1
|
Ding Q, Zhou Y, Feng Y, Sun L, Zhang T. Bruton's tyrosine kinase: A promising target for treating systemic lupus erythematosus. Int Immunopharmacol 2024; 142:113040. [PMID: 39216117 DOI: 10.1016/j.intimp.2024.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder involving multiple organs and systems. There is growing evidence that autoreactive B cells occupy a central role in the occurrence and progression of SLE due to their ability to generate pathogenic autoantibodies. Small molecule inhibitors targeting Bruton's tyrosine kinase (BTK), a crucial intracellular kinase regulating B cell development and function, emerge as a new strategy to treat SLE in recent years and are superior to biologic agents depleting B cells in many aspects. Supportive data obtained from lupus-prone mice preliminarily demonstrated the promising therapeutic potential of BTK inhibition. However, these BTK inhibitors, including elsubrutinib, evobrutinib, etc., mostly face with unsatisfactory efficacy and certain safety issues during clinical use, driving the quest for new-generation inhibitors with improved potency and higher selectivity. This paper elaborates the importance of BTK involvement in SLE pathogenesis, reviews the clinical research progress of BTK inhibitors for SLE and discusses limitations and challenges the drugs met in development, in order to contribute to a deeper understanding of disease mechanism and provide a reference for new-generation BTK inhibitor research.
Collapse
Affiliation(s)
- Qiaoyi Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Hu W, Meng X, Wu Y, Li X, Chen H. Terpenoids, a Rising Star in Bioactive Constituents for Alleviating Food Allergy: A Review about the Potential Mechanism, Preparation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26599-26616. [PMID: 39570772 DOI: 10.1021/acs.jafc.4c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Food allergies affect approximately 2.5% of the global population, with a notable increase in prevalence observed each year. Terpenoids, a class of natural bioactive constituents, have been widely utilized in the management of immune- and inflammation-related disorders, and their potential in alleviating food allergies is increasingly being recognized. This article summarizes various terpenoids derived from plant, fungal, and marine sources. Among them, triterpenoids, such as oleanolic acid, ursolic acid, and lupeol, possess the highest proportion and bioactivity in alleviating food allergy. Additionally, the mechanisms by which terpenoids may mitigate allergic diseases were categorically outlined, focusing on their roles in epithelial mucosal barrier function, immunomodulatory effects during the sensitization phase, inhibition of effector cells, oxidative stress, and regulation of microbial homeostasis. Finally, the advantages and limitations of natural extraction and artificial synthesis methods were compared, and the application of terpenoids in the food industry were also discussed. This article serves as a useful reference for the development of methods or functional foods based on terpenoids, which could represent a promising avenue for alleviating food allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Park JW, Kang M, Kim G, Hyun SY, Shin J, Kim SY, Lee JH, Choi WS, Lee JH, Lee K, Kim SH, Cho WS, Kim HS. The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136705. [PMID: 39637818 DOI: 10.1016/j.jhazmat.2024.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.
Collapse
Affiliation(s)
- Jeong Won Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Shin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seon Young Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
4
|
Choi MY, Jo MG, Min KY, Kim B, Kim Y, Choi WS. Antimicrobial Peptide Pro10-1D Exhibits Anti-Allergic Activity: A Promising Therapeutic Candidate. Int J Mol Sci 2024; 25:12138. [PMID: 39596204 PMCID: PMC11594534 DOI: 10.3390/ijms252212138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Although antimicrobial peptides (AMPs) exhibit a range of biological functions, reports on AMPs with therapeutic effects in allergic disorders are limited. In this study, we investigated the anti-allergic effects of Pro10-1D, a 10-meric AMP derived from insect defensin protaetiamycine. Our findings demonstrate that Pro10-1D effectively inhibits antigen-induced degranulation of mast cells (MCs) with IC50 values of approximately 11.6 μM for RBL-2H3 cells and 2.7 μM for bone marrow-derived MCs. Furthermore, Pro10-1D suppressed the secretion of cytokines with IC50 values of approximately 2.8 μM for IL-4 and approximately 8.6 μM for TNF-α. Mechanistically, Pro10-1D inhibited the Syk-LAT-PLCγ1 signaling pathway in MCs and decreased the activation of mitogen-activated protein kinases (MAPKs). Pro10-1D demonstrated a dose-dependent reduction in IgE-mediated passive cutaneous anaphylaxis in mice with an ED50 value of approximately 7.6 mg/kg. Further investigation revealed that Pro10-1D significantly reduced the activity of key kinases Fyn and Lyn, which are critical in the initial phase of the FcεRI-mediated signaling pathway, with IC50 values of approximately 22.6 μM for Fyn and approximately 1.5 μM for Lyn. Collectively, these findings suggest that Pro10-1D represents a novel therapeutic candidate for the treatment of IgE-mediated allergic disorders by targeting the Lyn/Fyn Src family kinases in MCs.
Collapse
Affiliation(s)
- Min Yeong Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Nagao K, Yoshikawa S, Urakami H, Fujita Y, Komura A, Nakashima M, Oh-Hora M, Fujimura A, Hiyama TY, Naruse K, Morizane S, Tominaga M, Takamori K, Miyake S. Ligand-independent function of β2-adrenergic receptor affects IgE-mediated Ca 2+ influx in mast cells. Biochem Biophys Res Commun 2024; 733:150595. [PMID: 39191189 DOI: 10.1016/j.bbrc.2024.150595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Mast cells are key effector cells that elicit immunoglobulin E (IgE)-mediated allergic inflammations. Allergen cross-linking of IgE bound to the high-affinity IgE receptor, FcεRI, on mast cells triggers signaling cascades that activate signal proteins and evoke extracellular Ca2+ influx, which are crucial for cytokine production. The β2-adrenergic receptor (Adrb2) on mast cells negatively regulates FcεRI signaling, as demonstrated by the inhibition of IgE/antigen (Ag)-induced activation by Adrb2 agonists. OBJECTIVE Although β2-adrenergic-related reagents are known to influence mast cell functions, the specific intrinsic role of Adrb2 in these cells is not fully understood, potentially because of off-target effects. In this study, the additional roles of Adrb2 in mast cells were investigated, specifically the involvement of Adrb2 in FcεRI signaling, using Adrb2-/- mice. METHODS Adrb2-/- mice were used to investigate the roles of Adrb2 in mast cells by examining bone marrow-derived mast cells (BMMCs) for surface expression of mast cell markers, granule numbers, and gene expression of mast cell proteases. Cytokine production, Ca2+ influx, and nuclear factor of activated T cells (NFAT) nuclear translocation were measured in Adrb2-/- and Adrb2+/+ BMMCs upon IgE/Ag stimulation. RESULTS Adrb2-/- did not affect the generation of BMMCs, their surface expression of mast cell markers, granule numbers, or gene expression of mast cell proteases, indicating that the absence of Adrb2 had no adverse effect on mast cell development. However, Adrb2-/- BMMCs exhibited reduced tumor necrosis factor α (TNFα) production and diminished Ca2⁺ influx upon IgE/Ag stimulation, which correlated with decreased NFAT translocation. Restoration of Adrb2 in Adrb2-/- BMMCs rescued cytokine production. Notably, FcεRI-mediated phosphorylation of the phospholipase PLCγ1 and mitogen-activated protein kinases (MAPKs) remained unchanged in the absence of Adrb2. CONCLUSION These results suggest that Adrb2 has a novel ligand-independent function, increasing Ca2+ entry in mast cells when stimulated with IgE/Ag.
Collapse
Affiliation(s)
- Kei Nagao
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan; Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Soichiro Yoshikawa
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan; Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Hitoshi Urakami
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Fujita
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ayaka Komura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Miho Nakashima
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School, And Faculty of Medicine, Yonago, Japan
| | - Keiji Naruse
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan.
| | - Sachiko Miyake
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
6
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Hou X, Liang X, Lu Y, Zhang Q, Wang Y, Xu M, Luo Y, Fan T, Zhang Y, Ye T, Zhou K, Shi J, Li M, Li L. Investigation of local stimulation effects of embedding PGLA at Zusanli (ST36) acupoint in rats based on TRPV2 and TRPV4 ion channels. Front Neurosci 2024; 18:1469142. [PMID: 39445077 PMCID: PMC11496267 DOI: 10.3389/fnins.2024.1469142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Acupoint Catgut Embedding (ACE) is an extended and developed form of traditional acupuncture that serves as a composite stimulation therapy for various diseases. However, its local stimulation effects on acupoints remain unclear. Acupuncture can activate mechanically sensitive calcium ion channels, TRPV2 and TRPV4, located on various cell membranes, promoting Ca2+ influx in acupoint tissues to exert effects. Whether ACE can form mechanical physical stimulation to regulate these channels and the related linkage effect requires validation. Methods This study investigates the influence of TRPV2 and TRPV4 ion channels on the local stimulation effects of ACE by embedding PGLA suture at the Zusanli (ST36) acupoint in rats and using TRPV2 and TRPV4 inhibitors. Flow cytometry, immunofluorescence, Western blot, and Real-time quantitative PCR were employed to detect intracellular Ca2+ fluorescence intensity, the expression of macrophage (Mac) CD68 and mast cell (MC) tryptase, as well as the protein and mRNA expression of TRPV2 and TRPV4 in acupoint tissues after PGLA embedding. Results The results indicate that ACE using PGLA suture significantly increases the mRNA and protein expression of TRPV2 and TRPV4, Ca2+ fluorescence intensity, and the expression of Mac CD68 and MC tryptase in acupoint tissues, with these effects diminishing over time. The increasing trends are reduced after using inhibitors, particularly when both inhibitors are used simultaneously. Furthermore, correlation analysis shows that embedding PGLA suture at the ST36 acupoint regulates Mac and MC functions through Ca2+ signaling involving not only TRPV2 and TRPV4 but multiple pathways. Discussion These results suggest that embedding PGLA suture at the ST36 acupoint generates mechanical physical stimulation and regulates TRPV2 and TRPV4 ion channels, which couple with Ca2+ signaling to form a linkage effect that gradually weakens over time. This provides new reference data for further studies on the stimulation effects and clinical promotion of ACE.
Collapse
Affiliation(s)
- Xunrui Hou
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Xin Liang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Yuwei Lu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yujia Wang
- Weihai Hospital of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Weihai, China
| | - Ming Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuheng Luo
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tongtao Fan
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiyi Zhang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Kean Zhou
- Guizhou Medical University, Guiyang, China
| | - Jiahui Shi
- Guizhou Medical University, Guiyang, China
| | - Min Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihong Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Capellmann S, Kauffmann M, Arock M, Huber M. SR-BI regulates the synergistic mast cell response by modulating the plasma membrane-associated cholesterol pool. Eur J Immunol 2024; 54:e2350788. [PMID: 38708681 DOI: 10.1002/eji.202350788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MβCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.
Collapse
Affiliation(s)
- Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Huang Z, Zhang L, Xuan J, Yang L, Zhao T, Peng W. Tea for histamine anti-allergy: component analysis of tea extracts and potential mechanism for treating histamine anti-allergy. Front Pharmacol 2024; 15:1296190. [PMID: 38873420 PMCID: PMC11169817 DOI: 10.3389/fphar.2024.1296190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
In China, Camellia plants are widely used to reduce atopic dermatitis and inflammation-related diseases, but their protective mechanisms remain unclear. This study investigated the anti-allergic dermatitis, anti-oxidation and anti-inflammation effect and underlying mechanism of five Camellia species, including Camellia ptilophylla Chang, Camellia assamica Chang var. Kucha Chang, Camellia parvisepala Chang, Camellia arborescens Chang, and C. assamica M. Chang. A total of about 110 chemical compositions were detected from five Camellia teas extracts. The level of mast cell infiltration in the model mice skin was determined by HE (Hematoxylin and eosin) staining and toluidine blue staining, and the level of interleukin-1β (IL-1β) and nerve growth factor was detected by immunohistochemistry. The five Camellia tea leaf extracts have histamine-induced allergic dermatitis. Lipopolysaccharide (Lipopolysaccharide)-induced murine macrophage RAW264.7 inflammation model was found to secrete NF-κB factor, as shown by immunofluorescence, and reactive oxygen species secretion and related cytokine levels were detected. The results suggested that Camellia's five tea extracts had the ability to resist cellular oxidative stress. In addition, the results of cell inflammatory cytokines including fibronectin (FN) and interleukin-6 (IL-6) suggested that the five tea extracts of Camellia had anti-inflammatory effects. Therefore, it is suggested that five Camellia teas may possess inhibitory properties against allergic reactions, oxidative stress, and inflammation, and may prove beneficial in the treatment of allergies.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lu Yang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Tiantian Zhao
- Sericulture and Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Department of Food Science, Rutgers University, New Brunswick, NB, United States
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| |
Collapse
|
12
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
13
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
14
|
Bhowmik R, Shaharyar MA, Sarkar A, Mandal A, Anand K, Shabana H, Mitra A, Karmakar S. Immunopathogenesis of urticaria: a clinical perspective on histamine and cytokine involvement. Inflamm Res 2024; 73:877-896. [PMID: 38555555 DOI: 10.1007/s00011-024-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Urticaria is a clinical condition characterized by the appearance of wheals (hives), angioedema, or both. Over the last several decades, a better understanding of the mechanisms at play in the immunopathogenesis of urticaria has underscored the existence of numerous urticaria subtypes. Separating the different kinds of urticaria explicitly helps find the best detection method for the management of this skin disorder. Subtypes of urticaria also include both spontaneous and physical types. The conventional ones include spontaneous urticaria, constituting both acute and chronic urticaria. Therefore, a broad and effective therapy is essential for the diagnosis and treatment of urticaria. METHODS To understand the immunopathogenesis of urticaria, various databases, including PubMed, Scopus, and Web of Science, were used to retrieve original articles and reviews related to urticaria. While information on several clinical trials were obtained from clinicaltrials.gov database. RESULTS This article highlights the immunopathogenesis involved in the intricate interaction between cellular infiltration, immune reactions, coagulation cascades, and autoantibodies that underlie urticaria's pathophysiology. CONCLUSION The recent progress in understanding urticaria can help to understand the intricate characteristics in the immunopathogenesis of urticaria and could play a beneficial role in the management of urticaria.
Collapse
Affiliation(s)
- Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Md Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Avishek Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kumar Anand
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Humira Shabana
- Chaudhary Charan Singh University, Formerly, Meerut University, Meerut, Uttar Pradesh, India
| | - Achintya Mitra
- Regional Ayurveda Research Institute (RARI) CCRAS Under Ministry of AYUSH, Thapla, Ganiyadeoli, Ranikhet Almora, Uttarakhand, India
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
15
|
Jeong S, Kim YY, Lee D, Kim SH, Lee S. Hispidulin Alleviates Mast Cell-Mediated Allergic Airway Inflammation through FcεR1 and Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2024; 13:528. [PMID: 38790633 PMCID: PMC11118000 DOI: 10.3390/antiox13050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Allergic asthma is a type 2 immune-response-mediated chronic respiratory disease. Mast cell activation influences the pathogenesis and exacerbation of allergic asthma. Therefore, the development of mast cell-targeting pharmacotherapy is important for managing allergic airway inflammation. We investigated the efficacy of hispidulin (HPD), natural flavone, in a mast-cell-mediated ovalbumin (OVA)-induced allergic airway inflammation model. HPD alleviated symptoms of allergic asthma and decreased the levels of immunoglobulin (Ig) E, type 2 inflammation, immune cell infiltration, and mast cell activation in the lung. Furthermore, in vivo analysis confirmed the efficacy of HPD through the evaluation of IgE-mediated allergic responses in a mast cell line. HPD treatment inhibited mast cell degranulation through inhibition of the FcεR1 signaling pathway and suppressed the expression of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-13) through suppression of the NF-κB signaling pathway. The antioxidant effects of HPD in activated mast cells were identified through modulation of antioxidant enzymes and the Nrf2/HO-1 signaling pathway. In conclusion, HPD may be a potential therapeutic candidate for allergic airway inflammation of asthma and acts by suppressing mast cell activation and oxidative stress.
Collapse
Affiliation(s)
- Seungwon Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea;
| | - Yeon-Yong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea;
- Department of Polymer Nano Science and Technology, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea
| | - Sang-Hyun Kim
- Cell Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
| |
Collapse
|
16
|
Ceasovschih A, Șorodoc V, Covantsev S, Balta A, Uzokov J, Kaiser SE, Almaghraby A, Lionte C, Stătescu C, Sascău RA, Onofrei V, Haliga RE, Stoica A, Bologa C, Ailoaei Ș, Şener YZ, Kounis NG, Șorodoc L. Electrocardiogram Features in Non-Cardiac Diseases: From Mechanisms to Practical Aspects. J Multidiscip Healthc 2024; 17:1695-1719. [PMID: 38659633 PMCID: PMC11041971 DOI: 10.2147/jmdh.s445549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Despite the noteworthy advancements and the introduction of new technologies in diagnostic tools for cardiovascular disorders, the electrocardiogram (ECG) remains a reliable, easily accessible, and affordable tool to use. In addition to its crucial role in cardiac emergencies, ECG can be considered a very useful ancillary tool for the diagnosis of many non-cardiac diseases as well. In this narrative review, we aimed to explore the potential contributions of ECG for the diagnosis of non-cardiac diseases such as stroke, migraine, pancreatitis, Kounis syndrome, hypothermia, esophageal disorders, pulmonary embolism, pulmonary diseases, electrolyte disturbances, anemia, coronavirus disease 2019, different intoxications and pregnancy.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Victorița Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Serghei Covantsev
- Department of Research and Clinical Development, Botkin Hospital, Moscow, Russia
| | - Anastasia Balta
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Jamol Uzokov
- Department of Cardiology, Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | - Sergio E Kaiser
- Discipline of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Abdallah Almaghraby
- Department of Cardiology, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| | - Cătălina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristian Stătescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Radu A Sascău
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Viviana Onofrei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristina Bologa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Ștefan Ailoaei
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Yusuf Ziya Şener
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkiye
| | - Nicholas G Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, Patras, Greece
| | - Laurențiu Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| |
Collapse
|
17
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
18
|
Mencarelli A, Bist P, Choi HW, Khameneh HJ, Mortellaro A, Abraham SN. Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components. Nat Immunol 2024; 25:693-702. [PMID: 38486019 DOI: 10.1038/s41590-024-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1β for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1β was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1β, resulting in severe inflammation.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science and Research (A*Star), Singapore, Singapore
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Soman N Abraham
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
19
|
Dukhno O, Ghosh S, Greiner V, Bou S, Godet J, Muhr V, Buchner M, Hirsch T, Mély Y, Przybilla F. Targeted Single Particle Tracking with Upconverting Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11217-11227. [PMID: 38386424 DOI: 10.1021/acsami.3c17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.
Collapse
Affiliation(s)
- Oleksii Dukhno
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Srijayee Ghosh
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Vanille Greiner
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Sophie Bou
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Julien Godet
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
- IMAGeS team at ICube, UMR 7357, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Verena Muhr
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Markus Buchner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Yves Mély
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Frédéric Przybilla
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| |
Collapse
|
20
|
Du X, Che D, Peng B, Zheng Y, Hao Y, Jia T, Zhang X, Geng S. Dual effect of tacrolimus on mast cell-mediated allergy and inflammation through Mas-related G protein-coupled receptor X2. J Dermatol Sci 2023; 112:128-137. [PMID: 37953179 DOI: 10.1016/j.jdermsci.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Topical tacrolimus, although widely used in the treatment of dermatoses, presents with an immediate irritation on initial application resembling a pseudo-allergic reaction. Mas-related G protein-coupled receptor X2 (MRGPRX2) in mast cells (MCs) mediates drug-induced pseudo-allergic reaction and immunoglobulin E (IgE)-independent pruritis in chronic skin diseases. However, the immunosuppression mechanism of tacrolimus on MCs via MRGPRX2 has not been reported. OBJECTIVE To investigate the role of MRGPRX2 and the mechanism of action of tacrolimus on its short-term and long-term applications. METHODS Wild-type mice, KitW-sh/W-sh mice, and MrgprB2-deficient (MUT) mice were used to study the effect of tacrolimus on in vivo anaphylaxis model. LAD2 cells and MRGPRX2-knockdown LAD2 cells were specifically used to derive the associated mechanism of the tacrolimus effect. RESULTS Short-term application of tacrolimus triggers IgE-independent activation of MCs via MRGPRX2/B2 in both in vivo and in vitro experiments. Tacrolimus binds to MRGPRX2, which was verified by fluorescently labeled tacrolimus in cells. On long-term treatment with tacrolimus, the initial allergic reaction fades away corresponding with the downregulation of MRGPRX2, which leads to decreased release of inflammatory cytokines (P < 0.05 to P < 0.001). CONCLUSION Short-term treatment with tacrolimus induces pseudo-allergic reaction via MRGPRX2/B2 in MCs, whereas long-term treatment downregulates expression of MRGPRX2/B2, which may contribute to its potent immunosuppressive effect in the treatment of various skin diseases.
Collapse
Affiliation(s)
- Xueshan Du
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Bin Peng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Hao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Dermatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Tao Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
21
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Liu R, Zhang Y, Wang Y, Huang Y, Gao J, Tian X, Ma T, Zhang T. Anti-inflammatory effect of dictamnine on allergic rhinitis via suppression of the LYN kinase-mediated molecular signaling pathway during mast cell activation. Phytother Res 2023; 37:4236-4250. [PMID: 37329155 DOI: 10.1002/ptr.7904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Mast cells (MCs) are important therapeutic targets for allergic diseases. High-affinity immunoglobulin E (IgE) Fc receptors (FcεRI) trigger abnormal activation of MCs. Allergic rhinitis (AR) is an IgE-mediated antigen inhalation reaction that occurs in the nasal mucosa. MC aggravation and dysfunction were observed during the early stages of AR pathogenesis. Herb-derived dictamnine exhibits anti-inflammatory effects. Here, we investigated the pharmacological effects of herb-derived dictamnine on IgE-induced activation of MCs and an ovalbumin (OVA)-induced murine AR model. The results indicated that dictamnine attenuated OVA-induced local allergic reactions and reduced body temperature in OVA-challenged mice with active systemic anaphylaxis. Additionally, dictamnine decreased the frequency of nasal rubbing and sneezing in an OVA-induced murine AR model. Moreover, dictamnine inhibited FcεRI-activated MC activation in a dose-dependent manner without causing cytotoxicity, reduced the activation of the tyrosine kinase LYN in LAD2 cells, and downregulated the phosphorylation of PLCγ1, IP3R, PKC, Erk1/2, and Akt, which are downstream of LYN. In conclusion, dictamnine suppressed the OVA-stimulated murine model of AR and activated IgE-induced MCs via the LYN kinase-mediated molecular signaling pathway, suggesting that dictamnine may be a promising treatment for AR.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yonghui Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuejin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yihan Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xi Tian
- Department of Nephrology, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Dailey JM, Kee SA, Tharakan A, Kazi A, Burchett JR, Kolawole EM, Boyd Ballance W, Kotha A, Le QT, Schwartz LB, Straus DB, Martin RK, Sebti SM, Ryan JJ. Inhibiting Isoprenylation Suppresses FcεRI-Mediated Mast Cell Function and Allergic Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:527-538. [PMID: 37449905 PMCID: PMC10545418 DOI: 10.4049/jimmunol.2200862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.
Collapse
Affiliation(s)
- Jordan M Dailey
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Sydney A Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| | - Anuj Tharakan
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Aslamuzzaman Kazi
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Jason R Burchett
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | | | | | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| | - Quang T Le
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lawrence B Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - David B Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Said M Sebti
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
24
|
Liu MK, Liu F, Dai YT, Weng XQ, Cheng LL, Fan LQ, Liu H, Jiang L, Sun XJ, Fang H, Wang L, Zhao WL. Case Report: Molecular and microenvironment change upon midostaurin treatment in mast cell leukemia at single-cell level. Front Immunol 2023; 14:1210909. [PMID: 37638009 PMCID: PMC10449247 DOI: 10.3389/fimmu.2023.1210909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Mast cell leukemia is a rare and aggressive disease, predominantly with KIT D816V mutation. With poor response to conventional poly-chemotherapy, mast cell leukemia responded to the midostaurin treatment with a 50% overall response rate (ORR), but complete remission rate is approximately 0%. Therefore, the potential mechanisms of midostaurin resistance and the exact impacts of midostaurin on both gene expression profile and mast cell leukemia microenvironment in vivo are essential for design tailored combination therapy targeting both the tumor cells and the tumor microenvironment. Here we report a 59-year-old male mast cell leukemia patient with KIT F522C mutation treated with midostaurin. Single-cell sequencing of peripheral blood and whole exome sequencing (WES) of bone marrow were performed before and 10 months after midostaurin treatment. In accordance with the clinical response, compared to the pretreatment aberration, the decline of mast cells and increase of T-, NK, B-cells in peripheral blood, and the decrease of the KIT F522C mutation burden in bone marrow were observed. Meanwhile, the emergence of RUNX1 mutation, upregulations of genes expression (RPS27A, RPS6, UBA52, RACK1) on tumor cells, and increased frequencies of T and NK cells with TIGIT, CTLA4, and LAG3 expression were observed after midostaurin treatment, predicting the disease progression of this patient. As far as we know, this is the first case reporting the clinical, immunological, and molecular changes in mast cell leukemia patients before and after midostaurin treatment, illustrating the in vivo mechanisms of midostaurin resistance in mast cell leukemia, providing important clues to develop a sequential option to circumvent tumor progression after targeting oncogene addiction and prolong patients' survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Alblaihed L, Huis In 't Veld MA. Allergic Acute Coronary Syndrome-Kounis Syndrome. Immunol Allergy Clin North Am 2023; 43:503-512. [PMID: 37394256 DOI: 10.1016/j.iac.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Acute coronary syndrome (ACS) in the setting of an allergic/immunologic reaction is known as Kounis syndrome. It is an underdiagnosed and underrecognized disease entity. One must keep a high index of suspicions when managing a patient presenting with cardiac as well as allergic symptoms. There are 3 main variants to the syndrome. Treating the allergic reaction may alleviate the pain; however, ACS guidelines should be followed if cardiac ischemia is present.
Collapse
Affiliation(s)
- Leen Alblaihed
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA. https://twitter.com/LeenAlblaihed
| | - Maite Anna Huis In 't Veld
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA; Department of Emergency Medicine, Diakonessenhuis Utrecht, Bosboomlaan 1, 3582 KE Utrecht, the Netherlands.
| |
Collapse
|
26
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
27
|
Lee JH, Lim JY, Jeon YD, Yun DH, Lee YM, Kim DK. Wheatgrass-and-Aronia-Mixed Extract Suppresses Immunoglobulin E-Mediated Allergic Reactions In Vitro and In Vivo. Int J Mol Sci 2023; 24:11979. [PMID: 37569351 PMCID: PMC10419027 DOI: 10.3390/ijms241511979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells are an important component of immune responses. Immunoglobulin (Ig) E-sensitized mast cells release substances within minutes of allergen exposure, triggering allergic responses. Until now, numerous pharmacological effects of wheatgrass and aronia have been verified, but the effects of wheatgrass and aronia (TAAR)-mixed extract on allergic reactions have not been identified. Therefore, the aim of this study was to demonstrate the anti-allergic effect of TAAR extract on mast cell activation and cutaneous anaphylaxis. In this study, we investigated the anti-allergic effects and related mechanisms of TAAR extract in IgE-activated mast cells in vitro. We also assessed the ameliorating effect of TAAR extract on IgE-mediated passive cutaneous anaphylaxis mice in vivo. The TAAR extract significantly reduced the expression of β-hexosaminidase, histamine, and pro-inflammatory cytokines, which are mediators related to mast cell degranulation, via the regulation of various signaling pathways. The TAAR extract also regulated oxidative-stress-related factors through the Nrf2 signaling pathway. Additionally, treatment of TAAR extract to the passive cutaneous anaphylaxis mouse model improved ear thickness and local ear pigmentation. Taken together, our results suggest that TAAR extract is a potential candidate natural product to treat overall IgE-mediated allergic inflammation and oxidative-stress-related diseases by suppressing mast cell activity.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea; (J.-H.L.); (J.-Y.L.)
| | - Ji-Ye Lim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea; (J.-H.L.); (J.-Y.L.)
| | - Yong-Deok Jeon
- Department of Korean Pharmacy, Woosuk University, Wanju-Gun, Samnye-eup 55338, Republic of Korea;
| | - Dae-Ho Yun
- Department of Health Administration, Kwangju Women’s University, Kwangju 62396, Republic of Korea;
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Dae-Ki Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea; (J.-H.L.); (J.-Y.L.)
| |
Collapse
|
28
|
Hicks NJ, Crozier RWE, MacNeil AJ. JNK signaling during IL-3-mediated differentiation contributes to the c-kit-potentiated allergic inflammatory capacity of mast cells. J Leukoc Biol 2023; 114:92-105. [PMID: 37141385 DOI: 10.1093/jleuko/qiad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
Mast cells are leukocytes that mediate various aspects of immunity and drive allergic hypersensitivity pathologies. Mast cells differentiate from hematopoietic progenitor cells in a manner that is largely IL-3 dependent. However, molecular mechanisms, including the signaling pathways that control this process, have yet to be thoroughly investigated. Here, we examine the role of the ubiquitous and critical mitogen-activated protein kinase signaling pathway due to its position downstream of the IL-3 receptor. Hematopoietic progenitor cells were harvested from the bone marrow of C57BL/6 mice and differentiated to bone marrow-derived mast cells in the presence of IL-3 and mitogen-activated protein kinase inhibitors. Inhibition of the JNK node of the mitogen-activated protein kinase pathway induced the most comprehensive changes to the mature mast cell phenotype. Bone marrow-derived mast cells differentiated during impaired JNK signaling expressed impaired c-kit levels on the mast cell surface, first detected at week 3 of differentiation. Following 1 wk of inhibitor withdrawal and subsequent stimulation of IgE-sensitized FcεRI receptors with allergen (TNP-BSA) and c-kit receptors with stem cell factor, JNK-inhibited bone marrow-derived mast cells exhibited impediments in early-phase mediator release through degranulation (80% of control), as well as late-phase secretion of CCL1, CCL2, CCL3, TNF, and IL-6. Experiments with dual stimulation conditions (TNP-BSA + stem cell factor or TNP-BSA alone) showed that impediments in mediator secretion were found to be mechanistically linked to reduced c-kit surface levels. This study is the first to implicate JNK activity in IL-3-mediated mast cell differentiation and also identifies development as a critical and functionally determinative period.
Collapse
Affiliation(s)
- Natalie J Hicks
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
29
|
Wang Z, Zhao X, Zhou H, Che D, Du X, Ye D, Zeng W, Geng S. Activation of ryanodine-sensitive calcium store drives pseudo-allergic dermatitis via Mas-related G protein-coupled receptor X2 in mast cells. Front Immunol 2023; 14:1207249. [PMID: 37404822 PMCID: PMC10315577 DOI: 10.3389/fimmu.2023.1207249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by β-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihui Zeng
- *Correspondence: Songmei Geng, ; Weihui Zeng,
| | | |
Collapse
|
30
|
Jiaqi W, Yanjun C. Research progress on the allergic mechanism, molecular properties, and immune cross-reactivity of the egg allergen Gal d 5. Front Nutr 2023; 10:1205671. [PMID: 37351194 PMCID: PMC10282150 DOI: 10.3389/fnut.2023.1205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Eggs and their products are commonly consumed in food products worldwide, and in addition to dietary consumption, egg components are widely used in the food industry for their antimicrobial, cooking, and other functional properties. Globally, eggs are the second most common allergenic food after milk. However, current research on egg allergy primarily focuses on egg white allergens, while research on egg yolk allergens is not comprehensive enough. Therefore, summarizing and analyzing the important allergen α-livetin in egg yolk is significant in elucidating the mechanism of egg allergy and exploring effective desensitization methods. This paper discusses the incidence, underlying mechanism, and clinical symptoms of egg allergy. This article provides a comprehensive summary and analysis of the current research status concerning the molecular structural properties, epitopes, and immune cross-reactivity of the egg yolk allergen, Gal d 5. Additionally, it examines the effects of various processing methods on egg allergens. The article also offers suggestions and outlines potential future research directions and ideas in this field.
Collapse
|
31
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
32
|
Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1β from Human Mast Cells, Augmented by IL-33. Int J Mol Sci 2023; 24:ijms24119487. [PMID: 37298438 DOI: 10.3390/ijms24119487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1β (IL-1β) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1β, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1β and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.
Collapse
Affiliation(s)
- Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Theoharis C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| |
Collapse
|
33
|
Zeng J, Hao J, Yang Z, Ma C, Gao L, Chen Y, Li G, Li J. Anti-Allergic Effect of Dietary Polyphenols Curcumin and Epigallocatechin Gallate via Anti-Degranulation in IgE/Antigen-Stimulated Mast Cell Model: A Lipidomics Perspective. Metabolites 2023; 13:metabo13050628. [PMID: 37233669 DOI: 10.3390/metabo13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenol-rich foods exhibit anti-allergic/-inflammatory properties. As major effector cells of allergies, mast cells undergo degranulation after activation and then initiate inflammatory responses. Key immune phenomena could be regulated by the production and metabolism of lipid mediators by mast cells. Here, we analyzed the antiallergic activities of two representative dietary polyphenols, curcumin and epigallocatechin gallate (EGCG), and traced their effects on cellular lipidome rewiring in the progression of degranulation. Both curcumin and EGCG significantly inhibited degranulation as they suppressed the release of β-hexosaminidase, interleukin-4, and tumor necrosis factor-α from the IgE/antigen-stimulated mast cell model. A comprehensive lipidomics study involving 957 identified lipid species revealed that although the lipidome remodeling patterns (lipid response and composition) of curcumin intervention were considerably similar to those of EGCG, lipid metabolism was more potently disturbed by curcumin. Seventy-eight percent of significant differential lipids upon IgE/antigen stimulation could be regulated by curcumin/EGCG. LPC-O 22:0 was defined as a potential biomarker for its sensitivity to IgE/antigen stimulation and curcumin/EGCG intervention. The key changes in diacylglycerols, fatty acids, and bismonoacylglycerophosphates provided clues that cell signaling disturbances could be associated with curcumin/EGCG intervention. Our work supplies a novel perspective for understanding curcumin/EGCG involvement in antianaphylaxis and helps guide future attempts to use dietary polyphenols.
Collapse
Affiliation(s)
- Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jingwen Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhiqiang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chunyu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Longhua Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yue Chen
- The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
34
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
35
|
Choi YJ, Yoo JS, Jung K, Rice L, Kim D, Zlojutro V, Frimel M, Madden E, Choi UY, Foo SS, Choi Y, Jiang Z, Johnson H, Kwak MJ, Kang S, Hong B, Seo GJ, Kim S, Lee SA, Amini-Bavil-Olyaee S, Maazi H, Akbari O, Asosingh K, Jung JU. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation. Nat Commun 2023; 14:2045. [PMID: 37041174 PMCID: PMC10090139 DOI: 10.1038/s41467-023-37873-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
Lung mast cells are important in host defense, and excessive proliferation or activation of these cells can cause chronic inflammatory disorders like asthma. Two parallel pathways induced by KIT-stem cell factor (SCF) and FcεRI-immunoglobulin E interactions are critical for the proliferation and activation of mast cells, respectively. Here, we report that mast cell-expressed membrane protein1 (MCEMP1), a lung-specific surface protein, functions as an adaptor for KIT, which promotes SCF-mediated mast cell proliferation. MCEMP1 elicits intracellular signaling through its cytoplasmic immunoreceptor tyrosine-based activation motif and forms a complex with KIT to enhance its autophosphorylation and activation. Consequently, MCEMP1 deficiency impairs SCF-induced peritoneal mast cell proliferation in vitro and lung mast cell expansion in vivo. Mcemp1-deficient mice exhibit reduced airway inflammation and lung impairment in chronic asthma mouse models. This study shows lung-specific MCEMP1 as an adaptor for KIT to facilitate SCF-mediated mast cell proliferation.
Collapse
Affiliation(s)
- Youn Jung Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyle Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Logan Rice
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dokyun Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Violetta Zlojutro
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Evan Madden
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Un Yung Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Suan-Sin Foo
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Younho Choi
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA
| | - Zhongyi Jiang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Holly Johnson
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seokmin Kang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Brian Hong
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gil Ju Seo
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stephanie Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Samad Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Biosafety Development Group, Cellular Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA.
| |
Collapse
|
36
|
Raj S, Unsworth LD. Targeting active sites of inflammation using inherent properties of tissue-resident mast cells. Acta Biomater 2023; 159:21-37. [PMID: 36657696 DOI: 10.1016/j.actbio.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Mast cells play a pivotal role in initiating and directing host's immune response. They reside in tissues that primarily interface with the external environment. Activated mast cells respond to environmental cues throughout acute and chronic inflammation through releasing immune mediators via rapid degranulation, or long-term de novo expression. Mast cell activation results in the rapid release of a variety of unique enzymes and reactive oxygen species. Furthermore, the increased density of mast cell unique receptors like mas related G protein-coupled receptor X2 also characterizes the inflamed tissues. The presence of these molecules (either released mediators or surface receptors) are particular to the sites of active inflammation, and are a result of mast cell activation. Herein, the molecular design principles for capitalizing on these novel mast cell properties is discussed with the goal of manipulating localized inflammation. STATEMENT OF SIGNIFICANCE: Mast cells are immune regulating cells that play a crucial role in both innate and adaptive immune responses. The activation of mast cells causes the release of multiple unique profiles of biomolecules, which are specific to both tissue and disease. These unique characteristics are tightly regulated and afford a localized stimulus for targeting inflammatory diseases. Herein, these important mast cell attributes are discussed in the frame of highlighting strategies for the design of bioresponsive functional materials to target regions of inflammations.
Collapse
Affiliation(s)
- Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada.
| |
Collapse
|
37
|
Fujimura Y, Yoshimoto T, Fujino K, Nezu A, Marugame Y, Bae J, Kumazoe M, Tachibana H. Bioactivity-boosting strategy based on combination of anti-allergic O-methylated catechin with a Citrus flavanone, hesperetin. J Nat Med 2023; 77:363-369. [PMID: 36494586 DOI: 10.1007/s11418-022-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Many patients with allergies have anxiety about taking anti-allergic medicines due to their side effects and increased medical expenses. Thus, developing functional foods/agricultural products for allergy prevention is strongly desired. In this study, we revealed that a Citrus flavanone, hesperetin, amplified IgE/antigen-mediated degranulation-inhibitory potency of anti-allergic catechin, (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3''Me), in the rat basophilic/mast cell line RBL-2H3. Hesperetin also significantly elevated the activation of acid sphingomyelinase (ASM), essential for eliciting anti-allergic effect of EGCG3''Me through the cell surficial protein, 67-kDa laminin receptor (67LR). Furthermore, oral administration of the highly absorbent hesperidin, α-glucosyl hesperidin, also enhanced the inhibitory potency of EGCG3''Me-rich 'Benifuuki' green tea (Camellia sinensis L.) on passive cutaneous anaphylaxis (PCA) reaction evoked by IgE/antigen in BALB/c mice. These observations indicate that hesperetin amplifies the ability of EGCG3''Me to inhibit the IgE/antigen-mediated degranulation through activating ASM signaling.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Takanori Yoshimoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Konatsu Fujino
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ayaka Nezu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
38
|
Degranulation of Murine Resident Cochlear Mast Cells: A Possible Factor Contributing to Cisplatin-Induced Ototoxicity and Neurotoxicity. Int J Mol Sci 2023; 24:ijms24054620. [PMID: 36902051 PMCID: PMC10003316 DOI: 10.3390/ijms24054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Permanent hearing loss is one of cisplatin's adverse effects, affecting 30-60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents' cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear explants. Here, we followed that observation and found that the murine cochlear mast cells degranulate in response to cisplatin and that the mast cell stabilizer cromoglicic acid (cromolyn) inhibits this process. Additionally, cromolyn significantly prevented cisplatin-induced loss of auditory hair cells and spiral ganglion neurons. Our study provides the first evidence for the possible mast cell participation in cisplatin-induced damage to the inner ear.
Collapse
|
39
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
40
|
Sun C, Liang H, Zhao Y, Li S, Li X, Yuan X, Cheng G, Zhang Y, Liu M, Guan Y, Yao J, Zhang G. Jingfang Granules improve glucose metabolism disturbance and inflammation in mice with urticaria by up-regulating LKB1/AMPK/SIRT1 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115913. [PMID: 36347302 DOI: 10.1016/j.jep.2022.115913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granule (JFG) is a Traditional Chinese Medicine prescription to empirically treat skin disease such as urticaria in clinical practice. However, the potential mechanisms of JFG on urticaria are not fully defined. AIM OF STUDY The aim of this study is to investigate the mechanisms of JFG in treating urticaria through an OVA/aluminum hydroxide induced urticaria mice model. MATERIALS AND METHODS KM mice were injected intraperitoneally (i.p.) with OVA/aluminium hydroxide to establish the model with urticaria. After the mice were administered JFG, itching degree and hematoxylin and eosin (H&E) staining were used to assess the protective effect of JFG on mice with urticaria. The regulatory networks were investigated by proteomics and central carbon metabolomics. Spleen T lymphocyte subsets were detected by flow cytometry. Peripheral blood cytokines were detected using ELISA kits or Cytometric Bead Array (CBA) kits. The protein expression of skin tissue was detected by western blot or immunohistochemical staining. RESULTS JFG significantly relived skin tissue lesions and skin pruritus in mice with urticaria. Meanwhile, JFG significantly decreased IgE, IL-1β, IL-6, IL-4, TNF-α and IL-17A levels and increased IFN-γ levels in the serum of urticaria mice by inhibiting the expression of inflammation associated proteins including TLR4 and p-NF-κB p65, p-ERK1/2, p-JNK and p-p38, NLRP3, ASC and cleaved caspase-1. The results of proteomics, central carbon metabolomics, western blot and immunohistochemical staining confirmed that JFG inhibited Glycolysis/Gluconeogenesis and Pentose phosphate pathway in the skin tissue of urticaria mice by activating the LKB1/AMPK/SIRT1 axis and then downregulating the protein expressions of Glut1, TORC2, p-CREB, PEPCK, HNF4α and G6Pase. CONCLUSION The current study demonstrates that JFG is effective in treating OVA/aluminum hydroxide-induced skin lesions and inflammation in mice, and JFG exhibits the clinical benefits via modulating LKB1/AMPK/SIRT1 axis, which in turn inhibits Glycolysis/Gluconeogenesis and Pentose phosphate pathway.
Collapse
Affiliation(s)
- Chenghong Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Hongbao Liang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| | - Yun Zhao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiangzi Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| | - Xiaomei Yuan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Guoliang Cheng
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Yongkang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Mingfei Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China.
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| |
Collapse
|
41
|
Pejcic AV, Milosavljevic MN, Jankovic S, Davidovic G, Folic MM, Folic ND. Kounis Syndrome Associated With the Use of Diclofenac. Tex Heart Inst J 2023; 50:490621. [PMID: 36735919 PMCID: PMC9969777 DOI: 10.14503/thij-21-7802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diclofenac is a widely used analgesic, anti-inflammatory, antipyretic drug. In several case reports, its use was associated with the occurrence of Kounis syndrome. The aim of this review was to investigate and summarize published cases of Kounis syndrome suspected to be associated with the use of diclofenac. METHODS Electronic searches were conducted in PubMed/MEDLINE, Scopus, Web of Science, Google Scholar, and the Serbian Citation Index. RESULTS Twenty publications describing the 20 patients who met inclusion criteria were included in the systematic review. Specified patient ages ranged from 34 to 81 years. Eighteen (90.0%) patients were male. Five patients (25.0%) reported a previous reaction to diclofenac. Reported time from the used dose of diclofenac to onset of the first reaction symptoms ranged from immediately to 5 hours. Diclofenac caused both type I and type II Kounis syndrome, with the presence of various cardiovascular, gastrointestinal, dermatologic, and respiratory signs and symptoms. Most patients experienced hypotension (n = 15 [75.0%]) and chest pain (n = 12 [60.0%]). The most frequently reported finding on electrocardiogram was ST-segment elevations (n = 17 [85.0%]). Coronary angiogram showed normal coronary vessels in 9 patients (45.0%), with some pathologic findings in 8 patients (40.0%). CONCLUSION Clinicians should be aware that Kounis syndrome may be an adverse effect of diclofenac. Prompt recognition and withdrawal of the drug, with treatment of both allergic and cardiac symptoms simultaneously, is important.
Collapse
Affiliation(s)
- Ana V. Pejcic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos N. Milosavljevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodan Jankovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
,Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Goran Davidovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko M. Folic
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
,Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena D. Folic
- Pediatric Clinic, University Clinical Centre Kragujevac, Kragujevac, Serbia
,Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
42
|
Zhernov YV, Simanduyev MY, Zaostrovtseva OK, Semeniako EE, Kolykhalova KI, Fadeeva IA, Kashutina MI, Vysochanskaya SO, Belova EV, Shcherbakov DV, Sukhov VA, Sidorova EA, Mitrokhin OV. Molecular Mechanisms of Scombroid Food Poisoning. Int J Mol Sci 2023; 24:ijms24010809. [PMID: 36614252 PMCID: PMC9821622 DOI: 10.3390/ijms24010809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Scombroid food poisoning (SFP) is a foodborne disease that develops after consumption of fresh fish and, rarely, seafood that has fine organoleptic characteristics but contains a large amount of exogenous histamine. SFP, like other food pseudo-allergic reactions (FPA), is a disorder that is clinically identical to allergic reactions type I, but there are many differences in their pathogenesis. To date, SFP has been widespread throughout the world and is an urgent problem, although exact epidemiological data on incidence varies greatly. The need to distinguish SFP from true IgE-associated allergy to fish and seafood is one of the most difficult examples of the differential diagnosis of allergic conditions. The most important difference is the absence of an IgE response in SFP. The pathogenesis of SFP includes a complex system of interactions between the body and chemical triggers such as exogenous histamine, other biogenic amines, cis-urocanic acid, salicylates, and other histamine liberators. Because of the wide range of molecular pathways involved in this process, it is critical to understand their differences. This may help predict and prevent poor outcomes in patients and contribute to the development of adequate hygienic rules and regulations for seafood product safety. Despite the vast and lengthy history of research on SFP mechanisms, there are still many blank spots in our understanding of this condition. The goals of this review are to differentiate various molecular mechanisms of SFP and describe methods of hygienic regulation of some biogenic amines that influence the concentration of histamine in the human body and play an important role in the mechanism of SFP.
Collapse
Affiliation(s)
- Yury V. Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Medical Anthropology, N.N. Miklukho-Maclay Institute of Ethnology and Anthropology, Russian Academy of Sciences, 119017 Moscow, Russia
- Department of Medical and Biological Disciplines, Reaviz Medical University, 107564 Moscow, Russia
- Correspondence: ; Tel.: +7-(915)-1552000
| | - Mark Y. Simanduyev
- The Baku Branch, I.M. Sechenov First Moscow State Medical University (Sechenov University), Baku AZ1141, Azerbaijan
| | - Olga K. Zaostrovtseva
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina E. Semeniako
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Kseniia I. Kolykhalova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Inna A. Fadeeva
- Department of Foreign Language, Faculty of World Economy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
- Department of Public Administration in Foreign Policy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
| | - Maria I. Kashutina
- Loginov Moscow Clinical Scientific and Practical Center, 111123 Moscow, Russia
- Department of Public Health Promotion, National Research Centre for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sonya O. Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Elena V. Belova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Denis V. Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly A. Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina A. Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Oleg V. Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
43
|
Lee JE, Choi MY, Min KY, Jo MG, Kim YM, Kim HS, Choi WS. Drug repositioning of anti-microbial agent nifuratel to treat mast cell-mediated allergic responses. Int J Immunopathol Pharmacol 2023; 37:3946320231202349. [PMID: 37706235 PMCID: PMC10503296 DOI: 10.1177/03946320231202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Objectives: Our objective was to assess the effects and mechanisms of nifuratel on IgE-mediated mast cell (MC) degranulation and anaphylaxis in both in vitro and in vivo settings.Methods: The anti-allergic activity of nifuratel was evaluated in mast cell cultures and the passive cutaneous anaphylaxis (PCA) model. The effects of nifuratel on signaling pathways stimulated by antigen in mast cells were measured by immunoblotting, immunoprecipitation, in vitro protein tyrosine kinase assay, and other molecular biological methods.Results: Nifuratel reversibly inhibited antigen-induced degranulation of MCs (IC50, approximately 0.34 μM for RBL-2H3 cells; approximately 0.94 μM for BMMCs) and suppressed the secretion of inflammatory cytokines IL-4 (IC50, approximately 0.74 μM) and TNF-α (IC50, approximately 0.48 μM). Mechanism studies showed that nifuratel inhibited the phosphorylation of Syk by antigen via the inhibition of recruitment of cytosolic Syk to the ɣ subunit of FcεRI, and decreased the activation of Syk downstream signaling proteins LAT, Akt, and MAPKs. Finally, nifuratel dose-dependently suppressed the IgE-mediated passive cutaneous anaphylaxis in mice (ED50, approximately 22 mg/kg).Conclusion: Our findings suggest that nifuratel inhibits pathways essential for the activation of mast cells to suppress anaphylaxis, thereby indicating that the anti-microbial drug, nifuratel, could be a potential drug candidate for IgE-mediated allergic disorders.
Collapse
Affiliation(s)
- Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Min Yeong Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
44
|
Kim M, Jang G, Kim KS, Shin J. Detrimental effects of simulated microgravity on mast cell homeostasis and function. Front Immunol 2022; 13:1055531. [PMID: 36591304 PMCID: PMC9800517 DOI: 10.3389/fimmu.2022.1055531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Exposure to microgravity causes significant alterations in astronauts' immune systems during spaceflight; however, it is unknown whether microgravity affects mast cell homeostasis and activation. Here we show that microgravity negatively regulates the survival and effector function of mast cells. Murine bone marrow-derived mast cells (BMMCs) were cultured with IL-3 in a rotary cell culture system (RCCS) that generates a simulated microgravity (SMG) environment. BMMCs exposed to SMG showed enhanced apoptosis along with the downregulation of Bcl-2, and reduced proliferation compared to Earth's gravity (1G) controls. The reduction in survival and proliferation caused by SMG exposure was recovered by stem cell factor. In addition, SMG impaired mast cell degranulation and cytokine secretion. BMMCs pre-exposed to SMG showed decreased release of β-hexosaminidase, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) upon stimulation with phorbol 12-myristate-13-acetate (PMA) plus calcium ionophore ionomycin, which correlated with decreased calcium influx. These findings provide new insights into microgravity-mediated alterations of mast cell phenotypes, contributing to the understanding of immune system dysfunction for further space medicine research.
Collapse
Affiliation(s)
- Minjin Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Gyeongin Jang
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Kyu-Sung Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Otorhinolaryngology-Head and Neck Surgery, Inha University Hospital, Incheon, Republic of Korea
| | - Jinwook Shin
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea,*Correspondence: Jinwook Shin,
| |
Collapse
|
45
|
Du JY, Lai HY, Hsiao YW, Chi JY, Wang JM. Pentraxin 3 Facilitates Shrimp-Allergic Responses in IgE-Activated Mast Cells. J Immunol Res 2022; 2022:8953235. [PMID: 36530573 PMCID: PMC9750785 DOI: 10.1155/2022/8953235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Since food avoidance is currently the only way to prevent allergic reactions to shrimp, a better understanding of molecular events in the induction and progression of allergy, including food allergy, is needed for developing strategies to inhibit allergic responses. Pentraxin 3 (PTX3) is rapidly produced directly from inflammatory or damaged tissues and is involved in acute immunoinflammatory responses. However, the role of PTX3 in the development of immediate IgE-mediated shrimp allergy remains unknown. METHODS Wild-type BALB/c mice were immunized intraperitoneally and were challenged with shrimp extract. Serum IgE and PTX3 levels were analyzed. RBL-2H3 cells were stimulated with either dinitrophenyl (DNP) or serum of shrimp-allergic mice, and markers of degranulation, proinflammatory mediators, and phosphorylation of signal proteins were analyzed. We further examined the effect of PTX3 in shrimp extract-induced allergic responses in vitro and in vivo. RESULTS Mice with shrimp allergy had increased PTX3 levels in the serum and small intestine compared with healthy mice. PTX3 augmented degranulation, the production of proinflammatory mediators, and activation of the Akt and MAPK signaling pathways in mast cells upon DNP stimulation. Furthermore, the expression of transcription factor CCAAT/enhancer-binding protein delta (CEBPD) was elevated in PTX3-mediated mast cell activation. Finally, the PTX3 inhibitor RI37 could attenuate PTX3-induced degranulation, proinflammatory mediator expression, and phosphorylation of the Akt and MAPK signaling. CONCLUSIONS The results suggested that PTX3 can facilitate allergic responses. Our data provide new insight to demonstrate that PTX3 is a cause of allergic inflammation and that RI37 can serve as a therapeutic agent in shrimp allergy.
Collapse
Affiliation(s)
- Jyun-Yi Du
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
46
|
Deng Q, Yao Y, Yang J, Khoshaba R, Shen Y, Wang X, Cao D. AKR1B8 deficiency drives severe DSS-induced acute colitis through invasion of luminal bacteria and activation of innate immunity. Front Immunol 2022; 13:1042549. [PMID: 36518763 PMCID: PMC9742539 DOI: 10.3389/fimmu.2022.1042549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dysfunction of intestinal epithelial cells (IECs) promotes inflammatory bowel disease (IBD) and associated colorectal cancer (CRC). AKR1B8 deficiency impairs the IEC barrier function, leading to susceptibility to chronic colitis induced by dextran sulfate sodium (DSS), yet it remains unclear how acute colitic response is in AKR1B8 deficient mice. Methods AKR1B8 knockout (KO) and littermate wild type mice were exposed to oral 1.5% DSS in drinking water for 6 days. Disease activity index and histopathological inflammation scores by H&E staining were calculated for colitic severity; permeability was assessed by fluorescein isothiocyanate dextran (FITC-Dextran) probes and bacterial invasion and transmission were detected by in situ hybridization in mucosa or by culture in blood agar plates. Immunofluorescent staining and flow cytometry were applied for immune cell quantification. Toll-like receptor 4 (TLR4) and target gene expression was analyzed by Western blotting and qRT-PCR. Results AKR1B8 KO mice developed severe acute colitis at a low dose (1.5%) of DSS in drinking water compared to wild type controls. In AKR1B8 KO mice, FITC-dextran was penetrated easily and luminal bacteria invaded to the surface of IEC layer on day 3, and excessive bacteria translocated into the colonic mucosa, mesenteric lymph nodes (MLNs) and liver on day 6, which was much mild in wild type mice. Hyper-infiltration of neutrophils and basophils occurred in AKR1B8 KO mice, and monocytes in spleen and macrophages in colonic mucosa increased markedly compared to wild type mice. TLR4 signaling in colonic epithelial cells of AKR1B8 KO mice was activated to promote great IL-1β and IL-6 expression compared to wild type mice. Conclusions AKR1B8 deficiency in IECs drives severe acute colitis induced by DSS at a low dose through activation of the innate immunity, being a novel pathogenic factor of colitis.
Collapse
Affiliation(s)
- Qiulin Deng
- Department of Proctology, The Affiliated Nanhua Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL, United States,Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Yi Shen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL, United States
| | - Xin Wang
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States,Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States,*Correspondence: Xin Wang, ; Deliang Cao,
| | - Deliang Cao
- Department of Gastroenterology, The First Affiliated Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China,Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL, United States,*Correspondence: Xin Wang, ; Deliang Cao,
| |
Collapse
|
47
|
Alam SB, Wagner A, Willows S, Kulka M. Quercetin and Resveratrol Differentially Decrease Expression of the High-Affinity IgE Receptor (FcεRI) by Human and Mouse Mast Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196704. [PMID: 36235240 PMCID: PMC9573482 DOI: 10.3390/molecules27196704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Mast cells (MC) synthesize and store proinflammatory mediators and are centrally important in atopic diseases such as asthma and atopic dermatitis. Quercetin a and resveratrol are plant derived polyphenolic compounds with anti-inflammatory properties that inhibit MC degranulation and mediator release. However, the underlying mechanism of these inhibitory effects on MC is poorly understood and it is unclear whether this is a general effect on all MC phenotypes. We have characterized and compared the effects of quercetin with resveratrol on human (LAD2) and mouse (MC/9 and BMMC) MC mediator release, receptor expression and FcεRI signaling to better understand the mechanisms involved in quercetin and resveratrol-mediated inhibition of MC activation. Quercetin significantly decreased the expression of FcεRI by BMMC and MC/9, although the effects on MC/9 were associated with a significant reduction in cell viability. Quercetin also inhibited antigen-stimulated TNF release by BMMC. Although neither quercetin nor resveratrol significantly altered antigen-stimulated BMMC degranulation or downstream signaling events such as phosphorylation of spleen tyrosine kinase (SYK) or extracellular signal-regulated kinase 1/2 (ERK), resveratrol inhibited ERK phosphorylation and FcεRI- stimulated degranulation in LAD2. Our data suggests that quercetin and resveratrol inhibit human and mouse MC differentially and that these effects are associated with modification of FcεRI expression, signaling (phosphorylation of SYK and ERK) and mediator release.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
- Correspondence:
| | - Ashley Wagner
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
| | - Steven Willows
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
| | - Marianna Kulka
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
- Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
48
|
Matsuoka I, Yoshida K, Ito MA. Purinergic regulation of mast cell function: P2X4 receptor-mediated enhancement of allergic responses. J Pharmacol Sci 2022; 150:94-99. [PMID: 36055757 DOI: 10.1016/j.jphs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022] Open
Abstract
Adenosine triphosphate (ATP) initially attracted attention as a neurotransmitter, with much research conducted on the regulation of neurotransmission in the autonomic and central nervous systems. ATP is also abundant as an energy currency in all living cells and is released into extracellular spaces by various regulated mechanisms. The role of ATP and related purine and pyrimidine nucleotides as extracellular signaling molecules in the regulation of immune cell functions has been reported as evidence for purinergic signaling and has become the focus of attention as therapeutic targets for various diseases. Mast cells (MCs) are distributed in tissues in contact with the outside environment and are the first immune cells to respond to non-microbial environmental antigens. Although extracellular ATP is known as an activator of MCs, the details remain to be investigated. Based on our series of studies, this review describes the unique features of ionotropic P2X4 receptor signals in MC functions. The role of purinergic signaling may exist in combination with various physiological, chemical and physical stimuli. The characteristics of P2X4 receptor-mediated action in MCs described in this article may provide clues to reveal the previously unknown effects induced by purinergic signaling.
Collapse
Affiliation(s)
- Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
49
|
Abstract
Urticaria is an inflammatory skin disorder that affects up to 20% of the world population at some point during their life. It presents with wheals, angioedema or both due to activation and degranulation of skin mast cells and the release of histamine and other mediators. Most cases of urticaria are acute urticaria, which lasts ≤6 weeks and can be associated with infections or intake of drugs or foods. Chronic urticaria (CU) is either spontaneous or inducible, lasts >6 weeks and persists for >1 year in most patients. CU greatly affects patient quality of life, and is linked to psychiatric comorbidities and high healthcare costs. In contrast to chronic spontaneous urticaria (CSU), chronic inducible urticaria (CIndU) has definite and subtype-specific triggers that induce signs and symptoms. The pathogenesis of CSU consists of several interlinked events involving autoantibodies, complement and coagulation. The diagnosis of urticaria is clinical, but several tests can be performed to exclude differential diagnoses and identify underlying causes in CSU or triggers in CIndU. Current urticaria treatment aims at complete response, with a stepwise approach using second-generation H1 antihistamines, omalizumab and cyclosporine. Novel treatment approaches centre on targeting mediators, signalling pathways and receptors of mast cells and other immune cells. Further research should focus on defining disease endotypes and their biomarkers, identifying new treatment targets and developing improved therapies.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Ana M Giménez-Arnau
- Urticaria Center of Reference and Excellence (UCARE), Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Universitat Autònoma, Barcelona, Spain
| | - Kanokvalai Kulthanan
- Urticaria Center of Reference and Excellence (UCARE), Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jonny Peter
- Urticaria Center of Reference and Excellence (UCARE), Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Urticaria Center of Reference and Excellence (UCARE), Allergy and Immunology Unit, University of Cape Town, Lung Institute, Cape Town, South Africa
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| |
Collapse
|
50
|
Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185857. [PMID: 36144594 PMCID: PMC9505237 DOI: 10.3390/molecules27185857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods for a comprehensive analysis of the allergenicity changes of seafood allergens induced by non-thermal processing. The IgE-binding capacities/immunoreactivity of seafood allergens are reduced by the loss of conformation during non-thermal processing. Concretely, the destruction of native structure includes degradation, aggregation, uncoiling, unfolding, folding, and exposure, leading to masking of the epitopes. Moreover, most studies rely on IgE-mediated assays to evaluate the allergenic potential of seafood protein. This is not convincing enough to assess the effect of novel food processing techniques. Thus, further studies must be conducted with functional assays, in vivo assays, animal trials, simulated digestion, and intestinal microflora to strengthen the evidence. It also enables us to better identify the effects of non-thermal processing treatment, which would help further analyze its mechanism.
Collapse
|