1
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
2
|
Vergez I, Nekoua MP, Arbrandt G, Westman J, Alidjinou EK, Hober D. Macrophages can transmit coxsackievirus B4 to pancreatic cells and can impair these cells. J Med Virol 2024; 96:e70009. [PMID: 39422382 DOI: 10.1002/jmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Macrophages are suspected to be involved in the pathogenesis of type 1 diabetes. The role of macrophages in the transmission of coxsackievirus B4 (CVB4) to pancreatic cells and in the alteration of these cells was investigated. Human monocytes isolated from peripheral blood were differentiated into macrophages with M-CSF (M-CSF macrophages) or GM-CSF (GM-CSF macrophages). M-CSF macrophages were inoculated with CVB4. M-CSF and GM-CSF macrophages were activated with lipopolysaccharide and interferon (IFN)-γ. Human pancreatic beta cells 1.1B4 were inoculated with CVB4 derived from M-CSF macrophages or were cocultured with CVB4-infected M-CSF macrophages. The antiviral activity of synthetic molecules in macrophage cultures was evaluated. Activated macrophages were cocultured with CVB4-persistently infected 1.1B4 cells, and the specific lysis of these cells was determined. Our study shows that CVB4 can infect M-CSF macrophages, leading to the release of interleukin-6 and tumor necrosis factor-α and later IFN-α. M-CSF macrophage-derived CVB4 can infect 1.1B4 cells, which were then altered; however, when these cells were cultured in medium containing agarose, cell layers were not altered. Fluoxetine and CUR-N373 can inhibit CVB4 replication in macrophage cultures. Supernatants of activated M-CSF and GM-CSF macrophage cultures induced lysis of CVB4-persistently infected 1.1B4 cells. The cytolytic activity of activated GM-CSF macrophages was higher towards CVB4-persistently infected 1.1B4 cells than mock-infected 1.1B4 cells. In conclusion, macrophages may play a role in CVB4 infection of pancreatic cells, and are capable of inducing lysis of infected pancreatic cells.
Collapse
Affiliation(s)
- Inès Vergez
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | | | | | | | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
3
|
Debuysschere C, Nekoua MP, Alidjinou EK, Hober D. The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus. Nat Rev Endocrinol 2024; 20:588-599. [PMID: 38890459 DOI: 10.1038/s41574-024-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Environmental factors, in particular viral infections, are thought to have an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The COVID-19 pandemic reinforced this hypothesis as many observational studies and meta-analyses reported a notable increase in the incidence of T1DM following infection with SARS-CoV-2 as well as an association between SARS-CoV-2 infection and the risk of new-onset T1DM. Experimental evidence suggests that human β-cells express SARS-CoV-2 receptors and that SARS-CoV-2 can infect and replicate in β-cells, resulting in structural or functional alterations of these cells. These alterations include reduced numbers of insulin-secreting granules, impaired pro-insulin (or insulin) secretion, and β-cell transdifferentiation or dedifferentiation. The inflammatory environment induced by local or systemic SARS-CoV-2 infection might result in a set of signals (such as pro-inflammatory cytokines) that lead to β-cell alteration or apoptosis or to a bystander activation of T cells and disruption of peripheral tolerance that triggers autoimmunity. Other mechanisms, such as viral persistence, molecular mimicry and activation of endogenous human retroviruses, are also likely to be involved in the pathogenesis of T1DM following SARS-CoV-2 infection. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Université de Lille, CHU Lille, Laboratoire de virologie ULR3610, Lille, France
| | | | | | - Didier Hober
- Université de Lille, CHU Lille, Laboratoire de virologie ULR3610, Lille, France.
| |
Collapse
|
4
|
El-Fadeal NMA, Saad MA, Mehanna ET, Atwa H, Abo-elmatty DM, Hosny N. Association of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants and type 1 diabetes mellitus. J Diabetes Metab Disord 2024; 23:1151-1162. [PMID: 38932894 PMCID: PMC11196453 DOI: 10.1007/s40200-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 06/28/2024]
Abstract
Background Type I diabetes mellitus (T1DM) is a significant health challenge, especially for children, owing to its chronic autoimmune nature. Although the exact etiology of T1DM remains elusive, the interplay of genetic predisposition, immune responses, and environmental factors are postulated. Genetic factors control immune reactivity against β-cells. Given the pivotal roles of CIITA and CLEC2D genes in modulating a variety of immune pathologies, we hypothesized that genetic variations in CIITA and CLEC2D genes may impact T1DM disease predisposition. This study was designed to explore the association between gene polymorphisms in CIITA (rs8048002) and CLEC2D (rs2114870) and type 1 diabetes (T1DM), with a focus on analyzing the functional consequence of those gene variants. Methods The study enlisted 178 healthy controls and 148 individuals with type 1 diabetes (T1DM) from Suez Canal University Hospital. Genotyping for CIITA and CLEC2D was done using allelic-discrimination polymerase chain reaction (PCR). Levels of glycated hemoglobin (HbA1c) and lipid profiles were determined through automated analyzer, while fasting blood glucose and insulin serum levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RegulomeDB was used to examine the regulatory functions of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants. Results Analysis of the genotype distribution of the CIITA rs8048002 polymorphism revealed a significantly higher prevalence of the rare C allele in T1DM patients compared to the control group (OR = 1.77; P = 0.001). Both the CIITA rs8048002 heterozygote TC genotype (OR = 1.93; P = 0.005) and the rare homozygote CC genotype (OR = 3.62; P = 0.006) were significantly more frequent in children with T1DM when compared to the control group. Conversely, the rare A allele of CLEC2D rs2114870 was found to be significantly less frequent in T1DM children relative to the control group (OR = 0.58; P = 0.002). The heterozygote GA genotype (OR = 0.61; P = 0.033) and the rare homozygote AA genotype (OR = 0.25; P = 0.004) were also significantly less frequent in T1DM patients compared to the control group. Both CIITA (rs8048002) and CLEC2D (rs2114870) gene variants were predicted to have regulatory functions, indicated by a RegulomeDB score of (1f) for each. Conclusion The rare C allele of CIITA rs8048002 genetic variant was associated with an increased risk of developing T1DM, while the less common A allele of CLEC2D rs2114870 was associated with a reduced risk of T1DM. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01402-w.
Collapse
Affiliation(s)
- Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
- Department of Biochemistry, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hoda Atwa
- Department of Pediatric Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Nora Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
D’Agostino S, Valentini G, Dolci M. Exploring Interleukin Levels in Type 1 Diabetes and Periodontitis: A Review with a Focus on Childhood. CHILDREN (BASEL, SWITZERLAND) 2024; 11:238. [PMID: 38397350 PMCID: PMC10887696 DOI: 10.3390/children11020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes can trigger an increase in cytokine levels leading to the production of C-reactive protein and fibrinogen. These molecules promote subclinical inflammation, causing the expression of adhesive molecules and endothelial dysfunction. Despite the lack of a comprehensive panel for single-nucleotide polymorphisms (SNPs) for interleukins associated with type 1 diabetes mellitus (T1DM), understanding the inflammatory role of SNPs is crucial because periodontitis, the sixth complication of diabetes, is influenced via these genetic variations. This review focuses on the interleukin levels in T1DM patients with and without periodontitis, with a particular focus on childhood and on SNPs when reported. A search of PubMed and Scopus identified 21 relevant studies from the past five years. Several ILs were analyzed, emphasizing that T1DM still needs to be thoroughly explored regarding an IL polymorphisms panel; however, the last five years have led to the increased independence of this condition, causing autonomous inflammatory effects, which require further investigation. The periodontitis and T1DM association in children and adolescents represents a severe gap in the literature that should be filled; this scarce presence of studies serves as motivation for further clinical research.
Collapse
Affiliation(s)
- Silvia D’Agostino
- Complex Unit of Odontostomatology, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy; (G.V.); (M.D.)
| | - Giulia Valentini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy; (G.V.); (M.D.)
| | - Marco Dolci
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy; (G.V.); (M.D.)
| |
Collapse
|
6
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
7
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
8
|
Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Hober D. Antibody-dependent enhancement and neutralization against CVB4 investigated in vitro and in silico through an agent-based model. J Med Virol 2024; 96:e29399. [PMID: 38235792 DOI: 10.1002/jmv.29399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
The infection with coxsackievirus B4 (CVB4) can be enhanced in vitro by antibodies directed against the viral capsid protein VP4. In peripheral blood mononuclear cells, antibody-dependent enhancement (ADE) of CVB4 infection leads to the production of interferon alpha (IFN-α). To investigate ADE of CVB4-induced production of IFN-α, an agent-based model was constructed with enhancing and neutralizing antibodies. The model recapitulates viral neutralization and ADE in silico. The enhancing and neutralizing activities of serum samples were evaluated in vitro to confront the model predictions with experimental results. Increasing the incubation time of CVB4 with serum samples improves virus neutralization in silico as well as in vitro. It also results in ADE at lower antibody numbers in silico, which is confirmed in vitro with IFN-α production at lower serum concentrations. Furthermore, incubation of CVB4 with serum at a low temperature does not induce IFN-α production in vitro. Thus, taken together our results suggest that enhancing antibodies bind cryptic epitopes, more accessible with longer incubation time and at higher temperature due to changes in capsid conformation, consistent with previous results indicating that enhancing antibodies are anti-VP4 antibodies.
Collapse
Affiliation(s)
- Corentin Morvan
- Laboratoire de Virologie ULR3610, Univ Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Univ Lille et CHU Lille, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille et CHU Lille, Lille, France
| |
Collapse
|
9
|
Krogvold L, Mynarek IM, Ponzi E, Mørk FB, Hessel TW, Roald T, Lindblom N, Westman J, Barker P, Hyöty H, Ludvigsson J, Hanssen KF, Johannesen J, Dahl-Jørgensen K. Pleconaril and ribavirin in new-onset type 1 diabetes: a phase 2 randomized trial. Nat Med 2023; 29:2902-2908. [PMID: 37789144 PMCID: PMC10667091 DOI: 10.1038/s41591-023-02576-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Previous studies showed a low-grade enterovirus infection in the pancreatic islets of patients with newly diagnosed type 1 diabetes (T1D). In the Diabetes Virus Detection (DiViD) Intervention, a phase 2, placebo-controlled, randomized, parallel group, double-blind trial, 96 children and adolescents (aged 6-15 years) with new-onset T1D received antiviral treatment with pleconaril and ribavirin (n = 47) or placebo (n = 49) for 6 months, with the aim of preserving β cell function. The primary endpoint was the mean stimulated C-peptide area under the curve (AUC) 12 months after the initiation of treatment (less than 3 weeks after diagnosis) using a mixed linear model. The model used longitudinal log-transformed serum C-peptide AUCs at baseline, at 3 months, 6 months and 1 year. The primary endpoint was met with the serum C-peptide AUC being higher in the pleconaril and ribavirin treatment group compared to the placebo group at 12 months (average marginal effect = 0.057 in the linear mixed model; 95% confidence interval = 0.004-0.11, P = 0.037). The treatment was well tolerated. The results show that antiviral treatment may preserve residual insulin production in children and adolescent with new-onset T1D. This provides a rationale for further evaluating antiviral strategies in the prevention and treatment of T1D. European Union Drug Regulating Authorities Clinical Trials identifier: 2015-003350-41 .
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Maria Mynarek
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Erica Ponzi
- Clinical Trial Unit, Oslo University Hospital, Oslo, Norway
| | - Freja Barrett Mørk
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Witzner Hessel
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Trine Roald
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Peter Barker
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, Cambridge, UK
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | | | | | - Jesper Johannesen
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Wang Y, Guo H, Wang G, Zhai J, Du B. COVID-19 as a Trigger for Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:2176-2183. [PMID: 36950864 DOI: 10.1210/clinem/dgad165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Type 1 diabetes (T1D) is usually caused by immune-mediated destruction of islet β cells, and genetic and environmental factors are thought to trigger autoimmunity. Convincing evidence indicates that viruses are associated with T1D development and progression. During the COVID-19 pandemic, cases of hyperglycemia, diabetic ketoacidosis, and new diabetes increased, suggesting that SARS-CoV-2 may be a trigger for or unmask T1D. Possible mechanisms of β-cell damage include virus-triggered cell death, immune-mediated loss of pancreatic β cells, and damage to β cells because of infection of surrounding cells. This article examines the potential pathways by which SARS-CoV-2 affects islet β cells in these 3 aspects. Specifically, we emphasize that T1D can be triggered by SARS-CoV-2 through several autoimmune mechanisms, including epitope spread, molecular mimicry, and bystander activation. Given that the development of T1D is often a chronic, long-term process, it is difficult to currently draw firm conclusions as to whether SARS-CoV-2 causes T1D. This area needs to be focused on in terms of the long-term outcomes. More in-depth and comprehensive studies with larger cohorts of patients and long-term clinical follow-ups are required.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gongquan Wang
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiawei Zhai
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Du
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
Root-Bernstein R, Chiles K, Huber J, Ziehl A, Turke M, Pietrowicz M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098336. [PMID: 37176044 PMCID: PMC10179352 DOI: 10.3390/ijms24098336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR). Clostridia were the best mimics of INS. Clostridia antibodies cross-reacted with INS in ELISA experiments, confirming mimicry. COX antibodies cross-reacted with INSR. Clostridia antibodies further bound to COX antibodies as idiotype-anti-idiotype pairs conserving INS-INSR complementarity. Ultraviolet spectrometry studies demonstrated that INS-like Clostridia peptides bound to INSR-like COX peptides. These complementary peptides were also recognized as antigens by T cell receptor sequences derived from T1DM patients. Finally, most sera from T1DM patients bound strongly to inactivated Clostridium sporogenes, while most sera from healthy individuals did not; T1DM sera also exhibited evidence of anti-idiotype antibodies against idiotypic INS, glutamic acid decarboxylase, and protein tyrosine phosphatase non-receptor (islet antigen-2) antibodies. These results suggest that T1DM is triggered by combined enterovirus-Clostridium (and possibly combined Epstein-Barr-virus-Streptococcal) infections, and the probable rate of such co-infections approximates the rate of new T1DM diagnoses.
Collapse
Affiliation(s)
| | - Kaylie Chiles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alison Ziehl
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Maja Pietrowicz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Li X, Yang E, Li X, Fan T, Guo S, Yang H, Wu B, Wang H. MAVS-Based Reporter Systems for Real-Time Imaging of EV71 Infection and Antiviral Testing. Viruses 2023; 15:v15051064. [PMID: 37243150 DOI: 10.3390/v15051064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterovirus consists of a variety of viruses that could cause a wide range of illness in human. The pathogenesis of these viruses remains incompletely understood and no specific treatment is available. Better methods to study enterovirus infection in live cells will help us better understand the pathogenesis of these viruses and might contribute to antiviral development. Here in this study, we developed fluorescent cell-based reporter systems that allow sensitive distinction of individual cells infected with enterovirus 71 (EV71). More importantly, these systems could be easily used for live-cell imaging by monitoring viral-induced fluorescence translocation after EV71 infection. We further demonstrated that these reporter systems could be used to study other enterovirus-mediated MAVS cleavage and they are sensitive for antiviral activity testing. Therefore, integration of these reporters with modern image-based analysis has the potential to generate new insights into enterovirus infection and facilitate antiviral development.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - E Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Bruzzaniti S, Piemonte E, Lepore MT, Galgani M. Anti-viral innate immunity: Is it where type 1 diabetes really begins? Diabetes Metab Res Rev 2023:e3623. [PMID: 36764821 DOI: 10.1002/dmrr.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Sara Bruzzaniti
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Erica Piemonte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Teresa Lepore
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Mario Galgani
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Viruses and Endocrine Diseases. Microorganisms 2023; 11:microorganisms11020361. [PMID: 36838326 PMCID: PMC9967810 DOI: 10.3390/microorganisms11020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Viral infections have been frequently associated with physiological and pathological changes in the endocrine system for many years. The numerous early and late endocrine complications reported during the current pandemic of coronavirus disease 2019 (COVID-19) reinforce the relevance of improving our understanding of the impact of viral infections on the endocrine system. Several viruses have been shown to infect endocrine cells and induce endocrine system disturbances through the direct damage of these cells or through indirect mechanisms, especially the activation of the host antiviral immune response, which may lead to the development of local or systemic inflammation or organ-specific autoimmunity. In addition, endocrine disorders may also affect susceptibility to viral infections since endocrine hormones have immunoregulatory functions. This review provides a brief overview of the impact of viral infections on the human endocrine system in order to provide new avenues for the control of endocrine diseases.
Collapse
|
15
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
16
|
Replication Activities of Major 5' Terminally Deleted Group-B Coxsackievirus RNA Forms Decrease PCSK2 mRNA Expression Impairing Insulin Maturation in Pancreatic Beta Cells. Viruses 2022; 14:v14122781. [PMID: 36560784 PMCID: PMC9788552 DOI: 10.3390/v14122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Emergence of 5' terminally deleted coxsackievirus-B RNA forms (CVB-TD) have been associated with the development of human diseases. These CVB-TD RNA forms have been detected in mouse pancreas during acute or persistent experimental infections. To date, the impact of the replication activities of CVB-TD RNA forms on insulin metabolism remains unexplored. Using an immunocompetent mouse model of CVB3/28 infection, acute and persistent infections of major CVB-TD populations were evidenced in the pancreas. The inoculation of mice with homogenized pancreases containing major CVB-TD populations induced acute and chronic pancreatic infections with pancreatitis. In the mouse pancreas, viral capsid protein 1 (VP1) expression colocalized with a decrease in beta cells insulin content. Moreover, in infected mouse pancreases, we showed a decrease in pro-hormone convertase 2 (PCSK2) mRNA, associated with a decrease in insulin plasmatic concentration. Finally, transfection of synthetic CVB-TD50 RNA forms into cultured rodent pancreatic beta cells demonstrated that viral replication with protein synthesis activities decreased the PCSK2 mRNA expression levels, impairing insulin secretion. In conclusion, our results show that the emergence and maintenance of major CVB-TD RNA replicative forms in pancreatic beta cells can play a direct, key role in the pathophysiological mechanisms leading to the development of type 1 diabetes.
Collapse
|
17
|
Prosperi S, Chiarelli F. COVID-19 and diabetes in children. Ann Pediatr Endocrinol Metab 2022; 27:157-168. [PMID: 36203266 PMCID: PMC9537670 DOI: 10.6065/apem.2244150.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
This review describes the impact of coronavirus disease 2019 (COVID-19) in children and adolescents, investigating changes in diabetes presentation during the COVID-19 pandemic, possible links between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and diabetes, and mechanisms of pancreatic β-cell destruction. Although glycemic control in individuals with already known diabetes mellitus did not worsen during the pandemic, there was a worrying increase in diabetic ketoacidosis in children with new-onset diabetes, probably due to containment measures and delayed access to emergency departments. Moreover, new evidence suggests that SARS-CoV-2 has the capacity to directly and indirectly induce pancreatic β-cell destruction, and the risk of newly diagnosed diabetes after COVID-19 increased in both children and adults. While long-term studies continue to follow children with SARS-CoV-2 infection, this review discusses available findings on the relationship between COVID-19 and diabetes. It is important to emphasize the need to maintain close links between families of children with chronic conditions and their pediatricians, as well as to promote early access to healthcare services, in order to reduce dangerous delays in diabetes diagnosis and prevent diabetic ketoacidosis.
Collapse
Affiliation(s)
| | - Francesco Chiarelli
- Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5, I-66100 Chieti, Italy
| |
Collapse
|
18
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
19
|
IgA-Type Enterovirus Antibodies Are Increased among Adults and Children with Recently Diagnosed Type 1 Diabetes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7603062. [PMID: 35958821 PMCID: PMC9357813 DOI: 10.1155/2022/7603062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Enteroviruses (EV) are among the leading environmental triggers of childhood-onset type 1 diabetes (T1D). Our aim was to determine the prevalence of antibodies against EV and their association with T1D in different age groups (n = 62), including young adults, and to compare these data with results from HLA-matched control participants (n = 62). IgA, IgG, and IgM antibodies against EV were detected. IgA EV antibodies were present in 46.8% of participants with T1D (median level 10.9 EIU) and in 11.3% of controls (median level 3.4 EIU). IgA EV positivity and higher level of IgA EV antibodies were both significant risk factors for T1D (odds ratio (OR) 8.33; 95% confidence interval (CI) 2.52–27.6; p = 0.0005 and OR 1.04; 95% CI 1.01–1.06; p = 0.0105, respectively). Importantly, the prevalence of IgA EV antibodies in the subgroups of both children and young adults was also significantly different between participants with T1D and their matched controls (p = 0.0089 and p = 0.0055, respectively). Such differences were not seen for IgG and IgM EV antibodies. However, IgG EV antibodies were associated with 65 kDa glutamic acid decarboxylase antibodies, but not with zinc transporter 8 and protein tyrosine phosphatase IA2 antibodies. The genotype frequency of PTPN22 (rs2476601) and IFIH1 (rs1990760) was not associated with EV positivity. This study showed that EV infections may be an important disease-promoting factor of T1D not only in childhood-onset but also in adult-onset T1D. However, to further confirm this association, direct virological studies are needed in the latter T1D group.
Collapse
|
20
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
21
|
Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, Rioux J, Hodin R, Mihindukulasuriya KA, Handley SA, Jeffrey KL. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022; 7:eabn6660. [PMID: 35394816 PMCID: PMC9416881 DOI: 10.1126/sciimmunol.abn6660] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sreehaas Digumarthi
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L. Saunders
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raza-Ur Rahman
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jean Paquette
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
| | | | - John Rioux
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
- Université de Montréal, Montreal Quebec Canada H3C 3J7
| | - Richard Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kate L. Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Nekoua MP, Mercier A, Alhazmi A, Sane F, Alidjinou EK, Hober D. Fighting Enteroviral Infections to Prevent Type 1 Diabetes. Microorganisms 2022; 10:microorganisms10040768. [PMID: 35456818 PMCID: PMC9031364 DOI: 10.3390/microorganisms10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses (EVs), especially coxsackieviruses B (CVB), are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals that results in type 1 diabetes (T1D). Therefore, strategies are needed to fight against EV infections. There are no approved antiviral drugs currently available, but various antiviral drugs targeting viral or host cell proteins and vaccines have recently shown potential to combat CVB infections and may be used as new therapeutic strategies to prevent or reduce the risk of T1D and/or preserve β-cell function among patients with islet autoantibodies or T1D.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)-3-2044-6688
| |
Collapse
|
23
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
24
|
Mine K, Nagafuchi S, Mori H, Takahashi H, Anzai K. SARS-CoV-2 Infection and Pancreatic β Cell Failure. BIOLOGY 2021; 11:biology11010022. [PMID: 35053020 PMCID: PMC8772979 DOI: 10.3390/biology11010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Accumulating evidence suggests that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have the potential to induce pancreatic β-cell damage, leading to diabetes onset in patients with coronavirus disease 2019 (COVID-19). However, controversial results have been reported among study groups. Here, we provide a comprehensive review of published findings that describe the potential relationship between SARS-CoV-2 infection (COVID-19) and pancreatic β-cell failure, and how this may contribute to the development of diabetes. Abstract SARS-CoV-2 infection primarily causes pulmonary symptoms; however, accumulating reports indicate that some patients with COVID-19 have multiple organ dysfunction or failure. Although diabetes is considered a risk factor for severe COVID-19, SARS-CoV-2 infection may also be a causal factor for diabetes mellitus in patients with COVID-19. According to the research reviewed in this paper, the pancreas and pancreatic β cells appear to be targets of SARS-CoV-2 and are damaged by direct or indirect effects of the infection. However, controversial results have been reported between study groups, mainly due to the limited number of cases with diabetes precipitated by COVID-19. In this review, we comprehensively discuss the published findings on the potential association between SARS-CoV-2 infection or COVID-19 and pancreatic β-cell damage leading to diabetes onset. These findings will further contribute to our understanding of the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
- Division of Mucosal Immunology, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
- Correspondence:
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
- Liver Center, Saga University Hospital, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| |
Collapse
|
25
|
Nijman RG. The impact of the COVID-19 pandemic on child health. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Most Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in children are mild or asymptomatic. Severe Coronavirus Disease 2019 (COVID-19) in children is infrequent. An estimated 0.3–1.3% of children with SARS-CoV-2 infection were admitted to hospital, and of these 13–23% needed critical care. SARS-CoV-2 related deaths were very rare in children, estimated at 2 per million. The vast majority of admitted children had one of shortness of breath, fever, and cough, but atypical symptoms are more common in children. Cases of Multisystem Inflammatory Syndrome in Children (MIS-C) have been linked to SARS-CoV-2 infection. Cardinal symptoms include prolonged fever, clinical signs of inflammation, gastro-intestinal symptoms, and cardiac dysfunction. Twenty two to 80% of patients with MIS-C needed critical care; mortality of MIS-C is around 2%. Six to 24% of children with MIS-C had coronary artery dilatation or cardiac aneurysms. Equipoise still exists between first-line treatment with immunoglobulins and steroids. Outcomes for children with MIS-C are generally very good in those recognised early and started on appropriate treatment. Vaccination schemes for children are rapidly expanding, with the benefits of preventing severe COVID-19 disease and MIS-C and reducing community transmission outweighing the risks of adverse events of, amongst others, myocarditis temporally related to COVID-19 vaccination in children and young adults. The imposed social distancing measures reduced the overall number of children with acute illness or injury presenting to urgent and emergency care facilities worldwide. No clear signal was seen that large numbers of children had a delayed presentation to emergency care departments with a serious illness. The social distancing measures negatively impacted the mental health of children.
Collapse
Affiliation(s)
- Ruud G. Nijman
- Department of Infectious Disease , Section of Paediatric Infectious Diseases, Imperial College London , London , UK
- Centre for Paediatrics and Child Health , Imperial College London , London , UK
| |
Collapse
|
26
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
27
|
Zipris D. Visceral Adipose Tissue: A New Target Organ in Virus-Induced Type 1 Diabetes. Front Immunol 2021; 12:702506. [PMID: 34421908 PMCID: PMC8371384 DOI: 10.3389/fimmu.2021.702506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing β-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering β-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop β-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering β-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.
Collapse
Affiliation(s)
- Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, United States
| |
Collapse
|
28
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
29
|
Shih WL, Tung YC, Chang LY, Fang CT, Tsai WY. Increased Incidence of Pediatric Type 1 Diabetes With Novel Association With Coxsackievirus A Species in Young Children but Declined Incidence in Adolescents in Taiwan. Diabetes Care 2021; 44:1579-1585. [PMID: 34083323 PMCID: PMC8323190 DOI: 10.2337/dc20-1092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/24/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes (T1D) has been linked to enterovirus infection in small population-based epidemiological studies. We investigated the secular relationship of T1D incidence with enterovirus infection and enterovirus species using nationwide population-based analysis. RESEARCH DESIGN AND METHODS We accessed the National Health Insurance Research Database of Taiwan to identify T1D and enterovirus infection cases from 2001 to 2015. Enterovirus serotype isolation rates were obtained from the nationwide laboratory surveillance systems. Negative binomial regression models assessed the incidence trend, and extended Cox proportional hazards models analyzed the association of enterovirus infection with T1D incidence. Spearman correlation coefficients evaluated the correlation between T1D incidence and circulating enterovirus species. RESULTS T1D incidence rates in youth younger than 20 years were 6.30 and 5.02 per 100,000 person-years in 2001 and 2015 (P = 0.287), respectively. T1D incidence increased significantly in children aged 0-6 years (P < 0.001) but decreased in adolescents aged 13-19 years (P = 0.011). The T1D risk in children aged 0-6 years with enterovirus infection was significantly higher than that in noninfected subjects (hazard ratio 1.46; 95% CI 1.35-1.58; P < 0.001). Additionally, TID incidence in children aged 0-6 years was significantly correlated with the isolation rates of coxsackievirus A species (r = 0.60; P = 0.017), but no association was found beyond the age of 7. CONCLUSIONS We demonstrated that T1D incidence increased in children aged 0-6 years but decreased in adolescents aged 13-19 years in Taiwan. Enterovirus-infected subjects younger than 7 years had a higher risk of T1D than noninfected subjects.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Yi-Ching Tung
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan .,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Tsai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, Hober D. Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes. Microorganisms 2021; 9:microorganisms9061177. [PMID: 34072590 PMCID: PMC8229779 DOI: 10.3390/microorganisms9061177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Hélène Michaux
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Hela Jaidane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)3-20-44-66-88
| |
Collapse
|
31
|
Nekoua MP, Bertin A, Sane F, Gimeno JP, Fournier I, Salzet M, Engelmann I, Alidjinou EK, Hober D. Persistence of Coxsackievirus B4 in Pancreatic β Cells Disturbs Insulin Maturation, Pattern of Cellular Proteins, and DNA Methylation. Microorganisms 2021; 9:microorganisms9061125. [PMID: 34067388 PMCID: PMC8224704 DOI: 10.3390/microorganisms9061125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus-B4 (CV-B4) can persist in pancreatic cell lines and impair the phenoytpe and/or gene expressions in these cells; however, the models used to study this phenomenon did not produce insulin. Therefore, we investigated CV-B4 persistence and its consequences in insulin-producing pancreatic β cells. The insulin-secreting rat β cell line, INS-1, was infected with CV-B4. After lysis of a large part of the cell layer, the culture was still maintained and no additional cytopathic effect was observed. The amount of insulin in supernatants of cell cultures persistently infected with CV-B4 was not affected by the infection; in fact, a larger quantity of proinsulin was found. The mRNA expression of pro-hormone convertase 2, an enzyme involved in the maturation of proinsulin into insulin and studied using real-time reverse transcription-polymerase chain reaction, was inhibited in infected cultures. Further, the pattern of 47 cell proteins analyzed using Shotgun mass spectrometry was significantly modified. The DNA of persistently infected cell cultures was hypermethylated unlike that of controls. The persistent infection of INS-1 cells with CV-B4 had a deep impact on these cells, especially on insulin metabolism. Cellular changes caused by persistent CV-B4 infection of β cells can play a role in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
| | - Antoine Bertin
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
| | - Jean-Pascal Gimeno
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (J.-P.G.); (I.F.); (M.S.)
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (J.-P.G.); (I.F.); (M.S.)
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (J.-P.G.); (I.F.); (M.S.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (M.P.N.); (A.B.); (F.S.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)-3-2044-6688
| |
Collapse
|
32
|
Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA. Modeling Type 1 Diabetes In Vitro Using Human Pluripotent Stem Cells. Cell Rep 2021; 32:107894. [PMID: 32668238 PMCID: PMC7359783 DOI: 10.1016/j.celrep.2020.107894] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/01/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023] Open
Abstract
Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including β cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived β cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response.
Collapse
Affiliation(s)
- Nayara C Leite
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Torsten B Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, 02215 MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
33
|
Joshi K, Cameron F, Tiwari S, Mannering SI, Elefanty AG, Stanley EG. Modeling Type 1 Diabetes Using Pluripotent Stem Cell Technology. Front Endocrinol (Lausanne) 2021; 12:635662. [PMID: 33868170 PMCID: PMC8047192 DOI: 10.3389/fendo.2021.635662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.
Collapse
Affiliation(s)
- Kriti Joshi
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Rishikesh, Uttarakhand, India
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
| | - Fergus Cameron
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Endocrinology and Diabetes, The Royal Children’s Hospital, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Vic, Australia
| | - Andrew G. Elefanty
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| | - Edouard G. Stanley
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| |
Collapse
|
34
|
Akil AAS, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med 2021; 19:137. [PMID: 33794915 PMCID: PMC8017850 DOI: 10.1186/s12967-021-02778-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes affects millions of people globally and requires careful management to avoid serious long-term complications, including heart and kidney disease, stroke, and loss of sight. The type 1 diabetes patient cohort is highly heterogeneous, with individuals presenting with disease at different stages and severities, arising from distinct etiologies, and overlaying varied genetic backgrounds. At present, the “one-size-fits-all” treatment for type 1 diabetes is exogenic insulin substitution therapy, but this approach fails to achieve optimal blood glucose control in many individuals. With advances in our understanding of early-stage diabetes development, diabetes stratification, and the role of genetics, type 1 diabetes is a promising candidate for a personalized medicine approach, which aims to apply “the right therapy at the right time, to the right patient”. In the case of type 1 diabetes, great efforts are now being focused on risk stratification for diabetes development to enable pre-clinical detection, and the application of treatments such as gene therapy, to prevent pancreatic destruction in a sub-set of patients. Alongside this, breakthroughs in stem cell therapies hold great promise for the regeneration of pancreatic tissues in some individuals. Here we review the recent initiatives in the field of personalized medicine for type 1 diabetes, including the latest discoveries in stem cell and gene therapy for the disease, and current obstacles that must be overcome before the dream of personalized medicine for all type 1 diabetes patients can be realized.
Collapse
Affiliation(s)
- Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| | - Esraa Yassin
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aljazi Al-Maraghi
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khulod Al-Malki
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
35
|
Mori H, Takahashi H, Mine K, Higashimoto K, Inoue K, Kojima M, Kuroki S, Eguchi T, Ono Y, Inuzuka S, Soejima H, Nagafuchi S, Anzai K. TYK2 Promoter Variant Is Associated with Impaired Insulin Secretion and Lower Insulin Resistance in Japanese Type 2 Diabetes Patients. Genes (Basel) 2021; 12:400. [PMID: 33799705 PMCID: PMC7999758 DOI: 10.3390/genes12030400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has suggested that viral infection causes type 1 diabetes due to direct β-cell damage and the triggering of autoimmune reactivity to β cells. Here, we elucidated that the tyrosine kinase 2 (Tyk2) gene, encoding an interferon receptor signaling molecule, is responsible for virus-induced diabetes in mice, and its promoter variant confers a risk of type 1 diabetes in humans. This study investigated the relationship between a TYK2 promoter variant (TYK2PV) and insulin secretion in type 2 diabetes patients. TYK2PV status was determined using direct DNA sequencing and its associations with fasting insulin, C-peptide, and homeostatic model assessment of insulin resistance (HOMA-IR) were evaluated in type 2 diabetes patients without sulfonylurea or insulin medication. Of the 172 patients assessed, 18 (10.5%) showed TYK2PV-positivity. Their body mass index (BMI) was significantly lower than in those without the variant (23.4 vs. 25.4 kg/m2, p = 0.025). Fasting insulin (3.9 vs. 6.2 μIU/mL, p = 0.007), C-peptide (1.37 vs. 1.76 ng/mL, p = 0.008), and HOMA-IR (1.39 vs. 2.05, p = 0.006) were lower in those with than in those without the variant. Multivariable analysis identified that TYK2PV was associated with fasting insulin ≤ 5 μIU/mL (odds ratio (OR) 3.63, p = 0.025) and C-peptide ≤ 1.0 ng/mL (OR 3.61, p = 0.028), and also lower insulin resistance (HOMA-IR ≤ 2.5; OR 8.60, p = 0.042). TYK2PV is associated with impaired insulin secretion and low insulin resistance in type 2 diabetes. Type 2 diabetes patients with TYK2PV should be carefully followed in order to receive the appropriate treatment including insulin injections.
Collapse
Affiliation(s)
- Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Liver Center, Faculty of Medicine, Saga University Hospital, Saga University, Saga 849-8501, Japan
| | - Keiichiro Mine
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ken Higashimoto
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Kanako Inoue
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Motoyasu Kojima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
- Saiseikai Karatsu Hospital, Saga 847-0852, Japan
| | | | | | - Yasuhiro Ono
- Department of Internal Medicine, Kouhokai Takagi Hospital, Fukuoka 831-0016, Japan;
| | | | - Hidenobu Soejima
- Divison of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga 849-8501, Japan; (K.H.); (H.S.)
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (H.M.); (K.M.); (K.I.); (M.K.); (S.N.); (K.A.)
| |
Collapse
|
36
|
Modulation of IGF2 Expression in the Murine Thymus and Thymic Epithelial Cells Following Coxsackievirus-B4 Infection. Microorganisms 2021; 9:microorganisms9020402. [PMID: 33672010 PMCID: PMC7919294 DOI: 10.3390/microorganisms9020402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B4 (CV-B4) can infect human and murine thymic epithelial cells (TECs). In a murine TEC cell line, CV-B4 can downregulate the transcription of the insulin-like growth factor 2 (Igf2) gene coding for the self-peptide of the insulin family. In this study, we show that CV-B4 infections of a murine TEC cell line decreased Igf2 P3 promoter activity by targeting a region near the transcription start site; however, the stability of Igf2 transcripts remained unchanged, indicating a regulation of Igf2 transcription. Furthermore, CV-B4 infections decreased STAT3 phosphorylation in vitro. We also showed that mice infected with CV-B4 had an altered expression of Igf2 isoforms as detected in TECs, followed by a decrease in the pro-IGF2 precursor in the thymus. Our study sheds new light on the intrathymic regulation of Igf2 transcription during CV-B4 infections and supports the hypothesis that a viral infection can disrupt central self-tolerance to insulin by decreasing Igf2 transcription in the thymic epithelium.
Collapse
|
37
|
Wang K, Ye F, Chen Y, Xu J, Zhao Y, Wang Y, Lan T. Association Between Enterovirus Infection and Type 1 Diabetes Risk: A Meta-Analysis of 38 Case-Control Studies. Front Endocrinol (Lausanne) 2021; 12:706964. [PMID: 34557158 PMCID: PMC8453141 DOI: 10.3389/fendo.2021.706964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The association between enterovirus infection and type 1 diabetes (T1D) is controversial, and this meta-analysis aimed to explore the correlation. METHODS PubMed, Embase, Web of Science, and Cochrane Database were searched from inception to April 2020. Studies were included if they could provide sufficient information to calculate odds ratios and 95% confidence intervals. All analyses were performed using STATA 15.1. RESULTS Thirty-eight studies, encompassing 5921 subjects (2841 T1D patients and 3080 controls), were included. The pooled analysis showed that enterovirus infection was associated with T1D (P < 0.001). Enterovirus infection was correlated with T1D in the European (P < 0.001), African (P = 0.002), Asian (P = 0.001), Australian (P = 0.011), and Latin American (P = 0.002) populations, but no conclusion could be reached for North America. The association between enterovirus infection and T1D was detected in blood and tissue samples (both P < 0.001); no association was found in stool samples. CONCLUSION Our findings suggest that enterovirus infection is associated with T1D.
Collapse
Affiliation(s)
- Kan Wang
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
- *Correspondence: Kan Wang, ; Fei Ye,
| | - Fei Ye
- First Department of Neurology, Affiliated Jinhua Hospital, Jinhua Municipal Central Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Kan Wang, ; Fei Ye,
| | - Yong Chen
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
| | - Jianxin Xu
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
| | - Yufang Zhao
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
| | - Yeping Wang
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
| | - Tian Lan
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Women and Children’s Hospital, Jinhua, China
| |
Collapse
|
38
|
Bujaki E, Farkas Á, Rigó Z, Takács M. Distribution of enterovirus genotypes detected in clinical samples in Hungary, 2010-2018. Acta Microbiol Immunol Hung 2020; 67:201-208. [PMID: 33295885 DOI: 10.1556/030.2020.01200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
This report provides the findings of a retrospective surveillance study on the emergence and circulation of enteroviruses with their associated clinical symptoms over a nine-year period detected at the National Enterovirus Reference Laboratory in Hungary between 2010-2018.Enterovirus (EV) detection and genotyping were performed directly from clinical samples. From 4,080 clinical specimens 25 EV types were identified with a median age of patients of 5 years and 68% of all cases affected children aged 10 years or younger, although infections occurred in all age-groups. In 130 cases neurological symptoms were recorded, in 123 cases the infection presented in skin related signs including hand, foot, and mouth disease (HFMD), herpangina and rash. In 2010 EV-A71 was found to cause the majority of diagnosed EV infections while in 2011 and from 2014-2018, Coxsackievirus (CV)-A6 was identified most often. Echovirus E6 accounted for the most cases in 2012 and Echovirus 30 dominated in 2013. EV-D68 was identified only in 2010 and 2013.Widespread circulation of several EV-A and EV-B viruses with occasional occurrence of EV-C and EV-D was detected. The ability of EVs to cause severe infections in sporadic cases and regular outbreaks highlight the importance of continued monitoring of circulating EV types.
Collapse
Affiliation(s)
- Erika Bujaki
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Ágnes Farkas
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Zita Rigó
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Mária Takács
- 1Department of Virology, National Public Health Center, Budapest, Hungary
- 2Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Salmikangas S, Laiho JE, Kalander K, Laajala M, Honkimaa A, Shanina I, Oikarinen S, Horwitz MS, Hyöty H, Marjomäki V. Detection of Viral -RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms 2020; 8:microorganisms8121928. [PMID: 33291747 PMCID: PMC7761939 DOI: 10.3390/microorganisms8121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging -RNA and +RNA during acute and persistent enterovirus infections. According to our results, the replication of the viral RNA started 2-3 h after infection and the translation shortly after at 3-4 h post-infection. The replication hotspots with newly emerging -RNA were located quite centrally in the cell, while the +RNA production and most likely virion assembly took place in the periphery of the cell. We also discovered that the pace of replication of -RNA and +RNA strands was almost identical, and -RNA was absent during antiviral treatments. ViewRNA ISH with our custom probes also showed a good signal during acute and persistent enterovirus infections in cell and mouse models. Considering these results, along with the established bDNA FISH protocol modified by us, the effects of antiviral drugs and the emergence of enterovirus RNAs in general can be studied more effectively.
Collapse
Affiliation(s)
- Sami Salmikangas
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Kerttu Kalander
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Iryna Shanina
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; (I.S.); (M.S.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (J.E.L.); (A.H.); (S.O.); (H.H.)
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; (S.S.); (K.K.); (M.L.)
- Correspondence: ; Tel.: +358-405634422
| |
Collapse
|
40
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
41
|
Alhazmi A, Sane F, Lazrek M, Nekoua MP, Badia-Boungou F, Engelmann I, Alidjinou EK, Hober D. Enteroviruses and Type 1 Diabetes Mellitus: An Overlooked Relationship in Some Regions. Microorganisms 2020; 8:microorganisms8101458. [PMID: 32977495 PMCID: PMC7598226 DOI: 10.3390/microorganisms8101458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) infect millions of people annually. EV infections can be asymptomatic or symptomatic with conditions ranging from mild illnesses to serious diseases such as dilated cardiomyopathy. A causal relationship between EV infections and type 1 diabetes mellitus (T1DM) has been heavily debated, with some studies suggesting that this relationship is not yet conclusive and requires additional evidence, whereas others strongly argue for this correlation. While this relationship is well investigated in some developed countries like the USA and Finland, it is understudied or neglected in other countries like Russia for many reasons such as the low incidence of T1DM. Although the Middle East and North Africa (MENA) are highly affected by T1DM, the role of EVs in the disease in MENA has not been investigated extensively. Therefore, we aimed to address the relationship between T1DM and EVs in MENA and other regions globally.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
| | - Mouna Lazrek
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
| | - Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
- Laboratoire de Biologie et Physiologie Cellulaires, Institut des Sciences Biomédicales Appliquées (ISBA), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Benin
| | - Francis Badia-Boungou
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille, CHU Lille, F-59000 Lille, France; (A.A.); (F.S.); (M.L.); (M.P.N.); (F.B.-B.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-3-20-44-66-88
| |
Collapse
|
42
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
43
|
Sane F, Bertin A, Sioofy-Khojine AB, Oikarinen S, Alidjinou EK, Veijola R, Toppari J, Ilonen J, Knip M, Engelmann I, Hyöty H, Hober D. Enhancing and neutralizing anti-coxsackievirus activities in serum samples from patients prior to development of type 1 diabetes. Diabetes Metab Res Rev 2020; 36:e3305. [PMID: 32118346 DOI: 10.1002/dmrr.3305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Studies in prospective cohorts have suggested that enterovirus infections are associated with the appearance of islet autoantibodies that precede later appearance of type 1 diabetes (T1D). It was shown that in addition to an antibody-mediated anti-coxsackievirus (CV)-B neutralizing activity of serum from patients with T1D, there was also enhancing anti-CV-B activity in vitro. In this study, the patterns of enhancing and neutralizing anti-CV activities were analysed from consecutive serum samples collected from children who were followed from birth until they developed T1D in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and compared to those in non-diabetic control children. METHODS The titres of serum neutralizing activity were analysed against those CVs which were detected in the stools in these children (CV-B3, CV-B5 or CV-A4) using plaque assay. The enhancing activity of these serum samples was analysed by measuring interferon-alpha (INF-α) production in cultures of peripheral blood mononuclear cells (PBMC) inoculated with a mixture of these viruses and diluted serum. RESULTS A sustained anti-CV enhancing activity was observed in consecutive serum samples in patients with T1D. The pattern of responses differed between children who developed T1D and control children. In patients, the anti-CV enhancing activity was predominant or even exclusive over the neutralizing activity, whereas in controls the enhancing and neutralising activities were more balanced or the neutralizing activity was largely predominant. CONCLUSIONS Evaluating the anti-enterovirus neutralizing and enhancing activity of serum samples can be useful to investigate further the relationship between enteroviruses and the development of T1D.
Collapse
MESH Headings
- Adolescent
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers/blood
- Child
- Child, Preschool
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/virology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/virology
- Enterovirus B, Human/immunology
- Enterovirus B, Human/isolation & purification
- Female
- Finland/epidemiology
- Follow-Up Studies
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Infant
- Infant, Newborn
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Prognosis
Collapse
Affiliation(s)
- Famara Sane
- Univ Lille, CHU Lille, Laboratoire de virologie ULR3610 F-59000 Lille, France
| | - Antoine Bertin
- Univ Lille, CHU Lille, Laboratoire de virologie ULR3610 F-59000 Lille, France
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Enagnon K Alidjinou
- Univ Lille, CHU Lille, Laboratoire de virologie ULR3610 F-59000 Lille, France
| | - Riitta Veijola
- Department of Paediatrics, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Ilka Engelmann
- Univ Lille, CHU Lille, Laboratoire de virologie ULR3610 F-59000 Lille, France
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Didier Hober
- Univ Lille, CHU Lille, Laboratoire de virologie ULR3610 F-59000 Lille, France
| |
Collapse
|
44
|
Dechaumes A, Bertin A, Sane F, Levet S, Varghese J, Charvet B, Gmyr V, Kerr-Conte J, Pierquin J, Arunkumar G, Pattou F, Perron H, Hober D. Coxsackievirus-B4 Infection Can Induce the Expression of Human Endogenous Retrovirus W in Primary Cells. Microorganisms 2020; 8:E1335. [PMID: 32883004 PMCID: PMC7563422 DOI: 10.3390/microorganisms8091335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human Endogenous Retrovirus W Envelope (HERV-W ENV) mRNA or protein can be found in peripheral blood mononuclear cells (PBMCs) and exocrine pancreas of patients with type 1 diabetes (T1D). Further, previous observations have shown an association between enteroviral infection and development of T1D; specifically, coxsackievirus-B (CV-B) has been detected in the blood and pancreas of patients with T1D. Notably, viruses can activate HERV-W expression. Hence, we evaluated the effect of CV-B4 infection on HERV-W ENV mRNA expression. Primary human pancreatic ductal cells were obtained from five brain-dead donors. In the pancreatic cells of three donors, the HERV-W ENV mRNA level measured using RT-qPCR was upregulated upon CV-B4 infection. The HERV-W ENV protein was detected in the infected cells using the immunoblot assay. In human PBMCs inoculated with CV-B4 or when CV-B4 was incubated with an enhancing serum, the HERV-W ENV mRNA level was higher than the background RNA level. In monocyte-derived macrophages obtained from 5 of 13 donors, the HERV-W ENV mRNA level was higher in cultures inoculated with CV-B4 than in the control. Therefore, CV-B4 can upregulate or induce the transcription of a certain HERV-W ENV copy (or copies) in primary cell cultures, such as monocytes, macrophages, and pancreatic cells.
Collapse
Affiliation(s)
- Arthur Dechaumes
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Antoine Bertin
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Sandrine Levet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Jennifer Varghese
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
- Manipal Institute of Virology, Manipal Academy of Higher Education, Karnataka 576104, India;
| | - Benjamin Charvet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Valéry Gmyr
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Julie Kerr-Conte
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Justine Pierquin
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | | | - François Pattou
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Hervé Perron
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
- Geneuro SA, 1228 Geneva, Switzerland
- Faculté de Médecine Laënnec, Université de Lyon, 69008 Lyon, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| |
Collapse
|
45
|
Genetic Susceptibility of the Host in Virus-Induced Diabetes. Microorganisms 2020; 8:microorganisms8081133. [PMID: 32727064 PMCID: PMC7464158 DOI: 10.3390/microorganisms8081133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses, especially Coxsackie B viruses, are among the candidate environmental factors causative of type 1 diabetes. Host genetic factors have an impact on the development of virus-induced diabetes (VID). Host background, in terms of whether the host is prone to autoimmunity, should also be considered when analyzing the role of target genes in VID. In this review, we describe the genetic susceptibility of the host based on studies in humans and VID animal models. Understanding the host genetic factors should contribute not only to revealing the mechanisms of VID development, but also in taking measures to prevent VID.
Collapse
|
46
|
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells. Microorganisms 2020; 8:microorganisms8070989. [PMID: 32630332 PMCID: PMC7409131 DOI: 10.3390/microorganisms8070989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients.
Collapse
|
47
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
48
|
Phillips N, Ke E, Nham A, Seidl M, Freeman B, Abadejos JR, Xiao C, Nemazee D, Ku M, Kirak O. Prediabetes Induced by a Single Autoimmune B Cell Clone. Front Immunol 2020; 11:1073. [PMID: 32625203 PMCID: PMC7314986 DOI: 10.3389/fimmu.2020.01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
While B cells play a significant role in the onset of type-1 diabetes (T1D), little is know about their role in those early stages. Thus, to gain new insights into the role of B cells in T1D, we converted a physiological early pancreas-infiltrating B cell into a novel BCR mouse model using Somatic Cell Nuclear Transfer (SCNT). Strikingly, SCNT-derived B1411 model displayed neither developmental block nor anergy. Instead, B1411 underwent spontaneous germinal center reactions. Without T cell help, B1411-Rag1−/− was capable of forming peri-/intra-pancreatic lymph nodes, and undergoing class-switching. RNA-Seq analysis identified 93 differentially expressed genes in B1411 compared to WT B cells, including Irf7, Usp18, and Mda5 that had been linked to a potential viral etiology of T1D. We also found various members of the oligoadenylate synthase (OAS) family to be enriched in B1411, such as Oas1, which had recently also been linked to T1D. Strikingly, when challenged with glucose B1411-Rag1−/− mice displayed impaired glucose tolerance.
Collapse
Affiliation(s)
- Nathaniel Phillips
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Eugene Ke
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amy Nham
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Maximilian Seidl
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Brent Freeman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Justin R Abadejos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Oktay Kirak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M'hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47:2835-2843. [PMID: 32240468 DOI: 10.1007/s11033-020-05333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023]
Abstract
Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia. .,Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia.
| | - Bechr Hamrita
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - José Francisco Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| |
Collapse
|