J Mater Chem B 2024; 12:10248-10257. [PMID: 39291486 DOI: 10.1039/d4tb01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule with indispensable roles in physiological processes, but its abnormal production is implicated in various disease conditions. Detecting NO is crucial for interrogating its biological roles. Although many o-phenylenediamine-based fluorescent probes have been developed, only a small fraction has been employed in vivo. Moreover, these probes largely require direct modifications of the fluorophore backbones to render NO responsiveness, which restricts the general applicability of o-phenylenediamine-based probe designs to other types of fluorophores. Here, we report the rational development, optimization, and application of a NO-induced urea-bond cleavage reaction for selective fluorescence detection and imaging of NO in living systems. Through rational design and extensive screening, we identified a 2-aminophenylurea-derived functionality that can react with NO through N-nitrosation, acyltriazole formation, and hydrolysis to induce the cleavage of the urea bond and release of the amino-containing coumarin fluorophore. By caging different amino-containing fluorophore scaffolds with the 2-aminophenylurea-derived functionality, we modularly developed a series of NO fluorescent probes with different excitation and emission profiles for the detection of NO in aqueous solutions and live cells. Among these probes, the near-infrared probe has been demonstrated to enable in vivo fluorescence visualization of elevated endogenous levels of NO in a murine inflammation model. Overall, this study provides a NO-induced urea-bond cleavage reaction and establishes the utility of this reaction for the general and modular development of NO fluorescent probes, thus opening new opportunities for studying and manipulating NO in biological systems.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lina Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
30
|
Sankaranarayanan SA, Eswar K, Srivastava R, Thanekar AM, Gubige M, Bantal V, Rengan AK. In situ thermosensitive H 2O 2/NO self-sufficient hydrogel for photothermal ferroptosis of triple-negative breast cancer. NANOSCALE 2024; 16:18899-18909. [PMID: 39311638 DOI: 10.1039/d4nr02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
L-Arginine (LA), a semi-essential amino acid in the human body, holds significant potential in cancer therapy due to its ability to generate nitric oxide (NO) continuously in the presence of inducible NO synthase (iNOS) or reactive oxygen species (ROS). However, the efficiency of NO production in tumor tissue is severely constrained by the hypoxic and H2O2-deficient tumor microenvironment (TME). To address this issue, we have developed calcium peroxide (CaO2) nanoparticles capable of supplying O2/H2O2, which encapsulate and oxidize an LA-modified lipid bilayer to enable controlled localized NO generation in the presence of ROS, synergising with a ferroptosis inducer, RSL-3 (CPIR NPs). The synthesized nanoparticles were tested in vitro for their anticancer activity in 4T1 cells. To address challenges related to specificity and frequent dosing, we developed an in situ thermosensitive injectable hydrogel incorporating CPIR nanoparticles. Cross-linking at 60 °C creates a self-sufficient formulation, releasing NO/H2O2 to combat tumor hypoxia. RSL-3 induces ferroptosis, contributing to a synergistic photothermal effect and eliminating tumor in vivo.
Collapse
Affiliation(s)
- Sri Amruthaa Sankaranarayanan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Rupali Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Veeresh Bantal
- G Pulla Reddy College of Pharmacy, Mehdipatinam, Hyderabad, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
31
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
32
|
Nguyen TNH, Horowitz LF, Nguyen B, Lockhart E, Zhu S, Gujral TS, Folch A. Microfluidic Modulation of Microvasculature in Microdissected Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615278. [PMID: 39386436 PMCID: PMC11463410 DOI: 10.1101/2024.09.26.615278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The microvasculature within the tumor microenvironment (TME) plays an essential role in cancer signaling beyond nutrient delivery. However, it has been challenging to control the generation and/or maintenance of microvasculature in ex vivo systems, a critical step for establishing cancer models of high clinical biomimicry. There have been great successes in engineering tissues incorporating microvasculature de novo (e.g., organoids and organs-on-chip), but these reconstituted tissues are formed with non-native cellular and molecular components that can skew certain outcomes such as drug efficacy. Microdissected tumors, on the other hand, show promise in preserving the TME, which is key for creating cancer models that can bridge the gap between bench and bedside. However, microdissected tumors are challenging to perfuse. Here, we developed a microfluidic platform that allows for perfusing the microvasculature of microdissected tumors. We demonstrate that, compared to diffusive transport, microfluidically perfused tissues feature larger and longer microvascular structures, with a better expression of CD31, a marker for endothelial cells, as analyzed by 3D imaging. This study also explores the effects of nitric oxide pathway-related drugs on endothelial cells, which are sensitive to shear stress and can activate endothelial nitric oxide synthase, producing nitric oxide. Our findings highlight the critical role of controlled perfusion and biochemical modulation in preserving tumor microvasculature, offering valuable insights for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Brandon Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| |
Collapse
|
33
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
35
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
36
|
Laneri F, Parisi C, Seggio M, Fraix A, Longobardi G, Catanzano O, Quaglia F, Sortino S. Supramolecular red-light-photosensitized nitric oxide release with fluorescence self-reporting within biocompatible nanocarriers. J Mater Chem B 2024; 12:6500-6508. [PMID: 38873736 DOI: 10.1039/d4tb00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The strict dependence of the biological effects of nitric oxide (NO) on its concentration and generation site requires this inorganic free radical to be delivered with precise spatiotemporal control. Light-activation by suitable NO photoprecursors represents an ideal approach. Developing strategies to activate NO release using long-wavelength excitation light in the therapeutic window (650-1300 nm) is challenging. In this contribution, we demonstrate that NO release by a blue-light activatable NO photodonor (NOPD) with self-fluorescence reporting can be triggered catalytically by the much more biocompatible red light exploiting a supramolecular photosensitization process. Different red-light absorbing photosensitizers (PSs) are co-entrapped with the NOPD within different biocompatible nanocarriers such as Pluronic® micelles, microemulsions and branched cyclodextrin polymers. The intra-carrier photosensitized NO release, involving the lowest, long-lived triplet state of the PS as the key intermediate and its quenching by the NOPD, is competitive with that by molecular oxygen. This allows NO to be released with good efficacy, even under aerobic conditions. Therefore, the adopted general strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and using sophisticated and expensive irradiation sources.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Giuseppe Longobardi
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078, Pozzuoli (NA), Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
37
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
38
|
Zhang K, Li H, Wu X, Zhang D, Li Z. Positron Emission Tomography of Nitric Oxide by a Specific Radical-Generating Dihydropyridine Tracer. ACS Sens 2024; 9:2793-2800. [PMID: 38820066 DOI: 10.1021/acssensors.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Nitric oxide (NO) plays a pivotal role as a biological signaling molecule, presenting challenges in its specific detection and differentiation from other reactive nitrogen and oxygen species within living organisms. Herein, a 18F-labeled (fluorine-18, t1/2 = 109.7 min) small-molecule tracer dimethyl 4-(4-(4-[18F]fluorobutoxy)benzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ([18F]BDHP) is developed based on the dihydropyridine scaffold for positron emission tomography (PET) imaging of NO in vivo. [18F]BDHP exhibits a highly sensitive and efficient C-C cleavage reaction specifically triggered by NO under physiological conditions, leading to the production of a 18F-labeled radical that is readily retained within the cells. High uptakes of [18F]BDHP are found within and around NO-generating cells, such as macrophages treated with lipopolysaccharide or benzo(a)pyrene. MicroPET/CT imaging of arthritic animal model mice reveals distinct tracer accumulation in the arthritic legs, showcasing a higher distribution of NO compared with the control legs. In summary, a specific radical-generating dihydropyridine tracer with a unique radical retention strategy has been established for the marking of NO in real-time in vivo.
Collapse
Affiliation(s)
- Kaiqiang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Hua Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Deliang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
- Department of Nuclear Medicine, Xiang'an Hospital affiliated to Xiamen University, Xiamen, Fujian 361005, China
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
39
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
40
|
Martins T, Parisi C, Guerra Pinto J, Ribeiro Brambilla IDP, Malanga M, Ferreira-Strixino J, Sortino S. Stepwise Nitric Oxide Release and Antibacterial Activity of a Nitric Oxide Photodonor Hosted within Cyclodextrin Branched Polymer Nanocarriers. ACS Med Chem Lett 2024; 15:857-863. [PMID: 38894929 PMCID: PMC11181500 DOI: 10.1021/acsmedchemlett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
A hydrophobic nitric oxide (NO) photodonor integrating both nitroso and nitro functionalities within its chromophoric skeleton has been synthesized. Excitation of this compound with blue light triggers the release of two NO molecules from the nitroso and the nitro functionalities via a stepwise mechanism. Encapsulation of the NO photodonor within biocompatible neutral, cationic, and anionic β-cyclodextrin branched polymers as suitable carriers leads to supramolecular nanoassemblies, which exhibit the same nature of the photochemical processes but NO photorelease performances enhanced by about 1 order of magnitude when compared with the free guest. Antibacterial tests carried out with methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii demonstrate an effective antibacterial activity exclusively under light activation and point out a differentiated role of the polymeric nanocarriers in determining the outcome of the antibacterial photodynamic action.
Collapse
Affiliation(s)
- Tassia
J. Martins
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Juliana Guerra Pinto
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Juliana Ferreira-Strixino
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| |
Collapse
|
41
|
Ramirez IA, Sadak O, Sohail W, Huang X, Lu Y, Iverson NM. Development and Evaluation of an Expedited System for Creation of Single Walled Carbon Nanotube Platforms. CARBON LETTERS 2024; 34:1343-1354. [PMID: 39015541 PMCID: PMC11250639 DOI: 10.1007/s42823-024-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 07/18/2024]
Abstract
Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
Collapse
Affiliation(s)
- Ivon Acosta Ramirez
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Omer Sadak
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
- Department of Electrical and Electronics Engineering, Ardahan University, Ardahan 75000, Turkey
| | - Wali Sohail
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
| | - Nicole M. Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| |
Collapse
|
42
|
Parisi C, Pastore A, Stornaiuolo M, Sortino S. A fluorescent probe with an ultra-rapid response to nitric oxide. J Mater Chem B 2024; 12:5076-5084. [PMID: 38567488 DOI: 10.1039/d4tb00064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nitric oxide (NO) is a diatomic inorganic free radical ubiquitous in mammalian tissues and cells that plays a multifaceted role in a variety of physiological and pathophysiological processes. The strict dependence of the biological effects of NO on its concentration makes its real-time monitoring crucial. In view of the reactivity of NO with multiple bio-targets, the development of NO sensors that associate a fast response rate with selectivity and sensitivity is very challenging. Herein we report a fluorescent NO probe based on a BODIPY fluorogenic unit covalently linked to a trimethoxy aniline derivative through a flexible spacer. NO leads to effective nitrosation of the highly electron-rich amino active site of the probe through the secondary oxide N2O3, resulting in an increase of BODIPY fluorescence quantum yield from Φf = 0.06 to Φf = 0.55, accompanied by significant changes in the relative amplitude of the fluorescence lifetimes. In situ generation of NO, achieved by a tailored light-activatable NO releaser, allows the real-time detection of NO as a function of its concentration and permits demonstrating that the probe exhibits a very fast response time, being ≤0.1 s. This remarkable data combines with the high sensitivity of the probe to NO (LOD = 35 nM), responsiveness also to ONOO-, the other important secondary oxide of NO, independence from the fluorescence response within a wide pH range, good selectivity towards different analytes and small interference by typical physiological concentrations of glutathione. Validation of this probe in melanoma cell lines is also reported.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Arianna Pastore
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| |
Collapse
|
43
|
Jiang Z, Zhang C, Sun Q, Wang X, Chen Y, He W, Guo Z, Liu Z. A NIR-II Photoacoustic Probe for High Spatial Quantitative Imaging of Tumor Nitric Oxide in Vivo. Angew Chem Int Ed Engl 2024; 63:e202320072. [PMID: 38466238 DOI: 10.1002/anie.202320072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Nitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes. Herein, we designed a photoacoustic probe with an absorption maximum beyond 1000 nm for high spatial quantitative imaging of in vivo tumor NO dynamics. The probe exhibits remarkable sensitivity, selective ratiometric response behavior, and good tumor-targeting abilities, facilitating ratiometric imaging of tumor NO throughout tumor progression in a micron-resolution level. Using the probe as the imaging agent, we successfully quantified NO dynamics in tumor, liver and kidney. We have pinpointed an essential concentration threshold of around 80 nmol/cm3 for NO, which plays a crucial role in the "double-edged-sword" function of NO in tumors. Furthermore, we revealed a reciprocal relationship between the NO concentration in tumors and that in the liver, providing initial insights into the possible NO-mediated communication between tumor and the liver. We believe that the probe will help resolve conflicting aspects of NO biology and guide the design of imaging agents for tumor diagnosis and anti-cancer drug screening.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Qian Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
44
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
45
|
Hu C, Lu L, Guo C, Zhan T, Zhang X, Zhang H. Bisphenols and brominated bisphenols induced endothelial dysfunction via its disruption of endothelial nitric oxide synthase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123600. [PMID: 38369087 DOI: 10.1016/j.envpol.2024.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Emerging literatures have concentrated on the association between cardiovascular diseases risk of typical endocrine disruptor bisphenols, which also put forward the further studies need respect to the potential mechanism. Herein, we investigated the endothelial dysfunction effects of bisphenols and brominated bisphenols involved in aortic pathological structure, endothelial nitric oxide synthase (eNOS) protein phosphorylation, synthase activity and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice. Bisphenol A (BPA) and bisphenol S (BPS) increased NO production by 85.7% and 68.8% at 10-6 M level in vitro and 74.3%, 41.5% in vivo, respectively, while tetrabromobisphenol S (TBBPS) significantly inhibited NO by 55.7% at 10-6 M in vitro and 28.9% in vivo at dose of 20 mg/kg BW/d. Aortic transcriptome profiling revealed that the process of 'regulation of NO mediated signal transduction' was commonly induced. The mRNA and protein expression of phosphorylated eNOS at Ser1177 were promoted by BPA and BPS but decreased by TBBPA and TBBPS in HUVECs. Phosphorylation and enzymatic activity of eNOS were significantly increased by 43.4% and 13.8% with the treatment of BPA and BPS at 10-7 M, but decreased by 16.9% after exposure to TBBPS at 10-6 M in vitro. Moreover, only TBBPS was observed to increase aorta thickness significantly in mice and induce endothelial dysfunction. Our work suggests that bisphenols and brominated bisphenols may exert adverse outcome on vascular health differently in vitro and in vivo, and emphasizes areas of public health concern similar endocrine disruptors vulnerable on the vascular endothelial function.
Collapse
Affiliation(s)
- Chao Hu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| | - Chunyan Guo
- Radiation Monitoring Technical Center, State Environmental Protection Key Laboratory of Radiation Environmental Monitoring, Ministry of Ecology and Environment, Hangzhou, 310012, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, 08854, United States
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China
| |
Collapse
|
46
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
47
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
48
|
Abdel-Wahab ND, Kabil MF, El-Sherbiny IM, Salama MF, El-Sayed G, El-Sherbini ES. Potential anticancer effect of free and nanoformulated Deferasirox for breast cancer treatment: in-vitro and in-vivo evaluation. Drug Dev Ind Pharm 2024; 50:223-235. [PMID: 38305197 DOI: 10.1080/03639045.2024.2314189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer (BC) stands as the second-leading cause of mortality among women worldwide. Many chemotherapeutic treatments for BC come with significant adverse effects. Additionally, BC is recognized as one of the most resistant forms of malignancy to treatment. Consequently, there exists a critical need for innovative therapeutic agents that are both highly effective and exhibit reduced toxicity and side effects for patients. Deferasirox (DFX), an iron-chelating drug approved by the FDA for oral use, emerges as a promising contender in the fight against BC proliferation. DFX, primarily administered orally, is utilized to address chronic iron excess resulting from blood transfusions, and it is the inaugural treatment for chronic iron overload syndrome. However, DFX encounters limitations due to its poor water solubility. AIM This study aimed at incorporating DFX into lipid nanocapsules (DFX-LNCs) followed by investigating the anticancer effect of the DFX nanoform as compared to free DFX in-vitro and on an orthotopic BC mouse model in-vivo. METHODS The DFX-LNCs was prepared and imaged using TEM and also characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI) using DLS. Moreover, drug release, cytotoxicity, and anticancer effect were assessed in-vitro, and in-vivo. RESULTS The results revealed that DFX-LNCs are more cytotoxic than free DFX with IC50 of 4.417 µg/ml and 16.114 µg/ml, respectively, while the plain LNCs didn't show any cytotoxic effect on the 4T1 cell line (IC50 = 122.797 µg/ml). Besides, the apoptotic effect of DFX-LNCs was more pronounced than that of free DFX, as evidenced by Annexin V/PI staining, increased BAX expression, and decreased expression of BcL-2. Moreover, DFX-LNCs showed a superior antitumor effect in-vivo with potent antioxidant and anti-proliferative effects. CONCLUSION The newly developed DFX nanoform demonstrated a high potential as a promising therapeutic agent for BC treatment.
Collapse
Affiliation(s)
- Nadeen Diaa Abdel-Wahab
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed F Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Gehad El-Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - El-Said El-Sherbini
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| |
Collapse
|
49
|
Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, Zhang J, Ying X, Long X, Wang S, Sun J, Huang Q, Ai K. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/02/2025]
Abstract
AbstractAlmost all cancer treatments are significantly limited by the strong tumor microenvironment (TME) fortress formed by abnormal vasculature, dense extracellular matrix (ECM), multidrug resistance (MDR) system, and immune “cold” environment. In the huge efforts of dismantling the TME fortress, nitric oxide (NO)‐based nanomedicines are increasingly occupying a central position and have already been identified as super “strong polygonal warriors” to dismantle TME fortress for efficient cancer treatment, benefiting from NO's unique physicochemical properties and extremely fascinating biological effects. However, there is a paucity of systematic review to elaborate on the progress and fundamental mechanism of NO‐based nanomedicines in oncology from this aspect. Herein, the key characteristics of TME fortress and the potential of NO in reprogramming TME are delineated and highlighted. The evolution of NO donors and the advantages of NO‐based nanomedicines are discussed subsequently. Moreover, the latest progress of NO‐based nanomedicines for solid tumors is comprehensively reviewed, including normalizing tumor vasculature, overcoming ECM barrier, reversing MDR, and reactivating the immunosuppression TME. Lastly, the prospects, limitations, and future directions on NO‐based nanomedicines for TME manipulation are discussed to provide new insights into the construction of more applicable anticancer nanomedicines.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yayun Nan
- Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan Ningxia 750002 P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yuqi Yang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Jinping Zhang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Xingyu Long
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Jian Sun
- College of Pharmacy Xinjiang Medical University Urumqi 830017 P. R. China
| | - Qiong Huang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and Treatment Ministry of Education Xiangya Hospital Central South University Changsha 410078 P. R. China
| |
Collapse
|
50
|
Bandyopadhyay S, Zhao Z, East AK, Hernandez RT, Forzano JA, Shapiro BA, Yadav AK, Swartchick CB, Chan J. Activity-Based Nitric Oxide-Responsive Porphyrin for Site-Selective and Nascent Cancer Ablation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9680-9689. [PMID: 38364813 DOI: 10.1021/acsami.3c15604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Nitric oxide (NO) generated within the tumor microenvironment is an established driver of cancer progression and metastasis. Recent efforts have focused on leveraging this feature to target cancer through the development of diagnostic imaging agents and activatable chemotherapeutics. In this context, porphyrins represent an extraordinarily promising class of molecules, owing to their demonstrated use within both modalities. However, the remodeling of a standard porphyrin to afford a responsive chemical that can distinguish elevated NO from physiological levels has remained a significant research challenge. In this study, we employed a photoinduced electron transfer strategy to develop a panel of NO-activatable porphyrin photosensitizers (NOxPorfins) augmented with real-time fluorescence monitoring capabilities. The lead compound, NOxPorfin-1, features an o-phenylenediamine trigger that can effectively capture NO (via N2O3) to yield a triazole product that exhibits a 7.5-fold enhancement and a 70-fold turn-on response in the singlet oxygen quantum yield and fluorescence signal, respectively. Beyond demonstrating excellent in vitro responsiveness and selectivity toward NO, we showcase the potent photodynamic therapy (PDT) effect of NOxPorfin-1 in murine breast cancer and human non-small cellular lung cancer cells. Further, to highlight the in vivo efficacy, two key studies were executed. First, we utilized NOxPorfin-1 to ablate murine breast tumors in a site-selective manner without causing substantial collateral damage to healthy tissue. Second, we established a nascent human lung cancer model to demonstrate the unprecedented ability of NOxPorfin-1 to halt tumor growth and progression completely. The results of the latter study have tremendous implications for applying PDT to target metastatic lesions.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Amanda K East
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Rodrigo Tapia Hernandez
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Joseph A Forzano
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Benjamin A Shapiro
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Anuj K Yadav
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Chelsea B Swartchick
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|