1
|
He YJ, Lu G, Xu BJ, Mao QZ, Qi YH, Jiao GY, Weng HT, Tian YZ, Huang HJ, Zhang CX, Chen JP, Li JM. Maintenance of persistent transmission of a plant arbovirus in its insect vector mediated by the Toll-Dorsal immune pathway. Proc Natl Acad Sci U S A 2024; 121:e2315982121. [PMID: 38536757 PMCID: PMC10998634 DOI: 10.1073/pnas.2315982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.
Collapse
Affiliation(s)
- Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Bo-Jie Xu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gao-Yang Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Tao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yan-Zhen Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
2
|
Du X, Yu L, Wang L, Yan X, Xu B, Chai F, Li D, Zi J, Zhang J, Jiang Y. Reduced Proliferative Capacity and Defense against Staphylococcus aureus in Human Nasal Mucosal Epithelium Lacking ZNF365. Int Arch Allergy Immunol 2024; 185:466-479. [PMID: 38354721 DOI: 10.1159/000536106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nose characterized by barrier disruption and environmental susceptibility, and the deletion of ZNF365 may be a factor inducing these manifestations. However, there is no study on the mechanism of action between CRSwNP and ZNF365. Therefore, this study focuses on the effect of the zinc finger protein ZNF365 on the proliferation of nasal mucosal epithelial cells and their defense against Staphylococcus aureus (S. aureus). METHODS Immunohistochemistry and Western blot were applied to verify the changes of ZNF365 expression in nasal polyp tissues and control tissues, as well as in primary epithelial cells. ZNF365 was knocked down in human nasal mucosa epithelial cell line (HNEpc), and the proliferation, migration, and transdifferentiation of epithelium were observed by immunofluorescence, QPCR, CCK8, and cell scratch assay. The changes of mesenchymal markers and TLR4-MAPK-NF-κB pathway were also observed after the addition of S. aureus. RESULTS ZNF365 expression was reduced in NP tissues and primary nasal mucosal epithelial cells compared to controls. Knockdown of ZNF365 in HNEpc resulted in decreased proliferation and migration ability of epithelial cells and abnormal epithelial differentiation (decreased expression of tight junction proteins). S. aureus stimulation further inhibited epithelial cell proliferation and migration, while elevated markers of epithelial-mesenchymal transition and inflammatory responses occurred. CONCLUSION ZNF365 is instrumental in maintaining the proliferative capacity of nasal mucosal epithelial cells and defending against the invasion of S. aureus. The findings suggest that ZNF365 may participate in the development of CRSwNP.
Collapse
Affiliation(s)
- Xiaoyun Du
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China,
| | - Longgang Yu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Yan
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingqing Xu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangyu Chai
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Danyang Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiajia Zi
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
4
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Rahman M, Shao Z, Silva JM, Zha S, Sidi S. A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Sci Signal 2023; 16:eadh3449. [PMID: 38113335 PMCID: PMC11111193 DOI: 10.1126/scisignal.adh3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B. Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samanta Sarti
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alicia L. Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian J. Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrej Gorbatenko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francesca Nemati
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Stanley
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahbuba Rahman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose M. Silva
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Zhang N, Feng S, Duan S, Yin Y, Ullah H, Li H, Davaasambuu U, Wei S, Nong X, Zhang Z, Tu X, Wang G. LmFKBP24 interacts with LmEaster to inhibit the antifungal immunity of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105515. [PMID: 37666582 DOI: 10.1016/j.pestbp.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiting Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Undarmaa Davaasambuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China.
| |
Collapse
|
6
|
Smith BR, Patch KB, Gupta A, Knoles EM, Unckless RL. The genetic basis of variation in immune defense against Lysinibacillus fusiformis infection in Drosophila melanogaster. PLoS Pathog 2023; 19:e1010934. [PMID: 37549163 PMCID: PMC10434897 DOI: 10.1371/journal.ppat.1010934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/17/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023] Open
Abstract
The genetic causes of phenotypic variation often differ depending on the population examined, particularly if the populations were founded by relatively small numbers of genotypes. Similarly, the genetic causes of phenotypic variation among similar traits (resistance to different xenobiotic compounds or pathogens) may also be completely different or only partially overlapping. Differences in genetic causes for variation in the same trait among populations suggests context dependence for how selection acts on those traits. Similarities in the genetic causes of variation for different traits, on the other hand, suggests pleiotropy which would also influence how natural selection shapes variation in a trait. We characterized immune defense against a natural Drosophila pathogen, the Gram-positive bacterium Lysinibacillus fusiformis, in three different populations and found almost no overlap in the genetic architecture of variation in survival post infection. However, when comparing our results to a similar experiment with the fungal pathogen, B. bassiana, we found a convincing shared QTL peak for both pathogens. This peak contains the Bomanin cluster of Drosophila immune effectors. Loss of function mutants and RNAi knockdown experiments confirms a role of some of these genes in immune defense against both pathogens. This suggests that natural selection may act on the entire cluster of Bomanin genes (and the linked region under the QTL) or specific peptides for specific pathogens.
Collapse
Affiliation(s)
- Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kistie B. Patch
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Anjali Gupta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Emma M. Knoles
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
7
|
Ali Mohammadie Kojour M, Jang HA, Lee YS, Jo YH, Han YS. Innate Immune Response of TmToll-3 Following Systemic Microbial Infection in Tenebrio molitor. Int J Mol Sci 2023; 24:ijms24076751. [PMID: 37047723 PMCID: PMC10095136 DOI: 10.3390/ijms24076751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Although Toll-like receptors have been widely identified and functionally characterized in mammalian models and Drosophila, the immunological function of these receptors in other insects remains unclear. Here, we explored the relevant innate immune response of Tenebrio molitor (T. molitor) Toll-3 against Gram-negative bacteria, Gram-positive bacteria, and fungal infections. Our findings indicated that TmToll-3 expression was mainly induced by Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of young T. molitor larvae. Surprisingly, Escherichia coli systemic infection caused mortality after TmToll-3 knockdown via RNA interference (RNAi) injection, which was not observed in the control group. Further analyses indicated that in the absence of TmToll-3, the final effector of the Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated after E. coli challenge. Our results indicated that the expression of almost all AMP genes was suppressed in silenced individuals, whereas the expression of relevant genes was positively regulated after fungal injection. Therefore, this study revealed the immunological involvement of TmToll-3 in T. molitor in response to systematic infections.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu I, Stanley Z, Shao Z, Silva JM, Zha S, Sidi S. A Non-Canonical IRAK Signaling Pathway Triggered by DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527716. [PMID: 36798275 PMCID: PMC9934671 DOI: 10.1101/2023.02.08.527716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.
Collapse
|
9
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Bali GK, Singh SK, Chauhan VK, Joshi N, Bhat FA, Malla WA, Ramanujam B, Varshney R, Kour M, Pandit RS. An insight in proteome profiling of Tuta absoluta larvae after entomopathogenic fungal infection. Sci Data 2022; 9:507. [PMID: 35986033 PMCID: PMC9391459 DOI: 10.1038/s41597-022-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Tuta absoluta (L.) (Lepidoptera: Gelechiidae), a major pest of solanaceous plant species, causes serious losses in the agriculture sector around the globe. For better pest management, entomopathogenic fungi such as Beauveria bassiana and Purpureocillium lilacinum, play an efficient role in suppressing the pest population. The present study was carried out to analyse the effects post fungal infections through proteome profiling using an Orbitrap Fusion Tribrid mass spectrometer. A total of 2,201 proteins were identified from the fourth instar larvae of T. absoluta, of which 442 and 423 proteins were significantly dysregulated upon infection with P. lilacinum and B. bassiana respectively. The potential proteins related to immune systems as well as detoxification processes showed significant alterations after post fungal infection. Studies on T. absoluta proteomics and genomics as well as the consequences of entomopathogenic fungal infection on the immune response of this insect could provide an initial framework for exploring more fungus-host interactions for the development of better strategies for integrated pest management.
Collapse
Affiliation(s)
- Gurmeet Kour Bali
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Sanjay Kumar Singh
- National Fungal Culture Collection of India, Biodiversity and Paleobiology Group, MACs Agharkar Research Institute, Pune, 411004, India
| | - Vinod Kumar Chauhan
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Neha Joshi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education, MAHE, Manipal, 576104, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Boman Ramanujam
- ICAR- National Bureau of Agricultural Insect Resources, Bengaluru-560024, Karnataka, India
| | - Richa Varshney
- ICAR- National Bureau of Agricultural Insect Resources, Bengaluru-560024, Karnataka, India
| | - Manpreet Kour
- Division of Veterinary Medicine, Faculty of Veterinary science and Animal Husbandry, S.K. University of Agricultural Sciences and Technology, R.S Pura, Jammu, 181102, India
| | | |
Collapse
|
11
|
Huang G, Dierick HA. The need for unbiased genetic screens to dissect aggression in Drosophila melanogaster. Front Behav Neurosci 2022; 16:901453. [PMID: 35979224 PMCID: PMC9377312 DOI: 10.3389/fnbeh.2022.901453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aggression is an evolutionarily conserved behavior present in most animals and is necessary for survival when competing for limited resources and mating partners. Studies have shown that aggression is modulated both genetically and epigenetically, but details of how the molecular and cellular mechanisms interact to determine aggressive behavior remain to be elucidated. In recent decades, Drosophila melanogaster has emerged as a powerful model system to understand the mechanisms that regulate aggression. Surprisingly most of the findings discovered to date have not come from genetic screens despite the fly's long and successful history of using screens to unravel its biology. Here, we highlight the tools and techniques used to successfully screen for aggression-linked behavioral elements in Drosophila and discuss the potential impact future screens have in advancing our knowledge of the underlying genetic and neural circuits governing aggression.
Collapse
Affiliation(s)
- Gary Huang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Herman A Dierick
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Chen D, Wang H. Redclaw crayfish (Cherax quadricarinatus) responds to Vibrio parahaemolyticus infection by activating toll and immune deficiency signaling pathways and transcription of associated immune response genes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:611-622. [PMID: 35809883 DOI: 10.1016/j.fsi.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In invertebrates, several genes controlled by the Toll and immunodeficiency (IMD) signaling cascade are altered during microbial infection. However, little is known about the expression patterns of innate immune response genes in red-clawed crayfish (Cherax quadricarinatus). In the present study, the transcription of five genes was assessed in C. quadricarinatus challenged with Vibrio parahaemolyticus (V. parahaemolyticus). The expression of Relish, Toll-like receptor (TLR), tumor necrosis factor receptor-related factor 6 (TRAF6), Akirin, and IMD in different tissues and at different time points after infection were assessed. In addition, the Relish gene was amplified, the protein conformation of the Relish gene was predicted, and gene expression changes associated with antimicrobial peptide production in C. quadricarinatus were analyzed using RNA interference (RNAi). During V. parahaemolyticus infection, the transcripts of the above five genes were significantly increased in the hepatopancreas of C. quadricarinatus (P < 0.05). In contrast, TLR was significantly downregulated in muscle tissue at the initial stage of infection (P < 0.05); TRAF6 and IMD were significantly down-regulated throughout infection (P < 0.05); Akirin transcripts had the lowest abundance at 24 h post-infection; Relish, IMD and Akirin genes were significantly up-regulated in gill tissue at the early stage of infection (P < 0.05); only TRAF6 was significantly up-regulated at 6, 24 and 48 h after infection. The Relish gene of C. quadricarinatus is closely related to the Exopalaemon carinicauda. When the Relish gene was knocked down by RNAi, the V. parahaemolyticus challenge showed that the mortality rate of the RANi group was significantly higher than that of the NC group; pathological sections showed that the hepatopancreatic tissue damage was the most severe 12 h after the interference; and the interference significantly inhibited IRF4, NF-κB, ALF, laccase, SOD1, and lectin genes. Therefore, it can be hypothesized that the Toll and IMD pathways are activated in C. quadricarinatus in response to bacterial infection and that genes associated with these pathways are differentially transcribed in different tissues. This study provides insights into the Toll and IMD signaling pathways and the spatiotemporal expression of key genes regulating bacterial infection resistance in C. quadricarinatus.
Collapse
Affiliation(s)
- Duanduan Chen
- College of Agronomy Liaocheng University, Liaochen, 252000, China; Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
13
|
Shields A, Amcheslavsky A, Brown E, Lee TV, Nie Y, Tanji T, Ip YT, Bergmann A. Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Rep 2022; 39:110817. [PMID: 35584678 PMCID: PMC9211775 DOI: 10.1016/j.celrep.2022.110817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila Toll-1 and all mammalian Toll-like receptors regulate innate immunity. However, the functions of the remaining eight Toll-related proteins in Drosophila are not fully understood. Here, we show that Drosophila Toll-9 is necessary and sufficient for a special form of compensatory proliferation after apoptotic cell loss (undead apoptosis-induced proliferation [AiP]). Mechanistically, for AiP, Toll-9 interacts with Toll-1 to activate the intracellular Toll-1 pathway for nuclear translocation of the NF-κB-like transcription factor Dorsal, which induces expression of the pro-apoptotic genes reaper and hid. This activity contributes to the feedback amplification loop that operates in undead cells. Given that Toll-9 also functions in loser cells during cell competition, we define a general role of Toll-9 in cellular stress situations leading to the expression of pro-apoptotic genes that trigger apoptosis and apoptosis-induced processes such as AiP. This work identifies conceptual similarities between cell competition and AiP.
Collapse
Affiliation(s)
- Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elizabeth Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Carboni AL, Hanson MA, Lindsay SA, Wasserman SA, Lemaitre B. Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Genetics 2022; 220:iyab188. [PMID: 34791204 PMCID: PMC8733632 DOI: 10.1093/genetics/iyab188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.
Collapse
Affiliation(s)
- Alexia L Carboni
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mark A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Scott A Lindsay
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Steven A Wasserman
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Eteshola EO, Landa K, Rempel RE, Naqvi IA, Hwang ES, Nair SK, Sullenger BA. Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1-10. [PMID: 34513289 PMCID: PMC8408553 DOI: 10.1016/j.omtn.2021.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women. Particular subtypes with aggressive behavior are major contributors to poor outcomes. Triple-negative breast cancer (TNBC) is difficult to treat, pro-inflammatory, and highly metastatic. We demonstrate that TNBC cells express TLR9 and are responsive to TLR9 ligands, and treatment of TNBC cells with chemotherapy increases the release of nucleic-acid-containing damage-associated molecular patterns (NA DAMPs) in cell culture. Such culture-derived and breast cancer patient-derived NA DAMPs increase TLR9 activation and TNBC cell invasion in vitro. Notably, treatment with the polyamidoamine dendrimer generation 3.0 (PAMAM-G3) behaved as a nucleic acid scavenger (NAS) and significantly mitigates such effects. In mice that develop spontaneous BC induced by polyoma middle T oncoprotein (MMTV-PyMT), treatment with PAMAM-G3 significantly reduces lung metastasis. Thus, NAS treatment mitigates cancer-induced inflammation and metastasis and represents a novel therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Elias O.U. Eteshola
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Karenia Landa
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Rachel E. Rempel
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Ibtehaj A. Naqvi
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - E. Shelley Hwang
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Smita K. Nair
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
16
|
Aguilar-Díaz H, Quiroz-Castañeda RE, Salazar-Morales K, Cossío-Bayúgar R, Miranda-Miranda E. Tick Immunobiology and Extracellular Traps: An Integrative Vision to Control of Vectors. Pathogens 2021; 10:pathogens10111511. [PMID: 34832666 PMCID: PMC8621429 DOI: 10.3390/pathogens10111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Ticks are hematophagous ectoparasites that infest a diverse number of vertebrate hosts. The tick immunobiology plays a significant role in establishing and transmitting many pathogens to their hosts. To control tick infestations, the acaricide application is a commonly used method with severe environmental consequences and the selection of tick-resistant populations. With these drawbacks, new tick control methods need to be developed, and the immune system of ticks contains a plethora of potential candidates for vaccine design. Additionally, tick immunity is based on an orchestrated action of humoral and cellular immune responses. Therefore, the actors of these responses are the object of our study in this review since they are new targets in anti-tick vaccine design. We present their role in the immune response that positions them as feasible targets that can be blocked, inhibited, interfered with, and overexpressed, and then elucidate a new method to control tick infestations through the development of vaccines. We also propose Extracellular Traps Formation (ETosis) in ticks as a process to eliminate their natural enemies and those pathogens they transmit (vectorial capacity), which results attractive since they are a source of acting molecules with potential use as vaccines.
Collapse
Affiliation(s)
- Hugo Aguilar-Díaz
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
- Correspondence:
| | - Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico;
| | - Karina Salazar-Morales
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Raquel Cossío-Bayúgar
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
| | - Estefan Miranda-Miranda
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
| |
Collapse
|
17
|
Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission). J Invertebr Pathol 2021; 181:107591. [PMID: 33882275 DOI: 10.1016/j.jip.2021.107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia are common intracellular endosymbionts of arthropods, but the interactions between Wolbachia and arthropods are only partially understood. The fruit fly Drosophila melanogaster is a model insect for understanding Wolbachia-host interactions. Here the native wMel strain of D. melanogaster was isolated and then different initial titres of wMel were artificially transferred back into antibiotics-treated fruit flies. Our purpose was to examine the interactions between the injected wMel in a density gradient and the recipient host during trans-generational transmission. The results showed that the trans-generational transmission rates of wMel and titres of wMel exhibited a fluctuating trend over nine generations, and the titres of wMel displayed a similar fluctuating trans-generational trend. There was a significant positive correlation between the transmission rate and the titre of wMel. Reciprocal crossings between wMel-transinfected and uninfected fruit flies revealed that wMel could induce cytoplasmic incompatibility (CI) at different initial titres, but the intensity of CI was not significantly correlated with the initial titre of wMel. Quantitative PCR analysis showed that the immune genes Drsl5 and Spn38F displayed a significant transcriptional response to wMel transfection, with an obvious negative correlation with the titre of wMel at the 3rd and 4th generations. Furthermore, RNA interference-mediated knockdown of Drsl5 and Spn38F elicited a drastic increase in the titre of wMel. In combination, our study suggests that the trans-generational transmission of wMel is modulated by its density, and the immune genes are involved in the regulation of Wolbachia density.
Collapse
|
18
|
Geng T, Lu F, Wu H, Lou D, Tu N, Zhu F, Wang S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. INSECT MOLECULAR BIOLOGY 2021; 30:102-112. [PMID: 33150694 DOI: 10.1111/imb.12681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Antifungal innate immunity is an important defence used by insects against entomogenous fungi. However, the downstream target antifungal peptides of different immune signalling pathways are unknown. We found that the Toll, Janus kinase/signal transducer and activator of transcription (Jak/STAT) and Immunodeficiency (IMD) signalling pathways in the silkworm, Bombyx mori, can be activated by Beauveria bassiana. Inhibition of the Toll, IMD and Jak/STAT signalling pathways reduced the antifungal activities of silkworm haemolymph. We verified the target antifungal peptides of different immune signalling pathways. The expression patterns of five anti-fungal peptide genes in silkworm larvae and BmN cells were detected after blocking or over-expressing the immune signalling pathways. The Toll signalling pathways mediated the expression of Bmcecropin A, Bmattacin 1 and Bmgloverin 2; IMD signalling pathways mediated Bmenbocin 1, Bmgloverin 2 and Bmattacin 1; Jak/STAT signalling pathways mediated Bmstorage protein 30K-19G1 (Bmsp 1), Bmattacin 1 and Bmcecropin A. These data indicated that anti-microbial peptide genes in B. mori evolved through expansion and selection of existing genes to adapt to the challenge of invasive microorganisms such as fungi. This information provides insight into the antifungal immune responses in B. mori and aids understanding of insect immune regulation mechanisms.
Collapse
Affiliation(s)
- T Geng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - F Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - H Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - D Lou
- College of Plant Protection, Hainan University, Haikou, China
| | - N Tu
- College of Tropical Crop, Hainan University, Haikou, China
| | - F Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - S Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
19
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
21
|
Alameh S, Bartolo G, O’Brien S, Henderson EA, Gonzalez LO, Hartmann S, Klimko CP, Shoe JL, Cote CK, Grill LK, Levitin A, Martchenko Shilman M. Anthrax toxin component, Protective Antigen, protects insects from bacterial infections. PLoS Pathog 2020; 16:e1008836. [PMID: 32866212 PMCID: PMC7458312 DOI: 10.1371/journal.ppat.1008836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023] Open
Abstract
Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.
Collapse
Affiliation(s)
- Saleem Alameh
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Gloria Bartolo
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Summer O’Brien
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Elizabeth A. Henderson
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Leandra O. Gonzalez
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Stella Hartmann
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Laurence K. Grill
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Anastasia Levitin
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
- * E-mail: (AL); (MMS)
| | - Mikhail Martchenko Shilman
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
- * E-mail: (AL); (MMS)
| |
Collapse
|
22
|
Liu XC, Li YR, Dong B, Li ZX. The Intruding Wolbachia Strain from the Moth Fails to Establish Itself in the Fruit Fly Due to Immune and Exclusion Reactions. Curr Microbiol 2020; 77:2441-2448. [PMID: 32506239 DOI: 10.1007/s00284-020-02067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Wolbachia is capable of regulating host reproduction, and thus of great significance in preventing the spread of insect-borne diseases and controlling pest insects. The fruit fly Drosophila melanogaster is an excellent model insect for understanding Wolbachia-host interactions. Here we artificially transferred the wCcep strain from the rice moth Corcyra cephalonica into D. melanogaster by microinjection. Crossing experiments indicated that wCcep could induce a high level of CI in the phylogenetically distant host D. melanogaster and imposed no negative fitness costs on host development and fecundity. Based on quantitative analysis, the titres of wCcep and the native wMel strain were negatively correlated, and wCcep could only be transmitted in the novel host for several generations (G0 to G4) after transinfection. Transcriptome sequencing indicated that the invading wCcep strain induced a significant immune- and stress-related response from the host. An association analysis between the expression of immune genes attacin-D/edin and the titre of Wolbachia by linear regression displayed a negative correlation between them. Our study suggest that the intrusion of wCcep elicited a robust immune response from the host and incurred a competitive exclusion from the native Wolbachia strain, which resulted in the failure of its establishment in D. melanogaster.
Collapse
Affiliation(s)
- Xin-Chao Liu
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yue-Ru Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,Department of Microbiology & Immunology, McGill University, 3773 University Street, Montreal, QC, H3A 2B4, Canada
| | - Bei Dong
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,Jinan Academy of Agricultural Sciences, No.717, Mingfa Road, Changqing District, Jinan, 250316, Shandong, China
| | - Zheng-Xi Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
23
|
Zheng X, Li S, Si Y, Hu J, Xia Y. Locust can detect β-1, 3-glucan of the fungal pathogen before penetration and defend infection via the Toll signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103636. [PMID: 32014469 DOI: 10.1016/j.dci.2020.103636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The timing and mechanism by which a host insect initiates an immune response are critical to successful defense against infection. Pathogen recognition, a prerequisite for host defense, has long been recognized to take place during the insect epidermis invasion by fungus. Here we report that insect can sense the fungal pathogen before host cuticle is penetrated by fungus. We discovered the upstream pattern recognition receptor (PRR) genes of the Toll pathway were upregulated in both the integument and fat body early during fungal germination on the epicuticle of Locusta migratoria manilensis. The Toll signaling pathway was strongly activated in the fat body at the penetration stage. RNAi of Myd88 increased the susceptibility of locusts to fungal infection, but that of Cactus showed the opposite effect. In addition, β-1, 3-glucan (laminarin), the main component of the cell wall of the pathogenic fungus Metarhizium acridum, was capable of activating the Toll signaling pathway (Spaetzle and Cactus) when it was applied on the host cuticle. These results demonstrate that host epidemis can effectively defend fungal infection by detecting β-1, 3-glucan on the fungal cell wall and activate the Toll signaling pathway even before fungal penetration.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing, 400030, PR China; College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, PR China
| | - Sai Li
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing, 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, PR China
| | - Yang Si
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing, 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, PR China
| | - Jun Hu
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing, 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, PR China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing, 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400030, PR China.
| |
Collapse
|
24
|
Abstract
The origins of the various elements in the human antibody repertoire have been and still are subject to considerable uncertainty. Uncertainty in respect of whether the various elements have always served a specific defense function or whether they were co-opted from other organismal roles to form a crude naïve repertoire that then became more complex as combinatorial mechanisms were added. Estimates of the current size of the human antibody naïve repertoire are also widely debated with numbers anywhere from 10 million members, based on experimentally derived numbers, to in excess of one thousand trillion members or more, based on the different sequences derived from theoretical combinatorial calculations. There are questions that are relevant at both ends of this number spectrum. At the lower bound it could be questioned whether this is an insufficient repertoire size to counter all the potential antigen-bearing pathogens. At the upper bound the question is rather simpler: How can any individual interrogate such an astronomical number of antibody-bearing B cells in a timeframe that is meaningful? This review evaluates the evolutionary aspects of the adaptive immune system, the calculations that lead to the large repertoire estimates, some of the experimental evidence pointing to a more restricted repertoire whose variation appears to derive from convergent 'structure and specificity features', and includes a theoretical model that seems to support it. Finally, a solution that may reconcile the size difference anomaly, which is still a hot subject of debate, is suggested.
Collapse
|
25
|
Nesa J, Sadat A, Buccini DF, Kati A, Mandal AK, Franco OL. Antimicrobial peptides fromBombyx mori: a splendid immune defense response in silkworms. RSC Adv 2020; 10:512-523. [PMID: 35492565 PMCID: PMC9047522 DOI: 10.1039/c9ra06864c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023] Open
Abstract
Bombyx mori L., a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry. Bombyx mori L., a silkworm of the mulberry type, has a sophisticated inherent innate immune mechanism to combat such invasive pathogens. Among all the components in this defense system, antimicrobial peptides (AMPs) are notable due to their specificity towards the invading pathogens without harming the normal host cells. Bombyx mori L. so far has had AMPs identified that belong to six different families, namely cecropin, defensin, moricin, gloverin, attacin and lebocin, which are produced by the Toll and immune deficiency (IMD) pathways. Their diverse modes of action depend on microbial pathogens and are still under investigation. This review examines the recent progress in understanding the immune defense mechanism of Bombyx mori based on AMPs. AMPs produced by B. mori induced by microbial challenge in the fat body.![]()
Collapse
Affiliation(s)
- Jannatun Nesa
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Abdul Sadat
- Insect Ecology and Conservation Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Danieli F. Buccini
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
| | - Ahmet Kati
- Biotechnology Department
- Institution of Health Science
- University of Health Science
- Istanbul
- Turkey
| | - Amit K. Mandal
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
- Centre for Nanotechnology Sciences
| | - Octavio L. Franco
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
- Center of Proteomic and Biochemical Analysis
| |
Collapse
|
26
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
27
|
Zsengellér ZK, Gerard NP. The oxidation state of cysteine thiols on the ectodomain of TLR2 and TLR4 influences intracellular signaling. Immunobiology 2019; 225:151895. [PMID: 31843260 DOI: 10.1016/j.imbio.2019.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Signal transduction by the Toll-like receptors (TLRs) is a key component of innate immunity against many pathogens and also underlies a large burden of human diseases. Therefore, the mechanisms and regulation of signaling from the TLRs are of considerable interest. Here we seek to determine the molecular mechanism by which TLR2 and TLR4, members of the Toll-like receptor family, are activated by bacterial LPS, hyperoxia, and zymosan respectively. Our central hypothesis is that the oxidation state of cysteine thiols on the ectodomain of TLR2 and TLR4 are critical for pathogen-initiated intracellular signaling as well in hyperoxia. Cysteine thiols of TLR4 and its co-receptor MD2 have been shown to aid binding between the two molecules and also bacterial LPS binding to the receptor complex. We extend these findings by demonstrating the oxidation of free thiols on the ectodomain of hTLR4, after exposure to LPS or hyperoxia suggesting that the cysteines on the ectodomain of TLR4 could form intra- or intermolecular disulfide bonds. We also demonstrated blockade of intracellular signaling from TLR4 and TLR2 by thiol-modifying compounds which suggest a novel therapeutic intervention for sepsis, hyperoxia-induced cell injury and yeast infection. In these experiments CHO-3E10, HEK293 cells expressing hTLR2 or hTLR4 and mouse peritoneal macrophages cells were pretreated with cell impermeable maleimides to alkylate thiols on the extracellular domain of TLRs, cells were then exposed to LPS, hyperoxia or zymosan. In all of these models, we detected decreased intracellular signaling from TLR2 or TLR4. Furthermore, incubation with phenyl arsine oxide - which forms stable complexes with vicinal cysteine residues - prevented LPS induced HEK293/hTLR4 intracellular signaling which was reversed by DMPS. Sequence analysis of different TLRs revealed Leucine-Rich Repeat C-terminal (LRRCT) domain that contains 4 conserved cysteines. Further work is required to pinpoint the role of each cysteine in receptor dimerization, pathogen binding, hyperoxia modulation, and intracellular signaling.
Collapse
Affiliation(s)
- Zsuzsanna K Zsengellér
- Department of Medicine - Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Norma P Gerard
- Ina Sue Perlmutter Cystic Fibrosis Laboratory, Children's Hospital Boston, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
O'Brien TJ, Welch M. Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: a perspective. Future Microbiol 2019; 14:1437-1450. [PMID: 31778075 DOI: 10.2217/fmb-2019-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The airways of persons with cystic fibrosis are prone to infection by a diverse and dynamic polymicrobial consortium. Currently, no models exist that permit recapitulation of this consortium within the laboratory. Such microbial ecosystems likely have a network of interspecies interactions, serving to modulate metabolic pathways and impact upon disease severity. The contribution of less abundant/fastidious microbial species on this cross-talk has often been neglected due to lack of experimental tractability. Here, we critically assess the existing models for studying polymicrobial infections. Particular attention is paid to 3Rs-compliant in vitro and in silico infection models, offering significant advantages over mammalian infection models. We outline why these models will likely become the 'go to' approaches when recapitulating polymicrobial cystic fibrosis infection.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
29
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
30
|
Zhang Q, Chao TC, Patil VS, Qin Y, Tiwari SK, Chiou J, Dobin A, Tsai CM, Li Z, Dang J, Gupta S, Urdahl K, Nizet V, Gingeras TR, Gaulton KJ, Rana TM. The long noncoding RNA ROCKI regulates inflammatory gene expression. EMBO J 2019; 38:e100041. [PMID: 30918008 PMCID: PMC6463213 DOI: 10.15252/embj.2018100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) can regulate target gene expression by acting in cis (locally) or in trans (non-locally). Here, we performed genome-wide expression analysis of Toll-like receptor (TLR)-stimulated human macrophages to identify pairs of cis-acting lncRNAs and protein-coding genes involved in innate immunity. A total of 229 gene pairs were identified, many of which were commonly regulated by signaling through multiple TLRs and were involved in the cytokine responses to infection by group B Streptococcus We focused on elucidating the function of one lncRNA, named lnc-MARCKS or ROCKI (Regulator of Cytokines and Inflammation), which was induced by multiple TLR stimuli and acted as a master regulator of inflammatory responses. ROCKI interacted with APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1) to form a ribonucleoprotein complex at the MARCKS promoter. In turn, ROCKI-APEX1 recruited the histone deacetylase HDAC1, which removed the H3K27ac modification from the promoter, thus reducing MARCKS transcription and subsequent Ca2+ signaling and inflammatory gene expression. Finally, genetic variants affecting ROCKI expression were linked to a reduced risk of certain inflammatory and infectious disease in humans, including inflammatory bowel disease and tuberculosis. Collectively, these data highlight the importance of cis-acting lncRNAs in TLR signaling, innate immunity, and pathophysiological inflammation.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ti-Chun Chao
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Veena S Patil
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Yue Qin
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Shashi Kant Tiwari
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Zhonghan Li
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jason Dang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Shagun Gupta
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Kevin Urdahl
- Center for Infectious Disease Research (CIDR), Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
31
|
Wei D, Liu YW, Zhang YX, Wang JJ. Characterization and Function of Two Short Peptidoglycan Recognition Proteins Involved in the Immunity of Bactrocera dorsalis (Hendel). INSECTS 2019; 10:E79. [PMID: 30893923 PMCID: PMC6468497 DOI: 10.3390/insects10030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/16/2022]
Abstract
Peptidoglycans (PGNs) are major bacterial components recognized by the immune systems of insects and mammals. PGN recognition proteins (PGRPs) are widely distributed and highly conserved in vertebrates and invertebrates. PGRPs are a family of pattern recognition receptors that recognize peptidoglycan and regulate immune responses. In this study, we cloned two PGRP genes (BdPGRP-SA and BdPGRP-SD) from Bactrocera dorsalis (Hendel), which encode 192 and 196 amino acid residues, respectively. Both genes were highly expressed in adults, especially in the fat body and midgut. These two genes were up-regulated when challenged by the immune triggers, PGN-EB (Escherichia coli O111:B4) and PGN-SA (Staphylococcus aureus). The suppression of transcriptional expression of either gene by RNA interference (RNAi) resulted in increased sensitivities to Gram-negative E. coli and Gram-positive S. aureus PGNs. Suppression of BdPGRP-SA and -SD expression by RNAi resulted in weak expressions of four antimicrobial peptides (AMPs) upon injected with E. coli or S. aureus. BdPGRP-SA and -SD are involved in recognizing both Gram-negative and Gram-positive bacteria independently to activate the downstream AMP's response to bacterial infection.
Collapse
Affiliation(s)
- Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Wei Liu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying-Xin Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Cai J, Wang H, Wang D, Li Y. Improving Cancer Vaccine Efficiency by Nanomedicine. ACTA ACUST UNITED AC 2019; 3:e1800287. [PMID: 32627400 DOI: 10.1002/adbi.201800287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Cancer vaccines, which have been widely investigated in the past few decades, are one of the most attractive strategies for cancer immunotherapy. Through the precise delivery of antigens and adjuvants to lymphoid organs or lymphocytes via nanotechnology, innate and adaptive immunity can be boosted to prevent the growth and relapse of malignant tumors. Indeed, nanomedicine offers great opportunities to improve the efficiency of vaccines. Various functional platforms are used to deliver small molecules, peptides, nucleic acids, and even whole cell antigens to the target area of interest, achieving enhanced antitumor immunity and durable therapeutic benefits. Herein, the recent progress in cancer vaccines based on nanotechnology is summarized. Novel platforms used for delivering tumor antigens, promoting adjuvant functions, and combining other therapeutic strategies are discussed. Moreover, possible striving directions and major challenges of nanomedicine for vaccination are also reviewed.
Collapse
Affiliation(s)
- Junyu Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Dangge Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| |
Collapse
|
33
|
TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res 2018; 2018:7519856. [PMID: 30246036 PMCID: PMC6136572 DOI: 10.1155/2018/7519856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious diseases. NK cells possess many kinds of TLRs that allow them to sense and respond to invading pathogens. Our previous study found that NK cells could modulate the immune response induced by Schistosoma japonicum (S. japonicum) in C57BL/6 mice. In the present study, the role of TLRs in the progress of S. japonicum infection was investigated. Results showed that the expression of TLR3 on NK cells increased significantly after S. japonicum infection by using RT-PCR and FACS (P < 0.05). TLR3 agonist (Poly I:C) increased IFN-γ and IL-4 levels in the supernatant of cultured splenocytes and induced a higher percentage of IFN-γ- and IL-4-secreting NK cells from infected mouse splenocytes (P < 0.05). Not only the percentages of MHC II-, CD69-, and NKG2A/C/E-expressing cells but also the percentages of IL-4-, IL-5-, and IL-17-producing cells in TLR3+ NK cells increased significantly after infection (P < 0.05). Moreover, the expression of NKG2A/C/E, NKG2D, MHC II, and CD69 on the surface of splenic NK cells was changed in S. japonicum-infected TLR3-/- (TLR3 KO mice, P < 0.05); the abilities of NK cells in IL-4, IL-5, and IL-17 secretion were decreased too (P < 0.05). These results indicate that TLR3 is the primary molecule which modulates the activation and function of NK cells during the course of S. japonicum infection in C57BL/6 mice.
Collapse
|
34
|
Ishida H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural basis for species‐specific activation of mouse Toll‐like receptor 9. FEBS Lett 2018; 592:2636-2646. [DOI: 10.1002/1873-3468.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Hanako Ishida
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| | - Takuma Shibata
- Division of Innate Immunity Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Minato‐ku Japan
| | - Kensuke Miyake
- Division of Innate Immunity Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Minato‐ku Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| |
Collapse
|
35
|
Wang H, Smagghe G, Meeus I. The role of a single gene encoding the Single von Willebrand factor C-domain protein (SVC) in bumblebee immunity extends beyond antiviral defense. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 91:10-20. [PMID: 29074090 DOI: 10.1016/j.ibmb.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/14/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
The Single von Willebrand factor C-domain proteins (SVCs) are a group of short proteins mainly found in arthropods. They are proposed to be responsive in relation to environmental challenges including the nutritional status, bacterial and viral infections. The SVC protein Vago acts as a cross-talk molecule between the small interfering RNA (siRNA) pathway and the Jak/STAT pathway upon viral infection in Drosophila melanogaster and Culex mosquito cells. Unlike flies and mosquitoes that possess diverse SVCs, most bee species only have one of which the function remains unclear. Here we investigated whether this single SVC within the genome of the bumblebee Bombus terrestris is also involved in the host antiviral immunity and whether links with other immune pathways can be found. We can show the presence of two key characteristics of Vago linked with the single SVC in B. terrestris (BtSVC). The antiviral character is proven by silencing BtSVC, which lead to increased Israeli acute paralysis virus (IAPV) levels in the fat body. Second, the silencing of BtDicer-2 resulted in a lower expression of BtSVC and increased IAPV levels, confirming the link between Dicer-2 and BtSVC. We were, however, unable to demonstrate a third known role of Vago in the activation of the Jak/STAT pathway. This is probably because we lack good markers for this pathway in bumblebees. Interestingly, we found that BtSVC contributes to the basal expression levels of four antimicrobial peptide (AMP)-coding genes in the fat body of the bumblebees. Therefore, the single SVC gene in bumblebees may be involved in both host antiviral immunity and basal AMPs expression.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
36
|
Kim YI, Choi KH, Kim SR, Goo TW, Park SW. Bombyx mori hemocyte extract has anti-inflammatory effects on human phorbol myristate acetate-differentiated THP‑1 cells via TLR4-mediated suppression of the NF-κB signaling pathway. Mol Med Rep 2017; 16:4001-4007. [PMID: 28765923 PMCID: PMC5646980 DOI: 10.3892/mmr.2017.7087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Hemolymph is the circulating fluid of insects and is a key component of their immune system. However, little is known concerning hemocyte identification, development, differentiation and related cellular immune responses. The present study aimed to determine whether a hemocyte extract prepared from Bombyx mori larvae had anti-inflammatory effects; THP-1 (a human monocytic leukemia cell line) cells that had been differentiated into macrophage-like cells by treatment with phorbol myristate acetate (PMA) were used. THP-1 cells were cultured with different concentrations of a B. mori hemocyte extract prior to exposure to lipopolysaccharide (LPS) to induce an inflammatory response. The effects of the B. mori hemocyte extract on anti-inflammatory pathways were determined using reverse transcription-quantitative polymerase chain reaction and western blotting to assess the expression of pro-inflammatory molecules. The B. mori hemocyte extract inhibited the LPS-induced mRNA expression of Toll-like receptor 4 in addition to LPS-induced interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α. Treatment of PMA-differentiated THP-1 cells with B. mori hemocyte extract also inhibited inducible nitric oxide synthase and cyclooxygenase-2 transcription and translation. Nuclear factor-κB activation and phosphorylation also decreased. Further in-depth functional studies are required to understand the mechanism underlying the anti-inflammatory effects of silkworm hemocyte extract.
Collapse
Affiliation(s)
- Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Kwang Ho Choi
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Seong Ryul Kim
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Tae-Won Goo
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, Gyeongsangbuk 38430, Republic of Korea
| |
Collapse
|
37
|
Han P, Han J, Fan J, Zhang M, Ma E, Li S, Fan R, Zhang J. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:128-139. [PMID: 28254619 DOI: 10.1016/j.dci.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/26/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
20-hydroxyecdysone (20E) has been implicated in regulating the immune response in insects. Conflicting conclusions on 20E regulating immunity have been reported in model holometabolous species. However, in hemimetabolous insects, the role of 20E as an immune-suppressor or activator and the mechanism remains unclear. The migratory locust Locusta migratoria is a representative member of hemimetabolous insects. Here, digital gene expression (DGE) profiles of Locusta migratoria treated with 20E were analyzed. Pattern recognition receptors [peptidoglycan recognition protein (PGRP-SA), PGRP-LE, and gram-negative binding protein (GNBP3)] and antimicrobial peptides (defensin, diptericin, and i-type lysozyme) were significantly induced by 20E in fat body. These immune-related genes significantly increased their mRNA levels during the high-20E stage. Antibacterial activities in plasma were enhanced after 20E injection and during the high-20E developmental stage. Conversely, when 20E signal was suppressed by RNAi of EcR (ecdysone receptor), the expression levels of these genes and antibacterial activities failed to be increased by 20E injection and during the high-20E developmental stage, and the mortality increased after being infected by entomogenous fungus. The knockdown of PGRP-SA inhibited the expression level of defensin, diptericin and i-type lysozyme in fat body and reduced antibacterial activities in plasma. 20E injection could not significantly induce the expression of antimicrobial peptides after RNAi of PGRP-SA. These results demonstrated that 20E enhanced the immune response by activating PGRP-SA in L. migratoria.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiao Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiqiao Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjun Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| |
Collapse
|
38
|
Rajasekharreddy P, Rani PU, Mattapally S, Banerjee SK. Ultra-small silver nanoparticles induced ROS activated Toll-pathway against Staphylococcus aureus disease in silkworm model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:990-1002. [PMID: 28532120 DOI: 10.1016/j.msec.2017.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/19/2023]
Abstract
The present study investigated the therapeutic action of flavonoids loaded silver nanoparticles (FLV-Ag NPs) on a silkworm, Bombyx mori L., larvae infected by the S. aureus, where an in vivo model system was used. FLV-Ag NPs were synthesized using a Ricinus communis L. leaf extracted flavonoid mixture in various concentrations. The reduction reaction was performed under a simple sunlight exposure condition. In the reduction process, quercetin and kaempferol loadings were also found. They were confirmed by UV-visible, TEM, XRD, XPS, DLS and FTIR spectroscopic techniques. TEM confirmed that the synthesized NPs were monodispersed and with an average size of 5.8nm±0.04. Initially, those synthesized FLV-Ag NPs were tested against S. aureus in in vitro by comparing their potential inhibitory activity with only flavonoids mixture (FLVs) and pure silver nanoparticles (Ag NPs). Furthermore, these FLV-Ag NPs were used to treat S. aureus infected B. mori larvae and the therapeutic efficacy was measured. Our results demonstrate that the FLV-Ag NPs are effective in curing the S. aureus infection through the induced expression of antimicrobial peptide genes, the enhanced oxidative enzyme levels, and the promoted phagocytosis of S. aureus by the haemocytes in silkworm larvae. On the basis of these results, it is proposed that the mechanism of the antimicrobial activity of FLV-Ag NPs involves the NPs-insect fat body cell association and a reactive oxygen species-mediated Toll-pathway.
Collapse
Affiliation(s)
- Pala Rajasekharreddy
- Biology and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India.
| | - Pathipati Usha Rani
- Biology and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India
| | - Saidulu Mattapally
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, Telangana State, India
| | - Sanjay Kumar Banerjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, Telangana State, India; Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| |
Collapse
|
39
|
Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, Zhao L, Simpson SJ. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metab 2017; 25:522-534. [PMID: 28273475 PMCID: PMC6200423 DOI: 10.1016/j.cmet.2017.02.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations.
Collapse
Affiliation(s)
- François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon Cedex 07, France.
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S4K1, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S4K1, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Won-Jae Lee
- School of Biological Science, Institute of Molecular Biology and Genetics, National Creative Research Initiative Center for Hologenomics, Seoul National University, Seoul 151-742, South Korea
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, B-1200 Brussels, Belgium
| | - Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon Cedex 07, France
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
40
|
Bingsohn L, Knorr E, Billion A, Narva KE, Vilcinskas A. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control. INSECT MOLECULAR BIOLOGY 2017; 26:92-102. [PMID: 27862545 DOI: 10.1111/imb.12273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies.
Collapse
Affiliation(s)
- L Bingsohn
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - E Knorr
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - A Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - K E Narva
- Dow AgroSciences, Indianapolis, IN, USA
| | - A Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Giessen, Germany
| |
Collapse
|
41
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
42
|
Arayamethakorn S, Supungul P, Tassanakajon A, Krusong K. Characterization of molecular properties and regulatory pathways of CrustinPm1 and CrustinPm7 from the black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:18-29. [PMID: 27815179 DOI: 10.1016/j.dci.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
CrustinPm1 and crustinPm7 are the two most abundant isoforms of crustins identified from the hemocytes of the black tiger shrimp, Penaeus monodon. CrustinPm1 inhibits only Gram-positive bacteria, while crustinPm7 acts against both Gram-positive and Gram-negative bacteria. This work aims to characterize the molecular properties of recombinant crustinPm1 and crustinPm7, and the regulatory pathways of these two crustins. Circular dichroism spectroscopy revealed that crustinPm1 contained 40.81% alpha-helix and 22.34% beta-sheet, whereas crustinPm7 is made up of 32.86% alpha-helix and 27.53% beta-sheet. CrustinPm1 and crustinPm7 bound to phosphatidic acid (PA) with positive cooperativity of Hill slope (H) > 2, indicating that at least two molecules of crustins bind with one PA molecule. It is worth noting that both crustins bound to PA with significantly higher affinity than to lipoteichoic acid (LTA) and lipopolysaccharide (LPS). We speculate that crustin might also achieve antimicrobial activity by targeting PA, a signaling lipid. Regulatory pathways of crustinPm1 and crustinPm7 were investigated by knockdown of PmRelish and PmMyD88. This study demonstrated that crustinPm1 is mediated through the Toll signaling pathway, while crustinPm7 is regulated via both Toll and Imd pathways.
Collapse
Affiliation(s)
- Sopacha Arayamethakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
Shao ES, Lin GF, Liu S, Ma XL, Chen MF, Lin L, Wu SQ, Sha L, Liu ZX, Hu XH, Guan X, Zhang LL. Identification of transcripts involved in digestion, detoxification and immune response from transcriptome of Empoasca vitis (Hemiptera: Cicadellidae) nymphs. Genomics 2016; 109:58-66. [PMID: 27867104 DOI: 10.1016/j.ygeno.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
Abstract
Tea production has been significantly impacted by the false-eye leafhopper, Empoasca vitis (Göthe), around Asia. To identify the key genes which are responsible for nutrition absorption, xenobiotic metabolism and immune response, the transcriptome of either alimentary tracts or bodies minus alimentary tract of E. vitis was sequenced and analyzed. Over 31 million reads were obtained from Illumina sequencing. De novo sequence assembly resulted in 52,182 unigenes with a mean size of 848nt. The assembled unigenes were then annotated using various databases. Transcripts of at least 566 digestion-, 224 detoxification-, and 288 immune-related putative genes in E. vitis were identified. In addition, relative expression of highly abundant transcripts was verified through quantitative real-time PCR. Results from this investigation provide genomic information about E. vitis, which will be helpful in further study of E. vitis biology and in the development of novel strategies to control this devastating pest.
Collapse
Affiliation(s)
- En-Si Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Gui-Fang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Sijun Liu
- Department of Entomology, Iowa State University, Ames, Iowa, United States.
| | - Xiao-Li Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Ming-Feng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Song-Qing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Li Sha
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Zhao-Xia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xiao-Hua Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China
| | - Ling-Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
| |
Collapse
|
44
|
Georgel P. Innate immune receptors in solid organ transplantation. Hum Immunol 2016; 77:1071-1075. [DOI: 10.1016/j.humimm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/18/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
|
45
|
Fritz JH, Girardin SE. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110060301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Innate immune detection of pathogens relies on specific classes of microbial sensors called pattern-recognition molecules (PRM). In mammals, such PRM include Toll-like receptors (TLRs) and the intracellular proteins NOD1 and NOD2, which belong to the family of Nod-like receptors (NLRs). Over the last decade as these molecules were discovered, a function in innate immunity has been assigned for the majority of them and, for most, the microbial motifs that these molecules detect were identified. One of the next challenges in innate immunity is to establish a better understanding of the complex interplay between signaling pathways induced simultaneously by distinct PRMs and how this affects tailoring first-line responses and the induction of adaptive immunity to a given pathogen.
Collapse
Affiliation(s)
- Jörg H. Fritz
- Immunité Innée et Signalisation Laboratoire, Institut Pasteur, Paris, France
| | | |
Collapse
|
46
|
Henriot I, Launay E, Boubaya M, Cremet L, Illiaquer M, Caillon H, Desjonquères A, Gillet B, Béné MC, Eveillard M. New parameters on the hematology analyzer XN-10 (SysmexTM) allow to distinguish childhood bacterial and viral infections. Int J Lab Hematol 2016; 39:14-20. [DOI: 10.1111/ijlh.12562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Affiliation(s)
- I. Henriot
- Hematology Biology Department; Nantes University Hospital; Nantes France
| | - E. Launay
- Department of Pediatrics; Nantes University Hospital; Nantes France
| | - M. Boubaya
- Clinical Research Department; Hôpitaux Universitaires Paris-Seine-Saint-Denis; Hôpital Avicenne, AP-HP; Bobigny France
| | - L. Cremet
- Bacteriology Department; Nantes University Hospital; Nantes France
| | - M. Illiaquer
- Virology Department; Nantes University Hospital; Nantes France
| | - H. Caillon
- Biochemistry Department; Nantes University Hospital; Nantes France
| | - A. Desjonquères
- Hematology Biology Department; Nantes University Hospital; Nantes France
| | - B. Gillet
- Hematology Biology Department; Nantes University Hospital; Nantes France
| | - M. C. Béné
- Hematology Biology Department; Nantes University Hospital; Nantes France
| | - M. Eveillard
- Hematology Biology Department; Nantes University Hospital; Nantes France
| |
Collapse
|
47
|
Puel A, Kun Yang, Ku CL, von Bernuth H, Bustamante J, Santos OF, Lawrence T, Chang HH, Al-Mousa H, Picard C, Casanova JL. Heritable defects of the human TLR signalling pathways. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110040601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, three human primary immunodeficiencies associated with impaired TLR signalling were described. Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), either X-linked recessive or autosomal dominant, is caused by hypomorphic mutations in NEMO or hypermorphic mutation in IKBA, respectively, both involved in nuclear factor-κB (NF-κB) activation. These patients present with abnormal development of ectoderm-derived structures and suffer from a broad spectrum of infectious diseases. In vitro studies of the patients' cells showed an impaired, but not abolished, NF-κB activation in response to a large set of stimuli, including TLR agonists. More recently, patients with autosomal recessive amorphic mutations in IRAK4 have been reported, presenting no developmental defect and a more restricted spectrum of infectious diseases, mostly caused by pyogenic encapsulated bacteria, principally, but not exclusively Gram-positive. In vitro studies carried out with these patients' cells showed a specific impairment of the Toll—interleukin-1 receptor (TIR)—interleukin-1 receptor associated kinase (IRAK) signalling pathway. NF-κB- and mitogen activated protein kinase (MAPK) pathways are impaired in response to all TIR agonists tested. These data, therefore, suggest that TLRs play a critical role in host defence against pyogenic bacteria, but may be dispensable or redundant for immunity to most other infectious agents in humans.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France,
| | - Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, French-Chinese Laboratory of Genetics and Life Sciences, Rui-Jin Hospital, Shanghai University, Shanghai, China
| | - Cheng-Lung Ku
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Horst von Bernuth
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Orchidée Filipe Santos
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Tatiana Lawrence
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Huey-Hsuan Chang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Hamoud Al-Mousa
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| |
Collapse
|
48
|
Barribeau SM, Schmid-Hempel P, Sadd BM. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response. PLoS One 2016; 11:e0159635. [PMID: 27442590 PMCID: PMC4956190 DOI: 10.1371/journal.pone.0159635] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.
Collapse
Affiliation(s)
- Seth M. Barribeau
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail: (SB); (BMS)
| | - Paul Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- * E-mail: (SB); (BMS)
| |
Collapse
|
49
|
Sorvina A, Shandala T, Brooks DA. Drosophila Pkaap regulates Rab4/Rab11-dependent traffic and Rab11 exocytosis of innate immune cargo. Biol Open 2016; 5:678-88. [PMID: 27190105 PMCID: PMC4920182 DOI: 10.1242/bio.016642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The secretion of immune-mediators is a critical step in the host innate immune response to pathogen invasion, and Rab GTPases have an important role in the regulation of this process. Rab4/Rab11 recycling endosomes are involved in the sorting of immune-mediators into specialist Rab11 vesicles that can traffic this cargo to the plasma membrane; however, how this sequential delivery process is regulated has yet to be fully defined. Here, we report that Drosophila Pkaap, an orthologue of the human dual-specific A-kinase-anchoring protein 2 or D-AKAP2 (also called AKAP10), appeared to have a nucleotide-dependent localisation to Rab4 and Rab11 endosomes. RNAi silencing of pkaap altered Rab4/Rab11 recycling endosome morphology, suggesting that Pkaap functions in cargo sorting and delivery in the secretory pathway. The depletion of pkaap also had a direct effect on Rab11 vesicle exocytosis and the secretion of the antimicrobial peptide Drosomycin at the plasma membrane. We propose that Pkaap has a dual role in antimicrobial peptide traffic and exocytosis, making it an essential component for the secretion of inflammatory mediators and the defence of the host against pathogens.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Tetyana Shandala
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Douglas A Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
50
|
Abstract
The bidirectional causality between kidney injury and inflammation remains an area of unexpected discoveries. The last decade unraveled the molecular mechanisms of sterile inflammation, which established danger signaling via pattern recognition receptors as a new concept of kidney injury-related inflammation. In contrast, renal cell necrosis remained considered a passive process executed either by the complement-related membrane attack complex, exotoxins, or cytotoxic T cells. Accumulating data now suggest that renal cell necrosis is a genetically determined and regulated process involving specific outside-in signaling pathways. These findings support a unifying theory in which kidney injury and inflammation are reciprocally enhanced in an autoamplification loop, referred to here as necroinflammation. This integrated concept is of potential clinical importance because it offers numerous innovative molecular targets for limiting kidney injury by blocking cell death, inflammation, or both. Here, the contribution of necroinflammation to AKI is discussed in thrombotic microangiopathies, necrotizing and crescentic GN, acute tubular necrosis, and infective pyelonephritis or sepsis. Potential new avenues are further discussed for abrogating necroinflammation-related kidney injury, and questions and strategies are listed for further exploration in this evolving field.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; and
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; and
| |
Collapse
|