1
|
Yu Z, Zhu Y, Chen Y, Feng C, Zhang Z, Guo X, Chen H, Liu X, Yuan Y, Chen H. Nutrient-sensing alteration leads to age-associated distortion of intestinal stem cell differentiating direction. Nat Commun 2024; 15:9243. [PMID: 39455549 PMCID: PMC11512028 DOI: 10.1038/s41467-024-53675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nutrient-sensing pathways undergo deregulation in aged animals, exerting a pivotal role in regulating the cell cycle and subsequent stem cell division. Nevertheless, their precise functions in governing pluripotent stem cell differentiation remain largely elusive. Here, we uncovered a significant alteration in the cellular constituents of the intestinal epithelium in aged humans and mice. Employing Drosophila midgut and mouse organoid culture models, we made an observation regarding the altered trajectory of differentiation in intestinal stem cells (ISC) during overnutrition or aging, which stems from the erroneous activation of the insulin receptor signaling pathway. Through genetic analyses, we ascertained that the nutrient-sensing pathway regulated the direction of ISC differentiation by modulating the maturation of endosomes and SOX21A transcription factor. This study elucidates a nutrient-sensing pathway-mediated mechanism underlying stem cell differentiation, offering insights into the etiology of stem cell dysfunction in aged animals, including humans.
Collapse
Affiliation(s)
- Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuedan Zhu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenxi Feng
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Tang J, Ma Y, Li M, Liu X, Wang Y, Zhang J, Shu H, Liu Z, Zhang C, Fu L, Hu J, Zhang Y, Jia Z, Feng Y. FADD regulates adipose inflammation, adipogenesis, and adipocyte survival. Cell Death Discov 2024; 10:323. [PMID: 39009585 PMCID: PMC11250791 DOI: 10.1038/s41420-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.
Collapse
Affiliation(s)
- Jianlei Tang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Endocrinology Department of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Meilin Li
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Yuting Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Luo H, Wang J, Lin F, Liu Y, Wu X, Li G, Su C, Chen J, Xiong F, Mo J, Zheng Z, Zheng X, Li Q, Zha L. Macrophage exosomes mediate palmitic acid-induced metainflammation by transferring miR-3064-5p to target IκBα and activate NF-κB signaling. J Adv Res 2024:S2090-1232(24)00261-3. [PMID: 38960278 DOI: 10.1016/j.jare.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION High palmitic acid (PA) levels trigger metainflammation, facilitating the onset and progression of chronic metabolic diseases. Recently, exosomes were identified as new inflammation mediators. However, the mechanism by which macrophage exosomes mediate PA-induced inflammation remains unclear. OBJECTIVES To explore how PA induces metainflammation through macrophage exosomes. METHODS Exosomes secreted by RAW264.7 mouse macrophages stimulated with PA (ExosPA) or not (Exos) were prepared by ultracentrifugation. The differential miRNAs between ExosPA and Exos were identified by high-throughput sequencing, and their targeted mRNAs and proteins were bioinformatically analyzed and verified by qPCR and western blot. Mouse macrophages and metabolic cells (AML-12 hepatocytes, C2C12 myocytes or 3T3-L1 adipocytes) were treated with ExosPA or Exos. The verified miRNAs and its targeted molecules related to inflammation were analyzed in recipient cells. Furthers, exosomes were prepared from primary peritoneal macrophages isolated from AIN93G diet-fed (Control PM-Exos) or HPD-fed (PA PM-Exos) mice. Control or PA PM-Exos were then tail vein injected (30 μg) into mice (n = 10), once a week for 2 weeks. The verified miRNA and its targets in blood, blood exosomes, and metabolic tissues were detected. Finally, measured the levels of miRNA, inflammatory factors, and fatty acids in the blood of 20 obese/overweight individuals and 20 healthy individuals. RESULTS ExoPA activate NF-κB signaling and enhance inflammatory enzyme/cytokine production in macrophages and metabolic cells. ExoPA enrich miR-3064-5p and target to inhibit IκBα as verified by exosome inhibitors and miR-3064-5p mimics and inhibitors. HPD elevates exosomal miR-3064-5p, macrophage exosomal miR-3064-5p, and inflammatory cytokine levels in mice circulation. PA PM-Exos from HPD-fed mice triggered inflammation in the circulation and metabolic tissues/organs of chow diet-fed mice. Overweight/obese individuals exhibit increased levels of circulating palmitoleic acid, exosomal miR-3064-5p, and high-sensitivity C-reactive proteins. CONCLUSIONS Macrophage exosomes transferring miR-3064-5p to target IκBα and activate NF-κB signaling in metabolic cells is a mechanism of PA-induced metainflammation.
Collapse
Affiliation(s)
- Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xinglong Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Gan Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000 Chenzhou, PR China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou 511450, Guangdong, PR China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
6
|
Xu B, Wu Q, La R, Lu L, Abdu FA, Yin G, Zhang W, Ding W, Ling Y, He Z, Che W. Is systemic inflammation a missing link between cardiometabolic index with mortality? Evidence from a large population-based study. Cardiovasc Diabetol 2024; 23:212. [PMID: 38902748 PMCID: PMC11191290 DOI: 10.1186/s12933-024-02251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND This study sought to elucidate the associations of cardiometabolic index (CMI), as a metabolism-related index, with all-cause and cardiovascular mortality among the older population. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), we further explored the potential mediating effect of inflammation within these associations. METHODS A cohort of 3029 participants aged over 65 years old, spanning six NHANES cycles from 2005 to 2016, was enrolled and assessed. The primary endpoints of the study included all-cause mortality and cardiovascular mortality utilizing data from National Center for Health Statistics (NCHS). Cox regression model and subgroup analysis were conducted to assess the associations of CMI with all-cause and cardiovascular mortality. The mediating effect of inflammation-related indicators including leukocyte, neutrophil, lymphocyte, systemic immune-inflammation index (SII), neutrophil to lymphocyte ratio (NLR) were evaluated to investigate the potential mechanism of the associations between CMI and mortality through mediation package in R 4.2.2. RESULTS The mean CMI among the enrolled participants was 0.74±0.66, with an average age of 73.28±5.50 years. After an average follow-up period of 89.20 months, there were 1,015 instances of all-cause deaths and 348 cardiovascular deaths documented. In the multivariable-adjusted model, CMI was positively related to all-cause mortality (Hazard Ratio (HR)=1.11, 95% CI=1.01-1.21). Mediation analysis indicated that leukocytes and neutrophils mediated 6.6% and 13.9% of the association of CMI with all-cause mortality. CONCLUSION Elevated CMI is positively associated with all-cause mortality in the older adults. The association appeared to be partially mediated through inflammatory pathways, indicating that CMI may serve as a valuable indicator for poor prognosis among the older population.
Collapse
Affiliation(s)
- Bin Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Department of Cardiology, Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Qian Wu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizijie Road, Suzhou, 215006, Jiangsu, China.
- Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Rui La
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizijie Road, Suzhou, 215006, Jiangsu, China
| | - Lingchen Lu
- Department of Pediatric Surgery and Rehabilitation, Kunshan Maternity and Children's Health Care Hospital, Kunshan, Jiangsu, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Wenquan Ding
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizijie Road, Suzhou, 215006, Jiangsu, China
| | - Yicheng Ling
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizijie Road, Suzhou, 215006, Jiangsu, China
| | - Zhiyuan He
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizijie Road, Suzhou, 215006, Jiangsu, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
7
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Dimba NR, Mzimela N, Khathi A. Improved Gut Health May Be a Potential Therapeutic Approach for Managing Prediabetes: A Literature Review. Biomedicines 2024; 12:1275. [PMID: 38927482 PMCID: PMC11201806 DOI: 10.3390/biomedicines12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Given the growing global threat and rising prevalence of type 2 diabetes mellitus (T2DM), addressing this metabolic disease is imperative. T2DM is preceded by prediabetes (PD), an intermediate hyperglycaemia that goes unnoticed for years in patients. Several studies have shown that gut microbial diversity and glucose homeostasis in PD or T2DM patients are affected. Therefore, this review aims to synthesize the existing literature to elucidate the association between high-calorie diets, intestinal permeability and their correlation with PD or T2DM. Moreover, it discusses the beneficial effects of different dietary interventions on improving gut health and glucose metabolism. The primary factor contributing to complications seen in PD or T2DM patients is the chronic consumption of high-calorie diets, which alters the gut microbial composition and increases the translocation of toxic substances from the intestinal lumen into the bloodstream. This causes an increase in inflammatory response that further impairs glucose regulation. Several dietary approaches or interventions have been implemented. However, only a few are currently in use and have shown promising results in improving beneficial microbiomes and glucose metabolism. Therefore, additional well-designed studies are still necessary to thoroughly investigate whether improving gut health using other types of dietary interventions can potentially manage or reverse PD, thereby preventing the onset of T2DM.
Collapse
Affiliation(s)
| | | | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville 4000, South Africa; (N.R.D.); (N.M.)
| |
Collapse
|
9
|
Han Y, Wang Y, Li S, Sato K, Yamagishi S. Exploration of the shared pathways and common biomarker in adamantinomatous craniopharyngioma and type 2 diabetes using integrated bioinformatics analysis. PLoS One 2024; 19:e0304404. [PMID: 38848397 PMCID: PMC11161051 DOI: 10.1371/journal.pone.0304404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Craniopharyngiomas are rare tumors of the central nervous system that typically present with symptoms such as headache and visual impairment, and those reflecting endocrine abnormalities, which seriously affect the quality of life of patients. Patients with craniopharyngiomas are at higher cardiometabolic risk, defined as conditions favoring the development of type 2 diabetes and cardiovascular disease. However, the underlying common pathogenic mechanisms of craniopharyngiomas and type 2 diabetes are not clear. Especially due to the difficulty of conducting in vitro or in vivo experiments on craniopharyngioma, we thought the common pathway analysis between craniopharyngioma and type 2 diabetes based on bioinformatics is a powerful and feasible method. In the present study, using public datasets (GSE94349, GSE68015, GSE38642 and GSE41762) obtained from the GEO database, the gene expression associated with adamantinomatous craniopharyngioma, a subtype of craniopharyngioma, and type 2 diabetes were analyzed using a bioinformatic approach. We found 11 hub genes using a protein-protein interaction network analysis. Of these, seven (DKK1, MMP12, KRT14, PLAU, WNT5B, IKBKB, and FGF19) were also identified by least absolute shrinkage and selection operator analysis. Finally, single-gene validation and receptor operating characteristic analysis revealed that four of these genes (MMP12, PLAU, KRT14, and DKK1) may be involved in the common pathogenetic mechanism of adamantinomatous craniopharyngioma and type 2 diabetes. In addition, we have characterized the differences in immune cell infiltration that characterize these two diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Yibo Han
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Chodur GM, Steinberg FM. Human MicroRNAs Modulated by Diet: A Scoping Review. Adv Nutr 2024; 15:100241. [PMID: 38734078 PMCID: PMC11150912 DOI: 10.1016/j.advnut.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Because of their role in regulating and fine-tuning gene expression in the posttranscriptional period, microRNA (miRNA) may represent a mediating factor that connects diet and metabolic regulation. Given the vast number of miRNAs and that modulations in miRNA happen in response to a variety of stimuli, a comprehensive registry of miRNAs impacted by diet and the food items that modulate them, would have utility in the identification of miRNA complements for analysis of diet interventions and in helping to establish linkages between the specific impacts of diet components. A scoping literature search of online databases (PubMed, SCOPUS, EMBASE, and Web of Science) was performed. Only studies in human populations, those that used a diet intervention or meal challenge, and those that measured miRNA profiles in the same subject at multiple time points were included. Of the 6167 studies screened, only 25 met the study criteria and were included in the review. Seven studies examined miRNA following a meal challenge, whereas 18 investigated miRNA following a sustained diet intervention. The results demonstrated that miRNA are modulated following a variety of diet interventions and that intensity of miRNA response is greater in metabolically healthy subjects. Heterogeneity in the intensity and length of the diet intervention, the study populations being observed, and the methodology through which target miRNA are identified contribute to a lack of comparability across studies. The findings of this review highlight the need for more study of miRNA responsiveness to intake and provide recommendations for future research.
Collapse
Affiliation(s)
- Gwen M Chodur
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| | - Francene M Steinberg
- Department of Nutrition, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
11
|
Memelink RG, Njemini R, de Bos Kuil MJJ, Wopereis S, de Vogel-van den Bosch J, Schoufour JD, Tieland M, Weijs PJM, Bautmans I. The effect of a combined lifestyle intervention with and without protein drink on inflammation in older adults with obesity and type 2 diabetes. Exp Gerontol 2024; 190:112410. [PMID: 38527636 DOI: 10.1016/j.exger.2024.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Chronic low-grade inflammatory profile (CLIP) is one of the pathways involved in type 2 diabetes (T2D). Currently, there is limited evidence for ameliorating effects of combined lifestyle interventions on CLIP in type 2 diabetes. We investigated whether a 13-week combined lifestyle intervention, using hypocaloric diet and resistance exercise plus high-intensity interval training with or without consumption of a protein drink, affected CLIP in older adults with T2D. METHODS In this post-hoc analysis of the PROBE study 114 adults (≥55 years) with obesity and type 2 (pre-)diabetes had measurements of C-reactive protein (CRP), pro-inflammatory cytokines interleukin (IL)-6, tumor-necrosis-factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1, anti-inflammatory cytokines IL-10, IL-1 receptor antagonist (RA), and soluble tumor-necrosis-factor receptor (sTNFR)1, adipokines leptin and adiponectin, and glycation biomarkers carboxymethyl-lysine (CML) and soluble receptor for advanced glycation end products (sRAGE) from fasting blood samples. A linear mixed model was used to evaluate change in inflammatory biomarkers after lifestyle intervention and effect of the protein drink. Linear regression analysis was performed with parameters of body composition (by dual-energy X-ray absorptiometry) and parameters of insulin resistance (by oral glucose tolerance test). RESULTS There were no significant differences in CLIP responses between the protein and the control groups. For all participants combined, IL-1RA, leptin and adiponectin decreased after 13 weeks (p = 0.002, p < 0.001 and p < 0.001), while ratios TNF-α/IL-10 and TNF-α/IL-1RA increased (p = 0.003 and p = 0.035). CRP increased by 12 % in participants with low to average CLIP (pre 1.91 ± 0.39 mg/L, post 2.13 ± 1.16 mg/L, p = 0.006) and decreased by 36 % in those with high CLIP (pre 5.14 mg/L ± 1.20, post 3.30 ± 2.29 mg/L, p < 0.001). Change in leptin and IL-1RA was positively associated with change in fat mass (β = 0.133, p < 0.001; β = 0.017, p < 0.001) and insulin resistance (β = 0.095, p = 0.024; β = 0.020, p = 0.001). Change in lean mass was not associated with any of the biomarkers. CONCLUSION 13 weeks of combined lifestyle intervention, either with or without protein drink, reduced circulating adipokines and anti-inflammatory cytokine IL-1RA, and increased inflammatory ratios TNF-α/IL-10 and TNF-α/IL-1RA in older adults with obesity and T2D. Effect on CLIP was inversely related to baseline inflammatory status.
Collapse
Affiliation(s)
- Robert G Memelink
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands; Amsterdam Movement Sciences research institute, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Rose Njemini
- Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Minse J J de Bos Kuil
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Suzan Wopereis
- Research group Microbiology & Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, the Netherlands
| | | | - Josje D Schoufour
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Michael Tieland
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands
| | - Peter J M Weijs
- Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM Amsterdam, the Netherlands; Amsterdam Movement Sciences research institute, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, VU University, 1081 HV Amsterdam, the Netherlands
| | - Ivan Bautmans
- Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Department of Geriatrics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; SOMT University of Physiotherapy, 3821 BN Amersfoort, the Netherlands
| |
Collapse
|
12
|
Tapasco-Tapasco LO, Gonzalez-Correa CA, Letourneur A. Phase angle and impedance ratio as meta-inflammation biomarkers after a colon cleansing protocol in a group of overweight young women. Physiol Meas 2024; 45:055021. [PMID: 38697207 DOI: 10.1088/1361-6579/ad46df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Objective. Blood C-reactive protein (CRP) and the electrical bioimpedance spectroscopy (EBIS) variables phase angle (PhA) and impedance ratio (IR) have been proposed as biomarkers of metainflammation in overweight/obesity. CRP involves taking blood samples, while PhA and IR imply a less-than-2-minute-non-invasive procedure. In this study, values for these variables and percent body fat mass (PBFM) were obtained and compared before and immediately after a colon cleansing protocol (CCP), aimed at modulating intestinal microbiota and reducing metainflammation, as dysbiosis and the latter are intrinsically related, as well as along a period of 8 weeks after it.Approach. 20 female volunteers (20.9-24.9 years old) participated: 12 in an overweight group (OG), and 8 in a lean group (LG). TheOGwas divided in two subgroups (n= 6, each): control (CSG) and experimental (ESG). TheESGunderwent a 6-day CCP at week 2, while 5 volunteers in theCSGunderwent it at week 9.Main results.Pre/post-CCP mean values for the variables in theOGwere: PBFM (34.3/31.3%), CRP (3.7/0.6 mg dl-1), PhA (6.9/7.5°) and IR*10 (0.78/0.77). CalculatedR2correlation factors among these variables are all above 0.89. The favourable changes first seen in theESGwere still present 8 weeks after the CCP.Significance.(a) the CCP drastically lowers meta-inflammation, (b) EBIS can be used to measure metainflammation, before and after treatment, (c) for microbiota modulation, CCP could be a good alternative to more drastic procedures like faecal microbiota transplantation; (d) reestablishing eubiosis by CCP could be an effective coadjutant in the treatment of overweight young adult women.
Collapse
Affiliation(s)
- L O Tapasco-Tapasco
- Research Group on Electrical Bioimpedance (GruBIE), University of Caldas, Manizales, Caldas, Colombia
| | - C A Gonzalez-Correa
- Research Group on Electrical Bioimpedance (GruBIE), University of Caldas, Manizales, Caldas, Colombia
| | | |
Collapse
|
13
|
Luo L, Chen G, Zhou Y, Xiang Y, Peng J. Dietary intake, antioxidants, minerals and vitamins in relation to childhood asthma: a Mendelian randomization study. Front Nutr 2024; 11:1401881. [PMID: 38846540 PMCID: PMC11153797 DOI: 10.3389/fnut.2024.1401881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Background Currently, there is limited and inconsistent evidence regarding the risk association between daily dietary intake, antioxidants, minerals, and vitamins with Childhood Asthma (CA). Therefore, this study employs Mendelian Randomization (MR) methodology to systematically investigate the causal relationships between daily dietary intake, serum antioxidants, serum minerals, and the circulating levels of serum vitamins with CA. Methods This study selected factors related to daily dietary intake, including carbohydrates, proteins, fats, and sugars, as well as serum antioxidant levels (lycopene, uric acid, and β-carotene), minerals (calcium, copper, selenium, zinc, iron, phosphorus, and magnesium), and vitamins (vitamin A, vitamin B6, folate, vitamin B12, vitamin C, vitamin D, and vitamin E), using them as Instrumental Variables (IVs). Genetic data related to CA were obtained from the FinnGen and GWAS Catalog databases, with the primary analytical methods being Inverse Variance Weighting (IVW) and sensitivity analysis. Results Following MR analysis, it is observed that sugar intake (OR: 0.71, 95% CI: 0.55-0.91, P: 0.01) is inversely correlated with the risk of CA, while the intake of serum circulating magnesium levels (OR: 1.63, 95% CI: 1.06-2.53, P: 0.03), fats (OR: 1.44, 95% CI: 1.06-1.95, P: 0.02), and serum vitamin D levels (OR: 1.14, 95% CI: 1.04-1.25, P: 0.02) are positively associated with an increased risk of CA. Conclusion This study identified a causal relationship between the daily dietary intake of sugars and fats, as well as the magnesium and vitamin D levels in serum, and the occurrence of CA. However, further in-depth research is warranted to elucidate the specific mechanisms underlying these associations.
Collapse
Affiliation(s)
- Liang Luo
- School of TCM Health Care, Leshan Vocational of Technical College, Leshan, Sicuan Province, China
| | - Guanglei Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yan Zhou
- School of TCM Health Care, Leshan Vocational of Technical College, Leshan, Sicuan Province, China
| | - YaJun Xiang
- School of TCM Health Care, Leshan Vocational of Technical College, Leshan, Sicuan Province, China
| | - Jing Peng
- School of TCM Health Care, Leshan Vocational of Technical College, Leshan, Sicuan Province, China
| |
Collapse
|
14
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Calcaterra V, Verduci E, Milanta C, Agostinelli M, Bona F, Croce S, Valsecchi C, Avanzini MA, Zuccotti G. The Benefits of the Mediterranean Diet on Inflamm-Aging in Childhood Obesity. Nutrients 2024; 16:1286. [PMID: 38732533 PMCID: PMC11085692 DOI: 10.3390/nu16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Numerous elements of the Mediterranean diet (MD) have antioxidant and anti-inflammatory qualities. (2) Methods: We present a narrative review of the potential benefits of the Mediterranean dietary pattern (MD) in mitigating aging-related inflammation (inflamm-aging) associated with childhood obesity. The mechanisms underlying chronic inflammation in obesity are also discussed. A total of 130 papers were included after screening abstracts and full texts. (3) Results: A complex interplay between obesity, chronic inflammation, and related comorbidities is documented. The MD emerges as a promising dietary pattern for mitigating inflammation. Studies suggest that the MD may contribute to weight control, improved lipid profiles, insulin sensitivity, and endothelial function, thereby reducing the risk of metabolic syndrome in children and adolescents with obesity. (4) Conclusions: While evidence supporting the anti-inflammatory effects of the MD in pediatric obesity is still evolving, the existing literature underscores its potential as a preventive and therapeutic strategy. However, MD adherence remains low among children and adolescents, necessitating targeted interventions to promote healthier dietary habits. Future high-quality intervention studies are necessary to elucidate the specific impact of the MD on inflammation in diverse pediatric populations with obesity and associated comorbidities.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Elvira Verduci
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Health Sciences, University of Milano, 20142 Milan, Italy
| | - Chiara Milanta
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Marta Agostinelli
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Federica Bona
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
16
|
Chen N, Zhao M, Wu N, Guo Y, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Li Y, Zhang L. ACSS2 controls PPARγ activity homeostasis to potentiate adipose-tissue plasticity. Cell Death Differ 2024; 31:479-496. [PMID: 38332049 PMCID: PMC11043345 DOI: 10.1038/s41418-024-01262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Xiao L, Wang W, Han P. Editorial: The interplay between endocrine and immune systems in metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1385271. [PMID: 38549764 PMCID: PMC10973137 DOI: 10.3389/fendo.2024.1385271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Lan Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Weihao Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pingping Han
- School of Dentistry, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Taiwo G, Morenikeji OB, Idowu M, Sidney T, Adekunle A, Cervantes AP, Peters S, Ogunade IM. Characterization of rumen microbiome and immune genes expression of crossbred beef steers with divergent residual feed intake phenotypes. BMC Genomics 2024; 25:245. [PMID: 38443809 PMCID: PMC10913640 DOI: 10.1186/s12864-024-10150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.
Collapse
Affiliation(s)
- Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, 300 Campus Drive, 16701, Bradford, PA, USA.
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Taylor Sidney
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Ajiboye Adekunle
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | | | - Sunday Peters
- Department of Animal Science, Berry College, Mount Berry, GA, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA.
| |
Collapse
|
19
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Roy P, Winkels H, Orecchioni M, Quesada-Masachs E, Riffelmacher T. Editorial: Role of innate and adaptive immune cells in the metabolic syndrome. Front Cell Dev Biol 2024; 12:1383642. [PMID: 38455074 PMCID: PMC10917939 DOI: 10.3389/fcell.2024.1383642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Payel Roy
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marco Orecchioni
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Estefania Quesada-Masachs
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Thomas Riffelmacher
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunometabolism Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
21
|
Li R, Lu B, Li Q, Hu J, Huang Y, Wang Y, Qin G, Zhang W, Su Q, Zhu J, Xu Y, Jiang H, Wang X, Zhang K, Yang Y, Hu R. Characteristics of metabolic inflammatory syndrome among inpatients with type 2 diabetes: A cross-sectional study in China. Prim Care Diabetes 2024; 18:97-103. [PMID: 37993324 DOI: 10.1016/j.pcd.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/03/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND As meta-inflammation is a common feature for obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease and atherosclerosis, we have proposed a new concept, metabolic inflammatory syndrome (MIS), to cluster such diseases. We aimed to characterize MIS and explore its association with coronary heart disease (CHD) among T2D inpatients in China. METHODS A total number of 8344 T2D participants were enrolled. Each component of MIS and metabolic syndrome (MS) was analyzed. Their association with the risk of CHD was assessed using a binary logistic analysis. RESULTS Among the T2D inpatients, the detection rate of MIS was much higher than that of MS (93.6 % vs. 53.2 %). Among all the components of MIS and MS, carotid atherosclerosis (71.9 %) was most commonly detected, which increased with aging in subgroups. Surprisingly, the most common combination of MIS was with all 4 components in T2D patients, with a constituent ratio of 30.9 %. According to the odds ratios (ORs), MIS was a better predictor of CHD than MS, especially after adjustment for age, sex, smoking, and alcohol consumption (adjusted OR for MIS: 3.083; for MS: 1.515). The presence of more components of MIS was associated with a higher detection rate of CHD (P < 0.001). Among all the components of MIS and MS, carotid atherosclerosis best predicted the risk of CHD (adjusted OR: 1.787). CONCLUSIONS MIS is an independent risk factor for CHD, with a bigger OR value than MS. Carotid atherosclerosis, with the highest detection rate, was the best individual predictor of CHD and thus a critical component of MIS. The concept of MIS represents the understanding of metabolic diseases from the perspective of holistic integrative medicine.
Collapse
Affiliation(s)
- Rumei Li
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qiang Li
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital of Suzhou University, Suzhou 215004, China
| | - Yun Huang
- Department of Endocrinology, the Second Affiliated Hospital of Suzhou University, Suzhou 215004, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong 266003, China
| | - Guijun Qin
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai 200092, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai 200092, China
| | - Jun Zhu
- Department of Endocrinology, First Affiliated Hospital, Xinjiang Medical University, Xinjiang 830054, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hongwei Jiang
- Department of Endocrinology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Xinjun Wang
- Department of Endocrinology, Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Keqing Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University; Shanghai 200065, China
| | - Yuzhi Yang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin 150036, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
22
|
Kudo M, Gao M, Hayashi M, Kobayashi Y, Yang J, Liu T. Ilex paraguariensis A.St.-Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024; 68:10307. [PMID: 38327997 PMCID: PMC10845893 DOI: 10.29219/fnr.v68.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Background Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein β (C/EBPβ), insulin receptor b (IRβ), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Ming Gao
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd., Sakura, Chiba, Japan
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Wu D, Lan Y, Chen S, Ding X, Chen G, Wu C, Balmer L, Xu W, Wu S, Wang W. Combined effect of adiposity and elevated inflammation on incident type 2 diabetes: a prospective cohort study. Cardiovasc Diabetol 2023; 22:351. [PMID: 38124083 PMCID: PMC10734163 DOI: 10.1186/s12933-023-02067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Adiposity and elevated inflammation are two hallmarks of hyperglycemia. However, it is unknown whether clustering of elevated inflammation and adiposity interact act on diabetogenesis and lead to a greater risk for incident type 2 diabetes (T2D). METHODS Adiposity was indicated by body mass index, waist circumference and ultrasonography-measured fatty liver degrees. Elevated inflammation was indicated as high-sensitivity C-reactive protein levels ≥ 2 mg/L. Time-to-event survival analyses were conducted to investigate the joint effect of adiposity and inflammation on incident T2D on both multiplicative and additive scales. RESULTS Among 82,172 non-diabetic participants from a prospective cohort in China, 14,278 T2D occurred over a median follow-up of 11 years. In the multivariable-adjusted model, elevated inflammation [1.12 (1.08‒1.16)] and adiposity [1.76 (1.69‒1.83) for overweight/obesity, 1.49 (1.44‒1.55) for central obesity, and 2.02 (1.95‒2.09) for fatty liver] were significantly associated with incident diabetes. Higher adiposity-associated risks and incidence rates of diabetes were observed with elevated inflammation. When studying the joint effect, the adjusted HRs were 1.77 (1.69‒1.85) for overweight/obesity, 1.14 (1.06‒1.23) for elevated inflammation, and 2.08 (1.97‒2.19) for their joint effect, with a relative excess risk due to interaction of 0.17 (0.05‒0.28). The attributable proportions were 71.30% for overweight/obesity, 12.96% for elevated inflammation, and 15.74% for their interaction. Similar results were observed when adiposity was assessed as waist circumference or fatty liver. CONCLUSIONS Adiposity and elevated inflammation synergically lead to greater risks of incident diabetes than addition of each individual exposure. Strategies simultaneously targeting both risks should produce more benefits for diabetes prevention than through initiatives directed at each separate risk.
Collapse
Affiliation(s)
- Dan Wu
- Centre for Precision Health, Edith Cowan University School of Medical and Health Sciences, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Yulong Lan
- Centre for Precision Health, Edith Cowan University School of Medical and Health Sciences, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Xinghua East Road, Tangshan, 063000, Hebei, China
| | - Xiong Ding
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Chutao Wu
- Department of Emergency, Shantou Central Hospital, Shantou, Guangdong, China
| | - Lois Balmer
- Centre for Precision Health, Edith Cowan University School of Medical and Health Sciences, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, 515041, Guangdong, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Xinghua East Road, Tangshan, 063000, Hebei, China.
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University School of Medical and Health Sciences, Room 521, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia.
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China.
| |
Collapse
|
24
|
He L, Xie X, Xue J, Zhang Z. Sex-specific differences in the effect of lymphocyte-to-C-reactive protein ratio on subclinical myocardial injury in the general population free from cardiovascular disease. Nutr Metab Cardiovasc Dis 2023; 33:2389-2397. [PMID: 37788954 DOI: 10.1016/j.numecd.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND AIM The Lymphocyte-to-C-reactive protein ratio (LCR) combines information on immune and inflammatory status. Lymphocytes reflect immune health, while C-reactive protein (CRP) signals systemic inflammation. Some studies have linked LCR with cardiovascular outcomes, suggesting it could help identify at-risk individuals. However, its clinical utility needs further research validation. To investigate the association between lymphocyte-to-C-reactive protein ratio (LCR) and subclinical myocardial injury (SC-MI) in individuals who are free from cardiovascular disease (CVD) within the general population. METHODS AND RESULTS The study included individuals in the National Health and Nutrition Examination Survey (NHANES) III. SC-MI was defined as having a Cardiac Infarction Injury Score (CIIS) greater than 10 units on a 12-lead electrocardiogram. Logistic regression models were employed to investigate the association between LCR and SC-MI. In total, 5870 individuals were included in the study, among whom 3266 had a history of SC-MI. Compared with the lowest quartile (Q1) in male, the odds ratios (OR) of SC-MI in Q2, Q3, and Q4 were 0.67 (95%CI: 0.53-0.86), 0.66 (95%CI: 0.51-0.84), and 0.70 (95%CI: 0.55-0.89), respectively. The data shows a trend where the OR of SC-MI are lower in higher quartiles of LCR, compared to the lowest quartile, in the male population (P for trend = 0.006). In other words, the likelihood of SC-MI tends to be lower among males with higher LCR values. However, after adjusting for potential confounding variables, the relationship between LCR and SC-MI displays a pattern of an initial decline, followed by a minor upward shift. CONCLUSION LCR is independently and inversely associated with SC-MI risk in the general population free from CVD. Furthermore, the observed association is exclusive to males, indicating a need for further randomized controlled trials to substantiate the efficacy of implementing LCR reduction as a means of CVD prevention in the male population.
Collapse
Affiliation(s)
- Lu He
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuegang Xie
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianying Xue
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
25
|
Zhang Y, Lin Y, Wu K, Jiang M, Li L, Liu Y. Pleurotus abieticola Polysaccharide Alleviates Hyperlipidemia Symptoms via Inhibition of Nuclear Factor-κB/Signal Transducer and Activator of Transcription 3-Mediated Inflammatory Responses. Nutrients 2023; 15:4904. [PMID: 38068762 PMCID: PMC10708251 DOI: 10.3390/nu15234904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic syndrome induced by obesity, which has been widely recognized as a significant threat to human health. Pleurotus abieticola, an edible lignin-degrading fungus, remains relatively understudied in terms of its bioactivity and medicinal properties. In this study, the lipid-lowering effect of Pleurotus abieticola polysaccharide (PAPS1) was systematically explored in high-fat diet (HFD)-induced HLP mice. The findings demonstrated that the administration of PAPS1 significantly inhibited bodyweight gain, ameliorated blood glucose and lipid levels, reduced fat accumulation, and mitigated hepatic injury in HLP mice. In addition, PAPS1 demonstrated the capability to increase the levels of three distinct fecal metabolites while simultaneously reducing the levels of eight other fecal metabolites in HLP mice. According to biological detection, PAPS1 reduced the hepatic level of reactive oxygen species (ROS) and pro-inflammatory factors, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, -6, -17A, -22, and -23, and increased the expression of anti-inflammatory factor IL-10. Combined with proteomics, Western blot and immunohistochemistry analysis showed that PAPS1 exerted suppressive effects on inflammation and oxidative damage by inhibiting the nuclear factor-κB (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in HLP mice. These findings offer evidence supporting the effectiveness of PAPS1 as a therapeutic agent in reducing lipid levels through its targeting of chronic inflammation.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yingjie Lin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Keyi Wu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| |
Collapse
|
26
|
Chen N, Zhao M, Guo Y, Wu N, Cao B, Zhan B, Zhou T, Li Y, Zhu F, Chen W, Li Y, Zhang L. D-mannose is a rapid inducer of ACSS2 to trigger rapid and long-lasting antidepressant responses through augmenting BDNF and TPH2 levels. Transl Psychiatry 2023; 13:338. [PMID: 37914710 PMCID: PMC10620401 DOI: 10.1038/s41398-023-02636-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The potentiation of synaptic plasticity and serotonin generation by brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (TPH2) is well characterized to facilitate rapid and long-lasting antidepressant actions. Therefore, the identification of the key protein that simultaneously controls both BDNF and TPH2 is important for the treatment of depression. We show here that a lack of acetyl-CoA synthetase short-chain family member 2 (ACSS2) causes impairments in BDNF-dependent synaptic plasticity and tryptophan hydroxylase 2 (TPH2)-mediated serotonin generation, thereby contributing to spontaneous and chronic restraint stress (CRS)-induced depressive-like behavior in mice. Conversely, D-mannose is identified as a rapid ACSS2 inducer and thus mediates rapid and long-lasting antidepressant-like effects. Mechanistically, acute and chronic D-mannose administration inhibits the phosphorylation of EF2 to increase BDNF levels and reverse the reduction of TPH2 histone acetylation and transcription. We reveal that ACSS2 promotes TPH2 histone acetylation and transcription with the requirement of AMPK activation. To elevate nuclear ACSS2 levels, D-mannose can rapidly and persistently activate AMPK via Ca2+-CAMKK2 and the lysosomal AXIN-LKB1 pathway to facilitate its fast-acting and persistent antidepressant responses. Taken together, the results presented here reveal that ACSS2 functions as a novel target to link rapid and persistent antidepressant actions and further suggest that D-mannose is a potential therapeutic agent to resist depression through its augmentation of the ACSS2 dependent BDNF and TPH2 pathways.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
27
|
Dimba NR, Mzimela N, Mosili P, Ngubane PS, Khathi A. Investigating the Association Between Diet-Induced "Leaky Gut" and the Development of Prediabetes. Exp Clin Endocrinol Diabetes 2023; 131:569-576. [PMID: 37751850 DOI: 10.1055/a-2181-6664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Chronic consumption of a high-calorie diet compromises the gut microbiota and the integrity of the intestinal wall, which causes translocation of bacterial lipopolysaccharides (LPS) into the blood. This elicits the secretion of pro-inflammatory cytokines, resulting in inflammation. However, how a high-fat high carbohydrate diet affects intestinal permeability and its possible role in the development of prediabetes have not been investigated. This study investigated the effects of HFHC diet-induced prediabetes on gut microbiota and intestinal permeability in male Sprague Dawley rats. METHODS The animals were randomly assigned into the non-prediabetic (NPD) and diet-induced prediabetic (PD) groups (n=6) for 20 weeks. Then, the fecal samples were analyzed to measure the gut microbiota level of Firmicutes, Bacteroidetes, and Proteobacteria in both animal groups. Blood glucose, plasma insulin, serum zonulin, plasma LPS, soluble CD14, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and intestinal fatty-acid binding protein (IFABP) concentrations were measured. RESULTS The PD group had a reduction in the Firmicutes and an increase in Bacteroidetes and Proteobacteria levels compared to those in the NPD group. Blood glucose, insulin concentration, serum zonulin, and plasma sCD14 concentrations in the PD group increased significantly, while plasma LPS concentrations were similar to the NPD group. Concentrations of plasma TNF-α, IL-6, CRP, and IFABP, an intracellular protein expressed in the intestine, increased in PD compared to the NPD group. CONCLUSIONS the study results cumulatively suggest that chronic consumption of the HFHC diet may be associated with the dysregulation of gut microbiota, leading to increased intestinal permeability.
Collapse
Affiliation(s)
- Nosipho R Dimba
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Nhlakanipho Mzimela
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Palesa Mosili
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Phikelelani S Ngubane
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, South Africa, 4000
| |
Collapse
|
28
|
Prather H, Cheng J. Relationship of Chronic Systemic Inflammation to Both Chronic Lifestyle-Related Diseases and Osteoarthritis: The Case for Lifestyle Medicine for Osteoarthritis. HSS J 2023; 19:459-466. [PMID: 37937092 PMCID: PMC10626930 DOI: 10.1177/15563316231193753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 11/09/2023]
Abstract
Systemic inflammation is a root cause of lifestyle-related chronic diseases and may also play a role in the development and progression of osteoarthritis (OA). Lifestyle medicine seeks to treat, prevent, and reverse lifestyle-related chronic disease via 6 pillars: nutrition, sleep health, stress management, physical activity, social connections, and risky behavior avoidance/reduction. This article presents a review of the literature in which we assess the connections between the 6 pillars of lifestyle medicine, chronic systemic inflammation, and OA. We also discuss the whole-person approach that lifestyle medicine interventions can provide to reduce chronic systemic inflammation and affect the development or progression of OA.
Collapse
Affiliation(s)
- Heidi Prather
- Department of Physiatry, Hospital for Special Surgery, New York, NY, USA
| | - Jennifer Cheng
- Department of Physiatry, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
29
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Arch M, Vidal M, Fuentes E, Abat AS, Cardona PJ. The reproductive status determines tolerance and resistance to Mycobacterium marinum in Drosophila melanogaster. Evol Med Public Health 2023; 11:332-347. [PMID: 37868078 PMCID: PMC10590161 DOI: 10.1093/emph/eoad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Esther Fuentes
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
| | - Anmaw Shite Abat
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Department of Veterinary Paraclinical Studies, University of Gondar, Gondar, Ethiopia
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
31
|
Li RJ, Wen YX. Association of body mass index with asthma occurrence and persistence in adolescents: A retrospective study of NHANES (2011-2018). Heliyon 2023; 9:e20092. [PMID: 37809502 PMCID: PMC10559872 DOI: 10.1016/j.heliyon.2023.e20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To investigate the association of body mass index (BMI) with asthma and analyze the risk factors of asthma persistence among overweight/obese adolescents and those with a high risk for obesity. Methods In this cross-sectional study, adolescents aged 11-17 years with complete general information and asthma diagnoses were selected from the National Health and Nutrition Examination Survey database. For adolescents without self-reported asthma, we performed matching according to age and sex at a case-to-control ratio of 1:3. Logistic regression analysis was employed to identify independent predictors of asthma occurrence followed by constructing a nomogram and comparing its efficacy to independent factors in predicting asthma occurrence. Besides, associations of BMI with asthma occurrence and persistence were evaluated. Finally, we obtained risk factors for asthma persistence in overweight/obese individuals and those at a high risk for obesity. Results Totally 753 adolescents with asthma and 2259 adolescents without asthma were included to analyze the occurrence of asthma. BMI and Hispanic Ethnicity were independent predictors of asthma occurrence and were included in nomogram construction. BMI had an efficiency comparable to that of the nomogram model in predicting asthma occurrence, which is superior to that of Hispanic Ethnicity. Of the 753 adolescents diagnosed with asthma, 464 were still diagnosed with asthma of at least a year's duration. Interestingly, BMI may have the ability to predict asthma persistence. Further, Hispanic Ethnicity and household income were significantly related to asthma occurrence among overweight/obese and high-risk obese individuals. Conclusions High BMI could independently predict increased asthma occurrence. Additionally, BMI may play an essential role in predicting asthma persistence. This study may help improve the diagnosis and reduce the occurrence of asthma.
Collapse
Affiliation(s)
- Ren-jie Li
- Emergency Department, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Ying-xu Wen
- Emergency Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570000, Hainan, China
| |
Collapse
|
32
|
Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol 2023; 14:1194738. [PMID: 37564641 PMCID: PMC10410279 DOI: 10.3389/fimmu.2023.1194738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background Macrophages are considered an essential source of inflammatory cytokines, which play a pivotal role in the development of diabetes and its sequent complications. Therefore, a better understanding of the intersection between the development of diabetes and macrophage is of massive importance. Objectives In this study, we performed an informative bibliometric analysis to enlighten relevant research directions, provide valuable metrics for financing decisions, and help academics to gain a quick understanding of the current macrophage-related diabetes studies knowledge domain. Methods The Web of Science Core Collection database was used for literature retrieval and dataset export. Bibliometrix R-package was performed to conduct raw data screening, calculating, and visualizing. Results Between 2000 and 2022, the annual publication and citation trends steadily increased. Wu Yonggui was the scholar with the most published papers in this field. The institute with the highest number of published papers was the University of Michigan. The most robust academic collaboration was observed between China and the United States of America. Diabetologia was the journal that published the most relevant publications. The author's keywords with the highest occurrences were "inflammation", "diabetic nephropathy", and "obesity". In addition, "Macrophage polarization" was the current motor topic with potential research prospects. Conclusions These comprehensive and visualized bibliometric results summarized the significant findings in macrophage-related diabetes studies over the past 20 years. It would enlighten subsequent studies from a macro viewpoint and is also expected to strengthen investment policies in future macrophage-related diabetes studies.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yayun Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Changchun University of Chinese Medicine, Jilin, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
34
|
Kani K, Kasai K, Tada Y, Ishibashi R, Takano S, Igarashi N, Ichimura-Shimizu M, Tsuneyama K, Furusawa Y, Nagai Y. The innate immune receptor RP105 promotes metabolic syndrome by altering gut microbiota composition and intestinal barrier function. Biochem Biophys Res Commun 2023; 664:77-85. [PMID: 37146560 DOI: 10.1016/j.bbrc.2023.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Radioprotective 105 (RP105) plays a key role in the development of high-fat diet (HFD)-induced metabolic disorders; however, the underlying mechanisms remain to be understood. Here, we aimed to uncover whether RP105 affects metabolic syndrome through the modification of gut microbiota. We confirmed that body weight gain and fat accumulation by HFD feeding were suppressed in Rp105-/- mice. Fecal microbiome transplantation from HFD-fed donor Rp105-/- mice into HFD-fed recipient wild-type mice significantly improved various abnormalities associated with metabolic syndrome, including body weight gain, insulin resistance, hepatic steatosis, macrophage infiltration and inflammation in the adipose tissue. In addition, HFD-induced intestinal barrier dysfunction was attenuated by fecal microbiome transplantation from HFD-fed donor Rp105-/- mice. A 16S rRNA sequence analysis indicated that RP105 modified gut microbiota composition and was involved in the maintenance of its diversity. Thus, RP105 promotes metabolic syndrome by altering gut microbiota composition and intestinal barrier function.
Collapse
Affiliation(s)
- Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Bio-medical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Bio-medical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
35
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
36
|
Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomed Pharmacother 2023; 160:114386. [PMID: 36773526 DOI: 10.1016/j.biopha.2023.114386] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Excessive energy intake leads to dysbiosis of intestinal microbiota and puts surrounding tissues under oxidative stress and inflammation, contributing to the development of metabolic syndrome. Taiwanese green propolis (TGP) exhibits a broad spectrum of biological activities, including anti-bacterial, anti-inflammatory, and antioxidant properties. However, the benefits of TGP on metabolic syndrome have not been explained in detail. In this study, we examined the preventive effects of TGP on high-fat diet (HFD)-induced obesity. The results showed that TGP supplementation at 1000 ppm improved condition such as hyperlipidemia, fat accumulation, liver steatosis, and whitening of brown adipose tissue (BAT) in mice. In addition, we observed more cold-induced non-shivering thermogenesis by BAT in TGP treatment with 1000 ppm group. At lower dose of 500 ppm, TGP improved glucose intolerance and insulin insensitivity in HFD mice and restructured the composition of gut microbiota to reduce dysbiosis, which involved an increase in the abundance of metabolism-related bacteria such as Lachnospiraceae NK4A136 group and the decrease in Desulfovibrio. The change of dominant microbiota was associated with the homeostasis of blood glucose and lipid. Transcriptome and micro-western array analysis revealed that TGP supplementation at 500 ppm promoted the browning and adipogenesis in white adipose tissue (WAT), blocked inflammation signaling and attenuated reactive oxygen species, contributing to healthy WAT remodeling and offsetting negative metabolic effects of obesity. We concluded that TGP modulated the function of BAT, WAT, and gut microbiota, bringing a balance to the glucose and lipid homeostasis in the body.
Collapse
|
37
|
Fecal Metagenomics and Metabolomics Identifying Microbial Signatures in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24054855. [PMID: 36902288 PMCID: PMC10002933 DOI: 10.3390/ijms24054855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The frequency of non-alcoholic fatty liver disease (NAFLD) has intensified, creating diagnostic challenges and increasing the need for reliable non-invasive diagnostic tools. Due to the importance of the gut-liver axis in the progression of NAFLD, studies attempt to reveal microbial signatures in NAFLD, evaluate them as diagnostic biomarkers, and to predict disease progression. The gut microbiome affects human physiology by processing the ingested food into bioactive metabolites. These molecules can penetrate the portal vein and the liver to promote or prevent hepatic fat accumulation. Here, the findings of human fecal metagenomic and metabolomic studies relating to NAFLD are reviewed. The studies present mostly distinct, and even contradictory, findings regarding microbial metabolites and functional genes in NAFLD. The most abundantly reproducing microbial biomarkers include increased lipopolysaccharides and peptidoglycan biosynthesis, enhanced degradation of lysine, increased levels of branched chain amino acids, as well as altered lipid and carbohydrate metabolism. Among other causes, the discrepancies between the studies may be related to the obesity status of the patients and the severity of NAFLD. In none of the studies, except for one, was diet considered, although it is an important factor driving gut microbiota metabolism. Future studies should consider diet in these analyses.
Collapse
|
38
|
Effect of Low-Carbohydrate Diet on Beta-Hydroxybutyrate Ketogenesis Metabolic Stimulation and Regulation of NLRP3 Ubiquitination in Obese Saudi Women. Nutrients 2023; 15:nu15040820. [PMID: 36839178 PMCID: PMC9958539 DOI: 10.3390/nu15040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The effects of a ketogenic diet (KD) on anthropometric indices, the lipid profile, and the benefits of the ketone body beta-hydroxybutyrate (BHB) as an inhibitor of the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome in obese women were investigated in this study. From January to March 2021, 23 obese adult women (n = 23) with an average age of 35.30 years and BMI of 33.96 kg/m2 followed a KD. Instructions for the KD were given to eligible participants, with a typical plan and a menu for all the main meals, snacks, and drinks permitted over seven days. They were also free to change meals according to their preferences provided that they followed the plan. The participants attended six times throughout the intervention for measurements of their anthropometric indices, BHB levels, interleukin-1beta (1L-1β) levels, and completion of a questionnaire (pre-intervention, mid-intervention, and post-intervention). Following the KD caused significant weight loss, a reduction in waist circumference and BHB levels, as well as a reduction in BMI and appetite. Cholesterol, triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) increased slightly. However, low-density lipoprotein cholesterol (LDL-C) in serum increased significantly (p < 0.05), and 1L-1β decreased significantly (p < 0.0001). The results show that the KD effectively encouraged weight loss and NLRP3 inflammasome inhibition. Based on the questionnaire results, it was found that a variety of physical symptoms, including overall energy, physical activity, mood, sleep, focus, skin conditions, and menstruation, had significantly improved.
Collapse
|
39
|
Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. ENVIRONMENT INTERNATIONAL 2023; 172:107769. [PMID: 36709676 DOI: 10.1016/j.envint.2023.107769] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 05/10/2023]
Abstract
Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Pranav Konchadi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Yuma Miyake
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV 89557, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
40
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
41
|
Zeng F, Zheng J, Shen L, Herrera-Balandrano DD, Huang W, Sui Z. Physiological mechanisms of TLR4 in glucolipid metabolism regulation: Potential use in metabolic syndrome prevention. Nutr Metab Cardiovasc Dis 2023; 33:38-46. [PMID: 36428186 DOI: 10.1016/j.numecd.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Over-nourishment or an unbalanced diet has been linked to an increase in the prevalence of metabolic syndrome. An imbalance in glucolipid metabolism is a major cause of metabolic syndrome, which has consequences for human health. Toll-like receptor 4 (TLR4), a member of the innate immune pattern recognition receptor family, is involved in inflammation-related disorders, autoimmune diseases, and tumors. Recent research has shown that TLR4 plays a key role in glucolipid metabolism, which is linked to insulin resistance, intestinal flora, and the development of chronic inflammation. TLR4 activation regulates glucolipid metabolism and contributes to the dynamic relationship between innate immunity and nutrition-related disorders. Further, TLR4 regulates glucolipid metabolism by controlling glycolysis and pyruvate oxidative decarboxylation, interfering with insulin signaling, regulating adipogenic gene expression levels, influencing preadipocyte differentiation and lipid accumulation, and altering the intestinal microbiota and permeability. TLR4 functions may provide new therapeutic applications for the prevention and treatment of metabolic syndrome. The purpose of this review is to enrich mechanistic research of diabetes, atherosclerosis, and other nutrition-related disorders by summarizing the role of TLR4 in the regulation of glucolipid metabolism as well as its physiological mechanisms.
Collapse
Affiliation(s)
- Feng Zeng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Medical College, Yangzhou University, Yangzhou 225000, PR China; Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiawei Zheng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Shen
- Medical College, Yangzhou University, Yangzhou 225000, PR China
| | | | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
42
|
Kim Y, Lee Y, Lee MN, Nah J, Yun N, Wu D, Pae M. Time-restricted feeding reduces monocyte production by controlling hematopoietic stem and progenitor cells in the bone marrow during obesity. Front Immunol 2022; 13:1054875. [PMID: 36569870 PMCID: PMC9771705 DOI: 10.3389/fimmu.2022.1054875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Time-restricted feeding (TRF) has emerged as a promising dietary approach in improving metabolic parameters associated with obesity, but its effect on immune cells under obesogenic condition is poorly understood. We conducted this study to determine whether TRF exerts its therapeutic benefit over obesity-induced myeloid cell production by analyzing hematopoietic stem and progenitor cells in bone marrow (BM) and immune cell profile in circulation. Male C57BL/6 mice were fed a low-fat diet (LFD) or high-fat diet (HFD) ad libitum for 6 weeks and later a subgroup of HFD mice was switched to a daily 10 h-TRF schedule for another 6 weeks. Mice on HFD ad libitum for 12 weeks had prominent monocytosis and neutrophilia, associated with expansion of BM myeloid progenitors, such as multipotent progenitors, pre-granulocyte/macrophage progenitors, and granulocyte/macrophage progenitors. TRF intervention in overweight and obese mice diminished these changes to a level similar to those seen in mice fed LFD. While having no effect on BM progenitor cell proliferation, TRF reduced expression of Cebpa, a transcription factor required for myeloid differentiation. These results indicate that TRF intervention may help maintain immune cell homeostasis in BM and circulation during obesity, which may in part contribute to health benefits associated with TRF.
Collapse
Affiliation(s)
- Yelim Kim
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Youngyoon Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Mi Nam Lee
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jiyeon Nah
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Narae Yun
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea,*Correspondence: Munkyong Pae,
| |
Collapse
|
43
|
Hu Y, Wang X, Huan J, Zhang L, Lin L, Li Y, Li Y. Effect of dietary inflammatory potential on the aging acceleration for cardiometabolic disease: A population-based study. Front Nutr 2022; 9:1048448. [PMID: 36532557 PMCID: PMC9755741 DOI: 10.3389/fnut.2022.1048448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND/AIM Optimized dietary patterns have been considered an important determinant of delaying aging in cardiometabolic disease (CMD). Dietary pattern with high-level dietary inflammatory potential is a key risk factor for cardiometabolic disease, and has drawn increasing attention. The aim of this study was to investigate whether dietary pattern with high dietary inflammatory potential was associated with aging acceleration in cardiometabolic disease. MATERIALS AND METHODS We analyzed the cross-sectional data from six survey cycles (1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, and 2009-2010) of the National Health and Nutritional Examination Surveys (NHANES). A total of 16,681 non-institutionalized adults and non-pregnant females with CMD were included in this study. Dietary inflammatory index (DII) was used to assess the dietary inflammatory potential. The two age acceleration biomarkers were calculated by the residuals from regressing chronologic age on Klemera-Doubal method biological age (KDM BioAge) or Phenotypic Age (PhenoAge), termed "KDMAccel" and "PhenoAgeAccel." A multivariable linear regression accounting for multistage survey design and sampling weights was used in different models to investigate the association between DII and aging acceleration. Four sensitivity analyses were used to ensure the robustness of our results. Besides, we also analyzed the anti-aging effects of DASH-type dietary pattern and "Life's Simple 7". RESULTS For 16,681 participants with CMD, compared with the first tertile of DII after adjusting for all potential confounders, the patients with second tertile of DII showed a 1.02-years increase in KDMAccel and 0.63-years increase in PhenoAgeAccel (KDMAccel, β = 1.02, 95% CI = 0.64 to 1.41, P < 0.001; PhenoAgeAccel, β = 0.63, 95% CI = 0.44 to 0.82, P < 0.001), while the patients with the third tertile of DII showed a 1.48-years increase in KDMAccel and 1.22-years increase in PhenoAgeAccel (KDMAccel, β = 1.48, 95% CI = 1.02 to 1.94, P < 0.001; PhenoAgeAccel, β = 1.22, 95% CI = 1.01 to 1.43, P < 0.001). In addition, DASH-type dietary pattern was associated with a 0.57-years reduction in KDMAccel (β = -0.57, 95% CI = -1.08 to -0.06, P = 0.031) and a 0.54-years reduction in PhenoAgeAccel (β = -0.54, 95% CI = -0.80 to -0.28, P < 0.001). The each one-unit increase in CVH score was associated with a 1.58-years decrease in KDMAccel (β = -1.58, 95% CI = -1.68 to -1.49, P < 0.001) and a 0.36-years in PhenoAgeAccel (β = -0.36, 95% CI = -0.41 to -0.31, P < 0.001). CONCLUSION Among CMD, the dietary pattern with high dietary inflammatory potential was association with aging acceleration, and the anti-aging potential of DASH-type dietary pattern and "Life's Simple 7" should also be given attention, but these observations require future prospective validation.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaojie Wang
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiaming Huan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
44
|
Qiu R, Wang Z, Wei X, Sui H, Jiang Z, Yu XF. The pathogenesis of anti-signal recognition particle necrotizing myopathy: A Review. Biomed Pharmacother 2022; 156:113936. [DOI: 10.1016/j.biopha.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
45
|
Duan X, Li J, Cui J, Wen H, Xin X, Aisa HA. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart. J Food Biochem 2022; 46:e14396. [PMID: 36169283 DOI: 10.1111/jfbc.14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the anti-inflammatory activity of Prunus cerasifera Ehrhart (EHP). LC-MS/MS, network pharmacology, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis methods were used to investigate the chemical composition and the anti-inflammatory mechanism of EHP. The LC-MS/MS results showed that flavonoids and phenolic acids were the major compounds in EHP. The network pharmacology analysis results indicated that EHP was related to TNF, inflammatory cytokine, and MAPK signaling pathway. ELISA and Western blot results showed that EHP impeded the increase in inflammatory factors, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), nuclear transcription factors κB (p65), MAPK pathway, pyrolytic relevant proteins nod-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway. Therefore, this research highlighted the potential application of P. cerasifera in the development of anti-inflammatory foods that prevented inflammatory diseases. PRACTICAL APPLICATIONS: In recent years, many synthetic drugs with anti-inflammatory effect have the disadvantages of high price and side effects. Thus, the development of anti-inflammatory drugs from natural resources has its application value. In this study, LPS-stimulated RAW264.7 cells were used to establish inflammatory model to verify the anti-inflammatory effect of Prunus cerasifera (EHP). The results showed that P. cerasifera possessed anti-inflammatory activity through inhibiting pro-inflammatory cytokines secretion, NF-κB, MAPK pathway, and NLRP3 inflammasome activation. Therefore, P. cerasifera has the potential to develop into functional food to prevent the progress of various inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizheng Wen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2022; 164:bqac184. [PMID: 36317483 PMCID: PMC9667558 DOI: 10.1210/endocr/bqac184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing β-cells is common to virtually all forms of diabetes. Although the mechanisms underlying β-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the β-cell. Cellular and environmental factors contribute to β-cell dysfunction/loss through the activation of molecular pathways that exacerbate endoplasmic reticulum stress, the integrated stress response, oxidative stress, and impaired autophagy. Whereas many of these stress responsive pathways are interconnected, their individual contributions to glucose homeostasis and β-cell health have been elucidated through the development and interrogation of animal models. In these studies, genetic models and pharmacological compounds have enabled the identification of genes and proteins specifically involved in β-cell dysfunction during diabetes pathogenesis. Here, we review the critical stress response pathways that are activated in β cells in the context of the animal models.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah C May
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
47
|
OMMA T, ÇOLAK S, CAN SANDIKÇI S, ZENGİN FH, OMMA A. The relationship between nutrition, inflammation and colchicine resistance in familial Mediterranean fever. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1173363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: Familial Mediterranean fever (FMF) is an autoinflammatory and genetic disease associated with chronic inflammation. Colchicine is the gold standard treatment for FMF, although some patients respond partially. Factors such as heavy exercise, cold exposure, stress, recent infection or surgery have been associated with the occurrence of attacks. Recently, nutrition is thought to be involved in the pathogenesis of autoimmune and autoinflammatory diseases. Therefore, we aimed to investigate the relationship between nutrition, inflammation and colchicine resistance by considering the nutritional status of FMF patients.
Material and Method: The study included 59 patients and 67 healthy individuals who were matched for gender, age and body mass index (BMI). Clinical, anthropometric, and biochemical measurements were obtained. Three-days, 24-hour diet records were recorded in the nutrient database program (BeBiS software program), the amounts of macro and micronutrient contents were determined and the Diet Inflammatory Index (DII) score was calculated and compared between groups.
Results: Statistically, the diets of FMF patients were found to be higher in omega-6, carbohydrate percentage and salt content, and lower in terms of lactose, fat percentage, monounsaturated fatty acids, retinol and biotin compared to controls. There was no correlation between DII and acute phase reactants and colchicine dose.
Conclusion: The course of FMF can be affected by environmental factors, as well as its genetic background. Nutrition is a new and interesting topic in this regard and may contribute to inflammation and disease activity in FMF patients.
Collapse
Affiliation(s)
- Tülay OMMA
- UNIVERSITY OF HEALTH SCIENCES, ANKARA HEALTH RESEARCH CENTER
| | - Seda ÇOLAK
- UNIVERSITY OF HEALTH SCIENCES, ANKARA NUMUNE HEALTH RESEARCH CENTER
| | | | | | - Ahmet OMMA
- UNIVERSITY OF HEALTH SCIENCES, ANKARA NUMUNE HEALTH RESEARCH CENTER
| |
Collapse
|
48
|
Wang J, Zhu Y, Zhang C, Duan R, Kong F, Zheng X, Hua Y. A conserved role of bam in maintaining metabolic homeostasis via regulating intestinal microbiota in Drosophila. PeerJ 2022; 10:e14145. [PMID: 36248714 PMCID: PMC9559046 DOI: 10.7717/peerj.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Previous studies have proven that bag-of-marbles (bam) plays a pivotal role in promoting early germ cell differentiation in Drosophila ovary. However, whether it functions in regulating the metabolic state of the host remains largely unknown. Methods We utilized GC-MS, qPCR, and some classical kits to examine various metabolic profiles and gut microbial composition in bam loss-of-function mutants and age-paired controls. We performed genetic manipulations to explore the tissue/organ-specific role of bam in regulating energy metabolism in Drosophila. The DSS-induced mouse colitis was generated to identify the role of Gm114, the mammalian homolog of bam, in modulating intestinal homeostasis. Results We show that loss of bam leads to an increased storage of energy in Drosophila. Silence of bam in intestines results in commensal microbial dysbiosis and metabolic dysfunction of the host. Moreover, recovery of bam expression in guts almost rescues the obese phenotype in bam loss-of-function mutants. Further examinations of mammalian Gm114 imply a similar biological function in regulating the intestinal homeostasis and energy storage with its Drosophila homolog bam. Conclusion Our studies uncover a novel biological function of bam/Gm114 in regulating the host lipid homeostasis.
Collapse
Affiliation(s)
- Jiale Wang
- Anhui Agricultural University, Hefei, China
| | | | - Chao Zhang
- Anhui Agricultural University, Hefei, China
| | | | | | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | | |
Collapse
|
49
|
Heiston EM, Ballantyne A, Stewart NR, La Salvia S, Musante L, Lanningan J, Erdbrügger U, Malin SK. Insulin infusion decreases medium-sized extracellular vesicles in adults with metabolic syndrome. Am J Physiol Endocrinol Metab 2022; 323:E378-E388. [PMID: 35858245 PMCID: PMC9529262 DOI: 10.1152/ajpendo.00022.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
Elevated extracellular vesicles (EVs) are associated with glucose dysmetabolism. However, the effects of insulin on EVs and subsequent relationships with insulin sensitivity, substrate oxidation, and inflammation are unknown. We tested the hypothesis that insulin would lower EVs and relate to insulin action. Fifty-one sedentary adults (54.8 ± 1.0 yr; V̇o2peak : 22.1 ± 0.6 mL/kg/min) with metabolic syndrome (MetS) and obesity (36.4 ± 0.65 kg/m2) underwent a 2-h euglycemic-hyperinsulinemic clamp (5 mmol/L; 40 mU/m2/min). Count and size (medium: 200-624 nm; larger: 625-1,000 nm) for total particle count, endothelial- (CD105+), leukocyte- (CD45+), platelet- (CD41+), and tetraspanin- (TX+: CD9/CD81/CD63), as well as platelet endothelial cell adhesion molecule- (CD31+) derived EVs were determined before and following the clamp using Full Spectrum Profiling (FSPM). Size and MESF (molecules of equivalent soluble fluorochrome) data were generated using FCMPASS Software. Fat and carbohydrate oxidation, in addition to high-sensitivity c-reactive protein (hsCRP), were measured to understand insulin effects and associations between EVs, metabolic flexibility, and inflammation. Despite low metabolic insulin sensitivity (M-Value = 2.56 ± 0.17 mg/kg/min), insulin increased carbohydrate (P = 0.015) and decreased fat oxidation (P = 0.048) and hsCRP (P = 0.016) compared with fasting. Insulin also decreased total particle count (P < 0.001), attributable to decreased medium-sized CD105+ (P = 0.052) and CD45+ EVs (P < 0.001). Elevated fasting insulin was associated with reduced insulin-stimulated changes in all EVs phenotypes (P < 0.001). Interestingly, fasting EVs were associated with increased fasting carbohydrate oxidation (all P < 0.05). These findings suggest that insulin decreases medium-sized EVs in conjunction with metabolic flexibility under euglycemic conditions in adults with MetS. More research is needed to determine how therapies alter EV phenotype/size and consequent cardiometabolic risk.NEW & NOTEWORTHY This study is one of the first to investigate the effects of insulin on medium and larger extracellular vesicles (EVs) in relation to metabolic insulin sensitivity and fuel use in adults with metabolic syndrome. Our data suggest that insulin infusion decreases the concentration of total particle counts, mainly due to reductions in medium-sized EVs. Furthermore, EVs, predominantly medium-sized, are inversely associated with metabolic flexibility.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Anna Ballantyne
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Nathan R Stewart
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Sabrina La Salvia
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Luca Musante
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers University, New Brunswick, New Jersey
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
50
|
Corkey BE, Kilpatrick LE, Evans-Molina C. Hypothesis: Induction of Autoimmunity in Type 1 Diabetes-A Lipid Focus. Diabetes 2022; 71:2067-2074. [PMID: 36126206 PMCID: PMC10477405 DOI: 10.2337/db22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/10/2022] [Indexed: 11/13/2022]
Abstract
Several unrelated findings led us to hypothesize that induction of autoimmunity is a consequence of a prior major inflammatory event in individuals with susceptible HLA phenotypes and elevated sensitivity to cytokines and free fatty acids (FFA). We observed provocative enhanced responsiveness of cultured human fibroblasts from individuals with type 1 diabetes (T1D), but not control subjects, to FFA and the inflammatory cytokines TNFα and IL1-β. Major infections increase inflammatory cytokines as well as circulating FFA. Endotoxin-treated animal models of sepsis also exhibit elevated inflammatory cytokines that inhibit FFA oxidation and elevate FFA. The pancreatic β-cell possesses low reactive oxygen species (ROS) scavenging capacity and responds to both elevated FFA and cytokines with increased ROS production, a combination that increases exocytosis and trafficking of secretory vesicles to the plasma membrane. Increased trafficking is accompanied by increased cycling of secretory granule proteins and may be linked with increased surface presentation of granule proteins to the immune system. We propose that this ultimately targets β-cell granular proteins at the cell surface and is consistent with the preponderance of autoantibodies to granule proteins. Our hypothesis encourages testing of potential early therapeutic interventions to prevent progression of β-cell destruction.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine, Center for Diabetes and Metabolic Diseases, and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|