1
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
4
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
5
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
6
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 PMCID: PMC7617103 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
7
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Allen LH, Fenech M, LeVatte MA, West KP, Wishart DS. Multiomics: Functional Molecular Biomarkers of Micronutrients for Public Health Application. Annu Rev Nutr 2024; 44:125-153. [PMID: 39207879 DOI: 10.1146/annurev-nutr-062322-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.
Collapse
Affiliation(s)
- Lindsay H Allen
- Western Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Genome Health Foundation, North Brighton, South Australia, Australia
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Campos-Sánchez I, Navarrete-Muñoz EM, Hurtado-Pomares M, Júlvez J, Lertxundi N, Martens DS, Fernández-Somoano A, Riaño-Galán I, Guxens M, Ibarluzea JM, Nawrot T, Valera-Gran D. Association between telomere length and neuropsychological function at 4-5 years in children from the INMA project: a cross-sectional study. Eur Child Adolesc Psychiatry 2024; 33:2803-2812. [PMID: 38246982 PMCID: PMC11272730 DOI: 10.1007/s00787-023-02361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Shortened telomere length (TL) has been associated with lower cognitive performance, different neurological diseases in adults, and certain neurodevelopmental disorders in children. However, the evidence about the association between TL and neuropsychological developmental outcomes in children from the general population is scarce. Therefore, this study aimed to explore the association between TL and neuropsychological function in children 4-5 years of age. We included 686 children from the INMA Project, a population-based birth cohort in Spain. Leucocyte TL was determined by quantitative PCR method, and neuropsychological outcomes were measured using the McCarthy Scales of Children's Abilities (MCSA). Multiple linear regression models were used to estimate associations adjusted for potential confounding variables. Main findings showed that a longer TL was associated with a higher mean working memory score (β = 4.55; 95% CI = 0.39, 8.71). In addition, longer TL was associated with a higher mean global quantitative score (β = 3.85; 95% CI = -0.19, 7.89), although the association was marginally significant. To our knowledge, this is the first study that shows a positive association between TL and better neuropsychological outcomes in children. Although further research is required to confirm these results, this study supports the hypothesis that TL is essential in protecting and maintaining a child's health, including cognitive functions such as working memory.
Collapse
Affiliation(s)
- Irene Campos-Sánchez
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
| | - Eva María Navarrete-Muñoz
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain.
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain.
- Alicante Institute for Health and Biomedical Research, Alicante, Spain.
| | - Miriam Hurtado-Pomares
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain
| | - Jordi Júlvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Nerea Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia Health Research Institute, San Sebastian, Spain
- School of Psychology, University of the Basque Country, UPV/EHU, San Sebastián, Spain
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Oviedo, Asturias, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jesús María Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia Health Research Institute, San Sebastian, Spain
- School of Psychology, University of the Basque Country, UPV/EHU, San Sebastián, Spain
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, Donostia-San Sebastian, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Desirée Valera-Gran
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
10
|
Salberg S, Smith MJ, Lamont R, Chen Z, Beauchamp MH, Craig W, Doan Q, Gravel J, Zemek R, Lannin NA, Yeates KO, Mychasiuk R. Shorter Telomere Length Is Associated With Older Age, Poor Sleep Hygiene, and Orthopedic Injury, but Not Mild Traumatic Brain Injury, in a Cohort of Canadian Children. J Head Trauma Rehabil 2024:00001199-990000000-00178. [PMID: 39019487 DOI: 10.1097/htr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Predicting recovery following pediatric mild traumatic brain injury (mTBI) remains challenging. The identification of objective biomarkers for prognostic purposes could improve clinical outcomes. Telomere length (TL) has previously been used as a prognostic marker of cellular health in the context of mTBI and other neurobiological conditions. While psychosocial and environmental factors are associated with recovery outcomes following pediatric mTBI, the relationship between these factors and TL has not been investigated. This study sought to examine the relationships between TL and psychosocial and environmental factors, in a cohort of Canadian children with mTBI or orthopedic injury (OI). METHODS Saliva was collected at a postacute (median 7 days) timepoint following injury to assess TL from a prospective longitudinal cohort of children aged 8 to 17 years with either mTBI (n = 202) or OI (n = 90), recruited from 3 Canadian sites. Questionnaires regarding psychosocial and environmental factors were obtained at a postacute follow-up visit and injury outcomes were assessed at a 3-month visit. Univariable associations between TL and psychosocial, environmental, and outcome variables were assessed using Spearman's correlation. Further adjusted analyses of these associations were performed by including injury group, age, sex, and site as covariates in multivariable generalized linear models with a Poisson family, log link function, and robust variance estimates. RESULTS After adjusting for age, sex, and site, TL in participants with OI was 7% shorter than those with mTBI (adjusted mean ratio = 0.93; 95% confidence interval, 0.89-0.98; P = .003). As expected, increasing age was negatively associated with TL (Spearman's r = -0.14, P = .016). Sleep hygiene at 3 months was positively associated with TL (adjusted mean ratio = 1.010; 95% confidence interval, 1.001-1.020; P = .039). CONCLUSION The relationships between TL and psychosocial and environmental factors in pediatric mTBI and OI are complex. TL may provide information regarding sleep quality in children recovering from mTBI or OI; however, further investigation into TL biomarker validity should employ a noninjured comparison group.
Collapse
Affiliation(s)
- S Salberg
- Author Affiliations: Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia (Drs Salberg, Smith, Lannin, Mychasiuk and Chen); Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (Dr Lamont); Department of Psychology, Montreal University, Montreal, Quebec, Canada, and Sainte-Justine Hospital Research Center, Montrea, Quebec, Canada (Dr Beauchamp); Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada (Dr Craig); Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada (Dr Doan); Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada, and Université de Montreal, Montreal, Quebec, Canada (Dr Gravel); Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada (Dr Zemek); Alfred Health, Melbourne, Australia (Dr Lannin); and Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada (Dr Yeates)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
12
|
Meltzer WA, Gupta A, Lin PN, Brown RA, Benyamien-Roufaeil DS, Khatri R, Mahurkar AA, Song Y, Taylor RJ, Zalzman M. Reprogramming Chromosome Ends by Functional Histone Acetylation. Int J Mol Sci 2024; 25:3898. [PMID: 38612707 PMCID: PMC11011970 DOI: 10.3390/ijms25073898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs. Mouse embryonic stem cells (mESCs) activate a transient expression of the gene Zscan4, which correlates with chromatin de-condensation and telomere extension. Head and neck squamous cell carcinoma (HNSCC) cancers reactivate ZSCAN4, which in turn regulates the phenotype of cancer stem cells (CSCs). Our study reveals a new role for human ZSCAN4 in facilitating functional histone H3 acetylation at telomere chromatin. Next-generation sequencing indicates ZSCAN4 enrichment at telomere chromatin. These changes correlate with ZSCAN4-induced histone H3 acetylation and telomere elongation, while CRISPR/Cas9 knockout of ZSCAN4 leads to reduced H3 acetylation and telomere shortening. Our study elucidates the intricate involvement of ZSCAN4 and its significant contribution to telomere chromatin remodeling. These findings suggest that ZSCAN4 induction serves as a novel link between 'stemness' and telomere maintenance. Targeting ZSCAN4 may offer new therapeutic approaches to effectively limit or enhance the replicative lifespan of stem cells and cancer cells.
Collapse
Affiliation(s)
- W. Alex Meltzer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Aditi Gupta
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Phyo Nay Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Robert A. Brown
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Daniel S. Benyamien-Roufaeil
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Raju Khatri
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
| | - Anup A. Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.M.); (Y.S.)
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.M.); (Y.S.)
| | - Rodney J. Taylor
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA (A.G.); (P.N.L.); (R.A.B.); (D.S.B.-R.); (R.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
14
|
Pepke ML. Telomere length is not a useful tool for chronological age estimation in animals. Bioessays 2024; 46:e2300187. [PMID: 38047504 DOI: 10.1002/bies.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Telomeres are short repetitive DNA sequences capping the ends of chromosomes. Telomere shortening occurs during cell division and may be accelerated by oxidative damage or ameliorated by telomere maintenance mechanisms. Consequently, telomere length changes with age, which was recently confirmed in a large meta-analysis across vertebrates. However, based on the correlation between telomere length and age, it was concluded that telomere length can be used as a tool for chronological age estimation in animals. Correlation should not be confused with predictability, and the current data and studies suggest that telomeres cannot be used to reliably predict individual chronological age. There are biological reasons for why there is large individual variation in telomere dynamics, which is mainly due to high susceptibility to a wide range of environmental, but also genetic factors, rendering telomeres unfeasible as a tool for age estimation. The use of telomeres for chronological age estimation is largely a misguided effort, but its occasional reappearance in the literature raises concerns that it will mislead resources in wildlife conservation.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Udroiu I, Marinaccio J, Sgura A. Effects of p53 and ATRX inhibition on telomeric recombination in aging fibroblasts. Front Oncol 2024; 14:1322438. [PMID: 38333682 PMCID: PMC10850245 DOI: 10.3389/fonc.2024.1322438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
In order to avoid replicative senescence, tumor cells must acquire a telomere maintenance mechanism. Beside telomerase activation, a minority of tumors employs a recombinational mechanism called Alternative Lengthening of Telomeres (ALT). Several studies have investigated the potential ALT stimulation by inactivation of ATRX in tumor cells, obtaining contrasting results. Differently, since ALT can be viewed as a mechanism to overcome telomere shortening-mediated replicative senescence, we have investigated the effects of the inhibition of ATRX and p53 in aging primary fibroblasts. We observed that senescence leads to a phenotype that seems permissive for ALT activity, i.e. high levels of ALT-associated PML bodies (APB), telomeric damage and telomeric cohesion. On the other hand, RAD51 is highly repressed and thus telomeric recombination, upon which the ALT machinery relies, is almost absent. Silencing of ATRX greatly increases telomeric recombination in young cells, but is not able to overcome senescence-induced repression of homologous recombination. Conversely, inhibition of both p53 and ATRX leads to a phenotype reminiscent of some aspects of ALT activity, with a further increase of APB, a decrease of telomere shortening (and increased proliferation) and, above all, an increase of telomeric recombination.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università “Roma Tre“, Rome, Italy
| | | | | |
Collapse
|
16
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
17
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
18
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Gao J, Wang H, Shen J, Liu X, Zhu X, Huang C, Li G, Sun Y, Liu Z, Sun YE, Liu H. Mutual regulation between GDF11 and TET2 prevents senescence of mesenchymal stem cells. J Cell Physiol 2023; 238:2827-2840. [PMID: 37801347 DOI: 10.1002/jcp.31132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a putative systemic rejuvenation factor. In this study, we characterized the mechanism by which GDF11 reversed aging of mesenchymal stem cells (MSCs). In culture, aged MSCs proliferate slower and are positive for senescence markers senescence-associated β-galactosidase and P16ink4a . They have shortened telomeres, decreased GDF11 expression, and reduced osteogenic potential. GDF11 can block MSC aging in vitro and reverse age-dependent bone loss in vivo. The antiaging effect of GDF11 is via activation of the Smad2/3-PI3K-AKT-mTOR pathway. Unexpectedly, GDF11 also upregulated a DNA demethylase Tet2, which served as a key mediator for GDF11 to autoregulate itself via demethylation of the GDF11 promoter. Mutation of Tet2 facilitates MSC aging by blocking GDF11 expression. Mutagenesis of Tet2-regulated CpG sites also blocks GDF11 expression, leading to MSC aging. Together, a novel mutual regulatory relationship between GDF11 and an epigenetic factor Tet2 unveiled their antiaging roles.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ce Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gongchen Li
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yao Sun
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical School, Los Angeles, California, USA
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Ma B, Martínez P, Sánchez-Vázquez R, Blasco MA. Telomere dynamics in human pluripotent stem cells. Cell Cycle 2023; 22:2505-2521. [PMID: 38219218 PMCID: PMC10936660 DOI: 10.1080/15384101.2023.2285551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Pluripotent stem cells (PSCs) are a promising source of stem cells for regenerative therapies. Stem cell function depends on telomere maintenance mechanisms that provide them with the proliferative capacity and genome stability necessary to multiply and regenerate tissues. We show here that established human embryonic stem cells (hESCs) have stable telomere length that is dependent on telomerase but not on alternative mechanisms based on homologous recombination pathways. Here, we show that human-induced pluripotent stem cells (hiPSCs) reprogrammed from somatic cells show progressive telomere lengthening until reaching a length similar to ESCs. hiPSCs also acquire telomeric chromatin marks of ESCs including decreased abundance of tri-methylated histone H3K9 and H4K20 and HP1 heterochromatic marks, as well as of the shelterin component TRF2. These chromatin features are accompanied with increased abundance of telomere transcripts or TERRAs. We also found that telomeres of both hESCs and hiPSCs are well protected from DNA damage during telomere elongation and once full telomere length is achieved, and exhibit stable genomes. Collectively, this study highlights that hiPSCs acquire ESC features during reprogramming and reveals the telomere biology in human pluripotent stem cells (hPSCs).
Collapse
Affiliation(s)
- Buyun Ma
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
21
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
22
|
Udroiu I, Marinaccio J, Sgura A. Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts. FEBS Open Bio 2023; 13:1683-1698. [PMID: 37499040 PMCID: PMC10476563 DOI: 10.1002/2211-5463.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università "Roma Tre", Italy
| | | | | |
Collapse
|
23
|
Li Q, Tan G, Wu F. The functions and roles of C2H2 zinc finger proteins in hepatocellular carcinoma. Front Physiol 2023; 14:1129889. [PMID: 37457025 PMCID: PMC10339807 DOI: 10.3389/fphys.2023.1129889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
C2H2 zinc finger (C2H2-ZF) proteins are the majority group of human transcription factors and they have many different molecular functions through different combinations of zinc finger domains. Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the main reason for cancer-related deaths worldwide. More and more findings support the abnormal expression of C2H2-ZF protein in the onset and progression of HCC. The C2H2-ZF proteins are involved in various biological functions in HCC, such as EMT, stemness maintenance, metabolic reprogramming, cell proliferation and growth, apoptosis, and genomic integrity. The study of anti-tumor drug resistance also highlights the pivotal roles of C2H2-ZF proteins at the intersection of biological functions (EMT, stemness maintenance, autophagy)and chemoresistance in HCC. The involvement of C2H2-ZF protein found recently in regulating different molecules, signal pathways and pathophysiological activities indicate these proteins as the possible therapeutic targets, and diagnostic or prognostic biomarkers for HCC.
Collapse
|
24
|
Herrera-Moreno JF, Prada D, Baccarelli AA. Early Environment and Telomeres: a Long-Term Toxic Relationship. Curr Environ Health Rep 2023; 10:112-124. [PMID: 36944821 PMCID: PMC10849088 DOI: 10.1007/s40572-023-00395-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children's TL and discuss potential long-term effects. RECENT FINDINGS Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals' health throughout life.
Collapse
Affiliation(s)
- José Francisco Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
- Instituto Nacional de Cancerología - México, 14080, Mexico City, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Duncan E, Papatheodoulou M, Metcalfe NB, McLennan D. Does pre-spawning catch and release angling affect offspring telomere dynamics in Atlantic salmon? CONSERVATION PHYSIOLOGY 2023; 11:coad018. [PMID: 37113976 PMCID: PMC10129346 DOI: 10.1093/conphys/coad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The practice of 'catch and release' (C&R) angling confers a balance between animal welfare, conservation efforts and preserving the socio-economic interests of recreational angling. However, C&R angling can still cause exhaustion and physical injury, and often exposes the captured fish to the stress of air exposure. Therefore, the true conservation success of C&R angling depends on whether the angled individuals then survive to reproduction and whether there are any persisting effects on subsequent generations. Here we tested the hypothesis that the stress of C&R angling is then passed on to offspring. We experimentally manipulated the C&R experience of wild adult salmon prior to the spawning season. These parental fish either underwent a C&R simulation (which involved exercise with/without air exposure) or were left as control individuals. We then measured the telomere length of the arising offspring (at the larval stage of development) since previous studies have linked a shorter telomere length with reduced fitness/longevity and the rate of telomere loss is thought to be influenced by stress. Family-level telomere length was positively related to rate of growth. However, the telomere lengths of the salmon offspring were unrelated to the C&R experience of their parents. This may be due to there being no intergenerational effect of parental stress exposure on offspring telomeres, or to any potential effects being buffered by the significant telomere elongation mechanisms that are thought to occur during the embryonic and larval stages of development. While this may suggest that C&R angling has a minimal intergenerational effect on offspring fitness, there have been numerous other reports of negative C&R effects, therefore we should still be aiming to mitigate and refine such practices, in order to minimize their impacts on fish populations.
Collapse
Affiliation(s)
- Eleanor Duncan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Magdalene Papatheodoulou
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
26
|
Fukushima HS, Takeda H, Nakamura R. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Genome Res 2023; 33:572-586. [PMID: 37117034 PMCID: PMC10234297 DOI: 10.1101/gr.277577.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Epigenetic modifications undergo drastic erasure and reestablishment after fertilization. This reprogramming is required for proper embryonic development and cell differentiation. In mammals, some histone modifications are not completely reprogrammed and play critical roles in later development. In contrast, in nonmammalian vertebrates, most histone modifications are thought to be more intensively erased and reestablished by the stage of zygotic genome activation (ZGA). However, histone modifications that escape reprogramming in nonmammalian vertebrates and their potential functional roles remain unknown. Here, we quantitatively and comprehensively analyzed histone modification dynamics during epigenetic reprogramming in Japanese killifish, medaka (Oryzias latipes) embryos. Our data revealed that H3K27ac, H3K27me3, and H3K9me3 escape complete reprogramming, whereas H3K4 methylation is completely erased during cleavage stage. Furthermore, we experimentally showed the functional roles of such retained modifications at early stages: (i) H3K27ac premarks promoters during the cleavage stage, and inhibition of histone acetyltransferases disrupts proper patterning of H3K4 and H3K27 methylation at CpG-dense promoters, but does not affect chromatin accessibility after ZGA; (ii) H3K9me3 is globally erased but specifically retained at telomeric regions, which is required for maintenance of genomic stability during the cleavage stage. These results expand the understanding of diversity and conservation of reprogramming in vertebrates, and unveil previously uncharacterized functions of histone modifications retained during epigenetic reprogramming.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Zhang X, Zhang C, Zhou D, Zhang T, Chen X, Ren J, He C, Meng F, Zhou Q, Yang Q, Dai C, Lin G, Zeng S, Leng L. Telomeres cooperate in zygotic genome activation by affecting DUX4/ Dux transcription. iScience 2023; 26:106158. [PMID: 36843839 PMCID: PMC9950522 DOI: 10.1016/j.isci.2023.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Zygotic genome activation (ZGA) is initiated once the genome chromatin state is organized in the newly formed zygote. Telomeres are specialized chromatin structures at the ends of chromosomes and are reset during early embryogenesis, while the details and significance of telomere changes in preimplantation embryos remain unclear. We demonstrated that the telomere length was shortened in the minor ZGA stage and significantly elongated in the major ZGA stage of human and mouse embryos. Expression of the ZGA pioneer factor DUX4/Dux was negatively correlated with the telomere length. ATAC sequencing data revealed that the chromatin accessibility peaks on the DUX4 promoter region (i.e., the subtelomere of chromosome 4q) were transiently augmented in human minor ZGA. Reduction of telomeric heterochromatin H3K9me3 in the telomeric region also synergistically activated DUX4 expression with p53 in human embryonic stem cells. We propose herein that telomeres regulate the expression of DUX4/Dux through chromatin remodeling and are thereby involved in ZGA.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Department of Reproductive Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Changquan Zhang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Tianlei Zhang
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Xueqin Chen
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlin Ren
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China
| | - Caixia He
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Fei Meng
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Qinwei Zhou
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Congling Dai
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| | - Sicong Zeng
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| | - Lizhi Leng
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| |
Collapse
|
28
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 1695] [Impact Index Per Article: 847.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
29
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
30
|
Ragupathi A, Singh M, Perez AM, Zhang D. Targeting the BRCA1/ 2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front Cell Dev Biol 2023; 11:1133472. [PMID: 37035242 PMCID: PMC10073599 DOI: 10.3389/fcell.2023.1133472] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BRCA1 and BRCA2 play a critical role in a variety of molecular processes related to DNA metabolism, including homologous recombination and mediating the replication stress response. Individuals with mutations in the BRCA1 and BRCA2 (BRCA1/2) genes have a significantly higher risk of developing various types of cancers, especially cancers of the breast, ovary, pancreas, and prostate. Currently, the Food and Drug Administration (FDA) has approved four PARP inhibitors (PARPi) to treat cancers with BRCA1/2 mutations. In this review, we will first summarize the clinical outcomes of the four FDA-approved PARPi in treating BRCA1/2 deficient cancers. We will then discuss evidence supporting the hypothesis that the cytotoxic effect of PARPi is likely due to inducing excessive replication stress at the difficult-to-replicate (DTR) genomic regions in BRCA1/2 mutated tumors. Finally, we will discuss the ongoing preclinical and clinical studies on how to combine the PARPi with immuno-oncology drugs to further improve clinical outcomes.
Collapse
|
31
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
32
|
Salmón P, Burraco P. Telomeres and anthropogenic disturbances in wildlife: A systematic review and meta-analysis. Mol Ecol 2022; 31:6018-6039. [PMID: 35080073 PMCID: PMC9790527 DOI: 10.1111/mec.16370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023]
Abstract
Human-driven environmental changes are affecting wildlife across the globe. These challenges do not influence species or populations to the same extent and therefore a comprehensive evaluation of organismal health is needed to determine their ultimate impact. Evidence suggests that telomeres (the terminal chromosomal regions) are sensitive to environmental conditions and have been posited as a surrogate for animal health and fitness. Evaluation of their use in an applied ecological context is still scarce. Here, using information from molecular and occupational biomedical studies, we aim to provide ecologists and evolutionary biologists with an accessible synthesis of the links between human disturbances and telomere length. In addition, we perform a systematic review and meta-analysis on studies measuring telomere length in wild/wild-derived animals facing anthropogenic disturbances. Despite the relatively small number of studies to date, our meta-analysis revealed a significant small negative association between disturbances and telomere length (-0.092 [-0.153, -0.031]; n = 28; k = 159). Yet, our systematic review suggests that the use of telomeres as a biomarker to understand the anthropogenic impact on wildlife is limited. We propose some research avenues that will help to broadly evaluate their suitability: (i) further causal studies on the link between human disturbances and telomeres; (ii) investigating the organismal implications, in terms of fitness and performance, of a given telomere length in anthropogenically disturbed scenarios; and (iii) better understanding of the underlying mechanisms of telomere dynamics. Future studies in these facets will help to ultimately determine their role as markers of health and fitness in wildlife facing anthropogenic disturbances.
Collapse
Affiliation(s)
- Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK,Department of Plant Biology and EcologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
33
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Sheldon EL, Ton R, Boner W, Monaghan P, Raveh S, Schrey AW, Griffith SC. Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata). Mol Ecol 2022; 31:6261-6272. [PMID: 34551154 DOI: 10.1111/mec.16187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.
Collapse
Affiliation(s)
- Elizabeth L Sheldon
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase Separation in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202855. [PMID: 36117111 PMCID: PMC9631093 DOI: 10.1002/advs.202202855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Indexed: 05/19/2023]
Abstract
In eukaryotic cells, biological activities are executed in distinct cellular compartments or organelles. Canonical organelles with membrane-bound structures are well understood. Cells also inherently contain versatile membrane-less organelles (MLOs) that feature liquid or gel-like bodies. A biophysical process termed liquid-liquid phase separation (LLPS) elucidates how MLOs form through dynamic biomolecule assembly. LLPS-related molecules often have multivalency, which is essential for low-affinity inter- or intra-molecule interactions to trigger phase separation. Accumulating evidence shows that LLPS concentrates and organizes desired molecules or segregates unneeded molecules in cells. Thus, MLOs have tunable functional specificity in response to environmental stimuli and metabolic processes. Aberrant LLPS is widely associated with several hallmarks of cancer, including sustained proliferative signaling, growth suppressor evasion, cell death resistance, telomere maintenance, DNA damage repair, etc. Insights into the molecular mechanisms of LLPS provide new insights into cancer therapeutics. Here, the current understanding of the emerging concepts of LLPS and its involvement in cancer are comprehensively reviewed.
Collapse
Affiliation(s)
- Jiang Ren
- School of MedicineZhejiang University City CollegeHangzhou215123China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003China
| | - Zhi Zong
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research Center, Second Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhou215123China
| | - Fangfang Zhou
- School of MedicineZhejiang University City CollegeHangzhou215123China
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123China
| |
Collapse
|
36
|
Mishra R, Haldar S, Biondi S, Bhari VK, Singh G, Bhowmick NA. TGF-β controls stromal telomere length through epigenetic modifications. 3 Biotech 2022; 12:290. [PMID: 36276465 PMCID: PMC9512944 DOI: 10.1007/s13205-022-03346-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 11/01/2022] Open
Abstract
Telomere length is primarily controlled by the enzyme telomerase, but being chromatin structures, telomeres undergo epigenetic regulation for their maintenance and function. Altered telomere length among cancer cells combined with shorter telomere length in cancer-associated stromal cells, strongly implicated with progression to prostate cancer metastasis and cancer death and providing a novel target for therapeutics. Transforming growth factor-β (TGF-β) signaling pathways are well-recognized for their role in stromal-epithelial interactions responsible for prostate androgen responsiveness, promoting tumorigenesis. However, the underlying mechanism remains unclear. We sought to establish a role for TGF-β in the regulation of telomere length in mouse and human prostate fibroblast. Polymerase chain reaction (PCR)-based telomere length measuring methods are widely used due to their repeatability and reproducibility. Using real-time RT-PCR-based telomere length measuring method, we identified that TGF-beta regulates telomere length via increased expression of histone methyltransferase, Suv39h1, which in turn affected histone methylation levels at the telomeric ends. Moreover, treatment of DAPT and non-steroidal antiandrogen bicalutamide demonstrated that notch and androgen signaling co-operated with TGF-ß in regulating stromal telomere length. Telomere variation in tumor cells and non-tumor cells within the tumor microenvironment greatly facilitates the clinical assessment of prostate cancer; therefore, understanding stromal telomere length regulation mechanism will hold significant prospects for cancer treatment, diagnosis, and prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03346-5.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kalyanpur, Kanpur, UP 208024 India
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Subhash Haldar
- Department of Food and Nutrition, University of Gour Banga, Mokdumpur, West Bengal 732101 India
| | - Shea Biondi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Vikash Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007 India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016 India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, CA 90073 USA
| |
Collapse
|
37
|
Shi Z, Ge X, Li M, Yin J, Wang X, Zhang J, Chen D, Li X, Wang X, Ji J, You Y, Qian X. Argininosuccinate lyase drives activation of mutant TERT promoter in glioblastomas. Mol Cell 2022; 82:3919-3931.e7. [DOI: 10.1016/j.molcel.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
38
|
Chen XY, Lo CKM, Chan KL, Leung WC, Ip P. Association between Childhood Exposure to Family Violence and Telomere Length: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912151. [PMID: 36231453 PMCID: PMC9566190 DOI: 10.3390/ijerph191912151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 05/12/2023]
Abstract
The aims of this meta-analysis were to examine the association between childhood exposure to family violence and telomere length and the moderating variables that influence this association. Relevant works published on or before 1st September 2022 were identified through a search in five major databases in English and 19 articles (N = 18,977) finally met the inclusion criteria. A meta-analysis was conducted to compute the pooled effect size (correlation; r), and moderator analyses were performed using a random effects meta-analytic model. The studies yielded a significant inverse association between childhood exposure to family violence and telomere length, with a small effect size (r = -0.038, 95% CI [-0.070, -0.005], p = 0.025). Furthermore, the strength of this association was stronger in studies examining the co-occurrence of multiple types of violence than in those examining just one type (Q = 8.143, p = 0.004). These findings suggested that victims' telomere length may be negatively influenced by childhood exposure to family violence and that such impairment appears to be stronger for those who are exposed to multiple types of violence. Future studies are necessary to examine the moderating and mediating factors underlying the association between childhood exposure to family violence and telomere length.
Collapse
Affiliation(s)
- Xiao Yan Chen
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Camilla K. M. Lo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Correspondence: (C.K.M.L.); (K.L.C.); Tel.: +852-2766-5760 (C.K.M.L.); +852-2766-5709 (K.L.C.)
| | - Ko Ling Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Correspondence: (C.K.M.L.); (K.L.C.); Tel.: +852-2766-5760 (C.K.M.L.); +852-2766-5709 (K.L.C.)
| | - Wing Cheong Leung
- Department of Obstetrics & Gynaecology, Kwong Wah Hospital, Kowloon, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
39
|
Seddon AR, Das AB, Hampton MB, Stevens AJ. Site-specific decreases in DNA methylation in replicating cells following exposure to oxidative stress. Hum Mol Genet 2022; 32:632-648. [PMID: 36106794 PMCID: PMC9896486 DOI: 10.1093/hmg/ddac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is a common feature of inflammation-driven cancers, and it promotes genomic instability and aggressive tumour phenotypes. It is known that oxidative stress transiently modulates gene expression through the oxidation of transcription factors and associated regulatory proteins. Neutrophils are our most abundant white blood cells and accumulate at sites of infection and inflammation. Activated neutrophils produce hypochlorous acid and chloramines, which can disrupt DNA methylation by oxidizing methionine. The goal of the current study was to determine whether chloramine exposure results in sequence-specific modifications in DNA methylation that enable long-term alterations in transcriptional output. Proliferating Jurkat T-lymphoma cells were exposed to sublethal doses of glycine chloramine and differential methylation patterns were compared using Illumina EPIC 850 K bead chip arrays. There was a substantial genome-wide decrease in methylation 4 h after exposure that correlated with altered RNA expression for 24 and 48 h, indicating sustained impacts on exposed cells. A large proportion of the most significant differentially methylated CpG sites were situated towards chromosomal ends, suggesting that these regions are most susceptible to inhibition of maintenance DNA methylation. This may contribute to epigenetic instability of chromosomal ends in rapidly dividing cells, with potential implications for the regulation of telomere length and cellular longevity.
Collapse
Affiliation(s)
- Annika R Seddon
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand
| | - Andrew B Das
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand,Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mark B Hampton
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand
| | - Aaron J Stevens
- To whom correspondence should be addressed at: Department of Pathology, University of Otago, Wellington, 23 Mein St, Newtown, Wellington 6021, New Zealand. Tel: +64 43855541; Fax: +64 4 389 5725;
| |
Collapse
|
40
|
Columnar structure of human telomeric chromatin. Nature 2022; 609:1048-1055. [PMID: 36104563 DOI: 10.1038/s41586-022-05236-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/12/2022] [Indexed: 01/11/2023]
Abstract
Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.
Collapse
|
41
|
Zhu N, Geng X, Ji X, Gao R, Li D, Yue H, Li G, Sang N. Gestational exposure to NO 2 aggravates placental senescence. ENVIRONMENTAL RESEARCH 2022; 212:113263. [PMID: 35430275 DOI: 10.1016/j.envres.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-β1 (Tgf-β1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
42
|
Haws SA, Simandi Z, Barnett RJ, Phillips-Cremins JE. 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell 2022; 185:2690-2707. [PMID: 35868274 DOI: 10.1016/j.cell.2022.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin. Using primarily mammalian model systems, we contrast mechanisms governing H3K9me3-mediated heterochromatinization of the repetitive genome and highlight emerging links between repetitive elements and chromatin folding.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Martínez P, Sánchez-Vázquez R, Ferrara-Romeo I, Serrano R, Flores JM, Blasco MA. A mouse model for Li-Fraumeni-Like Syndrome with cardiac angiosarcomas associated to POT1 mutations. PLoS Genet 2022; 18:e1010260. [PMID: 35727838 PMCID: PMC9212151 DOI: 10.1371/journal.pgen.1010260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The shelterin protein POT1 has been found mutated in many different familial and sporadic cancers, however, no mouse models to understand the pathobiology of these mutations have been developed so far. To address the molecular mechanisms underlying the tumorigenic effects of POT1 mutant proteins in humans, we have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. We find here that both mouse embryonic fibroblasts (MEFs) and tissues from Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in Pot1a+/ki MEFs are dependent on telomerase activity as they are not found in double mutant Pot1a+/kiTert-/- telomerase-deficient MEFs. By using complementation assays we further show that POT1a pR117C exerts dominant-negative effects at telomeres. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The Pot1a+/R117C mouse model constitutes a useful tool to understand human cancers initiated by POT1 mutations. We have generated a mouse model for the human POT1R117C mutation found in Li-Fraumeni-Like (LFL) families with cases of cardiac angiosarcoma by introducing this mutation in the Pot1a endogenous locus, knock-in for Pot1aR117C. The Pot1a+/ki mice show longer telomeres than wild-type controls. Longer telomeres in mutant mice are dependent on telomerase activity as they are not found in a telomerase deficient background. As in human Li-Fraumeni patients, heterozygous Pot1a+/ki mice spontaneously develop a high incidence of angiosarcomas, including cardiac angiosarcomas, and this is associated to the presence of abnormally long telomeres in endothelial cells as well as in the tumors. The ki-Pot1aR117C mouse constitutes a potential pre-clinical mouse model for LFL syndrome presenting with high angiosarcoma incidence that could provide in the future a very useful tool for the study of treatments for these tumors.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
44
|
Hübner B, von Otter E, Ahsan B, Wee ML, Henriksson S, Ludwig A, Sandin S. Ultrastructure and nuclear architecture of telomeric chromatin revealed by correlative light and electron microscopy. Nucleic Acids Res 2022; 50:5047-5063. [PMID: 35489064 PMCID: PMC9122609 DOI: 10.1093/nar/gkac309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Telomeres, the ends of linear chromosomes, are composed of repetitive DNA sequences, histones and a protein complex called shelterin. How DNA is packaged at telomeres is an outstanding question in the field with significant implications for human health and disease. Here, we studied the architecture of telomeres and their spatial association with other chromatin domains in different cell types using correlative light and electron microscopy. To this end, the shelterin protein TRF1 or TRF2 was fused in tandem to eGFP and the peroxidase APEX2, which provided a selective and electron-dense label to interrogate telomere organization by transmission electron microscopy, electron tomography and scanning electron microscopy. Together, our work reveals, for the first time, ultrastructural insight into telomere architecture. We show that telomeres are composed of a dense and highly compacted mesh of chromatin fibres. In addition, we identify marked differences in telomere size, shape and chromatin compaction between cancer and non-cancer cells and show that telomeres are in direct contact with other heterochromatin regions. Our work resolves the internal architecture of telomeres with unprecedented resolution and advances our understanding of how telomeres are organized in situ.
Collapse
Affiliation(s)
- Barbara Hübner
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Eric von Otter
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Bilal Ahsan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Mei Ling Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sara Henriksson
- Umeå Centre for Electron Microscopy, Umeå University, Chemical Biological Centre (KBC) Building, Linnaeus väg 6, SE-90736 Umeå, Sweden
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
45
|
Castillo-González C, Barbero Barcenilla B, Young PG, Hall E, Shippen DE. Quantification of 8-oxoG in Plant Telomeres. Int J Mol Sci 2022; 23:ijms23094990. [PMID: 35563379 PMCID: PMC9102096 DOI: 10.3390/ijms23094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity. 8-oxoguanine (8-oxoG) is the most studied and common outcome of oxidative damage in DNA. The G-rich nature of telomeric DNA is proposed to make it a hotspot for oxidation, but because telomeres make up only a tiny fraction of the genome, it has been difficult to directly test this hypothesis by studying dynamic DNA modifications specific to this region in vivo. Here, we present a new, robust method to differentially enrich telomeric DNA in solution, coupled with downstream methods for determination of chemical modification. Specifically, we measure 8-oxoG in Arabidopsis thaliana telomeres under normal and oxidative stress conditions. We show that telomere length is unchanged in response to oxidative stress in three different wild-type accessions. Furthermore, we report that while telomeric DNA comprises only 0.02–0.07% of the total genome, telomeres contribute between 0.2 and 15% of the total 8-oxoG. That is, plant telomeres accumulate 8-oxoG at levels approximately 100-fold higher than the rest of the genome under standard growth conditions. Moreover, they are the primary targets of further damage upon oxidative stress. Interestingly, the accumulation of 8-oxoG in the chromosome body seems to be inversely proportional to telomere length. These findings support the hypothesis that telomeres are hotspots of 8-oxoG and may function as sentinels of oxidative stress in plants.
Collapse
|
46
|
Guintini L, Paillé A, Graf M, Luke B, Wellinger RJ, Conconi A. Transcription of ncRNAs promotes repair of UV induced DNA lesions in Saccharomyces cerevisiae subtelomeres. PLoS Genet 2022; 18:e1010167. [PMID: 35486666 PMCID: PMC9106180 DOI: 10.1371/journal.pgen.1010167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/13/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet light causes DNA lesions that are removed by nucleotide excision repair (NER). The efficiency of NER is conditional to transcription and chromatin structure. UV induced photoproducts are repaired faster in the gene transcribed strands than in the non-transcribed strands or in transcriptionally inactive regions of the genome. This specificity of NER is known as transcription-coupled repair (TCR). The discovery of pervasive non-coding RNA transcription (ncRNA) advocates for ubiquitous contribution of TCR to the repair of UV photoproducts, beyond the repair of active gene-transcribed strands. Chromatin rules transcription, and telomeres form a complex structure of proteins that silences nearby engineered ectopic genes. The essential protective function of telomeres also includes preventing unwanted repair of double-strand breaks. Thus, telomeres were thought to be transcriptionally inert, but more recently, ncRNA transcription was found to initiate in subtelomeric regions. On the other hand, induced DNA lesions like the UV photoproducts must be recognized and repaired also at the ends of chromosomes. In this study, repair of UV induced DNA lesions was analyzed in the subtelomeric regions of budding yeast. The T4-endonuclease V nicking-activity at cyclobutene pyrimidine dimer (CPD) sites was exploited to monitor CPD formation and repair. The presence of two photoproducts, CPDs and pyrimidine (6,4)-pyrimidones (6-4PPs), was verified by the effective and precise blockage of Taq DNA polymerase at these sites. The results indicate that UV photoproducts in silenced heterochromatin are slowly repaired, but that ncRNA transcription enhances NER throughout one subtelomeric element, called Y’, and in distinct short segments of the second, more conserved element, called X. Therefore, ncRNA-transcription dependent TCR assists global genome repair to remove CPDs and 6-4PPs from subtelomeric DNA. Our skin is constantly exposed to sunlight and the ultraviolet component of it can severely damage the DNA of our chromosomes. If that damage is not efficiently repaired, the cells’ physiology becomes deregulated and very often cancer ensues. The specific molecular mechanism that will remove this damage is called nucleotide excision repair or NER. NER is conserved from humans to yeast, and it is much more efficient on DNA that is transcribed into RNA. Here we report how NER acts at the very ends of the chromosomes, the telomeres. In particular, the results show that in this area of the chromosomes with very few genes and where transcription is kept very low, the remaining transcription of non-coding RNAs such as TERRAs still stimulates NER and therefore helps guarding the integrity of DNA. These findings therefore suggest that the spurious transcription of subtelomeric DNA has a very positive impact on DNA repair efficiency. Hence, in addition to the known functions of TERRA and other ncRNAs in telomere maintenance, their transcription per se can be viewed as a genome stabilizing function.
Collapse
Affiliation(s)
- Laetitia Guintini
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
| | - Audrey Paillé
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
| | - Marco Graf
- Institute for Developmental and Neurobiology (IDN) at the Johannes-Gutenberg-University, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (RJW); (AC)
| | - Antonio Conconi
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (RJW); (AC)
| |
Collapse
|
47
|
Gabellini D, Pedrotti S. The SUV4-20H Histone Methyltransferases in Health and Disease. Int J Mol Sci 2022; 23:ijms23094736. [PMID: 35563127 PMCID: PMC9102147 DOI: 10.3390/ijms23094736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
The post-translational modification of histone tails is a dynamic process that provides chromatin with high plasticity. Histone modifications occur through the recruitment of nonhistone proteins to chromatin and have the potential to influence fundamental biological processes. Many recent studies have been directed at understanding the role of methylated lysine 20 of histone H4 (H4K20) in physiological and pathological processes. In this review, we will focus on the function and regulation of the histone methyltransferases SUV4-20H1 and SUV4-20H2, which catalyze the di- and tri-methylation of H4K20 at H4K20me2 and H4K20me3, respectively. We will highlight recent studies that have elucidated the functions of these enzymes in various biological processes, including DNA repair, cell cycle regulation, and DNA replication. We will also provide an overview of the pathological conditions associated with H4K20me2/3 misregulation as a result of mutations or the aberrant expression of SUV4-20H1 or SUV4-20H2. Finally, we will critically analyze the data supporting these functions and outline questions for future research.
Collapse
|
48
|
Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, Ostano P, Chiorino G, Trusolino L, Blandino G, Ciliberto G, Zizza P, Biroccio A. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett 2022; 533:215607. [PMID: 35240232 DOI: 10.1016/j.canlet.2022.215607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Strada Provinciale 142, Candiolo, TO, 10060, Italy; Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Candiolo, TO, 10060, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
49
|
Sexual Dimorphism in Telomere Length in Childhood Autism. J Autism Dev Disord 2022; 53:2050-2061. [PMID: 35220523 DOI: 10.1007/s10803-022-05486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorders (ASD) are strikingly more prevalent in males, but the molecular mechanisms responsible for ASD sex-differential risk are poorly understood. Abnormally shorter telomeres have been associated with autism. Examination of relative telomere lengths (RTL) among non-syndromic male (N = 14) and female (N = 10) children with autism revealed that only autistic male children had significantly shorter RTL than typically-developing controls (N = 24) and paired siblings (N = 10). While average RTL of autistic girls did not differ significantly from controls, it was substantially longer than autistic boys. Our findings indicate a sexually-dimorphic pattern of RTL in childhood autism and could have important implications for RTL as a potential biomarker and the role/s of telomeres in the molecular mechanisms responsible for ASD sex-biased prevalence and etiology.
Collapse
|
50
|
Dan J, Zhou Z, Wang F, Wang H, Guo R, Keefe DL, Liu L. Zscan4 Contributes to Telomere Maintenance in Telomerase-Deficient Late Generation Mouse ESCs and Human ALT Cancer Cells. Cells 2022; 11:cells11030456. [PMID: 35159266 PMCID: PMC8834411 DOI: 10.3390/cells11030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Proper telomere length is essential for indefinite self-renewal of embryonic stem (ES) cells and cancer cells. Telomerase-deficient late generation mouse ES cells and human ALT cancer cells are able to propagate for numerous passages, suggesting telomerase-independent mechanisms responding for telomere maintenance. However, the underlying mechanisms ensuring the telomere length maintenance are unclear. Here, using late generation telomerase KO (G4 Terc-/-) ESCs as a model, we show that Zscan4, highly upregulated in G4 Terc-/- ESCs, is responsible for the prolonged culture of these cells with stably short telomeres. Mechanistically, G4 Terc-/- ESCs showed reduced levels of DNA methylation and H3K9me3 at Zscan4 promoter and subtelomeres, which relieved the expression of Zscan4. Similarly, human ZSCAN4 was also derepressed by reduced H3K9me3 at its promoter in ALT U2 OS cells, and depletion of ZSCAN4 significantly shortened telomeres. Our results define a similar conserved pathway contributing to the telomere maintenance in telomerase-deficient late generation mESCs and human ALT U2OS cancer cells.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
- Correspondence: (J.D.); (L.L.)
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- Correspondence: (J.D.); (L.L.)
| |
Collapse
|