1
|
Chong J, Chen Z, Ma J, He L, Zhu Y, Lu Z, Qiu Z, Chen C, Chen Y, Jiang F. Mechanistic investigation and the optimal dose based on baicalin in the treatment of ulcerative colitis-A preclinical systematic review and meta-analysis. BMC Gastroenterol 2025; 25:50. [PMID: 39901089 PMCID: PMC11792396 DOI: 10.1186/s12876-025-03629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease, and current treatments often fall short, necessitating new therapeutic options. Baicalin shows therapeutic promise in UC animal models, but a systematic review is needed. METHODS A systematic search was conducted across databases including PubMed, EBSCO, Web of Science, and Science Direct, up to March 2024, identifying randomized controlled trials (RCTs) examining baicalin's impact on UC in animal models. Seventeen studies were selected through manual screening. Meta-analyses and subgroup analyses utilized Rev Man 5.3 and Stata 15.0 software to assess symptom improvement. RESULTS From 1304 citations, 17 were analyzed. Baicalin significantly modulated various biomarkers: HCS (SMD = -3.91), DAI (MD = -2.75), spleen index (MD = -12.76), MDA (SMD = -3.88), IL-6 (SMD = -10.59), IL-1β (SMD = -3.98), TNF-α (SMD = -8.05), NF-κB (SMD = -5.46), TLR4 (MD = -0.38), RORγ (MD = -0.89), MCP-1 (MD = -153.25), MPO (SMD = -7.34), Caspase-9 (MD = -0.93), Caspase-3 (MD = -0.45), FasL (MD = -1.20)) and enhanced BWC (MD = 0.06), CL (MD = 1.39), ZO-1 (MD = 0.44), SOD (SMD = 3.04), IL-10 mRNA (MD = 3.14), and FOXP3 (MD = 0.45) levels. Baicalin's actions may involve the PI3K/AKT, TLR4/NF-κB, IKK/IKB, Bcl-2/Bax, Th17/Treg, and TLRs/MyD88 pathways. Optimal therapeutic outcomes were predicted at dosages of 60-150 mg/kg over 10-14 weeks. CONCLUSION Baicalin demonstrates a multifaceted therapeutic potential in UC, attributed to its anti-inflammatory, antioxidant, anti-apoptotic, and intestinal barrier repair properties. While higher doses and longer treatments appear beneficial, further research, particularly human clinical trials, is necessary to verify its effectiveness and safety in people.
Collapse
Affiliation(s)
- Jinchen Chong
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zepeng Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jiaze Ma
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Linhai He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yijia Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhihua Lu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhengxi Qiu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Feng Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
2
|
Xing Y, Wang MM, Zhang F, Xin T, Wang X, Chen R, Sui Z, Dong Y, Xu D, Qian X, Lu Q, Li Q, Cai W, Hu M, Wang Y, Cao JL, Cui D, Qi J, Wang W. Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe 2+ through TRPML1 channel. Nat Commun 2025; 16:985. [PMID: 39856099 PMCID: PMC11760952 DOI: 10.1038/s41467-025-56403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe2+-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages. Mechanistically, the suppression of IL1B transcription caused by TRPML1 activation results from its modulation on the release of lysosomal Fe2+, which subsequently activates PHDs. The activated PHDs then represses transcriptional activity of NF-κB, ultimately resulting in suppressed IL1B transcription. More importantly, in vivo stimulation of TRPML1 ameliorates multiple clinical signs of Dextran sulfate sodium-induced colitis in mice, suggesting TRPML1 has potential in treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Chen
- The First People's Hospital of Yancheng, Yancheng, China
| | - Zhongheng Sui
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Yawei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxue Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyu Qian
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijie Cai
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyushu, Japan
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Derong Cui
- Department of Anesthesiology, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Wang S, Hu Y, Wang Y, Song Y, Liang D, Yin J, Li Y, Yang W, Zhang D. Joint Analysis of Multiple Omics to Describe the Biological Characteristics of Resistant Hypertension. J Clin Hypertens (Greenwich) 2025; 27:e14961. [PMID: 39716980 PMCID: PMC11774085 DOI: 10.1111/jch.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Resistant hypertension (RH) may cause severe target organ damage and poses significant challenges in the field of hypertension prevention and treatment. Mining biological characteristics is crucial for exploring the pathogenesis of RH and for early diagnosis and treatment. Although several single-omics studies have been conducted on RH, its complex pathogenesis has only been partially elucidated. In this study, metabolomics, proteomics, and transcriptomics were jointly analyzed in healthy subjects and patients with hypertension and RH. The multi-omics analysis found that differential substances of RH were enriched in the HIF-1 signaling pathway and that differential substances such as ascorbic acid, reduced glutathione (GSH), choline, citric acid, transferrin receptor (TfR), Egl-9 family hypoxia-inducible factor 2 (EGLN2), and glutathione peroxidase 1 (GPX1) were screened out. The results of intergroup comparisons were as follows: RH versus N: ascorbic acid (Fold Change (FC):0.42, p < 0.01), GSH (FC:0.65, p < 0.05), choline (FC:1.32, p < 0.05), citric acid (FC:0.48, p < 0.001), TfR (FC2.32, p < 0.001), GPX1 (FC:16.02, p < 0.001), EGLN2 (FC:0.76, p < 0.001); RH versus EH: ascorbic acid (FC:0.52, p < 0.05), GSH (FC:0.55, p < 0.05), choline (FC:1.28, p < 0.05), citric acid (FC:0.59, p < 0.001), TfR (FC:1.71, p < 0.001), GPX1 (FC:2.11, p < 0.05), EGLN2 (FC:0.76, p < 0.05). These differential substances may reflect the biology of RH. This study provides multi-omics analysis for a deeper understanding of the complex molecular characteristics of RH, providing new insights into the pathogenesis, early diagnosis, and precise treatment of the disease.
Collapse
Affiliation(s)
- Shanshan Wang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Department of CardiologyThe Fifth People's Hospital of JinanJinanChina
| | - Yuanlong Hu
- First Faculty of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yuqi Wang
- First Faculty of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yueyue Song
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Dan Liang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Jiufeng Yin
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Shandong Engineering Laboratory of Traditional Chinese Medicine Precise Therapy for Cardiovascular DiseasesJinanChina
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Wenqing Yang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
- Shandong Engineering Laboratory of Traditional Chinese Medicine Precise Therapy for Cardiovascular DiseasesJinanChina
| | - Dan Zhang
- Experimental CenterShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of EducationShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
5
|
Fu Y, Ding X, Zhang M, Feng C, Yan Z, Wang F, Xu J, Lin X, Ding X, Wang L, Fan Y, Li T, Yin Y, Liang X, Xu C, Chen S, Pulous FE, Gennert D, Pun FW, Kamya P, Ren F, Aliper A, Zhavoronkov A. Intestinal mucosal barrier repair and immune regulation with an AI-developed gut-restricted PHD inhibitor. Nat Biotechnol 2024:10.1038/s41587-024-02503-w. [PMID: 39663371 DOI: 10.1038/s41587-024-02503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Hypoxia-inducible factor prolyl hydroxylase (PHD) inhibitors have been approved for treating renal anemia yet have failed clinical testing for inflammatory bowel disease because of a lack of efficacy. Here we used a multimodel multimodal generative artificial intelligence platform to design an orally gut-restricted selective PHD1 and PHD2 inhibitor that exhibits favorable safety and pharmacokinetic profiles in preclinical studies. ISM012-042 restores intestinal barrier function and alleviates gut inflammation in multiple experimental colitis models.
Collapse
Affiliation(s)
- Yanyun Fu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Xiao Ding
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Man Zhang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
| | - Chunlei Feng
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Ziqi Yan
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Feng Wang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Jianyu Xu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xiaoxia Lin
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xiaoyu Ding
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Ling Wang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Yaya Fan
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Taotao Li
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Yushu Yin
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Chenxi Xu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Shan Chen
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Fadi E Pulous
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine US, Inc., New York, NY, USA
| | - David Gennert
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine US, Inc., New York, NY, USA
| | - Frank W Pun
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
| | - Petrina Kamya
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Canada, Inc., Montréal, Québec, Canada
| | - Feng Ren
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Alex Zhavoronkov
- Insilico Medicine US, Inc., Boston, MA, USA.
- Insilico Medicine Shanghai, Ltd., Shanghai, China.
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China.
- Insilico Medicine US, Inc., New York, NY, USA.
| |
Collapse
|
6
|
Yue Y, Ai J, Chi W, Zhao X, Huo F, Yin C. Biomedical-Optical-Window Tailored Cyanines for Steerable Inflammatory Bowel Disease Theranostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408450. [PMID: 39240024 DOI: 10.1002/adma.202408450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Tailored photophysical properties and chemical activity is the ultimate pursuit of functional dyes for in vivo biomedical theranostics. In this work, the independent regulation of the absorption and fluorescence emission wavelengths of heptamethine cyanines is reported. These dyes retain near-infrared fluorescence emission (except a nitro-modified dye) while feature variable absorption wavelengths ranging from 590 to 860 nm. This enables to obtain customized functional dyes that meet the excitation and fluorescence wavelength requirements defined by the optical properties of tissues for in vivo biomedical applications. Typically, a nitro-modified photothermal active derivative Cy-Mu-7-9 is used, which features strong absorption at 810 nm in PBS, a wavelength that balanced the tissue penetration depth and non-specific photothermal effect, to realize non-destructive inflammatory bowel disease (IBD) therapy via photothermal induced up-regulation of heat shock protein 70 in the intestinal epithelial cells. The corresponding amino-modified dye Cy-Mu-7-9-NH2, which can be formed in health enteric cavity by Cy-Mu-7-9 after oral administration, is a fluorescence compound with the emission of 800 nm in PBS. Based on the IBD sensitive transformation of Cy-Mu-7-9 and Cy-Mu-7-9-NH2, in vivo IBD theranostic and therapeutic effect evaluation is realized via the synergy of fluorescence imaging and photothermal therapy for the first time.
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jiahong Ai
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Xiaoni Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
7
|
Liu PY, Liaw J, Soutter F, Ortiz JJ, Tomley FM, Werling D, Gundogdu O, Blake DP, Xia D. Multi-omics analysis reveals regime shifts in the gastrointestinal ecosystem in chickens following anticoccidial vaccination and Eimeria tenella challenge. mSystems 2024; 9:e0094724. [PMID: 39287379 PMCID: PMC11494932 DOI: 10.1128/msystems.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm economics and animal welfare. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and caecal metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis, data on caecal microbiota and metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.IMPORTANCEAdvances in anticoccidial vaccines have garnered significant attention in poultry health management. However, the intricacies of vaccine-induced alterations in the chicken gut microbiome and its subsequent impact on host metabolism remain inadequately explored. This study delves into the metabolic and microbiotic shifts in chickens post-vaccination, employing a multi-omics integration analysis. Our findings highlight a notable synergy between the microbiome composition and host-microbe interacted metabolic pathways in vaccinated chickens, differentiating them from infected or non-vaccinated cohorts. These insights pave the way for more targeted and efficient approaches in poultry disease control, enhancing both the efficacy of vaccines and the overall health of poultry populations.
Collapse
Affiliation(s)
- Po-Yu Liu
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - José Jaramillo Ortiz
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
8
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
9
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Hai S, Li X, Xie E, Wu W, Gao Q, Yu B, Hu J, Xu F, Zheng X, Zhang BH, Wu D, Yan W, Ning Q, Wang X. Intestinal IL-33 promotes microbiota-derived trimethylamine N -oxide synthesis and drives metabolic dysfunction-associated steatotic liver disease progression by exerting dual regulation on HIF-1α. Hepatology 2024:01515467-990000000-00950. [PMID: 38985971 DOI: 10.1097/hep.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N -oxide-producing bacteria. Inhibition of trimethylamine N -oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2- Hif1a - Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS Intestinal IL-33 enhanced gut microbiota-derived trimethylamine N -oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.
Collapse
Affiliation(s)
- Suping Hai
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xitang Li
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Erliang Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Gao
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Binghui Yu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyang Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhe Zheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Bin-Hao Zhang
- Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Akiyama S, Sakamoto T, Kobayashi M, Matsubara D, Tsuchiya K. Clinical usefulness of hypoxia imaging colonoscopy for the objective measurement of ulcerative colitis disease activity. Gastrointest Endosc 2024; 99:1006-1016.e4. [PMID: 38184118 DOI: 10.1016/j.gie.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIMS Colonic mucosal hypoxia is associated with mucosal inflammation in ulcerative colitis (UC). We aimed to assess the clinical usefulness of hypoxia imaging colonoscopy for the evaluation of clinical, endoscopic, and histologic disease activities of UC. METHODS This retrospective cohort study comprised 100 consecutive patients with UC who underwent hypoxia imaging colonoscopy between September 2022 and September 2023 at the University of Tsukuba Hospital. Colonic tissue oxygen saturation (StO2) was measured at the biopsy sites, and StO2 values between different disease activities were compared. Receiver-operating characteristic (ROC) analysis was used to calculate the area under the ROC curve (AUROC). RESULTS A significant correlation was identified between rectal StO2 and the Simple Clinical Colitis Activity Index, with moderate accuracy to predict bowel urgency at a 40.5% cutoff (AUROC, .74; 95% confidence interval [CI], .62-.87). Our analysis of 490 images showed median StO2 values for Mayo endoscopic subscores 0, 1, 2, and 3 as 52% (interquartile range [IQR], 48%-56%), 47% (IQR, 43%-52%), 42% (IQR, 38.8%-47%), and 39.5% (IQR, 37.3%-41.8%), respectively. Differences for all pairs were significant. Median StO2 was 49% (IQR, 44%-54%) for Geboes scores 0 to 2, significantly higher than histologically active disease (Geboes score ≥3). At a colonic StO2 cutoff of 45.5%, AUROCs for endoscopically and histologically active diseases were .79 (95% CI, .74-.84) and .72 (95% CI, .66-.77). CONCLUSIONS StO2 obtained by hypoxia imaging colonoscopy is useful for assessing clinical, endoscopic, and histologic activities of UC, suggesting that StO2 may be a novel and objective endoscopic measurement.
Collapse
Affiliation(s)
- Shintaro Akiyama
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Taku Sakamoto
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mariko Kobayashi
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daisuke Matsubara
- Department of Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
12
|
Li H, Zhang G, Liu Y, Gao F, Ye X, Lin R, Wen M. Hypoxia-inducible factor 1α inhibits heat stress-induced pig intestinal epithelial cell apoptosis through eif2α/ATF4/CHOP signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171649. [PMID: 38485018 DOI: 10.1016/j.scitotenv.2024.171649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Gang Zhang
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Yongqing Liu
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Fan Gao
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, PR China
| | - Rutao Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| |
Collapse
|
13
|
DeFrates KG, Tong E, Cheng J, Heber‐Katz E, Messersmith PB. A Pro-Regenerative Supramolecular Prodrug Protects Against and Repairs Colon Damage in Experimental Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304716. [PMID: 38247203 PMCID: PMC10987129 DOI: 10.1002/advs.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Indexed: 01/23/2024]
Abstract
Structural repair of the intestinal epithelium is strongly correlated with disease remission in inflammatory bowel disease (IBD); however, ulcer healing is not addressed by existing therapies. To address this need, this study reports the use of a small molecule prolyl hydroxylase (PHD) inhibitor (DPCA) to upregulate hypoxia-inducible factor one-alpha (HIF-1α) and induce mammalian regeneration. Sustained delivery of DPCA is achieved through subcutaneous injections of a supramolecular hydrogel, formed through the self-assembly of PEG-DPCA conjugates. Pre-treatment of mice with PEG-DPCA is shown to protect mice from epithelial erosion and symptoms of dextran sodium sulfate (DSS)-induced colitis. Surprisingly, a single subcutaneous dose of PEG-DPCA, administered after disease onset, leads to accelerated weight gain and complete restoration of healthy tissue architecture in colitic mice. Rapid DPCA-induced restoration of the intestinal barrier is likely orchestrated by increased expression of HIF-1α and associated targets leading to an epithelial-to-mesenchymal transition. Further investigation of DPCA as a potential adjunctive or stand-alone restorative treatment to combat active IBD is warranted.
Collapse
Affiliation(s)
- Kelsey G. DeFrates
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Elaine Tong
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Jing Cheng
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | | | - Phillip B. Messersmith
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of California, BerkeleyBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
14
|
Cheng MI, Hong L, Bustillos C, Chen B, Chin S, Luthers CR, Vo A, Sheikh SZ, Su MA. Cutting Edge: Hypoxia Sensing by the Histone Demethylase UTX (KDM6A) Limits Colitogenic CD4+ T Cells in Mucosal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1069-1074. [PMID: 38353647 PMCID: PMC10948288 DOI: 10.4049/jimmunol.2300550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Hypoxia is a hallmark of inflammatory conditions (e.g., inflammatory bowel disease [IBD]), and adaptive responses have consequently evolved to protect against hypoxia-associated tissue injury. Because augmenting hypoxia-induced protective responses is a promising therapeutic approach for IBD, a more complete understanding of these pathways is needed. Recent work has demonstrated that the histone demethylase UTX is oxygen-sensitive, but its role in IBD is unclear. In this study, we show that hypoxia-induced deactivation of UTX downregulates T cell responses in mucosal inflammation. Hypoxia results in decreased T cell proinflammatory cytokine production and increased immunosuppressive regulatory T cells, and these findings are recapitulated by UTX deficiency. Hypoxia leads to T cell accumulation of H3K27me3 histone modifications, suggesting that hypoxia impairs UTX's histone demethylase activity to dampen T cell colitogenic activity. Finally, T cell-specific UTX deletion ameliorates colonic inflammation in an IBD mouse model, implicating UTX's oxygen-sensitive demethylase activity in counteracting hypoxic inflammation.
Collapse
Affiliation(s)
- Mandy I. Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lee Hong
- Division of Hematology and Oncology at Translational Science Research Institute, Scripps Research, La Jolla, CA, 92037
| | - Christian Bustillos
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Bryan Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
| | - Scott Chin
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
| | - Christopher R. Luthers
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Au Vo
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, UNC Chapel Hill, NC 27599
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Villareal LB, Xue X. The emerging role of hypoxia and environmental factors in inflammatory bowel disease. Toxicol Sci 2024; 198:169-184. [PMID: 38200624 PMCID: PMC10964750 DOI: 10.1093/toxsci/kfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Tian X, Liu F, Wang Z, Zhang J, Liu Q, Zhang Y, Zhang D, Huang C, Zhao J, Jiang S. Modified Biejia Jianwan decoction restrains PD-L1-mediated immune evasion through the HIF-1α/STAT3/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117577. [PMID: 38104877 DOI: 10.1016/j.jep.2023.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Biejia Jianwan (M-BJJW), a Traditional Chinese Medicine (TCM) decoction, has exhibited great potential in treating hepatocellular carcinoma (HCC). However, its underlying functional mechanism still remains unknown. AIM OF THE STUDY The study aimed to explore the anti-hepatocarcinogenic effects of M-BJJW, specifically its influence on PD-L1-mediated immune evasion in hypoxic conditions, and elucidate the related molecular mechanisms in HCC. MATERIALS AND METHODS To investigate the therapeutic efficacy and mechanisms underlying M-BJJW's effects on HCC, we employed a diethylnitrosamine (DEN)-induced rat model maintained for 120 days. Following model establishment, flow cytometry was utilized to assess the distribution of immune cell populations in peripheral blood, spleens, and tumor tissues after M-BJJW administration. Simultaneously, enzyme-linked immunosorbent assays (ELISA) were conducted to analyze cytokine profiles in serum samples. Immunohistochemistry was employed to determine the expression levels of crucial proteins within tumor tissues. Furthermore, HCC cells exposed to CoCl2 underwent Western blot analysis to validate the expression levels of HIF-1α, PD-L1, STAT3, and nuclear factor kappa B (NF-κB) p65. The modulatory effects of STAT3 and NF-κB p65 were investigated using specific inhibitors and activators in wild-type cell lines. High-performance liquid chromatography coupled with mass spectrometry (HPLC/MS) was utilized to identify the chemical constituents present in M-BJJW-medicated serum. The immunomodulatory properties and the anti-tumor activities of M-BJJW were evaluated by co-culturing with peripheral blood mononuclear cells (PBMC) and the CCK-8 assay. Additionally, we assessed M-BJJW's impact on hypoxia-induced alterations in HCC cell lines using immunofluorescence and Western blot assessments. RESULTS M-BJJW exhibited substantial therapeutic advantages by effectively alleviating pathological deterioration within the HCC microenvironment. In the DEN-induced rat model, M-BJJW administration notably reduced tumor growth. Flow cytometry analyses revealed an increased proportion of Cytotoxic T lymphocytes (CTLs) accompanied by a simultaneous decrease in regulatory T cells (Tregs). ELISA data supported a marked decrease in pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor α (TNF-α). Immunohistochemistry confirmed the suppressive effect of M-BJJW on the expression of HIF-1α and PD-L1. Notably, western blotting unveiled the role of HIF-1α in regulating PD-L1 expression via the STAT3 and NF-κB signaling pathways in HCC cell lines, which was validated using activators and inhibitors of STAT3 and NF-κB. The CCK-8 assay and co-culture techniques demonstrated the anti-tumor activity of M-BJJW. Immunofluorescence and western blotting further confirmed that M-BJJW-containing serum dose-dependently inhibited HIF-1α, PD-L1, p-STAT3, and p-p65 in hypoxic HCC cell lines. CONCLUSIONS M-BJJW demonstrates significant therapeutic potential against HCC by influencing the hypoxic microenvironment, thereby regulating the immunosuppressive milieu. Specifically, M-BJJW modulates the HIF-1α/STAT3/NF-κB signaling pathway, leading to reduced PD-L1 expression and an elevated ratio of cytotoxic T lymphocytes (CTLs), while concurrently decreasing T regulatory cells (Tregs) and immunosuppressive factors. These synergistic effects aid in countering PD-L1-mediated immune evasion, presenting compelling pharmacological evidence supporting the clinical application of M-BJJW as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Fen Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Chen Huang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China; First Clinical Medical School, Shandong University of Traditional Chinese Medicine.
| |
Collapse
|
18
|
Dokmak A, Sweigart B, Orekondy NS, Jangi S, Weinstock JV, Hamdeh S, Kochar GS, Shen B, Levy AN. Efficacy and Safety of Hyperbaric Oxygen Therapy in Fistulizing Crohn's Disease: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2024; 58:120-130. [PMID: 37682003 DOI: 10.1097/mcg.0000000000001905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) delivers 100% oxygen in a pressurized chamber, increasing tissue oxygen levels and regulating inflammatory pathways. Mounting evidence suggests that HBOT may be effective for inflammatory bowel disease. Our systematic review and meta-analysis aimed to quantify the efficacy and safety of HBOT in fistulizing Crohn's disease (CD). METHODS A systematic review was conducted using the EMBASE, Web of Science, Pubmed, and Cochrane Library databases according to the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" criteria. Study bias was assessed using the Cochrane Handbook guidelines. RESULTS Sixteen studies with 164 patients were included in the analysis. For all fistula subtypes, the pooled overall clinical response was 87% (95% CI: 0.70-0.95, I2 = 0) and the pooled clinical remission was 59% (95% CI: 0.35-0.80, I2 = 0). The overall clinical response was 89%, 84%, and 29% for perianal, enterocutaneous, and rectovaginal fistulas, respectively. On meta-regression, hours in the chamber and the number of HBOT sessions were not found to correlate with clinical response. The pooled number of adverse events was low at 51.7 per 10,000 HBOT sessions for all fistula types (95% CI: 16.8-159.3, I2 = 0). The risk of bias was observed across all studies. CONCLUSION HBOT is a safe and potentially effective treatment option for fistulizing CD. Randomized control trials are needed to substantiate the benefit of HBOT in fistulizing CD.
Collapse
Affiliation(s)
- Amr Dokmak
- Department of Hospital Medicine, Catholic Medical Center, Manchester, NH
| | | | | | - Sushrut Jangi
- Division of Gastroenterology and Hepatology, Tufts Medical Center, Boston, MA
| | - Joel V Weinstock
- Division of Gastroenterology and Hepatology, Tufts Medical Center, Boston, MA
| | - Shadi Hamdeh
- Division of Gastroenterology, Hepatology and Motility, University of Kansas, Kansas City, KS
| | - Gursimran S Kochar
- Division of Gastroenterology, Hepatology, and Nutrition, Allegheny Health Network, Pittsburgh, PA
| | - Bo Shen
- Center for Interventional Inflammatory Bowel Disease, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY
| | - Alexander N Levy
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Zhang J, Chen C, Yan W, Fu Y. New sights of immunometabolism and agent progress in colitis associated colorectal cancer. Front Pharmacol 2024; 14:1303913. [PMID: 38273841 PMCID: PMC10808433 DOI: 10.3389/fphar.2023.1303913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Colitis associated colorectal cancer is a disease with a high incidence and complex course that develops from chronic inflammation and deteriorates after various immune responses and inflammation-induced attacks. Colitis associated colorectal cancer has the characteristics of both immune diseases and cancer, and the similarity of treatment models contributes to the similar treatment dilemma. Immunometabolism contributes to the basis of life and is the core of many immune diseases. Manipulating metabolic signal transduction can be an effective way to control the immune process, which is expected to become a new target for colitis associated colorectal cancer therapy. Immune cells participate in the whole process of colitis associated colorectal cancer development by transforming their functional condition via changing their metabolic ways, such as glucose, lipid, and amino acid metabolism. The same immune and metabolic processes may play different roles in inflammation, dysplasia, and carcinoma, so anti-inflammation agents, immunomodulators, and agents targeting special metabolism should be used in combination to prevent and inhibit the development of colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Jingyue Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Ferenczi S, Mogor F, Takacs P, Kovacs T, Toth VE, Varga ZV, Kovács K, Lohinai Z, Vass KC, Nagy N, Dora D. Depletion of muscularis macrophages ameliorates inflammation-driven dysmotility in murine colitis model. Sci Rep 2023; 13:22451. [PMID: 38105266 PMCID: PMC10725888 DOI: 10.1038/s41598-023-50059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Fruzsina Mogor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Viktoria E Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Krisztina Kovács
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Koppány Csaba Vass
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary.
| |
Collapse
|
22
|
Poenariu IS, Boldeanu L, Ungureanu BS, Caragea DC, Cristea OM, Pădureanu V, Siloși I, Ungureanu AM, Statie RC, Ciobanu AE, Gheonea DI, Osiac E, Boldeanu MV. Interrelation of Hypoxia-Inducible Factor-1 Alpha (HIF-1 α) and the Ratio between the Mean Corpuscular Volume/Lymphocytes (MCVL) and the Cumulative Inflammatory Index (IIC) in Ulcerative Colitis. Biomedicines 2023; 11:3137. [PMID: 38137357 PMCID: PMC10741094 DOI: 10.3390/biomedicines11123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
We intended to investigate the presence and medical application of serum hypoxia-inducible factor-1 alpha (HIF-1α) along with the already known systemic inflammatory markers and the new one's inflammatory indices, the proportion of mean corpuscular volume and lymphocytes (MCVL) and the cumulative inflammatory index (IIC), for patients with ulcerative colitis (UC). We sought to establish correlations that may be present between the serum levels of HIF-1α and these inflammatory indices, as well as their relationship with disease activity and the extent of UC, which can provide us with a more precise understanding of the evolution, prognosis, and future well-being of patients. Serum samples were collected from 46 patients diagnosed with UC and 23 controls. For our assessment of the serum levels of HIF-1α, we used the Enzyme-Linked Immunosorbent Assay (ELISA) technique. Thus, for HIF-1α we detected significantly higher values in more severe and more extensive UC. When it came to MCVL and IIC, we observed statistically significant differences between the three groups being compared (Severe, Moderate, and Mild). Our study highlighted that HIF-1α correlated much better with a disease activity score, MCVL, and IIC. With MCVL and IIC, a strong and very strong correlation had formed between them and well-known inflammation indices. By examining the ROC curves of the analyzed parameters, we recognized that TWI (accuracy of 83.70%) provides the best discrimination of patients with early forms of UC, followed by HIF-1α (73.90% accuracy), MCVL (70.90% accuracy), and PLR (70.40%). In our study, we observed that HIF-1α, MCVL, and PLR had the same sensitivity (73.33%) but HIF-1α had a much better specificity (60.87% vs. 58.70%, and 54.35%). Also, in addition to the PLR, HIF-1α and MCVL can be used as independent predictor factors in the discrimination of patients with early forms of UC.
Collapse
Affiliation(s)
- Ioan Sabin Poenariu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Oana Mariana Cristea
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Vlad Pădureanu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Isabela Siloși
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Anca Marinela Ungureanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Răzvan-Cristian Statie
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Alina Elena Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
- Medico Science SRL—Stem Cell Bank Unit, 200690 Craiova, Romania
| |
Collapse
|
23
|
Xia Y, Zhang L, Ocansey DKW, Tu Q, Mao F, Sheng X. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1242991. [PMID: 37881499 PMCID: PMC10595037 DOI: 10.3389/fendo.2023.1242991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.
Collapse
Affiliation(s)
- Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Serradilla J, Andrés Moreno AM, Talayero P, Burgos P, Machuca M, Camps Ortega O, Vallejo MT, Rubio Bolívar FJ, Bueno A, Sánchez A, Zambrano C, De la Torre Ramos CA, Rodríguez O, Largo C, Serrano P, Prieto Bozano G, Ramos E, López Santamaría M, Stringa P, Hernández F. Preclinical Study of DCD and Normothermic Perfusion for Visceral Transplantation. Transpl Int 2023; 36:11518. [PMID: 37745640 PMCID: PMC10514355 DOI: 10.3389/ti.2023.11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Considering recent clinical and experimental evidence, expectations for using DCD-derived intestines have increased considerably. However, more knowledge about DCD procedure and long-term results after intestinal transplantation (ITx) is needed. We aimed to describe in detail a DCD procedure for ITx using normothermic regional perfusion (NRP) in a preclinical model. Small bowel was obtained from pigs donors after 1 h of NRP and transplanted to the recipients. Graft Intestinal samples were obtained during the procedure and after transplantation. Ischemia-reperfusion injury (Park-Chiu score), graft rejection and transplanted intestines absorptive function were evaluated. Seven of 8 DCD procedures with NRP and ITx were successful (87.5%), with a good graft reperfusion and an excellent recovery of the recipient. The architecture of grafts was well conserved during NRP. After an initial damage of Park-chiu score of 4, all grafts recovered from ischemia-reperfusion, with no or very subtle alterations 2 days after ITx. Most recipients (71.5%) did not show signs of rejection. Only two cases demonstrated histologic signs of mild rejection 7 days after ITx. Interestingly intestinal grafts showed good absorptive capacity. The study's results support the viability of intestinal grafts from DCD using NRP, contributing more evidence for the use of DCD for ITx.
Collapse
Affiliation(s)
- Javier Serradilla
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Ane Miren Andrés Moreno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Paloma Talayero
- Department of Immunology, University Hospital 12 de Octubre, Madrid, Spain
| | - Paula Burgos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Cardiovascular Surgery, La Paz University Hospital, Madrid, Spain
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Onys Camps Ortega
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | - María Teresa Vallejo
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | | | - Alba Bueno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Alba Sánchez
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Cristina Zambrano
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Carlos Andrés De la Torre Ramos
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Olaia Rodríguez
- Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Carlota Largo
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Pilar Serrano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Gerardo Prieto Bozano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Esther Ramos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Manuel López Santamaría
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Pablo Stringa
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Institute for Immunological and Pathophysiological Studies (IIFP), National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| |
Collapse
|
25
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Deal HE, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. Hypoxia Primes Human ISCs for Interleukin-Dependent Rescue of Stem Cell Activity. Cell Mol Gastroenterol Hepatol 2023; 16:823-846. [PMID: 37562653 PMCID: PMC10520368 DOI: 10.1016/j.jcmgh.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND AIMS Hypoxia in the intestinal epithelium can be caused by acute ischemic events or chronic inflammation in which immune cell infiltration produces inflammatory hypoxia starving the mucosa of oxygen. The epithelium has the capacity to regenerate after some ischemic and inflammatory conditions suggesting that intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of hypoxia on human ISC (hISC) function has not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs from healthy donors and test the hypothesis that prolonged hypoxia modulates how hISCs respond to inflammation-associated interleukins (ILs). METHODS hISCs were exposed to <1.0% oxygen in the MPS for 6, 24, 48, and 72 hours. Viability, hypoxia-inducible factor 1a (HIF1a) response, transcriptomics, cell cycle dynamics, and response to cytokines were evaluated in hISCs under hypoxia. HIF stabilizers and inhibitors were screened to evaluate HIF-dependent responses. RESULTS The MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs maintain viability until 72 hours and exhibit peak HIF1a at 24 hours. hISC activity was reduced at 24 hours but recovered at 48 hours. Hypoxia induced increases in the proportion of hISCs in G1 and expression changes in 16 IL receptors. Prolyl hydroxylase inhibition failed to reproduce hypoxia-dependent IL-receptor expression patterns. hISC activity increased when treated IL1β, IL2, IL4, IL6, IL10, IL13, and IL25 and rescued hISC activity caused by 24 hours of hypoxia. CONCLUSIONS Hypoxia pushes hISCs into a dormant but reversible proliferative state and primes hISCs to respond to a subset of ILs that preserves hISC activity. These findings have important implications for understanding intestinal epithelial regeneration mechanisms caused by inflammatory hypoxia.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Michael J Czerwinski
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jintong Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica M Trueblood
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Shlok Joshi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vladimir A Pozdin
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Ming Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Scott T Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
26
|
Cheng MI, Hong L, Chen B, Chin S, Luthers CR, Bustillos C, Sheikh SZ, Su MA. Hypoxia-sensing by the Histone Demethylase UTX ( KDM6A ) Controls Colitogenic CD4 + T cell Fate and Mucosal Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550746. [PMID: 37546969 PMCID: PMC10402149 DOI: 10.1101/2023.07.27.550746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Hypoxia is a feature of inflammatory conditions [e.g., inflammatory bowel disease (IBD)] and can exacerbate tissue damage in these diseases. To counteract hypoxia's deleterious effects, adaptive responses have evolved which protect against hypoxia-associated tissue injury. To date, much attention has focused on hypoxia-activated HIF (hypoxia-inducible factor) transcription factors in these responses. However, recent work has identified epigenetic regulators that are also oxygen-sensitive, but their role in adaptation to hypoxic inflammation is currently unclear. Here, we show that the oxygen-sensing epigenetic regulator UTX is a critical modulator of colitis severity. Unlike HIF transcription factors that act on gut epithelial cells, UTX functions in colitis through its effects on immune cells. Hypoxia results in decreased CD4 + T cell IFN-γ production and increased CD4 + regulatory T cells, and these findings are recapitulated by T cell-specific UTX deficiency. Hypoxia impairs the histone demethylase activity of UTX, and loss of UTX function leads to accumulation of repressive H3K27me3 epigenetic marks at IL12/STAT4 pathway genes ( Il12rb2, Tbx21, and Ifng ). In a colitis mouse model, T cell-specific UTX deletion ameliorates colonic inflammation, protects against weight loss, and increases survival. Together these findings implicate UTX's oxygen-sensitive histone demethylase activity in mediating protective, hypoxia-induced pathways in colitis.
Collapse
|
27
|
He S, Li J, Yao Z, Gao Z, Jiang Y, Chen X, Peng L. Insulin alleviates murine colitis through microbiome alterations and bile acid metabolism. J Transl Med 2023; 21:498. [PMID: 37491256 PMCID: PMC10369930 DOI: 10.1186/s12967-023-04214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Insulin has been reported to exhibit anti-inflammatory activities in the context of bowel inflammation. However, the role of the interaction between insulin and the microbiota in gut health is unclear. Our goal was to investigate the mechanism of action of insulin in bowel inflammation and the relationship between insulin and the gut microbiota. METHODS We used acute and chronic murine models of inflammatory bowel disease (IBD) to evaluate whether insulin influences the progression of colitis. Colonic tissues, the host metabolome and the gut microbiome were analyzed to investigate the relationship among insulin treatment, the microbiome, and disease. Experiments involving antibiotic (Abx) treatment and fecal microbiota transplantation (FMT) confirmed the association among the gut microbiota, insulin and IBD. In a series of experiments, we further defined the mechanisms underlying the anti-inflammatory effects of insulin. RESULTS We found that low-dose insulin treatment alleviated intestinal inflammation but did not cause death. These effects were dependent on the gut microbiota, as confirmed by experiments involving Abx treatment and FMT. Using untargeted metabolomic profiling and 16S rRNA sequencing, we discovered that the level of the secondary bile acid lithocholic acid (LCA) was notably increased and the LCA levels were significantly associated with the abundance of Blautia, Enterorhadus and Rumi-NK4A214_group. Furthermore, LCA exerted anti-inflammatory effects by activating a G-protein-coupled bile acid receptor (TGR5), which inhibited the polarization of classically activated (M1) macrophages. CONCLUSION Together, these data suggest that insulin alters the gut microbiota and affects LCA production, ultimately delaying the progression of IBD.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jiating Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zirong Yao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zixian Gao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Zhu W, Chen Q, Li Y, Wan J, Li J, Tang S. HIF-1α-Overexpressing Mesenchymal Stem Cells Attenuate Colitis by Regulating M1-like Macrophages Polarization toward M2-like Macrophages. Biomedicines 2023; 11:biomedicines11030825. [PMID: 36979804 PMCID: PMC10045413 DOI: 10.3390/biomedicines11030825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A modified mesenchymal stem cell (MSC) transplantation is a highly effective and precise treatment for inflammatory bowel disease (IBD), with a significant curative effect. Thus, we aim to examine the efficacy of hypoxia-inducible factor (HIF)–1α-overexpressing MSC (HIF-MSC) transplantation in experimental colitis and investigate the immunity regulation mechanisms of HIF-MSC through macrophages. A chronic experimental colitis mouse model was established using 2,4,6-trinitrobenzene sulfonic acid. HIF-MSC transplantation significantly attenuated colitis in weight loss rate, disease activity index (DAI), colon length, and pathology score and effectively rebuilt the local and systemic immune balance. Macrophage depletion significantly impaired the benefits of HIF-MSCs on mice with colitis. Immunofluorescence analysis revealed that HIF-MSCs significantly decreased the number of M1-like macrophages and increased the number of M2-like macrophages in colon tissues. In vitro, co-culturing with HIF-MSCs significantly decreased the expression of pro-inflammatory factors, C-C chemokine receptor 7 (CCR-7), and inducible nitric oxide synthase (INOS) and increased the expression of anti-inflammatory factors and arginase I (Arg-1) in induced M1-like macrophages. Flow cytometry revealed that co-culturing with HIF-MSCs led to a decrease in the proportions of M1-like macrophages and an increase in that of M2-like macrophages. HIF-MSCs treatment notably upregulated the expression of downstream molecular targets of phosphatidylinositol 3-kinase-γ (PI3K-γ), including HIF-1α and p-AKT/AKT in the colon tissue. A selected PI3K-γ inhibitor, IPI549, attenuated these effects, as well as the effect on M2-like macrophage polarization and inflammatory cytokines in colitis mice. In vitro, HIF-MSCs notably upregulated the expression of C/EBPβ and AKT1/AKT2, and PI3K-γ inhibition blocked this effect. Modified MSCs stably overexpressed HIF-1α, which effectively regulated macrophage polarization through PI3K-γ. HIF-MSC transplantation may be a potentially effective precision therapy for IBD.
Collapse
Affiliation(s)
- Wenya Zhu
- Medical School of Chinese PLA, Beijing 100039, China
- Department of Geriatrics, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100039, China
| | - Qianqian Chen
- Department of Gastroenterology, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
- Correspondence: (Q.C.); (J.W.)
| | - Yi Li
- Department of Gastroenterology, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100039, China
- Correspondence: (Q.C.); (J.W.)
| | - Jia Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100039, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
29
|
Roxadustat protect mice from DSS-induced colitis in vivo by up-regulation of TLR4. Genomics 2023; 115:110585. [PMID: 36801437 DOI: 10.1016/j.ygeno.2023.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored. METHODS Wild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups. RESULTS Roxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat. CONCLUSION Roxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.
Collapse
|
30
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cell Plasticity in Mucosal Infections. Microorganisms 2023; 11:461. [PMID: 36838426 PMCID: PMC9967737 DOI: 10.3390/microorganisms11020461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Mucosal tissue homeostasis is a dynamic process that involves multiple mechanisms including regulation of innate lymphoid cells (ILCs). ILCs are mostly tissue-resident cells which are critical for tissue homeostasis and immune response against pathogens. ILCs can sense environmental changes and rapidly respond by producing effector cytokines to limit pathogen spread and initiate tissue recovery. However, dysregulation of ILCs can also lead to immunopathology. Accumulating evidence suggests that ILCs are dynamic population that can change their phenotype and functions under rapidly changing tissue microenvironment. However, the significance of ILC plasticity in response to pathogens remains poorly understood. Therefore, in this review, we discuss recent advances in understanding the mechanisms regulating ILC plasticity in response to intestinal, respiratory and genital tract pathogens. Key transcription factors and lineage-guiding cytokines regulate this plasticity. Additionally, we discuss the emerging data on the role of tissue microenvironment, gut microbiota, and hypoxia in ILC plasticity in response to mucosal pathogens. The identification of new pathways and molecular mechanisms that control functions and plasticity of ILCs could uncover more specific and effective therapeutic targets for infectious and autoimmune diseases where ILCs become dysregulated.
Collapse
Affiliation(s)
| | | | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
31
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. A new microphysiological system shows hypoxia primes human ISCs for interleukin-dependent rescue of stem cell activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.524747. [PMID: 36778265 PMCID: PMC9915581 DOI: 10.1101/2023.01.31.524747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background & Aims Hypoxia in the intestinal epithelium can be caused by acute ischemic events or conditions like Inflammatory Bowel Disease (IBD) where immune cell infiltration produces 'inflammatory hypoxia', a chronic condition that starves the mucosa of oxygen. Epithelial regeneration after ischemia and IBD suggests intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of acute and chronic hypoxia on human ISC (hISC) properties have not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs isolated from healthy human tissues. We then test the hypothesis that some inflammation-associated interleukins protect hISCs during prolonged hypoxia. Methods hISCs were exposed to <1.0% oxygen in the MPS for 6-, 24-, 48- & 72hrs. Viability, HIF1α response, transcriptomics, cell cycle dynamics, and hISC response to cytokines were evaluated. Results The novel MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs remain viable until 72hrs and exhibit peak HIF1α at 24hrs. hISCs lose stem cell activity at 24hrs that recovers at 48hrs of hypoxia. Hypoxia increases the proportion of hISCs in G1 and regulates hISC capacity to respond to multiple inflammatory signals. Hypoxia induces hISCs to upregulate many interleukin receptors and hISCs demonstrate hypoxia-dependent cell cycle regulation and increased organoid forming efficiency when treated with specific interleukins. Conclusions Hypoxia primes hISCs to respond differently to interleukins than hISCs in normoxia through a transcriptional response. hISCs slow cell cycle progression and increase hISC activity when treated with hypoxia and specific interleukins. These findings have important implications for epithelial regeneration in the gut during inflammatory events.
Collapse
Affiliation(s)
- Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - R. Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Michael J. Czerwinski
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jintong Liu
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jessica M. Trueblood
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Caroline M. Hinesley
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Keith A Breau
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Shlok Joshi
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Vladimir A. Pozdin
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Ming Yao
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (USA)
| | - Amanda L. Ziegler
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| |
Collapse
|
32
|
Kakni P, Jutten B, Teixeira Oliveira Carvalho D, Penders J, Truckenmüller R, Habibovic P, Giselbrecht S. Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions. J Tissue Eng 2023; 14:20417314221149208. [PMID: 36699634 PMCID: PMC9869231 DOI: 10.1177/20417314221149208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Microbiome is an integral part of the gut and is essential for its proper function. Imbalances of the microbiota can be devastating and have been linked with several gastrointestinal conditions. Current gastrointestinal models do not fully reflect the in vivo situation. Thus, it is important to establish more advanced in vitro models to study host-microbiome/pathogen interactions. Here, we developed for the first time an apical-out human small intestinal organoid model in hypoxia, where the apical surface is directly accessible and exposed to a hypoxic environment. These organoids mimic the intestinal cell composition, structure and functions and provide easy access to the apical surface. Co-cultures with the anaerobic strains Lactobacillus casei and Bifidobacterium longum showed successful colonization and probiotic benefits on the organoids. These novel hypoxia-tolerant apical-out small intestinal organoids will pave the way for unraveling unknown mechanisms related to host-microbiome interactions and serve as a tool to develop microbiome-related probiotics and therapeutics.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Barry Jutten
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Daniel Teixeira Oliveira Carvalho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Nutrition and Translational Research in Metabolism, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands,Stefan Giselbrecht, Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands.
| |
Collapse
|
33
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
34
|
Guo M, Liu W, Luo H, Shao Q, Li Y, Gu Y, Guan Y, Ma W, Chen M, Yang H, Ji X, Liu J. Hypoxic stress accelerates the propagation of pathological alpha-synuclein and degeneration of dopaminergic neurons. CNS Neurosci Ther 2022; 29:544-558. [PMID: 36514210 PMCID: PMC9873519 DOI: 10.1111/cns.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS The etiology of Parkinson's disease (PD) is complex and the mechanism is unclear. It has become a top priority to find common factors that induce and affect PD pathology. We explored the key role of hypoxia in promoting the pathological propagation of α-synuclein (α-syn) and the progression of PD. METHODS We performed PD modeling by conducting intracranial stereotaxic surgery in the unilateral striatum of mice. We then measured protein aggregation in vitro. The rotarod and pole tests were employed next to measure the damage of the phenotype. Pathological deposition and autophagy were also observed by immunofluorescence staining and protein levels measured by western blotting. RESULTS We demonstrated that short-term hypoxia activated phosphorylated (p)-α-syn in mice. We confirmed that p-α-syn was more readily formed aggregates than α-syn in vitro. Furthermore, we found that hypoxia promoted the activation and propagation of endogenous α-syn, contributing to the earlier degeneration of dopaminergic neurons in the substantia nigra and the deposition of p-α-syn in our animal model. Finally, autophagy inhibition contributed to the above pathologies. CONCLUSION Hypoxia was shown to accelerate the pathological progression and damage phenotype in PD model mice. The results provided a promising research target for determining common interventions for PD in the future.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Weijin Liu
- Department of Neurobiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina,School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
| | - Hanjiang Luo
- Neuroscience LaboratoryAffiliated Hospital of Guilin Medical UniversityGuangxiChina
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Yuning Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Min Chen
- Neuroscience LaboratoryAffiliated Hospital of Guilin Medical UniversityGuangxiChina
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
35
|
Kennel KB, Burmeister J, Radhakrishnan P, Giese NA, Giese T, Salfenmoser M, Gebhardt JM, Strowitzki MJ, Taylor CT, Wielockx B, Schneider M, Harnoss JM. The HIF-prolyl hydroxylases have distinct and nonredundant roles in colitis-associated cancer. JCI Insight 2022; 7:153337. [PMID: 36509284 DOI: 10.1172/jci.insight.153337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD). HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) control cellular adaptation to hypoxia and are considered promising therapeutic targets in IBD. However, their relevance in the pathogenesis of CAC remains elusive. We induced CAC in Phd1-/-, Phd2+/-, Phd3-/-, and WT mice with azoxymethane (AOM) and dextran sodium sulfate (DSS). Phd1-/- mice were protected against chronic colitis and displayed diminished CAC growth compared with WT mice. In Phd3-/- mice, colitis activity and CAC growth remained unaltered. In Phd2+/- mice, colitis activity was unaffected, but CAC growth was aggravated. Mechanistically, Phd2 deficiency (i) increased the number of tumor-associated macrophages in AOM/DSS-induced tumors, (ii) promoted the expression of EGFR ligand epiregulin in macrophages, and (iii) augmented the signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 signaling, which at least in part contributed to aggravated tumor cell proliferation in colitis-associated tumors. Consistently, Phd2 deficiency in hematopoietic (Vav:Cre-Phd2fl/fl) but not in intestinal epithelial cells (Villin:Cre-Phd2fl/fl) increased CAC growth. In conclusion, the 3 different PHD isoenzymes have distinct and nonredundant effects, promoting (PHD1), diminishing (PHD2), or neutral (PHD3), on CAC growth.
Collapse
Affiliation(s)
- Kilian B Kennel
- Department of General, Visceral and Transplantation Surgery and
| | | | | | | | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | - Cormac T Taylor
- School of Medicine, Systems Biology Ireland, and the Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
36
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
37
|
Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy. Pharmacol Ther 2022; 238:108176. [DOI: 10.1016/j.pharmthera.2022.108176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
|
38
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
39
|
Marcos Pasero H, García Tejedor A, Giménez-Bastida JA, Laparra Llopis JM. Modifiable Innate Biology within the Gut–Brain Axis for Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10092098. [PMID: 36140198 PMCID: PMC9495985 DOI: 10.3390/biomedicines10092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a prototypical inflammation-associated loss of cognitive function, with approximately 90% of the AD burden associated with invading myeloid cells controlling the function of the resident microglia. This indicates that the immune microenvironment has a pivotal role in the pathogenesis of the disease. Multiple peripheral stimuli, conditioned by complex and varied interactions between signals that stem at the intestinal level and neuroimmune processes, are involved in the progression and severity of AD. Conceivably, the targeting of critical innate immune signals and cells is achievable, influencing immune and metabolic health within the gut–brain axis. Considerable progress has been made, modulating many different metabolic and immune alterations that can drive AD development. However, non-pharmacological strategies targeting immunometabolic processes affecting neuroinflammation in AD treatment remain general and, at this point, are applied to all patients regardless of disease features. Despite these possibilities, improved knowledge of the relative contribution of the different innate immune cells and molecules comprising the chronically inflamed brain network to AD pathogenesis, and elucidation of the network hierarchy, are needed for planning potent preventive and/or therapeutic interventions. Moreover, an integrative perspective addressing transdisciplinary fields can significantly contribute to molecular pathological epidemiology, improving the health and quality of life of AD patients. This review is intended to gather modifiable immunometabolic processes based on their importance in the prevention and management of AD.
Collapse
Affiliation(s)
- Helena Marcos Pasero
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco 8, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-(0)-9-1787-8100
| |
Collapse
|
40
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
41
|
Prolyl Hydroxylase Inhibition Mitigates Allograft Injury During Liver Transplantation. Transplantation 2022; 106:e430-e440. [PMID: 35849574 DOI: 10.1097/tp.0000000000004258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia and reperfusion injury (IRI) determines primary allograft function after liver transplantation (LT). Primary graft dysfunction (PGD) is associated with increased morbidity and impaired graft survival and can eventually progress to graft failure requiring retransplantation. Hypoxia-inducible transcription factor-prolyl hydroxylase containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors, which control the adaptive hypoxia response through the hypoxia-inducible factor (HIF). In this study, we have investigated pharmacological activation of the HIF pathway through inhibition of PHDs as a strategy to reduce PGD after LT. METHODS Primary rat hepatocytes were isolated and the impact of the pan-PHD small-molecule inhibitor ethyl-3,4-dihydroxybenzoate (EDHB) on HIF-1 and its downstream target gene expression assessed. Subsequently, various rodent models of segmental warm liver ischemia and reperfusion and orthotopic LT were applied to study the impact of EDHB on normothermic or combined cold and warm liver IRI. Liver enzyme levels and histology were analyzed to quantify hepatic IRI. RESULTS In vitro, EDHB induced HIF-1 signaling and significantly upregulated its downstream target heme-oxygenase 1 in primary rat hepatocytes. In vivo, after establishment of the optimal EDHB pretreatment conditions in a murine IRI model, EDHB pretreatment significantly mitigated hepatic IRI after warm segmental liver ischemia and reperfusion and allograft injury after orthotopic LT in rats. Mechanistically, EDHB stabilized HIF-1 in the liver and subsequently increased hepatoprotective heme-oxygenase 1 levels, which correlated with reduced hepatic IRI in these models. CONCLUSIONS This proof-of-concept study establishes a strong therapeutic rationale for targeting PHDs with small-molecule inhibitors to mitigate PGD after LT.
Collapse
|
42
|
Wang F, Li Q, Xu T, Li Z, Jiang Y, Ma Y, Li X, Wang W, Qian H. An orally administered gold nanocluster with ROS scavenging for inflammatory bowel disease treatment. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Wang Z, Yang H, Lv H, Huang C, Qian J. Vitamin D Receptor-Dependent Protective Effect of Moderate Hypoxia in a Mouse Colitis Model. Front Physiol 2022; 13:876890. [PMID: 35711312 PMCID: PMC9195869 DOI: 10.3389/fphys.2022.876890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Although hypoxia is important for maintaining the intestinal barrier, its effect on the barrier during acute colitis and the underlying mechanisms are not fully understood. To explore the influence of hypoxia in dextran sulfate sodium (DSS)-induced colitis mice and the role of hypoxia-inducible factor (HIF) and vitamin D receptor (VDR) in the process. Colitis mice were subjected to hypoxia to detect intestinal barrier function changes. And the mechanisms were explored in vitro. First, compared with colitis mice without hypoxia stimulation, those with hypoxia stimulation showed significantly decreased pathological damage and improved permeability of the intestinal barrier. The expression of tight junction proteins (occludin, ZO-1), HIF-1α as well as VDR was up-regulated in colitis mice with hypoxia stimulation. However, in VDR gene knockout (KO)colitis mice, hypoxia treatment showed no protective effect, suggesting the VDR dependency of this effect. Similarly although hypoxia stimulation could enhance the single-layer epithelial transmembrane electrical resistance in DLD-1 and NCM460 cells, these effects disappeared in VDR-knockdown cells. Furthermore, over-expression of HIF-1α in DLD-1 and NCM460 increased the expression of VDR, whereas HIF-1α-knockdown reduced the VDR expression directly. Chromatin immunoprecipitation and luciferase assays confirmed that HIF-1α can bind to the promoter region of the VDR gene under hypoxia. Finally, compared with their wild-type siblings, VDR-KO mice showed reduced abundance of anaerobic bacteria and SCFA-producing bacteria. Hypoxia was protective against DSS-induced colitis, and VDR is instrumental in it. Furthermore, HIF-1α-VDR mediates the effect of hypoxia on the barrier function. Moreover, intestinal flora may be an important link between hypoxia and VDR.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Hong Lv
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, CAMS and PUMC, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| |
Collapse
|
44
|
Enhanced oxidative phosphorylation of IgG plasma cells can contribute to hypoxia in the mucosa of active ulcerative colitis. Histochem Cell Biol 2022; 158:335-344. [PMID: 35716204 DOI: 10.1007/s00418-022-02122-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/04/2022]
Abstract
Mucosal hypoxia is detected in the mucosa of ulcerative colitis (UC), however the mechanism and the cause of hypoxia is not fully understood, while a dense infiltration of plasma cells is observed in the inflamed mucosa of UC. When differentiating from a B cell to a plasma cell, the energy metabolism dramatically shifts from glycolysis to oxidative phosphorylation, which results in a large amount of oxygen consumption of the plasma cell. We hypothesized that the plasma cell infiltration into the inflamed mucosa contributes to the mucosal hypoxia in UC in part. We examined the association between mucosal hypoxia and plasma cell infiltration in UC. More IgG plasma cells (but not IgA plasma cells) were distributed, and the nuclear and cell sizes were enlarged in hypoxic mucosa compared to normoxic mucosa in UC. Oxidative phosphorylation signature genes of these IgG plasma cells were markedly upregulated compared to those of other lymphoid cells infiltrating the lamina propria of inflamed mucosa of UC. Enlarged IgG plasma cells, which increase in number in the inflamed mucosa of UC, can be related to the hypoxic state of the inflamed mucosa of UC.
Collapse
|
45
|
Liu D, Zhong Z, Karin M. NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines 2022; 10:1250. [PMID: 35740272 PMCID: PMC9219609 DOI: 10.3390/biomedicines10061250] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, when properly mounted and precisely calibrated, is a beneficial process that enables the rapid removal of invading pathogens and/or cellular corpses and promotes tissue repair/regeneration to restore homeostasis after injury. Being a paradigm of a rapid response transcription factor, the nuclear factor-kappa B (NF-κB) transcription factor family plays a central role in amplifying inflammation by inducing the expression of inflammatory cytokines and chemokines. Additionally, NF-κB also induces the expression of pro-survival and -proliferative genes responsible for promoting tissue repair and regeneration. Paradoxically, recent studies have suggested that the NF-κB pathway can also exert inhibitory effects on pro-inflammatory cytokine production to temper inflammation. Here, we review our current understanding about the pro- and anti-inflammatory roles of NF-κB and discuss the implication of its dichotomous inflammation-modulating activity in the context of inflammasome activation and tumorigenesis.
Collapse
Affiliation(s)
- Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Adenosine Receptor Signaling in Diseases with Focus on Cancer. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
47
|
Chen X, Jiang L, Han W, Bai X, Ruan G, Guo M, Zhou R, Liang H, Yang H, Qian J. Artificial Neural Network Analysis-Based Immune-Related Signatures of Primary Non-Response to Infliximab in Patients With Ulcerative Colitis. Front Immunol 2022; 12:742080. [PMID: 34992592 PMCID: PMC8724249 DOI: 10.3389/fimmu.2021.742080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Infliximab (IFX) is an effective medication for ulcerative colitis (UC) patients. However, one-third of UC patients show primary non-response (PNR) to IFX. Our study analyzed three Gene Expression Omnibus (GEO) datasets and used the RobustRankAggreg (RRA) algorithm to assist in identifying differentially expressed genes (DEGs) between IFX responders and non-responders. Then, an artificial intelligence (AI) technology, artificial neural network (ANN) analysis, was applied to validate the predictive value of the selected genes. The results showed that the combination of CDX2, CHP2, HSD11B2, RANK, NOX4, and VDR is a good predictor of patients' response to IFX therapy. The range of repeated overall area under the receiver-operating characteristic curve (AUC) was 0.850 ± 0.103. Moreover, we used an independent GEO dataset to further verify the value of the six DEGs in predicting PNR to IFX, which has a range of overall AUC of 0.759 ± 0.065. Since protein detection did not require fresh tissue and can avoid multiple biopsies, our study tried to discover whether the key information, analyzed by RNA levels, is suitable for protein detection. Therefore, immunohistochemistry (IHC) staining of colonic biopsy tissues from UC patients treated with IFX and a receiver-operating characteristic (ROC) analysis were used to further explore the clinical application value of the six DEGs at the protein level. The IHC staining of colon tissues from UC patients confirmed that VDR and RANK are significantly associated with IFX efficacy. Total IHC scores lower than 5 for VDR and lower than 7 for RANK had an AUC of 0.828 (95% CI: 0.665-0.991, p = 0.013) in predicting PNR to IFX. Collectively, we identified a predictive RNA model for PNR to IFX and explored an immune-related protein model based on the RNA model, including VDR and RANK, as a predictor of IFX non-response, and determined the cutoff value. The result showed a connection between the RNA and protein model, and both two models were available. However, the composite signature of VDR and RANK is more conducive to clinical application, which could be used to guide the preselection of patients who might benefit from pharmacological treatment in the future.
Collapse
Affiliation(s)
- Xuanfu Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingjuan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gechong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingyue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runing Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haozheng Liang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Rees WD, Telkar N, Lin DTS, Wong MQ, Poloni C, Fathi A, Kobor M, Zachos NC, Steiner TS. An in vitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Rep 2022; 38:110283. [PMID: 35045294 DOI: 10.1016/j.celrep.2021.110283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.
Collapse
Affiliation(s)
- William D Rees
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; Division of Hematology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nikita Telkar
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - May Q Wong
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Chad Poloni
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Ayda Fathi
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Michael Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodore S Steiner
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
49
|
Li M, Zhang Y, Ren X, Niu W, Yuan Q, Cao K, Zhang J, Gao X, Su D. Activatable fluorogenic probe for accurate imaging of ulcerative colitis hypoxia in vivo. Chem Commun (Camb) 2021; 58:819-822. [PMID: 34928281 DOI: 10.1039/d1cc06577g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple but efficient fluorogenic probe is reported for accurate imaging of ulcerative colitis via hypoxia detection. The hypoxia produced by ulcerative colitis can lead to the upregulation of nitroreductase (NTR). NB-NO2 provides a unique response to NTR, enabling accurate imaging of Dextran sulphate sodium (DSS)-induced ulcerative colitis in vivo.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Yong Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Wenchao Niu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Kai Cao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Dongdong Su
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| |
Collapse
|
50
|
Shevchenko NS, Krutenko NV, Zimnytska TV, Voloshyn KV. The role of hypoxia-inducible factors in the development of chronic pathology. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review highlights the current understanding of hypoxia-inducible factors (HIFs) role as regulators of oxygen-dependent reactions and inducers of genes expression in human organism. The focus is on the most significant relationships between the activation or inhibition of the HIFs intracellular system and development of the inflammatory process in various organs, chronic diseases of gastrointestinal tract, osteoarticular system, kidneys as well as hematological, endocrine and metabolic disorders.
Collapse
|