1
|
Fang Q, Wu W, Xiao Z, Zeng D, Liang R, Wang J, Yuan J, Su W, Xu X, Zheng Y, Lai T, Sun J, Fu Q, Zheng SG. Gingival-derived mesenchymal stem cells alleviate allergic asthma inflammation via HGF in animal models. iScience 2024; 27:109818. [PMID: 38766356 PMCID: PMC11099335 DOI: 10.1016/j.isci.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Jia Yuan
- Division of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Zheng
- Department of Dermatology Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianwen Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| |
Collapse
|
2
|
Akenroye AT, Segal JB, Zhou G, Foer D, Li L, Alexander GC, Keet CA, Jackson JW. Comparative effectiveness of omalizumab, mepolizumab, and dupilumab in asthma: A target trial emulation. J Allergy Clin Immunol 2023; 151:1269-1276. [PMID: 36740144 PMCID: PMC10164684 DOI: 10.1016/j.jaci.2023.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multiple mAbs are currently approved for the treatment of asthma. However, there is limited evidence on their comparative effectiveness. OBJECTIVE Our aim was to compare the effectiveness of omalizumab, mepolizumab, and dupilumab in individuals with moderate-to-severe asthma. METHODS We emulated a hypothetical randomized trial using electronic health records from a large US-based academic health care system. Participants aged 18 years or older with baseline IgE levels between 30 and 700 IU/mL and peripheral eosinophil counts of at least 150 cells/μL were eligible for study inclusion. The study period extended from March 2016 to August 2021. Outcomes included the incidence of asthma-related exacerbations and change in baseline FEV1 value over 12 months of follow-up. RESULTS In all, 68 individuals receiving dupilumab, 68 receiving omalizumab, and 65 receiving mepolizumab met the inclusion criteria. Over 12 months of follow-up, 31 exacerbations occurred over 68 person years (0.46 exacerbations per person year) in the dupilumab group, 63 over 68 person years (0.93 per person year) in the omalizumab group, and 86 over 65 person years (1.32 per person year) in the mepolizumab group (adjusted incidence rate ratios: dupilumab vs mepolizumab, 0.28 [95% CI = 0.09-0.84]; dupilumab vs omalizumab, 0.36 [95% CI = 0.12-1.09]; and omalizumab vs mepolizumab, 0.78 [95% CI = 0.32-1.91]). The differences in the change in FEV1 comparing patients who received the different biologics were as follows: 0.11 L (95% CI = -0.003 to 0.222 L) for dupilumab versus mepolizumab, 0.082 L (95% CI -0.040 to 0.204 L) for dupilumab versus omalizumab, and 0.026 L (95% CI -0.083 to 0.140 L) for omalizumab versus mepolizumab. CONCLUSIONS Among patients with asthma and eosinophil counts of at least 150 cells/μL and IgE levels of 30 to 700 kU/L, dupilumab was associated with greater improvements in exacerbation and FEV1 value than omalizumab and mepolizumab.
Collapse
Affiliation(s)
- Ayobami T Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md.
| | - Jodi B Segal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Center for Drug Safety and Effectiveness, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Guohai Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Dinah Foer
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Division of General Internal Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Lily Li
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - G Caleb Alexander
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Center for Drug Safety and Effectiveness, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Corinne A Keet
- Division of Pediatric Allergy and Immunology, University of North Carolina, Chapel Hill, NC
| | - John W Jackson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Center for Drug Safety and Effectiveness, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| |
Collapse
|
3
|
Kandil R, Baldassi D, Böhlen S, Müller JT, Jürgens DC, Bargmann T, Dehmel S, Xie Y, Mehta A, Sewald K, Merkel OM. Targeted GATA3 knockdown in activated T cells via pulmonary siRNA delivery as novel therapy for allergic asthma. J Control Release 2023; 354:305-315. [PMID: 36634709 PMCID: PMC7614985 DOI: 10.1016/j.jconrel.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Sebastian Böhlen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - David C Jürgens
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Tonia Bargmann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yuran Xie
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Katherina Sewald
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
4
|
Zhou Z, Liang S, Zhou Z, Liu J, Zhang J, Meng X, Zou F, Zhao H, Yu C, Cai S. TGF-β1 promotes SCD1 expression via the PI3K-Akt-mTOR-SREBP1 signaling pathway in lung fibroblasts. Respir Res 2023; 24:8. [PMID: 36627645 PMCID: PMC9832654 DOI: 10.1186/s12931-023-02313-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung fibroblast activation is associated with airway remodeling during asthma progression. Stearoyl-CoA desaturase 1 (SCD1) plays an important role in the response of fibroblasts to growth factors. This study aimed to explore the effects of SCD1 on fibroblast activation induced by transforming growth factor-β1 (TGF-β1) and the role of the phosphatidylinositol-3-kinase-AKT serine-threonine protein kinase-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway on the regulation of SCD1 expression in airway remodeling. METHODS Female C57BL/6 mice were sensitized and challenged with house dust mites to generate a chronic asthma model. The inhibitor of SCD1 was injected i.g. before each challenge. The airway hyper-responsiveness to methacholine was evaluated, and airway remodeling and airway inflammation were assessed by histology. The effects of SCD1 on fibroblast activation were evaluated in vitro using an SCD1 inhibitor and oleic acid and via the knockdown of SCD1. The involvement of the PI3K-Akt-mTOR-sterol regulatory element-binding protein 1 (SREBP1) pathway in lung fibroblasts was investigated using relevant inhibitors. RESULTS The expression of SCD1 was increased in fibroblasts exposed to TGF-β1. The inhibition of SCD1 markedly ameliorated airway remodeling and lung fibroblast activation in peripheral airways. The knockdown or inhibition of SCD1 resulted in significantly reduced extracellular matrix production in TGF-β1-treated fibroblasts, but this effect was reversed by the addition of exogenous oleic acid. The PI3K-Akt-mTOR-SREBP1 pathway was found to be involved in the regulation of SCD1 expression and lung fibroblast activation. CONCLUSIONS The data obtained in this study indicate that SCD1 expression contributes to fibroblast activation and airway remodeling and that the inhibition of SCD1 may be a therapeutic strategy for airway remodeling in asthma.
Collapse
Affiliation(s)
- Zili Zhou
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Shixiu Liang
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Zicong Zhou
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jieyi Liu
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jinming Zhang
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaojing Meng
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Fei Zou
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Haijin Zhao
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Changhui Yu
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Shaoxi Cai
- grid.416466.70000 0004 1757 959XChronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
5
|
Bai F, Chen Z, Xu S, Han L, Zeng X, Huang S, Zhu Z, Zhou L. Wogonin attenuates neutrophilic inflammation and airway smooth muscle proliferation through inducing caspase-dependent apoptosis and inhibiting MAPK/Akt signaling in allergic airways. Int Immunopharmacol 2022; 113:109410. [DOI: 10.1016/j.intimp.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
|
6
|
Kamal A, Basanti CWS, Kaushty MA, Abdelmegeid AK. Serum interleukin 38 (IL-38) as a new potential biomarker of pediatric asthma. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [DOI: 10.1186/s43168-022-00139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bronchial asthma is considered the most prevalent chronic respiratory disease worldwide and is one of the main causes of hospitalization in the pediatric population. Serum interleukin 38 (IL-38) levels are elevated in several inflammatory and autoimmune diseases. However, its exact role in the pathogenesis of these diseases is unclear.
Objectives
To investigate the role of IL-38 as a potential biomarker in pediatric patients with bronchial asthma.
Methods
Serum IL-38 levels were measured in 73 pediatric patients with bronchial asthma (34 atopic and 39 non-atopic) and 30 age- and sex-matched healthy control subjects using enzyme-linked immunosorbent assay.
Results
Serum IL-38 levels were significantly higher in patients with bronchial asthma compared to the control group (p < 0.001). A significant negative correlation was found between serum IL-38 levels and both relative and absolute eosinophilic counts in the atopic group (R = −0.575, p < 0.001 and R = −0.474, p = 0.005, respectively).
Conclusion
IL-38 could be a useful prognostic and therapeutic biomarker of atopic asthma in pediatric patients.
Collapse
|
7
|
Zhang H, Xian M, Shi X, Luo T, Su Q, Li J, Feng M. Blocking function of allergen-specific immunoglobulin G, F(ab') 2, and Fab antibodies prepared from patients undergoing Dermatophagoides pteronyssinus immunotherapy. Ann Allergy Asthma Immunol 2022; 128:689-696. [PMID: 35405358 DOI: 10.1016/j.anai.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The blocking function of allergen-specific F(ab')2 [sF(ab')2] and Fab (sFab) fragment antibodies prepared from allergen immunotherapy-induced specific immunoglobulin G (sIgG) has not been fully investigated. OBJECTIVE To investigate the inhibitory function of sIgG, sF(ab')2, and sFab antibodies in patients undergoing Dermatophagoides pteronyssinus (Der-p) subcutaneous immunotherapy (SCIT). METHODS This study involved 10 subjects (aged 18-42 years) with house dust mite allergic rhinitis or asthma who received a 156-week course of Der-p SCIT. Total IgG levels were purified from the serum of the participants at weeks 0 and 156 by protein A affinity chromatography. Der-p sIgG was purified by affinity chromatography with Der-p as a ligand at week 156. The sF(ab')2 and sFab antibodies were prepared from Der-p sIgG by treatment with pepsin and papain, respectively. Furthermore, IgE-facilitated allergen binding assay, basophil activation inhibition test, and cytokine release inhibition assay were used to assess the inhibitory function of Der-p sIgG, sF(ab')2, and sFab antibodies. RESULTS We found that the Der-p sIgG, sF(ab')2, and sFab antibodies markedly blocked Der-p-allergen sIgE complex binding to B cells, inhibited basophil activation, and markedly reduced the production of interleukin (IL)-5, IL-13, IL-17, and tumor necrosis factor-α by peripheral blood mononuclear cells. CONCLUSION SCIT-induced Der-p sIgG, sF(ab')2, and sFab antibodies may block the formation of Der-p-sIgE complexes and may serve as a potential allergen-targeted biologics candidate for the treatment of allergic asthma. CLINICAL TRIAL REGISTRATION This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University and registered in the Chinese Clinical Trial Registry (ChiCTR-OOC-15006207, https://www.chictr.org.cn/enindex.aspx).
Collapse
Affiliation(s)
- Huan Zhang
- Huizhou Central People's Hospital, Huizhou, Guangdong, People's Republic of China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Mulin Feng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China; People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Rodrigo-Muñoz JM, Gil-Martínez M, Lorente-Sorolla C, García-Latorre R, Valverde-Monge M, Quirce S, Sastre J, del Pozo V. miR-144-3p Is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Front Immunol 2022; 13:858722. [PMID: 35432357 PMCID: PMC9010740 DOI: 10.3389/fimmu.2022.858722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs are non-coding molecules that act both as regulators of the epigenetic landscape and as biomarkers for diseases, including asthma. In the era of personalized medicine, there is a need for novel disease-associated biomarkers that can help in classifying diseases into phenotypes for treatment selection. Currently, severe eosinophilic asthma is one of the most widely studied phenotypes in clinical practice, as many patients require higher and higher doses of corticosteroids, which in some cases fail to achieve the desired outcome. Such patients may only benefit from alternative drugs such as biologics, for which novel biomarkers are necessary. The objective of the study was to study the expression of miR-144-3p in order to discover its possible use as a diagnostic biomarker for severe asthma. For this purpose, miR-144-3p was evaluated in airway biopsies and serum from asthmatics and healthy individuals. mRNA was studied in asthmatic biopsies and smooth muscle cells transfected with miR-144-3p mimic. An in silico regulation of miR-144-3p was performed using miRSystem, miRDB, STRING, and ShinyGO for pathway analysis. From our experimental procedures, we found that miR-144-3p is a biomarker associated with asthma severity and corticosteroid treatment. MiR-144-3p is increased in asthmatic lungs, and its presence correlates directly with blood eosinophilia and with the expression of genes involved in asthma pathophysiology in the airways. When studied in serum, this miRNA was increased in severe asthmatics and associated with higher doses of corticosteroids, thereby making it a potential biomarker for severe asthma previously treated with higher doses of corticosteroids. Thus, we can conclude that miR-144-3p is associated with severe diseases in both the airways and serum of asthmatics, and this association is related to corticosteroid treatment.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martínez
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Lorente-Sorolla
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Raquel García-Latorre
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Marcela Valverde-Monge
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Department of Allergy, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Santiago Quirce
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Department of Allergy, Hospital La Paz-Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Department of Allergy, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
9
|
Loo CY, Lee WH. Nanotechnology-based therapeutics for targeting inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:865-879. [PMID: 35315290 DOI: 10.2217/nnm-2021-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physiochemical properties of drugs used in treating inflammation-associated lung diseases (i.e., asthma, chronic obstructive pulmonary disease, pulmonary fibrosis) play an important role in determining the effectiveness of formulations. Most commonly used drugs are associated with low solubility, low stability and rapid clearance, thus resulting in low bioavailability and therapeutic index. This review focuses on current trends and development of drugs (i.e., corticosteroids, long-acting β-agonists and biomacromolecules such as DNA, siRNA and mRNA) employed to treat inflammatory lung diseases. In addition, this review includes the current challenges of and future perspective with regard to nanotechnology in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| |
Collapse
|
10
|
Park CK, An TJ, Kim JH, Chin Kook R, Yoon HK. Synergistic Effect of Roflumilast with Dexamethasone in a Neutrophilic Asthma Mouse Model. Clin Exp Pharmacol Physiol 2022; 49:624-632. [PMID: 35181901 DOI: 10.1111/1440-1681.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Asthma is a chronic airway inflammatory disease with heterogeneous features. Most cases of asthma are steroid sensitive, but 5-10% are unresponsive to steroids, leading to challenges in treatment. Neutrophilic asthma is steroid-resistant and characterized by the absence or suppression of the TH 2 process and an increase in the TH 1 and/or TH 17 process. Roflumilast (ROF) has anti-inflammatory effects and has been used to treat chronic inflammatory airway diseases, such as chronic pulmonary obstructive disease. It is unclear whether ROF may have a therapeutic role in neutrophilic asthma. In this study, we investigated the synergistic effect of ROF with dexamethasone in a neutrophilic asthma mouse model. C57BL/6 female mice sensitized to ovalbumin (OVA) were exposed to five intranasal OVA treatments and three intranasal lipopolysaccharide (LPS) treatments for an additional 10 days. During the intranasal OVA challenge, ROF was administered orally, and dexamethasone (DEX) was injected intraperitoneally. Protein, pro-inflammatory cytokines, inflammatory cytokines, and other suspected markers were identified by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot. Following exposure to LPS in OVA-induced asthmatic mice, neutrophil predominant airway inflammation rather than eosinophil predominant inflammation was observed, with increases in airway hyperresponsiveness (AHR). The lungs of animals treated with ROF exhibited less airway inflammation and hyperresponsiveness. To investigate the mechanism underlying this effect, we examined the expression of proinflammatory cytokines suspected to be involved in inflammatory cytokines and proteins. ROF reduced total protein in bronchioalveolar lavage fluid; levels of IL-17A, IL-1β mRNA, IFN-γ, and TNF-α; and recovered histone deacetylase-2 (HDAC2) activity. Combination therapy with ROF and DEX further reduced the levels of IL-17, IL-22, and IL-1β mRNA and proinflammatory cytokines. The combination of ROF and DEX reduced lung inflammation and airway hyperresponsiveness much more than one of them alone. ROF reduces AHR and lung inflammation in the neutrophilic asthma mouse model. Furthermore, additive effects were observed when DEX was added to ROF treatment, possibly because of recovery of HDAC2/β-Actin activity. This study demonstrates the anti-inflammatory properties of ROF in a neutrophilic asthma mouse model.
Collapse
Affiliation(s)
- Chan Kwon Park
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai Joon An
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hye Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Rhee Chin Kook
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Phelps A, Bruton K, Grydziuszko E, Koenig JFE, Jordana M. The Road Toward Transformative Treatments for Food Allergy. FRONTIERS IN ALLERGY 2022; 3:826623. [PMID: 35386642 PMCID: PMC8974751 DOI: 10.3389/falgy.2022.826623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/28/2022] Open
Abstract
A series of landmark studies have provided conclusive evidence that the early administration of food allergens dramatically prevents the emergence of food allergy. One of the greatest remaining challenges is whether patients with established food allergy can return to health. This challenge is particularly pressing in the case of allergies against peanut, tree nuts, fish, and shellfish which are lifelong in most patients and may elicit severe reactions. The standard of care for food allergy is allergen avoidance and the timely administration of epinephrine upon accidental exposure. Epinephrine, and other therapeutic options like antihistamines provide acute symptom relief but do not target the underlying pathology of the disease. In principle, any transformative treatment for established food allergy would require the restoration of a homeostatic immunological state. This may be attained through either an active, non-harmful immune response (immunological tolerance) or a lack of a harmful immune response (e.g., anergy), such that subsequent exposures to the allergen do not elicit a clinical reaction. Importantly, such a state must persist beyond the course of the treatment and exert its protective effects permanently. In this review, we will discuss the immunological mechanisms that maintain lifelong food allergies and are, consequently, those which must be dismantled or reprogrammed to instate a clinically non-reactive state. Arguably, the restoration of such a state in the context of an established food allergy would require a reprogramming of the immune response against a given food allergen. We will discuss existing and experimental therapeutic strategies to eliminate IgE reactivity and, lastly, will propose outstanding questions to pave the road to the development of novel, transformative therapeutics in food allergy.
Collapse
Affiliation(s)
- Allyssa Phelps
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
12
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer(NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells arecritical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in theblood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary-adrenal axis. Aself-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenousstimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger thehypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids.Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, andcancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among theseeffects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases(e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Research Area Bambino Gesù Children's Hospital, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
13
|
Yang D, Guo X, Liu T, Li Y, Du Z, Liu C. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 2021; 21:39. [PMID: 34387775 DOI: 10.1007/s11882-021-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo. RECENT FINDINGS We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 ( http://www.crd.york.ac.uk/PROSPERO ). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo. Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn't reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Ting Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Yina Li
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Zhuman Du
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China.
| |
Collapse
|
14
|
Okuzumi S, Miyata J, Kabata H, Mochimaru T, Kagawa S, Masaki K, Irie M, Morita H, Fukunaga K. TLR7 Agonist Suppresses ILC2-mediated Inflammation via IL-27-producing Interstitial Macrophages. Am J Respir Cell Mol Biol 2021; 65:309-318. [PMID: 34003734 DOI: 10.1165/rcmb.2021-0042oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play an important role in the pathophysiology of asthma via the robust production of type 2 cytokines. Recent studies have demonstrated that Toll-like receptor 7 (TLR7) signaling skews toward a type 1 inflammatory response in asthma, which may lead to the development of novel treatment strategies. However, the effect of TLR7 signaling on ILC2-dependent non-allergic eosinophilic inflammation remains unclear. In this study, we investigated the effects of R848, a TLR7 agonist, in a mouse model of IL-33-induced eosinophilic airway inflammation. Intranasal administration of R848 decreased infiltration of airway eosinophils and ILC2s, mucus production in epithelial cells, and type 2 cytokine production. Flow cytometric analysis identified an increased number of interstitial macrophages (IMs) expressing a high level of TLR7 in the lung upon IL-33 stimulation. IL-33-induced IMs also expressed high levels of M2-type genes and chemokines (CCL17 and CCL24). However, R848 stimulation modified these gene expressions and elicited the production of interleukin 27 (IL-27). Co-culture experiments revealed that IL-33-induced IMs directly suppressed ILC2 activation in response to R848. In addition, the inhibitory effects of R848 on ILC2-induced type 2 inflammation were defective in WSX-1-deficient mice lacking the IL-27 receptor. Taken together, these findings indicate that R848 stimulates IL-33-induced IMs to suppress ILC2-mediated type 2 airway inflammation via IL-27. These findings highlight the therapeutic potential of TLR7 agonists and/or IL-27 cascades in non-allergic asthma.
Collapse
Affiliation(s)
- Shinichi Okuzumi
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan
| | - Jun Miyata
- National Defense Medical College, 13077, Division of Pulmonary Medicine, Department of Medicine, Tokorozawa, Japan
| | - Hiroki Kabata
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan;
| | - Takao Mochimaru
- Keio University, School of Medicine, Division of Pulmonary Medicine, Department of Medicine, Shinjuku-ku, Japan
| | - Shizuko Kagawa
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan
| | - Katsunori Masaki
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan
| | - Misato Irie
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan
| | - Hideaki Morita
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Koichi Fukunaga
- Keio University School of Medicine, Pulmonary Medicine, Shinjuku-ku, Japan
| |
Collapse
|
15
|
Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell-dominant T-cell responses in asthma. J Allergy Clin Immunol 2021; 148:1545-1558. [PMID: 33957164 DOI: 10.1016/j.jaci.2021.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exosomes have emerged as a vital player in cell-cell communication; however, whether airway epithelial cell (AEC)-generated exosomes participate in asthma development remains unknown. OBJECTIVE Our aims were to characterize the AEC-secreted exosomes and the potentially functional protein(s) that may contribute to the proinflammatory effects of AEC exosomes in the dendritic cell (DC)-dominant airway allergic models and to confirm their clinical significance in patients with asthma. METHODS Mice were treated with exosomes derived from house dust mite (HDM)-stimulated AECs (HDM-AEC-EXOs) or monocyte-derived DCs primed by HDM and/or contactin-1 (CNTN1). The numbers of DCs in the lung were determined by flow cytometry. Proteomic analysis of purified HDM-AEC-EXOs was performed. CNTN1 small interfering RNA was designed to probe its role in airway allergy, and γ-secretase inhibitor was used to determine involvement of the Notch pathway. RESULTS HDM-AEC-EXOs facilitate the recruitment, proliferation, migration, and activation of monocyte-derived DCs in cell culture and in mice. CNTN1 in exosomes is a critical player in asthma pathology. RNA interference-mediated silencing and pharmaceutical inhibitors characterize Notch2 receptor as necessary for relaying the CNTN1 signal to activate TH2 cell/TH17 cell immune response. Studies of patients with asthma also support existence of the CNTN1-Notch2 axis that has been observed in cell and mouse models. CONCLUSION This study's findings reveal a novel role for CNTN1 in asthma pathogenesis mediated through exosome secretion, indicating a potential strategy for the treatment of allergic airway inflammation.
Collapse
|
16
|
Nakamori Y, Park EJ, Shimaoka M. Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Front Immunol 2021; 11:624279. [PMID: 33679715 PMCID: PMC7925640 DOI: 10.3389/fimmu.2020.624279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains a major problem for human health worldwide, thereby manifesting high rates of morbidity and mortality. Sepsis, once understood as a monophasic sustained hyperinflammation, is currently recognized as a dysregulated host response to infection, with both hyperinflammation and immunoparalysis occurring simultaneously from the earliest stages of sepsis, involving multiple organ dysfunctions. Despite the recent progress in the understanding of the pathophysiology underlying sepsis, no specific treatment to restore immune dysregulation in sepsis has been validated in clinical trials. In recent years, treatment for immune checkpoints such as the programmed cell death protein 1/programmed death ligand (PD-1/PD-L) pathway in tumor-infiltrating T-lymphocytes has been successful in the field of cancer immune therapy. As immune-paralysis in sepsis involves exhausted T-lymphocytes, future clinical applications of checkpoint inhibitors for sepsis are expected. In addition, the functions of PD-1/PD-L on innate lymphoid cells and the role of exosomal forms of PD-L1 warrant further research. Looking back on the history of repeatedly failed clinical trials of immune modulatory therapies for sepsis, sepsis must be recognized as a difficult disease entity for performing clinical trials. A major obstacle that could prevent effective clinical trials of drug candidates is the disease complexity and heterogeneities; clinically diagnosed sepsis could contain multiple sepsis subgroups that suffer different levels of hyper-inflammation and immune-suppression in distinct organs. Thus, the selection of appropriate more homogenous sepsis subgroup is the key for testing the clinical efficacy of experimental therapies targeting specific pathways in either hyperinflammation and/or immunoparalysis. An emerging technology such as artificial intelligence (AI) may help to identify an immune paralysis subgroup who would best be treated by PD-1/PD-L1 pathway inhibitors.
Collapse
Affiliation(s)
- Yuki Nakamori
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
17
|
Rolla G, Heffler E, Pizzimenti S, Michils A, Malinovschi A. An Emerging Role for Exhaled Nitric Oxide in Guiding Biological Treatment in Severe Asthma. Curr Med Chem 2021; 27:7159-7167. [PMID: 32660394 DOI: 10.2174/0929867327666200713184659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Asthma is a heterogeneous disease with regard to the inflammatory pathways activated. In recent years, biologic drugs (monoclonal antibodies) directed towards specific components of type 2 inflammation have been approved for the treatment of severe asthma. Phenotyping of patients with severe asthma and evaluation of biomarkers have been recommended to help identify patients who are candidates for treatment with biologics and to monitor treatment responses. Fractional exhaled Nitric Oxide (FeNO) is a biomarker of type 2 inflammation in asthma, signaling activation of Interleukin (IL)-4/IL-13 pathway. FeNO could be useful to assess treatment response or identify candidates for a specific drug that acts on type 2 inflammation mechanisms linked to Nitric Oxide (NO) production, such as the IL-4/IL-13 pathway or upstream processes. The value of FeNO as a biomarker predictive of responses to the biologics available for treating severe asthma is discussed based on the published studies at the moment of the review.
Collapse
Affiliation(s)
- Giovanni Rolla
- Department of Medical Sciences, Allergy and Clinical Immunology AO Mauriziano, University of Torino,
Torino, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano,
Italy
| | - Stefano Pizzimenti
- Respiratory Medicine Unit, National Health System, ASL Città di Torino, Torino, Italy
| | - Alain Michils
- Chest Department, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Kim JE, Lee DH, Jung K, Kim EJ, Choi Y, Park HS, Kim YS. Engineering of Humanized Antibodies Against Human Interleukin 5 Receptor Alpha Subunit That Cause Potent Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 11:593748. [PMID: 33488590 PMCID: PMC7820887 DOI: 10.3389/fimmu.2020.593748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Patients with severe eosinophilic asthma (SEA; characterized by persistent eosinophilia in blood and airway tissues) experience frequent asthma exacerbations with poor clinical outcomes. Interleukin 5 (IL-5) and IL-5 receptor alpha subunit (IL-5α) play key roles in eosinophilia maintenance, and relevant therapeutic strategies include the development of antibodies (Abs) against IL-5 or IL-5α to control eosinophilia. Benralizumab, an anti–IL-5α Ab that depletes eosinophils mainly via Ab-dependent cell-mediated cytotoxicity and through blockage of IL-5 function on eosinophils, has been clinically approved for patients with SEA. Here, we report engineering of a new humanized anti–IL-5Rα Ab with potent biological activity. We first raised murine Abs against human IL-5Rα, humanized a leading murine Ab, and then further engineered the humanized Abs to enhance their affinity for IL-5Rα using the yeast surface display technology. The finally engineered version of the Ab, 5R65.7, with affinity (KD ≈ 4.64 nM) stronger than that of a clinically relevant benralizumab analogue (KD ≈ 26.8 nM) showed improved neutralizing activity toward IL-5–dependent cell proliferation in a reporter cell system. Domain level Ab epitope mapping revealed that 5R65.7 recognizes membrane-proximal domain 3 of IL-5Rα, distinct from domain I epitope of the benralizumab analogue. In ex vivo assays with peripheral eosinophils from patients with SEA and healthy donors, 5R65.7 manifested more potent biological activities than the benralizumab analogue did, including inhibition of IL-5–dependent proliferation of eosinophils and induction of eosinophil apoptosis through autologous natural-killer-cell–mediated Ab-dependent cell-mediated cytotoxicity. Our study provides a potent anti–IL-5Rα Ab, 5R65.7, which is worthy of further testing in preclinical and clinical trials against SEA as a potential alternative to the current therapeutic arsenal.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Eun-Ji Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| |
Collapse
|
20
|
Guo F. RhoA and Cdc42 in T cells: Are they targetable for T cell-mediated inflammatory diseases? PRECISION CLINICAL MEDICINE 2021; 4:56-61. [PMID: 33842837 PMCID: PMC8023016 DOI: 10.1093/pcmedi/pbaa039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many inflammatory diseases are not curable, necessitating a better understanding of their pathobiology that may help identify novel biological targets. RhoA and Cdc42 of Rho family small GTPases regulate a variety of cellular functions such as actin cytoskeletal organization, cell adhesion, migration, proliferation, and survival. Recent characterization of mouse models of conditional gene knockout of RhoA and Cdc42 has revealed their physiological and cell type-specific roles in a number of cell types. In T lymphocytes, which play an important role in the pathogenesis of most, if not all, of the inflammatory diseases, we and others have investigated the effects of T cell-specific knockout of RhoA and Cdc42 on T cell development in the thymus, peripheral T cell homeostasis, activation, and differentiation to effector and regulatory T cells, and on T cell-mediated allergic airway inflammation and colitis. Here we highlight the phenotypes resulting from RhoA and Cdc42 deletion in T cells and discuss whether pharmacological targeting of RhoA and Cdc42 is feasible in treating asthma that is driven by allergic airway inflammation and colitis.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Lee CD, Choi WS, Choi YG, Kang HS, Lee WT, Kim HJ, Lee JY. Inhibition of phosphodiesterase suppresses allergic lung inflammation by regulating MCP-1 in an OVA-induced asthma murine model with co-exposure to lipopolysaccharide. J Int Med Res 2020; 48:300060520903663. [PMID: 32054359 PMCID: PMC7111082 DOI: 10.1177/0300060520903663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Chang Doo Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Geon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Sik Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Wang Tae Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hong Jo Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Jung S, Park J, Park J, Jo H, Seo CS, Jeon WY, Lee MY, Kwon BI. Sojadodamgangki-tang attenuates allergic lung inflammation by inhibiting T helper 2 cells and Augmenting alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113152. [PMID: 32755652 DOI: 10.1016/j.jep.2020.113152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sojadodamgangki-tang (SDG) is a traditional East-Asian herbal medicine mainly composed of Pinellia ternate (Thunb.) Makino, Perilla frutescens (L.) Britt and 10 kinds of medicinal herbs. It has been used to treat asthma and mucus secretion including lung and bronchi. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effects of Sojadodamgangki-tang (SDG) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS We used an ovalbumin (OVA)-induced murine allergic airway inflammation model. Five groups of 8-week-old female BALB/C mice were divided into the following groups: saline control group, the vehicle (allergic) group that received OVA only, groups that received OVA and SDG (200 mg/kg or 400 mg/kg), and a positive control group that received OVA and Dexamethasone (5 mg/kg). In vitro experiments include T helper 2 (TH2) polarization system, murine macrophage cell culture, and human bronchial epithelial cell line (BEAS-2B) culture. RESULTS SDG administration reduced allergic airway inflammatory cell infiltration, especially of eosinophils, mucus production, Th2 cell activation, OVA-specific immunoglobulin E (IgE), and total IgE production. Moreover, the activation of alveolar macrophages, which leads to immune tolerance in the steady state, was promoted by SDG treatment. Interestingly, SDG treatment also reduced the production of alarmin cytokines by the human bronchial epithelial cell line BEAS-2B stimulated with urban particulate matter. CONCLUSION Our findings indicate that SDG has potential as a therapeutic drug to inhibit Th2 cell activation and promote alveolar macrophage activation.
Collapse
Affiliation(s)
- Seyoung Jung
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Junkyu Park
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Jiwon Park
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea; Kyunghee University Medical Center, Kyunghee University, Seoul, 02447, Republic of Korea.
| | - Hanna Jo
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Chang-Seob Seo
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Woo-Young Jeon
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Mee-Young Lee
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Bo-In Kwon
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea; Research Institute of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
23
|
Pelaia C, Crimi C, Vatrella A, Tinello C, Terracciano R, Pelaia G. Molecular Targets for Biological Therapies of Severe Asthma. Front Immunol 2020; 11:603312. [PMID: 33329598 PMCID: PMC7734054 DOI: 10.3389/fimmu.2020.603312] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by usually reversible bronchial obstruction, which is clinically expressed by different phenotypes driven by complex pathobiological mechanisms (endotypes). Within this context, during the last years several molecular effectors and signalling pathways have emerged as suitable targets for biological therapies of severe asthma, refractory to standard treatments. Indeed, various therapeutic antibodies currently allow to intercept at different levels the chain of pathogenic events leading to type 2 (T2) airway inflammation. In addition to pro-allergic immunoglobulin E (IgE), that chronologically represents the first molecule against which an anti-asthma monoclonal antibody (omalizumab) was developed, today other targets are successfully exploited by biological treatments of severe asthma. In particular, pro-eosinophilic interleukin 5 (IL-5) can be targeted by mepolizumab or reslizumab, whereas benralizumab is a selective blocker of IL-5 receptor. Moreover, dupilumab behaves as a dual receptor antagonist of pleiotropic interleukins 4 (IL-4) and 13 (IL-13). Besides these drugs that are already available in medical practice, other biologics are under clinical development such as those targeting innate cytokines, also including the alarmin thymic stromal lymphopoietin (TSLP), which plays a key role in the pathogenesis of type 2 asthma. Therefore, ongoing and future biological therapies are significantly changing the global scenario of severe asthma management. These new therapeutic options make it possible to implement phenotype/endotype-specific treatments, that are delineating personalized approaches precisely addressing the individual traits of asthma pathobiology. Such tailored strategies are thus allowing to successfully target the immune-inflammatory responses underlying uncontrolled T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Respiratory Medicine Unit, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Caterina Tinello
- Pediatrics Unit, Provincial Outpatient Center of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
24
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
25
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
26
|
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:550-562. [PMID: 32035607 DOI: 10.1016/j.jaci.2019.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Maria Haslip
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn; Yale School of Nursing, Orange, Conn
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Conn
| | | | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
27
|
Biologics for Severe Asthma: Treatment-Specific Effects Are Important in Choosing a Specific Agent. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1379-1392. [PMID: 31076056 DOI: 10.1016/j.jaip.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Patients with uncontrolled severe persistent asthma have greater morbidity, greater use of health care resources, and more impairment in health-related quality of life when compared with their peers with well-controlled disease. Fortunately, since the introduction of biological therapeutics, patients with severe eosinophilic asthma now have beneficial treatment options that they did not have just a few years ago. In addition to anti-IgE therapy for allergic asthma, 3 new biological therapeutics targeting IL-5 and 1 targeting IL-4 and IL-13 signaling have recently been approved by the Food and Drug Administration for the treatment of severe eosinophilic asthma, and approval of more biological therapeutics is on the horizon. These medications decrease the frequency of asthma exacerbations, improve lung function, reduce corticosteroid usage, and improve health-related quality of life. This article reviews the mechanisms of action, specific indications, benefits, and side effects of each of the approved biological therapies for asthma. Furthermore, this article reviews how a clinician could use specific patient characteristics to decide which biologic treatment may be optimal for a given patient.
Collapse
|
28
|
Vatrella A, Maglio A, Pellegrino S, Pelaia C, Stellato C, Pelaia G, Vitale C. Phenotyping severe asthma: a rationale for biologic therapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Simona Pellegrino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Carolina Vitale
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| |
Collapse
|
29
|
Akkoç T, Genç D. Asthma immunotherapy and treatment approaches with mesenchymal stem cells. Immunotherapy 2020; 12:665-674. [PMID: 32489107 DOI: 10.2217/imt-2019-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways where exaggerated T helper 2 immune responses and inflammatory mediators play a role. Current asthma treatment options can effectively suppress symptoms and control the inflammatory process; however, cannot modulate the dysregulated immune response. Allergen-specific immunotherapy is one of the effective treatments capable of disease modification. Injecting allergens under the skin in allergen-specific immunotherapy can reduce asthma and improve the sensitivity of the lungs, however, has a risk of severe reactions. Mesenchymal stem cells have immunoregulatory activity with their soluble mediators and contact dependent manner. In this review, we focus on the current treatment strategies with mesenchymal stem cells in asthma as a new therapeutic tool and compare those with immunotherapy.
Collapse
Affiliation(s)
- Tunç Akkoç
- Department of Pediatric Allergy & Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Deniz Genç
- Department of Pediatric Health & Diseases, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
30
|
Fereidouni M, Ferns GA, Bahrami A. Current status and perspectives regarding the association between allergic disorders and cancer. IUBMB Life 2020; 72:1322-1339. [PMID: 32458542 DOI: 10.1002/iub.2285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
While activation of immune system may lead to a lower risk of some diseases, it has been shown that a history of atopic allergic disorders such as asthma, hay fever, eczema, and food allergies could be related to several types of cancer. However, the evidence is not entirely conclusive. Two proposals suggest a possible mechanism for the association between allergic disorders and cancers: immune surveillance and the antigenic stimulation. The association of allergy and cancer may vary by cancer site and the type of exposure. The aim of current review was to summarize the current knowledge of the association between allergic diseases and the risk of cancers with particular emphasis on case-controls and cohort studies to estimate the cancer risk associated with allergy.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Department of Immunology, Medical school Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
31
|
Choi J, Park SY, Moon K, Ha EH, Woo YD, Chung DH, Kwon H, Kim T, Park H, Moon H, Song W, Cho YS. Macrophage-derived progranulin promotes allergen-induced airway inflammation. Allergy 2020; 75:1133-1145. [PMID: 31758561 DOI: 10.1111/all.14129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/22/2019] [Accepted: 10/06/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Progranulin (PGRN), mainly produced by immune and epithelial cells, has been known to be involved in the development of various inflammatory diseases. However, the function of PGRN in allergic airway inflammation has not been clearly elucidated, and we investigated the role of PGRN in allergic airway inflammation. METHODS Production of PGRN and various type 2 cytokines was evaluated in mouse airways exposed to house dust mite allergen, and main cellular sources of these molecules were investigated using macrophage, airway epithelial cell, and NKT cell lines. We elucidated the role of PGRN in allergic airway inflammation in mouse models of asthma using macrophage-derived PGRN-deficient mice and NKT cell knockout mice by evaluating cytokine levels in bronchoalveolar lavage fluids and histopathology. We also supplemented recombinant PGRN in the mouse models to confirm the role of PGRN in allergic airway inflammation. RESULTS PGRN production preceded other cytokines, mainly from macrophages, in the airway exposed to allergen. PGRN induced IL-4 and IL-13 production in NKT cells and IL-33 and TSLP in airway epithelial cells. PGRN-induced Th2 cytokine production was abolished in NKT-deficient mice. Finally, allergic inflammation was significantly attenuated in allergen-exposed PGRN-deficient mice, but inflammation was restored when recombinant PGRN was supplemented during the allergen sensitization period. CONCLUSION The presence of macrophage-derived PGRN in airways in the early sensitization period may be critical for mounting a Th2 immune response and for following an allergic airway inflammation pathway via induction of type 2 cytokine production in NKT and airway epithelial cells.
Collapse
Affiliation(s)
- Jun‐Pyo Choi
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - So Young Park
- Department of Internal Medicine Eulji University School of Medicine Seoul Korea
| | - Keun‐Ai Moon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Yeon Duk Woo
- Institute of Allergy and Clinical Immunology Seoul National University Medical Research Center Seoul Korea
| | - Doo Hyun Chung
- Institute of Allergy and Clinical Immunology Seoul National University Medical Research Center Seoul Korea
| | - Hyouk‐Soo Kwon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Tae‐Bum Kim
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Hee‐Bom Moon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Woo‐Jung Song
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| |
Collapse
|
32
|
Lee JK, Amin S, Erdmann M, Kukaswadia A, Ivanovic J, Fischer A, Gendron A. Real-World Observational Study on the Characteristics and Treatment Patterns of Allergic Asthma Patients Receiving Omalizumab in Canada. Patient Prefer Adherence 2020; 14:725-735. [PMID: 32308377 PMCID: PMC7152735 DOI: 10.2147/ppa.s248324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/10/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Omalizumab is a treatment option for pediatric and adult patients with moderate to severe allergic asthma poorly controlled with standard inhaled therapies. Clinical trials and observational studies have demonstrated the efficacy of omalizumab. There is limited real-world evidence on the characteristics and treatment patterns of Canadian asthma patients receiving omalizumab. OBJECTIVE We profiled Canadian omalizumab users to estimate time to omalizumab discontinuation and to assess changes in concurrent medication usage before, during, and after therapy. METHODS This was a retrospective, observational, cohort study that analyzed data from Canadian prescription claims databases. An algorithm was used to select naïve users of omalizumab with an inferred diagnosis of GINA 5-asthma who made a claim for omalizumab from February 1, 2007, to June 2, 2015. Demographic and baseline characteristics were assessed at index. Outcomes examined over the analysis period included (i) daily omalizumab dose per patient and per claim; (ii) omalizumab discontinuation (defined as ≥100-day gap in making omalizumab claims) and its potential predictors (ie, age, sex, province of residence, drug insurer; assessed by Cox Proportional Hazards Model); and (iii) for patients who discontinued omalizumab, changes in concurrent medication usage before, during, and 6 months after omalizumab usage. RESULTS The final study cohort consisted of 1160 patients (mean age: 45.8 ± 15.2 years; 64.7% female). During the first year of omalizumab therapy, 29.5% of patients discontinued treatment. The singular characteristic that predicted omalizumab discontinuation with statistical significance was age group (20‒34 years vs 12‒19 years; hazard ratio 1.75, 95% confidence interval 1.11-2.76; P<0.05). There were significant reductions in the use of some concurrent inhaled and oral asthma medications during and/or after omalizumab use (P<0.05). CONCLUSION Nearly one-third of patients who initiated omalizumab in Canada for refractory, moderate to severe allergic asthma discontinued treatment during the first year.
Collapse
Affiliation(s)
- Jason K Lee
- Clinical Immunology and Allergy, Internal Medicine, Evidence Based Medical Educator Inc. and Urticaria Canada, Toronto, ON, Canada
| | | | | | | | | | | | - Alain Gendron
- AstraZeneca, Mississauga, Ontario, Canada and Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
33
|
Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020; 14:501-510. [PMID: 32098546 DOI: 10.1080/17476348.2020.1735365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Mitogen-activated protein kinases (MAPKs) are a large family of evolutionary conserved intracellular enzymes that play a pivotal role in signaling pathways mediating the biologic actions of a wide array of extracellular stimuli.Areas covered: MAPKs are implicated in most pathogenic events involved in asthma, including both inflammatory and structural changes occurring in the airways. Indeed, MAPKs are located at the level of crucial convergence points within the signal transduction networks activated by many cytokines, chemokines, growth factors, and other inducers of bronchial inflammation and remodeling such as immunoglobulin E (IgE) and oxidative stress.Expert opinion: Therefore, given the growing importance of MAPKs in asthma pathobiology, these signaling enzymes are emerging as key intracellular pathways whose upstream activation can be inhibited by biological drugs such as anti-cytokines and anti-IgE.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
34
|
Bao K, Yuan W, Zhou Y, Chen Y, Yu X, Wang X, Jia Z, Yu X, Wang X, Yao L, Wang S, Xu Y, Zhang Y, Zheng J, Hong M. A Chinese Prescription Yu-Ping-Feng-San Administered in Remission Restores Bronchial Epithelial Barrier to Inhibit House Dust Mite-Induced Asthma Recurrence. Front Pharmacol 2020; 10:1698. [PMID: 32076408 PMCID: PMC7006455 DOI: 10.3389/fphar.2019.01698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Clinically, the treatments against asthma like β2 agonist focus on controlling the symptoms rather than inhibiting recurrence radically. This study aims to evaluate the efficacy and mechanism of a potent Chinese prescription Yu-Ping-Feng-San (YPFS) against asthma recurrence. We here established an optimized house dust mite (HDM)-induced asthma recurrence mice model with typical asthmatic responses such as significantly augmented airway hyperresponsiveness (AHR), elevated serum IgE, pulmonary type 2 cytokines IL-5 and IL-13 levels, pathological changes including thickening bronchial wall, inflammatory infiltration of lung tissue, etc. Moreover, all typical asthmatic pathological features were prominently alleviated by YPFS applied during remission phase ahead of second elicitation, which was even more effective than three different types of medications dexamethasone, montelukast and salbutamol, which were commonly applied in clinical practice, administered during recurrence phase. Besides, we found that desmoglein 1 (DSG1) remained deficient when asthmatic responses regressed whereas tight junction (TJ) claudin 1 (CLDN1) or adherin junction (AJ) E-cadherin restored spontaneously. In vitro, DSG1 interference resulted in increased thymic stromal lymphopoietin (TSLP) secretion, and epithelial barrier compromise evidenced by significantly elevated transepithelial electrical resistance (TEER) and increased 4-kDa FITC-dextran influx. YPFS could downregulate TSLP production and restore HDM-induced DSG1 deficiency and barrier destruction, which was further reversed by shDSG1. Collectively, administration of YPFS in remission prominently alleviated HDM-induced asthma relapse by restoring DSG1 and decreasing TSLP overexpression, which might be the key factors contributing to chronic asthma relapse. Our data not only demonstrated the pivotal role of DSG1 in asthma pathogenesis, but also provided a novel and potent therapeutic strategy against chronic asthma.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Yu
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, Nanjing, China
| | - Xiaotong Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siqi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Recent advances in both murine models and clinical research of neutrophilic asthma are improving our understanding on the etiology and pathophysiology of this enigmatic endotype of asthma. We here aim at providing an overview of our current and latest insights on the pathophysiology and treatment of neutrophilic asthma. RECENT FINDINGS Activation of the NLRP3 inflammasome pathway with increased IL-1β has been demonstrated in various studies involving patients with asthma. It has been suggested that type 3 innate lymphoid cells are implicated in the inflammatory cascade leading to neutrophilic inflammation. The role of neutrophil extracellular traps is only at the start of being understood and might be an attractive novel therapeutic target. A diverse panel of nonallergic stimuli, such as cigarette smoke, intensive exercise, cold air or saturated fatty acids, have been linked with neutrophilic airway inflammation. Azithromycin treatment could reduce asthma exacerbations and quality of life in patients with persistent asthma. SUMMARY Research of the last few years has accelerated our insights in mechanisms underlying neutrophilic asthma. This is in stark contrast with the lack of efficacy of different therapies targeting neutrophil chemotaxis and/or signalling cascade, such as IL-17A or CXCR2. Macrolide therapy might be a useful add-on therapy for patients with persistent asthma.
Collapse
|
36
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
37
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
38
|
Ianevski A, Giri AK, Gautam P, Kononov A, Potdar S, Saarela J, Wennerberg K, Aittokallio T. Prediction of drug combination effects with a minimal set of experiments. NAT MACH INTELL 2019; 1:568-577. [PMID: 32368721 DOI: 10.1038/s42256-019-0122-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput drug combination screening provides a systematic strategy to discover unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic combinatorial screening with multi-dose matrix assays is experimentally expensive, especially when the aim is to identify selective combination synergies across a large panel of cell lines or patient samples. Here we implemented DECREASE, an efficient machine learning model that requires only a limited set of pairwise dose-response measurements for accurate prediction of drug combination synergy and antagonism. Using a compendium of 23,595 drug combination matrices tested in various cancer cell lines, and malaria and Ebola infection models, we demonstrate how cost-effective experimental designs with DECREASE capture almost the same degree of information for synergy and antagonism detection as the fully-measured dose-response matrices. Measuring only the diagonal of the matrix provides an accurate and practical option for combinatorial screening. The open-source web-implementation enables applications of DECREASE to both pre-clinical and translational studies.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, FI-02150 Espoo, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Alexander Kononov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC) and the Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00290 Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, FI-02150 Espoo, Finland.,Department of Mathematics and Statistics, University of Turku, Quantum, FI-20014 Turku, Finland
| |
Collapse
|
39
|
Pelaia C, Crimi C, Vatrella A, Busceti MT, Gaudio A, Garofalo E, Bruni A, Terracciano R, Pelaia G. New treatments for asthma: From the pathogenic role of prostaglandin D 2 to the therapeutic effects of fevipiprant. Pharmacol Res 2019; 155:104490. [PMID: 31682916 DOI: 10.1016/j.phrs.2019.104490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Prostaglandin D2 (PGD2) is a pleiotropic mediator, significantly involved in the pathogenesis of type 2 (T2) asthma because of its biologic actions exerted on both immune/inflammatory and airway structural cells. In particular, the pro-inflammatory and pro-remodelling effects of PGD2 are mainly mediated by stimulation of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). This receptor is the target of the oral competitive antagonist fevipiprant, which on the basis of recent phase II studies is emerging as a potential very promising anti-asthma drug. Indeed, fevipiprant appears to be safe and effective, especially in consideration of its ability to inhibit eosinophilic bronchial inflammation and improve forced expiratory volume in one second (FEV1). Further ongoing phase III trials will definitely clarify if fevipiprant can prospectively become a valid option for an efficacious add-on treatment of moderate-to-severe T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Achille Gaudio
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
40
|
Jha A, Dunning J, Tunstall T, Thwaites RS, Hoang LT, Kon OM, Zambon MC, Hansel TT, Openshaw PJ. Patterns of systemic and local inflammation in patients with asthma hospitalised with influenza. Eur Respir J 2019; 54:13993003.00949-2019. [PMID: 31391224 DOI: 10.1183/13993003.00949-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with asthma are at risk of hospitalisation with influenza, but the reasons for this predisposition are unknown. STUDY SETTING A prospective observational study of adults with PCR-confirmed influenza in 11 UK hospitals, measuring nasal, nasopharyngeal and systemic immune mediators and whole-blood gene expression. RESULTS Of 133 admissions, 40 (30%) had previous asthma; these were more often female (70% versus 38.7%, OR 3.69, 95% CI 1.67-8.18; p=0.0012), required less mechanical ventilation (15% versus 37.6%, Chi-squared 6.78; p=0.0338) and had shorter hospital stays (mean 8.3 versus 15.3 days, p=0.0333) than those without. In patients without asthma, severe outcomes were more frequent in those given corticosteroids (OR 2.63, 95% CI 1.02-6.96; p=0.0466) or presenting >4 days after disease onset (OR 5.49, 95% CI 2.28-14.03; p=0.0002). Influenza vaccination in at-risk groups (including asthma) were lower than intended by national policy and the early use of antiviral medications were less than optimal. Mucosal immune responses were equivalent between groups. Those with asthma had higher serum interferon (IFN)-α, but lower serum tumour necrosis factor, interleukin (IL)-5, IL-6, CXCL8, CXCL9, IL-10, IL-17 and CCL2 levels (all p<0.05); both groups had similar serum IL-13, total IgE, periostin and blood eosinophil gene expression levels. Asthma diagnosis was unrelated to viral load, IFN-α, IFN-γ, IL-5 or IL-13 levels. CONCLUSIONS Asthma is common in those hospitalised with influenza, but may not represent classical type 2-driven disease. Those admitted with influenza tend to be female with mild serum inflammatory responses, increased serum IFN-α levels and good clinical outcomes.
Collapse
Affiliation(s)
- Akhilesh Jha
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK.,Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Jake Dunning
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK.,Public Health England (formerly Health Protection Agency), London, UK
| | - Tanushree Tunstall
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Long T Hoang
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | | | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Maria C Zambon
- Public Health England (formerly Health Protection Agency), London, UK
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| |
Collapse
|
41
|
Yin LM, Xu YD, Peng LL, Duan TT, Liu JY, Xu Z, Wang WQ, Guan N, Han XJ, Li HY, Pang Y, Wang Y, Chen Z, Zhu W, Deng L, Wu YL, Ge GB, Huang S, Ulloa L, Yang YQ. Transgelin-2 as a therapeutic target for asthmatic pulmonary resistance. Sci Transl Med 2019; 10:10/427/eaam8604. [PMID: 29437149 DOI: 10.1126/scitranslmed.aam8604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/11/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
There is a clinical need for new bronchodilator drugs in asthma, because more than half of asthmatic patients do not receive adequate control with current available treatments. We report that inhibition of metallothionein-2 protein expression in lung tissues causes the increase of pulmonary resistance. Conversely, metallothionein-2 protein is more effective than β2-agonists in reducing pulmonary resistance in rodent asthma models, alleviating tension in tracheal spirals, and relaxing airway smooth muscle cells (ASMCs). Metallothionein-2 relaxes ASMCs via transgelin-2 (TG2) and induces dephosphorylation of myosin phosphatase target subunit 1 (MYPT1). We identify TSG12 as a nontoxic, specific TG2-agonist that relaxes ASMCs and reduces asthmatic pulmonary resistance. In vivo, TSG12 reduces pulmonary resistance in both ovalbumin- and house dust mite-induced asthma in mice. TSG12 induces RhoA phosphorylation, thereby inactivating the RhoA-ROCK-MYPT1-MLC pathway and causing ASMCs relaxation. TSG12 is more effective than β2-agonists in relaxing human ASMCs and pulmonary resistance with potential clinical advantages. These results suggest that TSG12 could be a promising therapeutic approach for treating asthma.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu-Dong Xu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Ling-Ling Peng
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Ting-Ting Duan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jia-Yuan Liu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhijian Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen-Qian Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Nan Guan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiao-Jie Han
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Hai-Yan Li
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu Pang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhaoqiang Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiliang Zhu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Jiangsu 213164, China
| | - Ying-Li Wu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Shuang Huang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Luis Ulloa
- International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China. .,Center of Immunology and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
42
|
Pelaia C, Busceti MT, Vatrella A, Rago GF, Crimi C, Terracciano R, Pelaia G. Real-life rapidity of benralizumab effects in patients with severe allergic eosinophilic asthma: Assessment of blood eosinophils, symptom control, lung function and oral corticosteroid intake after the first drug dose. Pulm Pharmacol Ther 2019; 58:101830. [PMID: 31344472 DOI: 10.1016/j.pupt.2019.101830] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
Benralizumab is a humanized monoclonal antibody which binds to the α subunit of the interleukin-5 (IL-5) receptor and to the FcγRIIIa receptor expressed by natural killer cells, thus suppressing the pro-eosinophil actions of IL-5 and triggering eosinophil apoptosis via the very effective mechanism of antibody-dependent cell-mediated cytotoxicity (ADCC). Because of its recent approval and introduction in clinical practice for the add-on biological therapy of severe eosinophilic asthma, real-life investigations are still lacking. In this regard, our present real-life study refers to 13 patients with severe allergic eosinophilic asthma, currently under treatment with benralizumab at the Respiratory Unit of "Magna Græcia" University Hospital located in Catanzaro, Italy. Already 4 weeks after the first subcutaneous injection of benralizumab at the dosage of 30 mg, blood eosinophil count rapidly dropped down from 814.7 ± 292.3 cells/μL to 51.3 ± 97.5 cells/μL (p < 0.0001). This relevant hematologic change was associated with quick and significant increases in asthma control test (ACT) score (from 15.31 ± 2.78 to 21.15 ± 3.58; p < 0.0001), pre-bronchodilator forced expiratory volume in 1 s (FEV1) (from 1441 ± 757.9 mL to 1887 ± 837.3 mL; p < 0.001), and morning peak expiratory flow (PEF) (from 4.21 ± 2.20 to 5.33 ± 1.99 L/sec; p < 0.01). Furthermore, the marked improvement in global health status experienced by our patients allowed them to progressively lower and then completely interrupt, within 4 weeks, their daily intake of oral corticosteroids (OCS), which thereby fell from 15.58 ± 8.30 to 0 mg (p < 0.0001) of prednisone. Therefore, such preliminary results suggest that in patients with severe allergic eosinophilic asthma benralizumab can exert, within a real-life context, a very rapid and effective therapeutic action, already detectable 4 weeks after the first drug administration.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Giuseppe Francesco Rago
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
43
|
Kandil R, Feldmann D, Xie Y, Merkel OM. Evaluating the Regulation of Cytokine Levels After siRNA Treatment in Antigen-Specific Target Cell Populations via Intracellular Staining. Methods Mol Biol 2019; 1943:323-331. [PMID: 30838626 DOI: 10.1007/978-1-4939-9092-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
RNA interference (RNAi) offers a promising base for therapeutic knockdown of clinically relevant genes. Local delivery routes as well as targeted delivery to specific cell populations have been shown to circumvent several hurdles of successful siRNA delivery in vivo. To evaluate and quantify the treatment effect in a precise way, next to measuring the downregulation on gene and protein levels, it is equally essential to investigate the influence on downstream factors such as generated cytokines. Here, we describe an expressive method to specifically isolate the desired target cells and determine their levels of intracellular cytokines by flow cytometry using the example of murine lungs after pulmonary in vivo transfection with siRNA.Therefore, the lungs of treated mice are harvested and processed into single cell suspensions, in which CD4 positive T cells are marked by antibody-coupled magnetic beads and isolated via magnetic separation. These purified target cells are then fixed and permeabilized, making their intracellular interleukins accessible for staining with fluorescently labeled antibodies. Thus, the cytokine levels and hence the precise influence of the siRNA treatment on intracellular conditions can be measured.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Feldmann
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany. .,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
44
|
Kandil R, Xie Y, Heermann R, Isert L, Jung K, Mehta A, Merkel OM. Coming in and Finding Out: Blending Receptor-Targeted Delivery and Efficient Endosomal Escape in a Novel Bio-Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells. ADVANCED THERAPEUTICS 2019; 2:1900047. [PMID: 31372493 PMCID: PMC6675603 DOI: 10.1002/adtp.201900047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) offers the potential to selectively silence disease-related genes in defined cell subsets. Translation into the clinical routine is, however, still hampered by the lack of efficient carrier systems for therapeutic siRNA, endosomal entrapment presenting a major hurdle. A promising siRNA delivery system has previously been developed on the base of polyethylenimine (PEI) and the targeting ligand transferrin (Tf) to specifically reach activated T cells in the lung. In the present work, the focus is on optimizing Tf-PEI polyplexes for gene knockdown in primary activated T cells by improving their endosomal escape properties. Blending of the conjugate with membrane lytic melittin significantly enhanced endosomal release and thereby cytoplasmic delivery, while maintaining selective T cell targeting abilities and overall cell tolerability. The gathered data furthermore demonstrate that melittin addition also distinctly improves several other essential particle characteristics, such as siRNA encapsulation efficiency and stability in lung lining fluids. In conclusion, this results in a novel upgraded siRNA delivery system that is not only able to specifically deliver its payload to the desired target cells via receptor-mediated endocytosis, but also shows enhanced release from endosomal vesicles in order to initiate RNAi in the cytoplasm.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Ralf Heermann
- Institute for Molecular Physiology, Microbiology and Wine Research, Johannes-Gutenberg-University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany; Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Kirsten Jung
- Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| |
Collapse
|
45
|
Adorisio S, Fierabracci A, Muscari I, Liberati AM, Calvitti M, Cossignani L, Blasi F, Quan TD, Tam NT, Sung TV, Riccardi C, Thuy TT, Delfino DV. Artocarpus tonkinensis Protects Mice Against Collagen-Induced Arthritis and Decreases Th17 Cell Function. Front Pharmacol 2019; 10:503. [PMID: 31214019 PMCID: PMC6554681 DOI: 10.3389/fphar.2019.00503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Artocarpus tonkinensis (Moraceae) is a tree that grows in north Vietnam whose leaf decoction is used as a traditional remedy by the Hmong ethnic group to treat arthritis and backache. Our study evaluated the decoction’s efficacy and mechanism of action in DBA/1J mice with collagen-induced arthritis (CIA). Mice treated with the decoction (At) either from the first collagen immunization or after CIA development experienced significantly less joint edema and inflammatory infiltration, whereas CIA-induced cartilage damage could only be prevented by early At treatment. Autoimmune gene expression profiles showed that Th17 cell-associated chemokine CCL20 and cytokines IL-6, IL-17, and IL-22 were strongly downregulated by At. Reduced expression of IL-2, IL-17, IL-22, and FasL in lymph node cells from At-treated mice was further confirmed by real-time PCR. The decoction also inhibited polarization of Th17 cells from CD4+ splenic T cells according to levels of IL-17 and RORC, a Th17 cell-specific transcription factor. Chromatographic analysis identified At’s major component as maesopsin-β-D-glucoside, which could inhibit in vitro differentiation of Th17 cells. The decoction significantly alleviated the signs and symptoms of CIA and inhibited the development and function of Th17 cells, highlighting its potent anti-inflammatory activity.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Department of Medicine, Foligno Nursing School, University of Perugia, Foligno, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Muscari
- Section of Onco-hematology, Department of Medicine, Santa Maria Hospital, University of Perugia, Terni, Italy
| | - Anna Marina Liberati
- Section of Onco-hematology, Department of Medicine, Santa Maria Hospital, University of Perugia, Terni, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Perugia, Italy
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Perugia, Italy
| | - Tran Duc Quan
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thanh Tam
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Domenico V Delfino
- Department of Medicine, Foligno Nursing School, University of Perugia, Foligno, Italy.,Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
46
|
Kim JE, Jung K, Kim JA, Kim SH, Park HS, Kim YS. Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Sci Rep 2019; 9:7772. [PMID: 31123339 PMCID: PMC6533264 DOI: 10.1038/s41598-019-44253-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Development of antagonistic antibody (Ab) against interleukin-4 receptor alpha (IL-4Rα) subunit of IL-4/IL-13 receptors is a promising therapeutic strategy for T helper 2 (TH2)-mediated allergic diseases such as asthma and atopic dermatitis. Here we isolated anti-human IL-4Rα antagonistic Abs from a large yeast surface-displayed human Ab library and further engineered their complementarity-determining regions to improve the affinity using yeast display technology, finally generating a candidate Ab, 4R34.1.19. When reformatted as human IgG1 form, 4R34.1.19 specifically bound to IL-4Rα with a high affinity (KD ≈ 178 pM) and effectively blocked IL-4- and IL-13-dependent signaling in a reporter cell system at a comparable level to that of the clinically approved anti-IL-4Rα dupilumab Ab analogue. Epitope mapping by alanine scanning mutagenesis revealed that 4R34.1.19 mainly bound to IL-4 binding sites on IL-4Rα with different epitopes from those of dupilumab analogue. Further, 4R34.1.19 efficiently inhibited IL-4-dependent proliferation of T cells among human peripheral blood mononuclear cells and suppressed the differentiation of naïve CD4+ T cells from healthy donors and asthmatic patients into TH2 cells, the activities of which were comparable to those of dupilumab analogue. Our work demonstrates that both affinity and epitope are critical factors for the efficacy of anti-IL-4Rα antagonistic Abs.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
47
|
Burleson JD, Siniard D, Yadagiri VK, Chen X, Weirauch MT, Ruff BP, Brandt EB, Hershey GKK, Ji H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci Rep 2019; 9:7361. [PMID: 31089182 PMCID: PMC6517446 DOI: 10.1038/s41598-019-43767-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies have suggested a role for Tet1 in the pathogenesis of childhood asthma. However, how Tet1 contributes to asthma remains unknown. Here we used mice deficient for Tet1 in a well-established model of allergic airway inflammation and demonstrated that loss of Tet1 increased disease severity including airway hyperresponsiveness and lung eosinophilia. Increased expression of Muc5ac, Il13, Il33, Il17a, Egfr, and Tff2 were observed in HDM-challenged Tet1-deficient mice compared to Tet1+/+ littermates. Further, transcriptomic analysis of lung RNA followed by pathway and protein network analysis showed that the IFN signaling pathway was significantly upregulated and the aryl hydrocarbon receptor (AhR) pathway was significantly downregulated in HDM-challenged Tet1-/- mice. This transcriptional regulation of the IFN and AhR pathways by Tet1 was also present in human bronchial epithelial cells at base line and following HDM challenges. Genes in these pathways were further associated with changes in DNA methylation, predicted binding of transcriptional factors with relevant functions in their promoters, and the presence of histone marks generated by histone enzymes that are known to interact with Tet1. Collectively, our data suggest that Tet1 inhibits HDM-induced allergic airway inflammation by direct regulation of the IFN and AhR pathways.
Collapse
Affiliation(s)
- J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dylan Siniard
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Veda K Yadagiri
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA. .,California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
48
|
Li Y, Wu F, Tan Q, Guo M, Ma P, Wang X, Zhang S, Xu J, Luo P, Jin Y. The multifaceted roles of FOXM1 in pulmonary disease. Cell Commun Signal 2019; 17:35. [PMID: 30992007 PMCID: PMC6469073 DOI: 10.1186/s12964-019-0347-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box M1 (FOXM1), a transcriptional regulator of G1/S and G2/M transition and M phase progression in the cell cycle, plays a principal role in many physiological and pathological processes. A growing number of studies have focused on the relationship between abnormal FOXM1 expression and pulmonary diseases, such as lung cancer, chronic obstructive pulmonary disease (COPD), asthma, acute lung injury (ALI), pulmonary fibrosis, and pulmonary arterial hypertension (PAH). These studies indicate that the FOXM1 regulatory network is a major predictor of poor outcomes, especially in lung cancer, and provide novel insight into various pulmonary diseases. For the first time, this review summarizes the mechanistic relationship between FOXM1 dysregulation and pulmonary diseases, the benefits of targeting abnormal FOXM1 expression, and the questions that remain to be addressed in the future.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
49
|
Ha EH, Choi JP, Kwon HS, Park HJ, Lah SJ, Moon KA, Lee SH, Kim I, Cho YS. Endothelial Sox17 promotes allergic airway inflammation. J Allergy Clin Immunol 2019; 144:561-573.e6. [PMID: 30928652 DOI: 10.1016/j.jaci.2019.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND IL-33, levels of which are known to be increased in patients with eosinophilic asthma and which is suggested as a therapeutic target for it, activates endothelial cells in which Sry-related high-mobility-group box (Sox) 17, an endothelium-specific transcription factor, was upregulated. OBJECTIVE We investigated the relationship between Sox17 and IL-33 and the possible role of Sox17 in the pathogenesis of asthma using a mouse model of airway inflammation. METHODS We used ovalbumin (OVA) to induce airway inflammation in endothelium-specific Sox17 null mutant mice and used IL-33 neutralizing antibody to evaluate the interplay between IL-33 and Sox17. We evaluated airway inflammation and measured levels of various cytokines, chemokines, and adhesion molecules. We also carried out loss- or gain-of-function experiments for Sox17 in human endothelial cells. RESULTS Levels of IL-33 and Sox17 were significantly increased in the lungs of OVA-challenged mice. Anti-IL-33 neutralizing antibody treatment attenuated not only OVA-induced airway inflammation but also Sox17 expression in pulmonary endothelial cells. Importantly, endothelium-specific deletion of Sox17 resulted in significant alleviation of various clinical features of asthma, including airway inflammation, immune cell infiltration, cytokine/chemokine production, and airway hyperresponsiveness. Sox17 deletion also resulted in decreased densities of Ly6chigh monocytes and inflammatory dendritic cells in the lungs. In IL-33-stimulated human endothelial cells, Sox17 showed positive correlation with CCL2 and intercellular adhesion molecule 1 levels. Lastly, Sox17 promoted monocyte adhesion to endothelial cells and upregulated the extracellular signal-regulated kinase-signal transducer and activator of transcription 3 pathway. CONCLUSION Sox17 was regulated by IL-33, and its genetic ablation in endothelial cells resulted in alleviation of asthma-related pathophysiologic features. Sox17 might be a potential target for asthma management.
Collapse
Affiliation(s)
- Eun Hee Ha
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeung Ju Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang Joon Lah
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | - Seung-Hyo Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Injune Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
50
|
Schofield JPR, Burg D, Nicholas B, Strazzeri F, Brandsma J, Staykova D, Folisi C, Bansal AT, Xian Y, Guo Y, Rowe A, Corfield J, Wilson S, Ward J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlen SE, Fowler SJ, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Riley J, Auffray C, De Meulder B, Lefaudeux D, Sousa AR, Adcock IM, Chung KF, Sterk PJ, Skipp PJ, Djukanović R. Stratification of asthma phenotypes by airway proteomic signatures. J Allergy Clin Immunol 2019; 144:70-82. [PMID: 30928653 DOI: 10.1016/j.jaci.2019.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. METHODS Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.
Collapse
Affiliation(s)
- James P R Schofield
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Dominic Burg
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ben Nicholas
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Fabio Strazzeri
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom; Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Joost Brandsma
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Doroteya Staykova
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Caterina Folisi
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Yang Xian
- Data Science Institute, Imperial College, London, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College, London, United Kingdom
| | - Anthony Rowe
- Janssen Research & Development, High Wycombe, United Kingdom
| | | | - Susan Wilson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan Ward
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rene Lutter
- AMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine Hospital University, University of Catania, Catania, Italy
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen J Fowler
- Respiratory and Allergy Research Group, University of Manchester, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Paolo Montuschi
- Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Marek Sanak
- Laboratory of Molecular Biology and Clinical Genetics, Medical College, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Medicine, Department of Public Health and Clinical Medicine Respiratory Medicine Unit, Umeå University, Umeå, Sweden
| | - Kai Sun
- Data Science Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - John Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Sterk
- Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | | |
Collapse
|