1
|
La H, Kim J, Kim DH, Kim SH, Singh P, Nam G, Moon K, Kim I, Kim IS. Discovery of 1,4-Disubstituted Cyclohexene Analogues as Selective GPR119 Agonists for the Treatment of Type 2 Diabetes. J Med Chem 2025; 68:4619-4634. [PMID: 39853173 DOI: 10.1021/acs.jmedchem.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
GPR119 has emerged as a promising target for treating type 2 diabetes and associated obesity, as its stimulation induces the secretion of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide in the intestinal tract as well as the glucose-dependent release of insulin in pancreatic β-cells. We describe the design and synthesis of novel GPR119 agonists containing a 1,4-disubstituted cyclohexene scaffold. Compound 21b displayed nanomolar potency (EC50 = 3.8 nM) for hGPR119 activation and demonstrated a hypoglycemic efficacy of 17.0% in an oral glucose tolerance test. The hypoglycemic effect of compound 21b, compared to sitagliptin, a DPP-4 inhibitor, showed the relatively higher efficacy in both FATZO and db/db mice. Additionally, compound 21b exhibited a significant reduction in body weight in a female diet-induced obese rat model, comparable to that of metformin. Furthermore, in vivo pharmacokinetic experiments revealed that compound 21b is a potential candidate for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Hyunhwa La
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medicinal Chemistry Research Team, New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Suwon 16229, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
- Medicinal Chemistry Research Team, New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Suwon 16229, Republic of Korea
| | - Dae-Hoon Kim
- Nonclinical Research Team, New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Yongin 17089, Republic of Korea
| | - Seong-Heon Kim
- Medicinal Chemistry Research Team, New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Suwon 16229, Republic of Korea
- Nonclinical Research Team, New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Yongin 17089, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Corbin A, Aromolaran KA, Aromolaran AS. Leukotriene B4 is elevated in diabetes and promotes ventricular arrhythmogenesis in guinea pig. J Cell Physiol 2025; 240:e31467. [PMID: 39402808 PMCID: PMC11733858 DOI: 10.1002/jcp.31467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 01/16/2025]
Abstract
Diabetes (DM) patients have an increased risk (~50%) for sudden cardiac death (SCD), mostly as a result of ventricular arrhythmias. The molecular mechanisms involved remain partially defined. The potent proinflammatory lipid mediator leukotriene (LT) B4, is pathologically elevated in DM compared to nondiabetic patients, resulting in increased LTB4 accumulation in heart, leading to an increased risk for life-threatening proarrhythmic signatures. We used electrophysiology, immunofluorescence, and confocal microscopy approaches to evaluate LTB4 cellular effects in guinea pig heart and ventricular myocytes. We have observed that LTB4 is increased in multiple mouse models (C57BL/6 J/Lepob/ob and PANIC-ATTAC) of DM, promotes profound cellular arrhythmogenesis (spontaneous beats and early after depolarizations, EADs), and severely depresses the rapidly activating delayed rectifier K current (hERG1/IKr) density in HEK293 cells and guinea pig ventricular myocytes. We have further found that guinea pigs challenged with LTB4 displayed a significantly prolonged QT interval, and that this can be prevented with LTB4R inhibition, suggesting that preventing such LTB4R effects may be therapeutically beneficial in DM. Our data suggests that a further elucidation of LTB4 vulnerable substrates, and how this leads to ventricular arrhythmias, is likely to lead to continued improvements in management options, and the development of new therapies for prevention of SCD in DM patients.
Collapse
Affiliation(s)
- Andrea Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Biomedical EngineeringUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI)University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Biomedical EngineeringUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Physiology & Cellular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
3
|
Li J, Nan W, Huang X, Meng H, Wang S, Zheng Y, Li Y, Li H, Zhang Z, Du L, Yin X, Wu H. Eicosapentaenoic acid induces macrophage Mox polarization to prevent diabetic cardiomyopathy. EMBO Rep 2024; 25:5507-5536. [PMID: 39482491 PMCID: PMC11624267 DOI: 10.1038/s44319-024-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 11/03/2024] Open
Abstract
Diabetic cardiomyopathy (DC) leads to heart failure, with few effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an essential nutrient that benefits the cardiovascular system, but its effect on DC remains unknown. Here, we report that EPA protects against DC in streptozotocin and high-fat diet-induced diabetic mice, with an emphasis on the reduction of cardiac M1-polarized macrophages. In vitro, EPA abrogates cardiomyocyte injury induced by M1-polarized macrophages, switching macrophage phenotype from M1 to Mox, but not M2, polarization. Moreover, macrophage Mox polarization combats M1-polarized macrophage-induced cardiomyocyte injury. Further, heme oxygenase 1 (HO-1) was identified to maintain the Mox phenotype, mediating EPA suppression of macrophage M1 polarization and the consequential cardiomyocyte injury. Mechanistic studies reveal that G-protein-coupled receptor 120 mediates the upregulation of HO-1 by EPA. Notably, EPA promotes Mox polarization in monocyte-derived macrophages from diabetic patients. The current study provides EPA and macrophage Mox polarization as novel strategies for DC intervention.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Xiaoli Huang
- Department of Nutrition, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Shue Wang
- Experimental Center of Public Health and Preventive Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China
| | - Xiao Yin
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhua Xi Rd., Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Yu F, Zong B, Ji L, Sun P, Jia D, Wang R. Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. Int J Mol Sci 2024; 25:7853. [PMID: 39063095 PMCID: PMC11277118 DOI: 10.3390/ijms25147853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The metabolic network's primary sources of free fatty acids (FFAs) are long- and medium-chain fatty acids of triglyceride origin and short-chain fatty acids produced by intestinal microorganisms through dietary fibre fermentation. Recent studies have demonstrated that FFAs not only serve as an energy source for the body's metabolism but also participate in regulating arterial function. Excess FFAs have been shown to lead to endothelial dysfunction, vascular hypertrophy, and vessel wall stiffness, which are important triggers of arterial hypertension and atherosclerosis. Nevertheless, free fatty acid receptors (FFARs) are involved in the regulation of arterial functions, including the proliferation, differentiation, migration, apoptosis, inflammation, and angiogenesis of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). They actively regulate hypertension, endothelial dysfunction, and atherosclerosis. The objective of this review is to examine the roles and heterogeneity of FFAs and FFARs in the regulation of arterial function, with a view to identifying the points of intersection between their actions and providing new insights into the prevention and treatment of diseases associated with arterial dysfunction, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Fengzhi Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lili Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| |
Collapse
|
5
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Zhang C, Wang Y, Kimura T, Al-Mrabeh AH. Editorial: The role of GPCRs in obesity. Front Endocrinol (Lausanne) 2024; 15:1404969. [PMID: 38645430 PMCID: PMC11026693 DOI: 10.3389/fendo.2024.1404969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Chunye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Yi Wang
- Molecular Metabolism and Ageing Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ahmad H. Al-Mrabeh
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Yadav M, Akhter Y. Validating Fractalkine receptor as a target and identifying candidates for drug discovery against type 2 diabetes. J Cell Biochem 2024; 125:127-145. [PMID: 38112285 DOI: 10.1002/jcb.30511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet β-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related β-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.
Collapse
Affiliation(s)
- Madhu Yadav
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Xu R, Wang K, Yao Z, Zhang Y, Jin L, Pang J, Zhou Y, Wang K, Liu D, Zhang Y, Sun P, Wang F, Chang X, Liu T, Wang S, Zhang Y, Lin S, Hu C, Zhu Y, Han X. BRSK2 in pancreatic β cells promotes hyperinsulinemia-coupled insulin resistance and its genetic variants are associated with human type 2 diabetes. J Mol Cell Biol 2023; 15:mjad033. [PMID: 37188647 PMCID: PMC10782904 DOI: 10.1093/jmcb/mjad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
Brain-specific serine/threonine-protein kinase 2 (BRSK2) plays critical roles in insulin secretion and β-cell biology. However, whether BRSK2 is associated with human type 2 diabetes mellitus (T2DM) has not been determined. Here, we report that BRSK2 genetic variants are closely related to worsening glucose metabolism due to hyperinsulinemia and insulin resistance in the Chinese population. BRSK2 protein levels are significantly elevated in β cells from T2DM patients and high-fat diet (HFD)-fed mice due to enhanced protein stability. Mice with inducible β-cell-specific Brsk2 knockout (βKO) exhibit normal metabolism with a high potential for insulin secretion under chow-diet conditions. Moreover, βKO mice are protected from HFD-induced hyperinsulinemia, obesity, insulin resistance, and glucose intolerance. Conversely, gain-of-function BRSK2 in mature β cells reversibly triggers hyperglycemia due to β-cell hypersecretion-coupled insulin resistance. Mechanistically, BRSK2 senses lipid signals and induces basal insulin secretion in a kinase-dependent manner. The enhanced basal insulin secretion drives insulin resistance and β-cell exhaustion and thus the onset of T2DM in mice fed an HFD or with gain-of-function BRSK2 in β cells. These findings reveal that BRSK2 links hyperinsulinemia to systematic insulin resistance via interplay between β cells and insulin-sensitive tissues in the populations carrying human genetic variants or under nutrient-overload conditions.
Collapse
Affiliation(s)
- Rufeng Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Kaiyuan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Zhengjian Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Li Jin
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Pang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Kai Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Dechen Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Fuqiang Wang
- Analysis Center, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yalin Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuyong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cheng Hu
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Wang Z, Cui S, Zhang T, Wang W, Li J, Chen YQ, Zhu SL. Akkermansia muciniphila supplementation improves glucose tolerance in intestinal Ffar4 knockout mice during the daily light to dark transition. mSystems 2023; 8:e0057323. [PMID: 37787527 PMCID: PMC10654094 DOI: 10.1128/msystems.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - TingTing Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Y. Q. Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sheng long Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Muema FW, Nanjala C, Oulo MA, Wangchuk P. Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya. Molecules 2023; 28:7202. [PMID: 37894680 PMCID: PMC10609527 DOI: 10.3390/molecules28207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Traditional medicinal plants have been used for decades in folk medicines in the treatment and management of several ailments and diseases including diabetes, pain, ulcers, cancers, and wounds, among others. This study focused on the phytochemical and antidiabetic activity of the commonly used antidiabetic medicinal species in Kenya. Phytochemical profiling of these species revealed flavonoids and terpenoids as the major chemical classes reported which have been linked with strong biological activities against the aforementioned diseases, among others. However, out of the selected twenty-two species, many of the natural product isolation studies have focused on only a few species, as highlighted in the study. All of the examined crude extracts from thirteen antidiabetic species demonstrated strong antidiabetic activities by inhibiting α-glucosidase and α-amylase among other mechanisms, while nine are yet to be evaluated for their antidiabetic activities. Isolated compounds S-Methylcysteine sulfoxide, quercetin, alliuocide G, 2-(3,4-Dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone, Luteolin-7-O-D-glucopyranoside, quercetin, 1,3,11α-Trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-7-on-2-yl)-5α-(3,4-dihydroxy-phenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one and [1,3,11α-Trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-7-on-2-yl)-5α-(3,4-dihydroxy-phenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one]-4'-O-D-gluco-pyranoside from Allium cepa have been found to exhibit significant antidiabetic activities. With the huge number of adults living with diabetes in Kenya and the available treatment methods being expensive yet not so effective, this study highlights alternative remedies by documenting the commonly used antidiabetic medicinal plants. Further, the study supports the antidiabetic use of these plants with the existing pharmacological profiles and highlights research study gaps. Therefore, it is urgent to conduct natural products isolation work on the selected antidiabetic species commonly used in Kenya and evaluate their antidiabetic activities, both in vitro and in vivo, to validate their antidiabetic use and come up with new antidiabetic drugs.
Collapse
Affiliation(s)
- Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (M.A.O.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Consolata Nanjala
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia;
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (M.A.O.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd., Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
13
|
Su B, Wang X, Ouyang Y, Lin X. DA-SRN: Omics data analysis based on the sample network optimization for complex diseases. Comput Biol Med 2023; 164:107252. [PMID: 37454504 DOI: 10.1016/j.compbiomed.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Effective biomarker identification and accurate sample label prediction are still challenging for complex diseases. Patient similarity network (PSN) analysis is a powerful tool in disease omics data analysis. The topology of PSN can reflect the discriminative ability of the corresponding feature space on which the sample network is built. In this study, a novel omics data analysis method based on the sample reference network (DA-SRN) is proposed to identify the potential biomarkers and predict the sample categories. DA-SRN defines the informative features and the sample reference network in optimizing the network structure by genetic algorithm. It labels the samples based on the graph neural network, the reference network and the selected informative features. DA-SRN was compared with nine efficient omics data analysis methods on the genomics, metabolomics and transcriptomics datasets to show its validation. The comparison results showed that it outperformed the other methods in area under receiver operating characteristic curve (AUROC), sensitivity, specificity and area under precision-recall curve (AUPRC) in most cases. Besides, the important metabolites identified by DA-SRN for the type 2 diabetes (T2D) metabolomics data were further examined. The pathway analysis revealed the close relationships between the identified metabolites and the critical metabolic pathways related to the occurrence and development of T2D. The experimental results illustrate that DA-SRN can extract the valuable information from the complex omics data by analyzing the sample relationship, and is promising in biomarker identification and sample discrimination for complex diseases.
Collapse
Affiliation(s)
- Benzhe Su
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Xiaoxiao Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Yang Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Xiaohui Lin
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
14
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
15
|
Mehra A, Sangwan R, Mehra A, Sharma S, Wadhwa P, Mittal A. Therapeutic charisma of imidazo [2,1-b] [1,3,4]-thiadiazole analogues: a patent review. Pharm Pat Anal 2023; 12:177-191. [PMID: 37671908 DOI: 10.4155/ppa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Imidazothiadiazole was discovered around the 1950s era, containing an imidazole ring fused to a thiadiazole ring. Imidazothiadiazole exhibit versatile pharmacological properties including anticonvulsant, cardiotonic, anti-inflammatory, diuretic, antifungal, antibacterial and anticancer. Despite of the being discovered in 1950s, the imidazothiadiazole derivatives are unable to being processed to clinical trials because of lack of bioavailability, efficacy and cytotoxicity. The recent patent literature focused on structural modification of imidazothiadiazole core to overcome these problems. This review limelight a disease-centric perspective on patented imidazothiadiazole from 2015-2023 and to understand their mechanism of action in related diseases. The relevant granted patent applications were located using patent databases, Google Patents, USPTO, EPO, WIPO, Espacenet and Lens.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Aryan Mehra
- Department of Mechanical Engineering, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Shivani Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| |
Collapse
|
16
|
Chen C, Guo SM, Sun Y, Li H, Hu N, Yao K, Ni H, Xia Z, Xu B, Xie X, Long YQ. Discovery of orally effective and safe GPR40 agonists by incorporating a chiral, rigid and polar sulfoxide into β-position to the carboxylic acid. Eur J Med Chem 2023; 251:115267. [PMID: 36933395 DOI: 10.1016/j.ejmech.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
GPR40 is primarily expressed in pancreatic islet β-cells, and its activation by endogenous ligands of medium to long-chain free fatty acids or synthetic agonists is clinically proved to improve glycemic control by stimulating glucose-dependent insulin secretion. However, most of the reported agonists are highly lipophilic, which might cause lipotoxicity and the off-target effects in CNS. Particularly, the withdrawal of TAK-875 from clinical trials phase III due to liver toxicity concern threw doubt over the long-term safety of targeting GPR40. Improving the efficacy and the selectivity, thus enlarging the therapeutic window would provide an alternative to develop safe GPR40-targeted therapeutics. Herein, by employing an innovative "three-in-one" pharmacophore drug design strategy, the optimal structural features for GPR40 agonist was integrated into one functional group of sulfoxide, which was incorporated into the β-position of the propanoic acid core pharmacophore. As a result, the conformational constraint, polarity as well as chirality endowed by the sulfoxide significantly enhanced the efficacy, selectivity and ADMET properties of the novel (S)- 2-(phenylsulfinyl)acetic acid-based GPR40 agonists. The lead compounds (S)-4a and (S)-4s exhibited robust plasma glucose-lowering effects and insulinotropic action during an oral glucose tolerance test in C57/BL6 mice, excellent pharmacokinetic profile and little hepatobiliary transporter inhibition, marginal cell toxicities against human primary hepatocyte at 100 μM.
Collapse
Affiliation(s)
- Cheng Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Meng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuanjun Sun
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - He Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Nan Hu
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Kun Yao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Huxin Ni
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Zhikan Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Bin Xu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
17
|
Kuang D, Hanchate NK, Lee CY, Heck A, Ye X, Erdenebileg M, Buck LB. Olfactory and neuropeptide inputs to appetite neurons in the arcuate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530282. [PMID: 36909633 PMCID: PMC10002664 DOI: 10.1101/2023.02.28.530282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The sense of smell has potent effects on appetite, but the underlying neural mechanisms are largely a mystery. The hypothalamic arcuate nucleus contains two subsets of neurons linked to appetite: AgRP (agouti-related peptide) neurons, which enhance appetite, and POMC (pro-opiomelanocortin) neurons, which suppress appetite. Here, we find that AgRP and POMC neurons receive indirect inputs from partially overlapping areas of the olfactory cortex, thus identifying their sources of odor signals. We also find neurons directly upstream of AgRP or POMC neurons in numerous other areas, identifying potential relays between the olfactory cortex and AgRP or POMC neurons. Transcriptome profiling of individual AgRP neurons reveals differential expression of receptors for multiple neuromodulators. Notably, known ligands of the receptors define subsets of neurons directly upstream of AgRP neurons in specific brain areas. Together, these findings indicate that higher olfactory areas can differentially influence AgRP and POMC appetite neurons, that subsets of AgRP neurons can be regulated by different neuromodulators, and that subsets of neurons upstream of AgRP neurons in specific brain areas use different neuromodulators, together or in distinct combinations to modulate AgRP neurons and thus appetite.
Collapse
|
18
|
Ren T, Wang S, Zhang B, Zhou W, Wang C, Zhao X, Feng J. LTA4H extensively associates with mRNAs and lncRNAs indicative of its novel regulatory targets. PeerJ 2023; 11:e14875. [PMID: 36923505 PMCID: PMC10010175 DOI: 10.7717/peerj.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemoprevention and chemotherapy. Recent research shows that the increased expression of LTA4H in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration, and metastasis. However, its mechanism remains unclear. To investigate the potential role of LTA4H in LSCC, we employed the improved RNA immunoprecipitation and sequencing (iRIP-Seq) experiment to get the expression profile of LTA4H binding RNA in HeLa model cells, a cancer model cell that is frequently used in molecular mechanism research. We found that LTA4H extensively binds with mRNAs/pre-mRNAs and lncRNAs. In the LTA4H binding peak, the frequency of the AAGG motif reported to interact with TRA2β4 was high in both replicates. More notably, LTA4H-binding genes were significantly enriched in the mitotic cell cycle, DNA repair, RNA splicing-related pathways, and RNA metabolism pathways, which means that LTA4H has tumor-related alternative splicing regulatory functions. QRT-PCR validation confirmed that LTA4H specifically binds to mRNAs of carcinogenesis-associated genes, including LTBP3, ROR2, EGFR, HSP90B1, and lncRNAs represented by NEAT1. These results suggest that LTA4H may combine with genes associated with LSCC as an RNA-binding protein to perform a cancer regulatory function. Our study further sheds light on the molecular mechanism of LTA4H as a clinical therapy target for LSCC.
Collapse
Affiliation(s)
- Tianjiao Ren
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Song Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cansi Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaorui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
19
|
A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Grochowalska K, Pikul P, Piwkowska A. Insights into the regulation of podocyte and glomerular function by lactate and its metabolic sensor G-protein-coupled receptor 81. J Cell Physiol 2022; 237:4097-4111. [PMID: 36084306 DOI: 10.1002/jcp.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Oğlak SC, Yavuz A, Olmez F, Gedik Özköse Z, Süzen Çaypınar S. The reduced serum concentrations of β-arrestin-1 and β-arrestin-2 in pregnancies complicated with gestational diabetes mellitus. J Matern Fetal Neonatal Med 2022; 35:10017-10024. [PMID: 35674413 DOI: 10.1080/14767058.2022.2083495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study aimed to analyze maternal serum β-arrestin-1 and β-arrestin-2 concentrations in pregnant women complicated with gestational diabetes mellitus (GDM) and compare them with the normoglycemic uncomplicated healthy control group. METHODS A prospective case-control study was conducted, including pregnant women complicated with GDM between 15 February 2021, and 31 July 2021. We recorded serum β-arrestin-1 and β-arrestin-2 concentrations of the participants. Receiver operating characteristic (ROC) curves were used to describe and compare the performance of diagnostics value of variables β-arrestin-1, and β-arrestin-2. RESULTS The mean β-arrestin-1 and β-arrestin-2 levels were found to be significantly lower in the GDM group (41.0 ± 62.8 ng/mL, and 6.3 ± 9.9 ng/mL) than in the control group (93.1 ± 155.4 ng/mL, and 12.4 ± 17.7, respectively, p < .001). When we analyze the area under the ROC curve (AUC), maternal serum β-arrestin-1 and β-arrestin-2 levels can be considered a statistically significant parameter for diagnosing GDM. β-arrestin-1 had a significant negative correlation with fasting glucose (r = -0.551, p < .001), plasma insulin levels (r = -0.522, p < .001), HOMA-IR (r = -0.566, p < .001), and HbA1C (r = -0.465, p < .001). β-arrestin-2 was significantly negatively correlated with fasting glucose (r = -0.537, p < .001), plasma insulin levels (r = -0.515, p < .001), HOMA-IR (r = -0.550, p < .001), and HbA1C (r = -0.479, p < .001). CONCLUSION β-arrestin 1 and β-arrestin 2 could be utilized as biomarkers in the diagnosis of GDM. The novel therapeutic strategies targeting these β-arrestins may be designed for the GDM treatment.
Collapse
Affiliation(s)
- Süleyman Cemil Oğlak
- Department of Obstetrics and Gynecology, Health Sciences University, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - And Yavuz
- Department of Perinatology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| | - Fatma Olmez
- Department of Obstetrics and Gynecology, Health Sciences University, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Zeynep Gedik Özköse
- Department of Perinatology, Health Sciences University, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Sema Süzen Çaypınar
- Department of Perinatology, Health Sciences University, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
23
|
Liu G, Feng S, Yan J, Luan D, Sun P, Shao P. Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Curr Res Food Sci 2022; 5:1465-1474. [PMID: 36119371 PMCID: PMC9478496 DOI: 10.1016/j.crfs.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia and relieved metabolic endotoxemia-related inflammation but also optimized the gut microbiota composition of diabetic mice with significantly decreased Firmicutes/Bacteroidetes ratios. More importantly, altered gut microbiota components may affect liver glycogen and muscle glycogen by increasing the mRNA expression of phosphatidylinositol-3-kinase (PI3K) and protein kinase B (Akt) in the liver of mice through modulated the abundance of beneficial bacteria (Lactobacillus). Altogether, our findings, for the first time, demonstrate that BS polysaccharides may be used as a beneficial probiotic agent that reverses gut microbiota dysbiosis and the hypoglycemic mechanisms of BS polysaccharides may be related to enhancing the abundance of Lactobacillus to activate PI3K/Akt-mediated signaling pathways in T2DM mice. Brasenia schreberi polysaccharides ameliorated hyperglycemia and dyslipidemia in mice. The polysaccharides regulated glucose metabolism through activating PI3K-Akt pathway. The polysaccharides modulated gut microbiota profile of diabetic mice.
Collapse
Affiliation(s)
- Gaodan Liu
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
- Corresponding author. Department of Food Science and technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Jiadan Yan
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Di Luan
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
- Corresponding author. College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
24
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
25
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|
26
|
Mach M, Bazydło-Guzenda K, Buda P, Matłoka M, Dzida R, Stelmach F, Gałązka K, Wąsińska-Kałwa M, Smuga D, Hołowińska D, Dawid U, Gurba-Bryśkiewicz L, Wiśniewski K, Dubiel K, Pieczykolan J, Wieczorek M. Discovery and development of CPL207280 as new GPR40/FFA1 agonist. Eur J Med Chem 2021; 226:113810. [PMID: 34537444 DOI: 10.1016/j.ejmech.2021.113810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Due to a unique mechanism that limits the possibility of hypoglycemia, the free fatty acid receptor (FFA1) is an attractive target for the treatment of type 2 diabetes. So far, however, none of the promising agonists have been able to enter the market. The most advanced clinical candidate, TAK-875, was withdrawn from phase III clinical trials due to liver safety issues. In this article, we describe the key aspects leading to the discovery of CPL207280 (13), the design of which focused on long-term safety. The introduction of small, nature-inspired acyclic structural fragments resulted in compounds with retained high potency and a satisfactory pharmacokinetic profile. Optimized synthesis and upscaling provided a stable, solid form of CPL207280-51 (45) with the properties required for the toxicology studies and ongoing clinical trials.
Collapse
Affiliation(s)
- Mateusz Mach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland.
| | - Katarzyna Bazydło-Guzenda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Paweł Buda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Mikołaj Matłoka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Radosław Dzida
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Filip Stelmach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Kinga Gałązka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | - Damian Smuga
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Dagmara Hołowińska
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Urszula Dawid
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | | | - Krzysztof Dubiel
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Jerzy Pieczykolan
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Maciej Wieczorek
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| |
Collapse
|
27
|
Abstract
Free fatty acids (FFAs) are implicated in the pathogenesis of metabolic diseases that includes obesity, type 2 diabetes mellitus, and cardiovascular disease (CVD). FFAs serve as ligands for free fatty acid receptors (FFARs) that belong to the family of rhodopsin-like G protein-coupled receptors (GPCRs) and are expressed throughout the body to maintain energy homeostasis under changing nutritional conditions. Free fatty acid receptor 4 (FFAR4), also known as G protein-coupled receptor 120, is a long-chain fatty acid receptor highly expressed in adipocytes, endothelial cells, and macrophages. Activation of FFAR4 helps maintain metabolic homeostasis by regulating adipogenesis, insulin sensitivity, and inflammation. Furthermore, dysfunction of FFAR4 is associated with insulin resistance, obesity, and eccentric remodeling in both humans and mice, making FFAR4 an attractive therapeutic target for treating or preventing metabolic diseases. While much of the previous literature on FFAR4 has focused on its role in obesity and diabetes, recent studies have demonstrated that FFAR4 may also play an important role in the development of atherosclerosis and CVD. Most notably, FFAR4 activation reduces monocyte-endothelial cell interaction, enhances cholesterol efflux from macrophages, reduces lesion size in atherogenic mouse models, and stimulates oxylipin production in myocytes that functions in a feed-forward cardioprotective mechanism. This review will focus on the role of FFAR4 in metabolic diseases and highlights an underappreciated role of FFAR4 in the development of atherosclerosis and CVD.
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
28
|
Kikuchi K, Tatebe T, Sudo Y, Yokoyama M, Kidana K, Chiu YW, Takatori S, Arita M, Hori Y, Tomita T. GPR120 Signaling Controls Amyloid-β Degrading Activity of Matrix Metalloproteinases. J Neurosci 2021; 41:6173-6185. [PMID: 34099509 PMCID: PMC8276734 DOI: 10.1523/jneurosci.2595-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the extensive deposition of amyloid-β peptide (Aβ) in the brain. Brain Aβ level is regulated by a balance between Aβ production and clearance. The clearance rate of Aβ is decreased in the brains of sporadic AD patients, indicating that the dysregulation of Aβ clearance mechanisms affects the pathologic process of AD. Astrocytes are among the most abundant cells in the brain and are implicated in the clearance of brain Aβ via their regulation of the blood-brain barrier, glymphatic system, and proteolytic degradation. The cellular morphology and activity of astrocytes are modulated by several molecules, including ω3 polyunsaturated fatty acids, such as docosahexaenoic acid, which is one of the most abundant lipids in the brain, via the G protein-coupled receptor GPR120/FFAR4. In this study, we analyzed the role of GPR120 signaling in the Aβ-degrading activity of astrocytes. Treatment with the selective antagonist upregulated the matrix metalloproteinase (MMP) inhibitor-sensitive Aβ-degrading activity in primary astrocytes. Moreover, the inhibition of GPR120 signaling increased the levels of Mmp2 and Mmp14 mRNAs, and decreased the expression levels of tissue inhibitor of metalloproteinases 3 (Timp3) and Timp4, suggesting that GPR120 negatively regulates the astrocyte-derived MMP network. Finally, the intracerebral injection of GPR120-specific antagonist substantially decreased the levels of TBS-soluble Aβ in male AD model mice, and this effect was canceled by the coinjection of an MMP inhibitor. These data indicate that astrocytic GPR120 signaling negatively regulates the Aβ-degrading activity of MMPs.SIGNIFICANCE STATEMENT The level of amyloid β (Aβ) in the brain is a crucial determinant of the development of Alzheimer's disease. Here we found that astrocytes, which are the most abundant cell type in the CNS, harbor degrading activity against Aβ, which is regulated by GPR120 signaling. GPR120 is involved in the inflammatory response and obesity in peripheral organs. However, the pathophysiological role of GPR120 in Alzheimer's disease remains unknown. We found that selective inhibition of GPR120 signaling in astrocytes increased the Aβ-degrading activity of matrix metalloproteases. Our results suggest that GPR120 in astrocytes is a novel therapeutic target for the development of anti-Aβ therapeutics.
Collapse
Affiliation(s)
- Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takuya Tatebe
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, 164-8530, Japan
| | - Yuki Sudo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Miyabishara Yokoyama
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kiwami Kidana
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Home Care Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yung Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
29
|
Gajjar KA, Gajjar AK. CoMFA, CoMSIA and HQSAR Analysis of 3-aryl-3-ethoxypropanoic Acid Derivatives as GPR40 Modulators. Curr Drug Discov Technol 2021; 17:100-118. [PMID: 30160214 DOI: 10.2174/1570163815666180829144431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human GPR40 receptor, also known as free fatty-acid receptor 1, is a Gprotein- coupled receptor that binds long chain free fatty acids to enhance glucose-dependent insulin secretion. In order to improve the resistance and efficacy, computational tools were applied to a series of 3-aryl-3-ethoxypropanoic acid derivatives. A relationship between the structure and biological activity of these compounds, was derived using a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using CoMFA, CoMSIA and two-dimensional QSAR study using HQSAR methods. METHODS Building the 3D-QSAR models, CoMFA, CoMSIA and HQSAR were performed using Sybyl-X software. The ratio of training to test set was kept 70:30. For the generation of 3D-QSAR model three different alignments were used namely, distill, pharmacophore and docking based alignments. Molecular docking studies were carried out on designed molecules using the same software. RESULTS Among all the three methods used, Distill alignment was found to be reliable and predictive with good statistical results. The results obtained from CoMFA analysis q2, r2cv and r2 pred were 0.693, 0.69 and 0.992 respectively and in CoMSIA analysis q2, r2cv and r2pred were 0.668, 0.648 and 0.990. Contour maps of CoMFA (lipophilic and electrostatic), CoMSIA (lipophilic, electrostatic, hydrophobic, and donor) and HQSAR (positive & negative contribution) provided significant insights i.e. favoured and disfavoured regions or positive & negative contributing fragments with R1 and R2 substitutions, which gave hints for the modifications required to design new molecules with improved biological activity. CONCLUSION 3D-QSAR techniques were applied for the first time on the series 3-aryl-3- ethoxypropanoic acids. All the models (CoMFA, CoMSIA and HQSAR) were found to be satisfactory according to the statistical parameters. Therefore such a methodology, whereby maximum structural information (from ligand and biological target) is explored, gives maximum insights into the plausible protein-ligand interactions and is more likely to provide potential lead candidates has been exemplified from this study.
Collapse
Affiliation(s)
- Krishna A Gajjar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.,Department of Pharmaceutical Analysis, RPCP, Changa, Anand, India
| | - Anuradha K Gajjar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.,Department of Pharmaceutical Analysis, RPCP, Changa, Anand, India
| |
Collapse
|
30
|
Haji E, Al Mahri S, Aloraij Y, Malik SS, Mohammad S. Functional Characterization of the Obesity-Linked Variant of the β 3-Adrenergic Receptor. Int J Mol Sci 2021; 22:ijms22115721. [PMID: 34072007 PMCID: PMC8199065 DOI: 10.3390/ijms22115721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Adrenergic receptor β3 (ADRβ3) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of the ligand to ADRβ3 activates adenylate cyclase and increases cAMP in the cells. ADRβ3 is highly expressed in white and brown adipocytes and controls key regulatory pathways of lipid metabolism. Trp64Arg (W64R) polymorphism in the ADRβ3 is associated with the early development of type 2 diabetes mellitus, lower resting metabolic rate, abdominal obesity, and insulin resistance. It is unclear how the substitution of W64R affects the functioning of ADRβ3. This study was initiated to functionally characterize this obesity-linked variant of ADRβ3. We evaluated in detail the expression, subcellular distribution, and post-activation behavior of the WT and W64R ADRβ3 using single cell quantitative fluorescence microscopy. When expressed in HEK 293 cells, ADRβ3 shows a typical distribution displayed by other GPCRs with a predominant localization at the cell surface. Unlike adrenergic receptor β2 (ADRβ2), agonist-induced desensitization of ADRβ3 does not involve loss of cell surface expression. WT and W64R variant of ADRβ3 displayed comparable biochemical properties, and there was no significant impact of the substitution of tryptophan with arginine on the expression, cellular distribution, signaling, and post-activation behavior of ADRβ3. The obesity-linked W64R variant of ADRβ3 is indistinguishable from the WT ADRβ3 in terms of expression, cellular distribution, signaling, and post-activation behavior.
Collapse
|
31
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
32
|
Oliveira de Souza C, Sun X, Oh D. Metabolic Functions of G Protein-Coupled Receptors and β-Arrestin-Mediated Signaling Pathways in the Pathophysiology of Type 2 Diabetes and Obesity. Front Endocrinol (Lausanne) 2021; 12:715877. [PMID: 34497585 PMCID: PMC8419444 DOI: 10.3389/fendo.2021.715877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), often termed G protein-coupled receptors (GPCRs), are the most common target of therapeutic drugs used today. Many studies suggest that distinct members of the GPCR superfamily represent potential targets for the treatment of various metabolic disorders including obesity and type 2 diabetes (T2D). GPCRs typically activate different classes of heterotrimeric G proteins, which can be subgrouped into four major functional types: Gαs, Gαi, Gαq/11, and G12/13, in response to agonist binding. Accumulating evidence suggests that GPCRs can also initiate β-arrestin-dependent, G protein-independent signaling. Thus, the physiological outcome of activating a certain GPCR in a particular tissue may also be modulated by β-arrestin-dependent, but G protein-independent signaling pathways. In this review, we will focus on the role of G protein- and β-arrestin-dependent signaling pathways in the development of obesity and T2D-related metabolic disorders.
Collapse
|
33
|
Tegler L, Corin K, Pick H, Brookes J, Skuhersky M, Vogel H, Zhang S. The G protein coupled receptor CXCR4 designed by the QTY code becomes more hydrophilic and retains cell signaling activity. Sci Rep 2020; 10:21371. [PMID: 33288780 PMCID: PMC7721705 DOI: 10.1038/s41598-020-77659-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are vital for diverse biological functions, including vision, smell, and aging. They are involved in a wide range of diseases, and are among the most important targets of medicinal drugs. Tools that facilitate GPCR studies or GPCR-based technologies or therapies are thus critical to develop. Here we report using our QTY (glutamine, threonine, tyrosine) code to systematically replace 29 membrane-facing leucine, isoleucine, valine, and phenylalanine residues in the transmembrane α-helices of the GPCR CXCR4. This variant, CXCR4QTY29, became more hydrophilic, while retaining the ability to bind its ligand CXCL12. When transfected into HEK293 cells, it inserted into the cell membrane, and initiated cellular signaling. This QTY code has the potential to improve GPCR and membrane protein studies by making it possible to design functional hydrophilic receptors. This tool can be applied to diverse α-helical membrane proteins, and may aid in the development of other applications, including clinical therapies.
Collapse
Affiliation(s)
- Lotta Tegler
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Molecular Biotechnology/IFM, Linköping University, 58183, Linköping, Sweden
| | - Karolina Corin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
- Biomedical Engineering Research Group, School of Electrical and Information Engineering, and Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1570, USA.
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jennifer Brookes
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
- Biophysics, Computational Physics, Quantum Physics, University College London, London, UK
| | - Michael Skuhersky
- Synthetic Neurobiology Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
34
|
Zouboulis CC, Benhadou F, Byrd AS, Chandran NS, Giamarellos‐Bourboulis EJ, Fabbrocini G, Frew JW, Fujita H, González‐López MA, Guillem P, Gulliver WPF, Hamzavi I, Hayran Y, Hórvath B, Hüe S, Hunger RE, Ingram JR, Jemec GB, Ju Q, Kimball AB, Kirby JS, Konstantinou MP, Lowes MA, MacLeod AS, Martorell A, Marzano AV, Matusiak Ł, Nassif A, Nikiphorou E, Nikolakis G, Nogueira da Costa A, Okun MM, Orenstein LA, Pascual JC, Paus R, Perin B, Prens EP, Röhn TA, Szegedi A, Szepietowski JC, Tzellos T, Wang B, van der Zee HH. What causes hidradenitis suppurativa ?—15 years after. Exp Dermatol 2020; 29:1154-1170. [DOI: 10.1111/exd.14214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Christos C. Zouboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hôpital Erasme Universite Libre de Bruxelles Bruxelles Belgium
| | - Angel S. Byrd
- Department of Dermatology Howard University College of Medicine Washington DC USA
| | - Nisha S. Chandran
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Department of Medicine National University Hospital Singapore
| | - Evangelos J. Giamarellos‐Bourboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- 4th Department of Internal Medicine National and Kapodistrian University of Athens Medical School Athens Greece
| | - Gabriella Fabbrocini
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Section of Dermatology Department of Clinical Medicine and Surgery University of Naples Federico II Naples Italy
| | | | - Hideki Fujita
- Division of Cutaneous Science Department of Dermatology Nihon University School of Medicine Tokyo Japan
| | - Marcos A. González‐López
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Hospital Universitario Marqués de Valdecilla University of Cantabria IDIVAL Santander Spain
| | - Philippe Guillem
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Surgery Clinique du Val d’Ouest (Lyon), ResoVerneuil (Paris) and Groupe de Recherche en Proctologie de la Société Nationale Française de ColoProctologie Paris France
| | - Wayne P. F. Gulliver
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Faculty of Medicine Memorial University of Newfoundland, and NewLab Clinical Research Inc St. John's Canada
| | - Iltefat Hamzavi
- Department of Dermatology Henry Ford Hospital Wayne State University Detroit MI USA
| | - Yildiz Hayran
- Department of Dermatology Ankara Numune Training and Research Hospital Ankara Turkey
| | - Barbara Hórvath
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology University Medical Centre Groningen University of Groningen Groningen The Netherlands
| | | | - Robert E. Hunger
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Inselspital Bern University Hospital Bern Switzerland
| | - John R. Ingram
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology & Academic Wound Healing Division of Infection and Immunity Cardiff University Cardiff UK
| | - Gregor B.E. Jemec
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - Qiang Ju
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology RenJi Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Alexa B. Kimball
- Department of Dermatology Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA
| | - Joslyn S. Kirby
- Department of Dermatology Penn State Milton S. Hershey Medical Center Hershey PA USA
| | - Maria P. Konstantinou
- Dermatology Department Paul Sabatier University University Hospital of Toulouse Toulouse France
| | | | - Amanda S. MacLeod
- Department of Dermatology Department of Immunology Department of Molecular Genetics and Microbiology Duke University Durham NC USA
| | - Antonio Martorell
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hospital of Manises Valencia Spain
| | - Angelo V. Marzano
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dermatology Unit Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation Università degli Studi di Milano Milan Italy
| | - Łukasz Matusiak
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Aude Nassif
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Institut Pasteur Paris France
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases King’s College London, and Department of Rheumatology King’s College Hospital London UK
| | - Georgios Nikolakis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - André Nogueira da Costa
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Translational Science and Experimental Medicine Early Respiratory and Immunology Biopharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | | | | | - José Carlos Pascual
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - Ralf Paus
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Benjamin Perin
- Division of Dermatology University of Washington Seattle WA USA
| | - Errol P. Prens
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| | - Till A. Röhn
- Autoimmunity, Transplantation and Inflammation Novartis Institutes for BioMedical Research Novartis Pharma AG Basel Switzerland
| | - Andrea Szegedi
- Division of Dermatological Allergology Department of Dermatology Faculty of Medicine University of Debrecen Debrecen Hungary
| | - Jacek C. Szepietowski
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Thrasyvoulos Tzellos
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Nordland Hospital Trust Bodø Norway
| | - Baoxi Wang
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Plastic Surgery Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hessel H. van der Zee
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| |
Collapse
|
35
|
Kuranov S, Luzina O, Khvostov M, Baev D, Kuznetsova D, Zhukova N, Vassiliev P, Kochetkov A, Tolstikova T, Salakhutdinov N. Bornyl Derivatives of p-(Benzyloxy)Phenylpropionic Acid: In Vivo Evaluation of Antidiabetic Activity. Pharmaceuticals (Basel) 2020; 13:ph13110404. [PMID: 33228030 PMCID: PMC7699345 DOI: 10.3390/ph13110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
A series of bornyl derivatives of p-(benzyloxy)phenylpropionic acid were prepared, and their hypoglycemic activities were examined by an oral glucose tolerance test in mice. The results of this test revealed two compounds, 1 and 3, that can reduce the blood level of glucose similarly to reference compound vildagliptin. Both compounds were tested in an experiment on mice with metabolic disorders: the C57BL/6Ay strain. Along with hypoglycemic properties, the two compounds showed different abilities to correct lipid metabolism disorders. In silico prediction revealed that the studied substances are most likely bifunctional multitarget hypoglycemic compounds whose mechanism of action is based on a pronounced reduction in insulin resistance and a strong incretin-mimetic effect. The difference in the size of effects of these compounds on biochemical parameters of blood in the experiment on C57BL/6Ay mice was in good agreement with the computational prediction of the priority ranking of biological targets for these compounds. These results indicate that bornyl derivatives of p-(benzyloxy)phenylpropionic acid have a good potential as new agents for diabetes mellitus treatment due to their hypoglycemic and lipid-normalizing properties.
Collapse
Affiliation(s)
- Sergey Kuranov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Olga Luzina
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
- Correspondence: (O.L.); (M.K.)
| | - Mikhail Khvostov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
- Correspondence: (O.L.); (M.K.)
| | - Dmitriy Baev
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Darya Kuznetsova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Nataliya Zhukova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Pavel Vassiliev
- Reasearch Center of Innovative Medicines, Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Volgograd State Medical University, Ministry of Health of Russian Federation, 400131 Volgograd, Russia; (P.V.); (A.K.)
| | - Andrey Kochetkov
- Reasearch Center of Innovative Medicines, Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Volgograd State Medical University, Ministry of Health of Russian Federation, 400131 Volgograd, Russia; (P.V.); (A.K.)
| | - Tatyana Tolstikova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| |
Collapse
|
36
|
Li B, Li L, Wang W, Meng J, Xu F, Wu F, Zhang G. Characterization of Free Fatty Acid Receptor 4 and Its Involvement in Nutritional Control and Immune Response in Pacific Oysters ( Crassostrea gigas). ACS OMEGA 2020; 5:21355-21363. [PMID: 32905352 PMCID: PMC7469124 DOI: 10.1021/acsomega.0c01325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Free fatty acid receptor 4 (FFAR4) has various physiological functions, including energy regulation and immunological homeostasis. We examined the only FFAR4 homologue in the Pacific oyster Crassostrea gigas (CgFFAR4), which functions as a sensor of long-chain fatty acids. CgFFAR4 is 1098 bp long and contains a seven-transmembrane G protein-coupled receptor domain. CgFFAR4 expression was high in the hepatopancreas, but it was downregulated after fasting, indicating that it plays an essential role in food digestion. Lipopolysaccharide stimulation downregulated CgFFAR4 level, probably as an immune response of the animal. Reduced glycogen level alongside decreased insulin receptor, insulin receptor substrate, and C. gigas glycogen synthase transcription levels after CgFFAR4 knockdown revealed that CgFFAR4 was involved in the regulation of fatty acid and glycogen levels via the insulin pathway. Accordingly, this is the first study on an invertebrate FFAR and provides new insights into the role of this receptor in immune response and nutritional control.
Collapse
Affiliation(s)
- Busu Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Laboratory
for Marine Fisheries and Aquaculture, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wei Wang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Jie Meng
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fei Xu
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fucun Wu
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- The
Innovation of Seed Design, Chinese Academy
of Sciences, Wuhan 430072, P. R. China
| | - Guofan Zhang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| |
Collapse
|
37
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
38
|
Gao J, Chang Z, Tian R, Li P, Ahmad F, Jia X, Liang Q, Zhao X. Reversible and site-specific immobilization of β 2-adrenergic receptor by aptamer-directed method for receptor-drug interaction analysis. J Chromatogr A 2020; 1622:461091. [PMID: 32376022 DOI: 10.1016/j.chroma.2020.461091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Immobilized protein makes a profound impact on the development of assays for drug discovery, diagnosis and in vivo biological interaction analysis. Traditional methods are enormously challenged by the G-protein coupled receptor ascribed to the loss of receptor functions. We introduced a β2-adrenergic receptor (β2-AR) aptamer into the immobilization of the receptor. This was achieved by mixing the receptor conjugated silica gel with cell lysates containing the receptor. We found that the aptamer-directed method makes immobilized β2-AR good stability in seven days and high specificity of ligand recognition at the subtype receptor level. Feasibility of the immobilized β2-AR in drug-receptor interaction analysis was evaluated by injection amount-dependent method, nonlinear chromatography, and peak decay analysis. Salbutamol, methoxyphenamine, ephedrine hydrochloride, clorprenaline, tulobuterol, bambuterol, propranolol and ICI 118551 bound to the receptor through one type of binding sites. The association constants presented good agreement within the three methods but exhibited clear differences from the data by radio-ligand binding assay. Regarding these results, we concluded that the aptamer-directed method will probably become an alternative for reversible and site-specific immobilization of GPCRs directly from complex matrices; the immobilized receptor is qualitative for drug-receptor interaction analysis.
Collapse
Affiliation(s)
- Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Rui Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Ping Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Faizan Ahmad
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Xiaoni Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China; Department of Pharmacy, Xi'an Mental Health Center, Xi'an 710061, China
| | - Qi Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China; College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China.
| |
Collapse
|
39
|
Gong J, Chen Y, Pu F, Sun P, He F, Zhang L, Li Y, Ma Z, Wang H. Understanding Membrane Protein Drug Targets in Computational Perspective. Curr Drug Targets 2020; 20:551-564. [PMID: 30516106 DOI: 10.2174/1389450120666181204164721] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023]
Abstract
Membrane proteins play crucial physiological roles in vivo and are the major category of drug targets for pharmaceuticals. The research on membrane protein is a significant part in the drug discovery. The biological process is a cycled network, and the membrane protein is a vital hub in the network since most drugs achieve the therapeutic effect via interacting with the membrane protein. In this review, typical membrane protein targets are described, including GPCRs, transporters and ion channels. Also, we conclude network servers and databases that are referring to the drug, drug-target information and their relevant data. Furthermore, we chiefly introduce the development and practice of modern medicines, particularly demonstrating a series of state-of-the-art computational models for the prediction of drug-target interaction containing network-based approach and machine-learningbased approach as well as showing current achievements. Finally, we discuss the prospective orientation of drug repurposing and drug discovery as well as propose some improved framework in bioactivity data, created or improved predicted approaches, alternative understanding approaches of drugs bioactivity and their biological processes.
Collapse
Affiliation(s)
- Jianting Gong
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Yongbing Chen
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Feng Pu
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Li Zhang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Yanwen Li
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| | - Han Wang
- School of Information Science and Technology, Northeast Normal University, Changchun, China.,Institution of Computational Biology, Northeast Normal University, Changchun, China
| |
Collapse
|
40
|
Mishra AK, Tewari SP. Density functional theory calculations of spectral, NLO, reactivity, NBO properties and docking study of Vincosamide-N-Oxide active against lung cancer cell lines H1299. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2842-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Penno CA, Jäger P, Laguerre C, Hasler F, Hofmann A, Gass SK, Wettstein-Ling B, Schaefer DJ, Avrameas A, Raulf F, Wieczorek G, Lehmann JCU, Loesche C, Roth L, Röhn TA. Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Proinflammatory Leukotriene B4. J Invest Dermatol 2020; 140:2421-2432.e10. [PMID: 32387270 DOI: 10.1016/j.jid.2020.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurring inflammatory dermatosis characterized by abscesses, deep-seated nodules, sinus tracts, and fibrosis in skin lesions around hair follicles of the axillary, inguinal, and anogenital regions. Whereas the exact pathogenesis remains poorly defined, clear evidence suggests that HS is a multifactorial inflammatory disease characterized by innate and adaptive immune components. Bioactive lipids are important regulators of cutaneous homeostasis, inflammation, and resolution of inflammation. Alterations in the lipid mediator profile can lead to malfunction and cutaneous inflammation. We used targeted lipidomics to analyze selected omega-3 and omega-6 polyunsaturated fatty acids in skin of patients with HS and of healthy volunteers. Lesional HS skin displayed enrichment of 5-lipoxygenase (LO)‒derived metabolites, especially leukotriene B4. In addition, 15-LO‒derived metabolites were underrepresented in HS lesions. Changes in the lipid mediator profile were accompanied by transcriptomic dysregulation of the 5-LO and 15-LO pathways. Hyperactivation of the 5-LO pathway in lesional macrophages identified these cells as potential sources of leukotriene B4, which may cause neutrophil influx and activation. Furthermore, leukotriene B4-induced mediators and pathways were elevated in HS lesions, suggesting a contribution of this proinflammatory lipid meditator to the pathophysiology of HS.
Collapse
Affiliation(s)
- Carlos A Penno
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Petra Jäger
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Claire Laguerre
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Franziska Hasler
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Hofmann
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Stephanie K Gass
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Barbara Wettstein-Ling
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Alexandre Avrameas
- Biomarker Development, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Friedrich Raulf
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Grazyna Wieczorek
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Joachim C U Lehmann
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lukas Roth
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
42
|
Teng D, Chen J, Li D, Wu Z, Li W, Tang Y, Liu G. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model 2020; 60:3214-3230. [DOI: 10.1021/acs.jcim.0c00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhui Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
43
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
44
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
45
|
Priyadarshini M, Cole C, Oroskar G, Ludvik AE, Wicksteed B, He C, Layden BT. Free fatty acid receptor 3 differentially contributes to β-cell compensation under high-fat diet and streptozotocin stress. Am J Physiol Regul Integr Comp Physiol 2020; 318:R691-R700. [PMID: 32073900 DOI: 10.1152/ajpregu.00128.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The free fatty acid receptor 3 (FFA3) is a nutrient sensor of gut microbiota-generated nutrients, the short-chain fatty acids. Previously, we have shown that FFA3 is expressed in β-cells and inhibits islet insulin secretion ex vivo. Here, we determined the physiological relevance of the above observation by challenging wild-type (WT) and FFA3 knockout (KO) male mice with 1) hyperglycemia and monitoring insulin response via highly sensitive hyperglycemic clamps, 2) dietary high fat (HF), and 3) chemical-induced diabetes. As expected, FFA3 KO mice exhibited significantly higher insulin secretion and glucose infusion rate in hyperglycemic clamps. Predictably, under metabolic stress induced by HF-diet feeding, FFA3 KO mice exhibited less glucose intolerance compared with the WT mice. Moreover, similar islet architecture and β-cell area in HF diet-fed FFA3 KO and WT mice was observed. Upon challenge with streptozotocin (STZ), FFA3 KO mice initially exhibited a tendency for an accelerated incidence of diabetes compared with the WT mice. However, this difference was not maintained. Similar glycemia and β-cell mass loss was observed in both genotypes 10 days post-STZ challenge. Higher resistance to STZ-induced diabetes in WT mice could be due to higher basal islet autophagy. However, this difference was not protective because in response to STZ, similar autophagy induction was observed in both WT and FFA3 KO islets. These data demonstrate that FFA3 plays a role in modulating insulin secretion and β-cell response to stressors. The β-cell FFA3 and autophagy link warrant further research.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Connor Cole
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gautham Oroskar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anton E Ludvik
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
46
|
Chen LC, Fan ZY, Wang HY, Wen DC, Zhang SY. Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food Funct 2020; 10:4372-4380. [PMID: 31276140 DOI: 10.1039/c9fo00406h] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a chronic metabolic disease characterized by elevated blood glucose levels due to insulin resistance and β-cell dysfunction. This study aims to examine the effects of polysaccharides from adlay seeds (PAS) on hyperglycemia and gut microbiota in streptozocin (STZ)-induced diabetic mice. The administration of PAS in diabetic mice caused a significant decrease in the glucose level and serum levels of glycosylated hemoglobin (HbA1c). Similarly, PAS also showed decreased total cholesterol (TC) and triglyceride (TG) concentrations. Furthermore, a significant increase in the concentrations of glucagon-like peptide 1 (GLP-1) was observed. Unexpectedly, PAS reduced the concentrations of anti-amyloid beta (Aβ1-42) protein. Also, histopathological examination showed that PAS contributed to the reduction of STZ-lesioned pancreatic cells. Metformin treatment significantly reduced the diversity of the gut microbiota, while PAS treatment altered the diversity and composition of the microbiota. Collectively, our findings demonstrate that the hypoglycemic effects of PAS in type-2 diabetic mice (T2D) may be associated with the regulation of the intestinal microbiota and its metabolic pathways.
Collapse
Affiliation(s)
- Li-Chun Chen
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | | | | | | | | |
Collapse
|
47
|
Gupta MK, Vasudevan NT. GPCRs and Insulin Receptor Signaling in Conversation: Novel Avenues for Drug Discovery. Curr Top Med Chem 2019; 19:1436-1444. [PMID: 31512997 DOI: 10.2174/1568026619666190712211642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
48
|
Bayle M, Neasta J, Dall'Asta M, Gautheron G, Virsolvy A, Quignard J, Youl E, Magous R, Guichou J, Crozier A, Del Rio D, Cros G, Oiry C. The ellagitannin metabolite urolithin C is a glucose-dependent regulator of insulin secretion through activation of L-type calcium channels. Br J Pharmacol 2019; 176:4065-4078. [PMID: 31378934 PMCID: PMC6811744 DOI: 10.1111/bph.14821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The pharmacology of polyphenol metabolites on beta-cell function is largely undetermined. We sought to identify polyphenol metabolites that enhance the insulin-secreting function of beta-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH INS-1 beta-cells and rat isolated islets of Langerhans or perfused pancreas preparations were used for insulin secretion experiments. Molecular modelling, intracellular Ca2+ monitoring, and whole-cell patch-clamp recordings were used for mechanistic studies. KEY RESULTS Among a set of polyphenol metabolites, we found that exposure of INS-1 beta-cells to urolithins A and C enhanced glucose-stimulated insulin secretion. We further characterized the activity of urolithin C and its pharmacological mechanism. Urolithin C glucose-dependently enhanced insulin secretion in isolated islets of Langerhans and perfused pancreas preparations. In the latter, enhancement was reversible when glucose was lowered from a stimulating to a non-stimulating concentration. Molecular modelling suggested that urolithin C could dock into the Cav 1.2 L-type Ca2+ channel. Calcium monitoring indicated that urolithin C had no effect on basal intracellular Ca2+ but enhanced depolarization-induced increase in intracellular Ca2+ in INS-1 cells and dispersed cells isolated from islets. Electrophysiology studies indicated that urolithin C dose-dependently enhanced the L-type Ca2+ current for levels of depolarization above threshold and shifted its voltage-dependent activation towards more negative potentials in INS-1 cells. CONCLUSION AND IMPLICATIONS Urolithin C is a glucose-dependent activator of insulin secretion acting by facilitating L-type Ca2+ channel opening and Ca2+ influx into pancreatic beta-cells. Our work paves the way for the design of polyphenol metabolite-inspired compounds aimed at ameliorating beta-cell function.
Collapse
Affiliation(s)
- Morgane Bayle
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de PharmacieUniv MontpellierMontpellierFrance
| | - Margherita Dall'Asta
- The Laboratory of Phytochemicals in Physiology, LS9 InterLab Group, Department of Food ScienceUniversity of ParmaParmaItaly
| | | | - Anne Virsolvy
- PhyMedExp, Univ Montpellier, CNRS, INSERMMontpellierFrance
| | - Jean‐François Quignard
- Université Bordeaux, INSERM U1045, Centre de Recherche Cardio‐Thoracique de BordeauxBordeauxFrance
| | - Estelle Youl
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Richard Magous
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratoire de Pharmacologie, Faculté de PharmacieUniv MontpellierMontpellierFrance
| | | | - Alan Crozier
- Department of NutritionUniversity of CaliforniaDavisCalifornia
- School of Medicine, Dentistry and NursingUniversity of GlasgowGlasgowUK
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, LS9 InterLab Group, Department of Food ScienceUniversity of ParmaParmaItaly
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratoire de Pharmacologie, Faculté de PharmacieUniv MontpellierMontpellierFrance
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratoire de Pharmacologie, Faculté de PharmacieUniv MontpellierMontpellierFrance
| |
Collapse
|
49
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
50
|
Peng Y, Wu Z, Yang H, Cai Y, Liu G, Li W, Tang Y. Insights into mechanisms and severity of drug-induced liver injury via computational systems toxicology approach. Toxicol Lett 2019; 312:22-33. [DOI: 10.1016/j.toxlet.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
|