1
|
Azeem M, Cancemi P, Mukhtar F, Marino S, Peri E, Di Prima G, De Caro V. Efficacy and limitations of SARS-CoV-2 vaccines - A systematic review. Life Sci 2025; 371:123610. [PMID: 40189198 DOI: 10.1016/j.lfs.2025.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The emergence of the SARS-CoV-2 virus worldwide led to the call for the development of effective and safe vaccines to contain the spread and effects of COVID-19. Using information from 40 publications, including clinical trials and observational studies from 2019 to 2024, this review assesses the effectiveness, safety, and limitations of four major vaccines: Sinopharm (BBIBP-CorV), Moderna (mRNA-1273), Pfizer-BioNTech (BNT162b2), and CoronaVac. Pfizer-BioNTech and Moderna's mRNA vaccines proved to be more effective than others; Moderna's vaccines showed an efficacy of 94.1 % against symptomatic infection, while Pfizer-BioNTech's vaccines showed an efficacy of up to 95 %, against severe diseases and hospitalization. These vaccinations, which included protection against Omicron and Delta variants, offered notable protection against serious illness, hospitalization, and mortality. Severe adverse events were rare while most adverse events were mild to moderate, such as headaches, fatigue, and localized reactions. In contrast, inactivated virus vaccines such as Sinopharm and CoronaVac with efficacies ranging from 50 to 79 % against symptomatic infection showed lower levels of effectiveness. In Phase 3 trial, Sinopharm showed 72.8 % efficacy, whereas CoronaVac demonstrated roughly 67 % efficacy in population against hospitalization and severe disease. Booster doses were required for adequate immunological response, especially against novel strains, as these vaccinations proved to be less effective in older populations. They showed considerable safety profiles, with mild side effects, but their low immunogenicity is concerning. This review emphasizes the importance of continuously evaluating vaccines in response to the evolving virus, essential for improving international immunization programs.
Collapse
Affiliation(s)
- Muhammad Azeem
- Dipartimento di Medicina di Precisione in Area Medica, Chirurgica e Critica (Me.Pre.C.C.), Università degli Studi di Palermo, Via Liborio Giuffre, 590127 Palermo, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Farwa Mukhtar
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Sefora Marino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Emanuela Peri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
2
|
Zhang S, Zeng Y, Cui L, Zhang Y, Chen T, Xue W, Wang H, Liu H, Zhang Y, Chen L, Zhou L, Xiong Y, Zheng Q, Yu H, Cheng T, Zhang J, Gu Y, Li T, Xia N, Li S. Immunogenicity and cellular response of a herpes zoster virus gEgI fusion protein adjuvanted with CpG-emulsion in mice. J Nanobiotechnology 2025; 23:395. [PMID: 40448056 DOI: 10.1186/s12951-025-03423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Herpes zoster (HZ), commonly known as shingles, arises from the reactivation of the latent varicella-zoster virus (VZV) when VZV-specific cellular immunity declines below a critical threshold necessary for viral suppression. The current leading vaccine, Shingrix, which incorporates the adjuvant AS01B with glycoprotein E (gE), has significantly contributed to HZ prevention but raises concerns regarding safety and accessibility. Addressing the need for safer and more accessible HZ vaccinations, we developed a vaccine comprising a fusion protein of glycoprotein E and I (gEgI), connected via a linker, targeting abundant B cell and CD4 T cell epitopes. Our study assessed the immunogenicity of the gE alone and the gEgI fusion protein in adult mice, revealing that gEgI prompts a more potent and comprehensive T cell response compared to gE alone. Furthermore, we introduced a composite adjuvant, an emulsion-type adjuvant combined with CpG1018 (XUA09C), which was shown to enhance both humoral and cellular immune responses beyond the capabilities of XUA09 with CpG alone. Comparative analyses demonstrated that the XUA09C-adjuvanted gEgI vaccine induces comparable antibody responses and significantly superior T cell responses relative to Shingrix in both adult, VZV-primed, and aged mice. Single-cell RNA sequencing highlighted that gEgI/XUA09C more effectively promotes early immune activation, B and T cell proliferation, and memory T cell augmentation compared to Shingrix. These findings position the XUA09C-adjuvanted gEgI as a promising candidate for further development in HZ vaccine strategies, potentially better serving the needs of the immunocompromised population.
Collapse
Affiliation(s)
- Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yarong Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yiwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Tingting Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yuyun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yueting Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China.
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Konopka EN, Edgerton AO, Kutzler MA. Nucleic acid vaccines: innovations, efficacy, and applications in at-risk populations. Front Immunol 2025; 16:1584876. [PMID: 40438110 PMCID: PMC12116436 DOI: 10.3389/fimmu.2025.1584876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/09/2025] [Indexed: 06/01/2025] Open
Abstract
For more than two centuries, the field of vaccine development has progressed through the adaptation of novel platforms in parallel with technological developments. Building off the advantages and shortcomings of first and second-generation vaccine platforms, the advent of third-generation nucleic acid vaccines has enabled new approaches to tackle emerging infectious diseases, cancers, and pathogens where vaccines remain unavailable. Unlike traditional vaccine platforms, nucleic acid vaccines offer several new advantages, including their lower cost and rapid production, which was widely demonstrated during the COVID-19 pandemic. Beyond production, DNA and mRNA vaccines can elicit unique and targeted responses through specialized design and delivery approaches. Considering the growth of nucleic acid vaccine research over the past two decades, the evaluation of their efficacy in at-risk populations is paramount for refining and improving vaccine design. Importantly, the aging population represents a significant portion of individuals highly susceptible to infection and disease. This review seeks to outline the major impairments in vaccine-induced responses due to aging that may be targeted for improvement with design and delivery components encompassing mRNA and DNA vaccine formulations. Results of pre-clinical and clinical applications of these vaccines in aged animal models and humans will also be evaluated to outline current successes and limitations observed in these platforms.
Collapse
Affiliation(s)
- Emily N. Konopka
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| | - Arden O. Edgerton
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| | - Michele A. Kutzler
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, United States
- Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Philadelphia, PA, United States
| |
Collapse
|
4
|
Jiao L, Song Z, Zhou Y, Zhu T, Yu R, Wang Z, Qiu Y, Miao J, Zhang S, Liu Z, Wang D. Naringenin as a phytogenic adjuvant systematically enhances the protective efficacy of H9N2 inactivated vaccine through coordinated innate-adaptive immune priming in chickens. Poult Sci 2025; 104:105257. [PMID: 40344923 DOI: 10.1016/j.psj.2025.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Although inactivated vaccines remain the primary strategy for preventing and controlling avian influenza virus, they fail to induce durable and systemic immune protection. Adjuvants are crucial for enhancing antigen immunogenicity and improving immune responses. In this study, we evaluated the adjuvant activity of naringenin (Nar) for H9N2 inactivated vaccine by detecting humoral immunity, cellular immunity, and viral challenge. The results demonstrated that Nar/H9N2 co-administration significantly increased IgG levels and hemagglutination inhibition (HI) titers. Nar/H9N2 promoted the formation of high-affinity antibodies by upregulating the expression of genes associated with B cell activation and germinal centers (GCs) formation, thus facilitating humoral immune responses. Concurrently, Nar/H9N2 vaccine enhanced T cell proliferation, CD4+and CD8+T cell differentiation, and the expression of Th1/Th2 cytokines, thereby promoting cellular immunity. Crucially, compared to the inactivated H9N2 vaccine alone, viral challenge experiments confirmed that Nar-adjuvanted immunization confers superior protection, markedly reducing viral shedding and minimizing damage to the trachea and lungs. These findings elucidate the capacity of naringenin to synchronize multifaceted immune activation through GCs optimization and T-cell modulation, establishing Nar as a viable candidate for poultry vaccine adjuvants.
Collapse
Affiliation(s)
- Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yantong Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruihong Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shun Zhang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Sharma M, Wagh P, Shinde T, Trimbake D, Tripathy AS. Exploring the Role of Pattern Recognition Receptors as Immunostimulatory Molecules. Immun Inflamm Dis 2025; 13:e70150. [PMID: 40396589 DOI: 10.1002/iid3.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Pattern recognition receptors (PRRs) are the receptors of the innate immune system that play a vital role in initiating innate immune response. PRRs recognize pathogen associated molecular patterns (PAMPs) and activate immune cells through a signaling cascade. Due to this remarkable ability to recognize pathogenic microbes and elucidation of an immune response in a well-organized manner, PRR agonizts are likely to have great potential as vaccine adjuvants. Recent advancements in vaccine development raised concerns regarding the reduced immunogenicity of various vaccines, questioning the vaccine efficacy. In such cases, the use of an adjuvant becomes crucial. Understanding the structure and downstream signaling of PRRs will provide the possibility of developing a novel therapeutic approach. METHOD The rapidly evolving field of immunology and vaccinology, coupled with the increasing focus on PRRs in disease therapy, demands a comprehensive overview. In this review, we provide all-inclusive and contemporary gist on PRRs and the applications of their agonizts. We explored the potential of PRR agonizts as vaccine adjuvant. The current review integrates the basic understanding of PRRs and recent findings highlighting emerging trends of the same. RESULT Our review highlights that combining multiple PRR agonizts could offer synergistic benefits. This approach might prove advantageous and could potentially enhance vaccine efficacy and reduce the need for excessive immunogens. CONCLUSION A comprehensive understanding of PRR subset, agonizts of PRR and their application in vaccine adjuvant. This knowledge will be significant in formulating vaccine approaches.
Collapse
Affiliation(s)
- Meenal Sharma
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Priyanka Wagh
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Tanvi Shinde
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Diptee Trimbake
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Anuradha S Tripathy
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, Pune, India
| |
Collapse
|
6
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Chen Y, Feng D, Cheng Y, Jiang X, Qiu L, Zhang L, Shi D, Wang J. Research progress of metal-CpG composite nanoadjuvants in tumor immunotherapy. Biomater Sci 2025; 13:1605-1623. [PMID: 39998438 DOI: 10.1039/d4bm01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The practical benefits and therapeutic potential of tumor vaccines in immunotherapy have drawn significant attention in the field of cancer treatment. Among the available vaccines, nanovaccines that utilize nanoparticles as carriers or adjuvants have demonstrated considerable effectiveness in combating cancer. Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), a common adjuvant in tumor nanovaccines, activates both humoral and cellular immunity by recognizing toll-like receptor 9 (TLR9), thereby aiding in the prevention and treatment of cancer. Metal nanoparticles hold great promise in tumor immunotherapy due to their adjustable size, surface functionalization, ability to regulate innate immunity, and capacity for controlled delivery of antigens or immunomodulators. Consequently, composite nanoadjuvants, formed by combining metal nanoparticles with CpG ODNs, can be customized to meet the specific performance requirements of different application scenarios, effectively overcoming the limitations of conventional immunotherapy approaches. This review provides a comprehensive analysis of the critical role of metal-CpG composite nanoadjuvants in advancing vaccine adjuvants for cancer therapy and prevention, highlighting their efficacy in preclinical settings.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Yilin Cheng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
8
|
Cheng M, Chai Y, Rong G, Xin C, Gu L, Zhou X, Hong J. Nanotechnology-based strategies for vaccine development: accelerating innovation and delivery. BIOMATERIALS TRANSLATIONAL 2025; 6:55-72. [PMID: 40313573 PMCID: PMC12041807 DOI: 10.12336/biomatertransl.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025]
Abstract
The key role and impact of nanotechnology in vaccine development became particularly prominent following the outbreak of the coronavirus disease 2019 (COVID-19) pandemic in 2019. Especially in the process of designing and optimising COVID-19 vaccines, the application of nanomaterials significantly accelerated vaccine development and efficient delivery. In this review, we categorised and evaluated conventional vaccines, including attenuated live vaccines, inactivated vaccines, and subunit vaccines, highlighting their advantages and limitations. We summarised the development history, mechanisms, and latest technologies of vaccine adjuvants, emphasising their critical role in immune responses. Furthermore, we focused on the application of nanotechnology in the vaccine field, detailing the characteristics of nanoparticle vaccines, including virus-like particles, lipid-based carriers, inorganic nanoparticles, and polymer-based carriers. We emphasised their potential advantages in enhancing vaccine stability and immunogenicity, as well as their ability to deliver vaccines and present antigens through various routes. Despite facing challenges such as low drug loading efficiency, issues with long-term storage, high costs, and difficulties in large-scale production, nano-vaccines hold promise for the future. This review underscores the pivotal role and prospects of nanotechnology in vaccine development, offering new pathways and strategies to address current and future disease challenges.
Collapse
Affiliation(s)
- Mingrui Cheng
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| | - Yawei Chai
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| | - Changchang Xin
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research & Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Gene Editing and Cell Therapy Key Lab for Rare Disease; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China
| |
Collapse
|
9
|
Rinee KC, Patton ZE, Gillilan RE, Huang Q, Pingali SV, Heroux L, Xu AY. Elucidating the porous structure of aluminum adjuvants via in-situ small-angle scattering technique. Vaccine 2025; 50:126813. [PMID: 39914255 DOI: 10.1016/j.vaccine.2025.126813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Aluminum-based adjuvants are widely used in vaccine formulations due to their immunostimulatory properties and strong safety profile. Despite their effectiveness and safety, the exact mechanisms by which they enhance vaccine efficacy remain unclear. One proposed mechanism is that aluminum adjuvants form a depot that gradually releases antigens, thereby improving antigen uptake by antigen-presenting cells. This study investigates the porous structures of two commonly used aluminum adjuvants, aluminum hydroxide (AH) and aluminum phosphate (AP), using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). Our measurements reveal that AH nanoparticles, with their needle-like morphology, form smaller, interconnected pores within the aggregated architecture. In contrast, AP nanoparticles, with a plate-like shape, form more discrete, isolated porous structures. Both adjuvants have pore sizes within the range of commonly used vaccine antigens, supporting the depot theory. Our findings also reveal that antigen retention is prolonged when the antigen size is comparable to the average pore size of the adjuvant. This study highlights the utility of SAXS and SANS for in-situ characterization of adjuvant porosity and provides insights into how nanoparticle morphology affects antigen retention and release. By elucidating these structural details, our research underscores the importance of porous structure in adjuvant function and offers potential pathways for improving vaccine formulations through tailored adjuvant design.
Collapse
Affiliation(s)
- Khaleda C Rinee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zoe E Patton
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Ithaca, NY 14853, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
10
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Megdiche Y, Salerno-Gonçalves R. Harnessing adjuvant-induced epigenetic modulation for enhanced immunity in vaccines and cancer therapy. Front Immunol 2025; 16:1547213. [PMID: 40040700 PMCID: PMC11876029 DOI: 10.3389/fimmu.2025.1547213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Adjuvants are crucial in vaccines and cancer therapies, enhancing therapeutic efficacy through diverse mechanisms. In vaccines, adjuvants are traditionally valued for amplifying immune responses, ensuring robust and long-lasting protection against pathogens. In cancer treatments, adjuvants can boost the effectiveness of chemotherapy or immunotherapy by targeting tumor antigens, rendering cancer cells more vulnerable to treatment. Recent research has uncovered new molecular-level effects of the adjuvants, mainly through epigenetic mechanisms. Epigenetics encompasses heritable modifications in gene expression that do not alter the DNA sequence, impacting processes such as DNA methylation, histone modification, and non-coding RNA expression. These epigenetic changes play a pivotal role in regulating gene activity, influencing immune pathways, and modulating the strength and duration of immune responses. Whether in vaccines or cancer treatments, understanding how adjuvants interact with epigenetic regulators offers significant potential for developing more precise, cell-targeted therapies across various medical fields. This review delves into the evolving role of adjuvants and their interactions with epigenetic mechanisms. It also examines the potential of harnessing epigenetic changes to enhance adjuvant efficacy and explores the novel use of epigenetic inhibitors as adjuvants in therapeutic settings.
Collapse
Affiliation(s)
| | - Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Suzuki Okutani M, Okamura S, Gis T, Sasaki H, Lee S, Kashiwabara A, Goto S, Matsumoto M, Yamawaki M, Miyazaki T, Nakagawa T, Ikawa M, Kamitani W, Takekawa S, Yamanishi K, Ebina H. Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple attenuation mechanisms. eLife 2025; 13:RP97532. [PMID: 39932490 PMCID: PMC11813227 DOI: 10.7554/elife.97532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
mRNA vaccines against SARS-CoV-2 were rapidly developed and were effective during the pandemic. However, some limitations remain to be resolved, such as the short-lived induced immune response and certain adverse effects. Therefore, there is an urgent need to develop new vaccines that address these issues. While live-attenuated vaccines are a highly effective modality, they pose a risk of adverse effects, including virulence reversion. In the current study, we constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring virulence-attenuating mutations in the NSP14, NSP1, spike, and ORF7-8 coding regions. Intranasal inoculation with BK2102 induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the lungs, leading to protection against a SARS-CoV-2 D614G and an Omicron BA.5 strains. The neutralizing antibodies induced by BK2102 persisted for up to 364 days, which indicated that they confer long-term protection against infection. Furthermore, we confirmed the safety of BK2102 using transgenic (Tg) mice expressing human ACE2 (hACE2) that are highly susceptible to SARS-CoV-2. BK2102 did not kill the Tg mice, even when virus was administered at a dose of 106 plaque-forming units (PFUs), while 102 PFU of the D614G strain or an attenuated strain lacking the furin cleavage site of the spike was sufficient to kill mice. These results suggest that BK2102 is a promising live-vaccine candidate strain that confers long-term protection without significant virulence.
Collapse
MESH Headings
- Animals
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/pathogenicity
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mesocricetus
- Humans
- Mice, Transgenic
- Immunogenicity, Vaccine
- Cricetinae
- Female
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Mie Suzuki Okutani
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Tang Gis
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hitomi Sasaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Suni Lee
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Akiho Kashiwabara
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Simon Goto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mai Matsumoto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mayuko Yamawaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Toshiaki Miyazaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Tatsuya Nakagawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of MedicineMaebashiJapan
| | - Shiro Takekawa
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Koichi Yamanishi
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka UniversitySuitaJapan
| |
Collapse
|
13
|
Christodoulou I, Gkaniatsou E, Steunou N, Kisserli A, Cohen JHM, Haouas M, Sicard C. Screening of Aluminum-Based MOFs for Effective In Situ Immobilization of Biomolecules. Inorg Chem 2025; 64:2545-2553. [PMID: 39882866 DOI: 10.1021/acs.inorgchem.4c05275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
An effective approach for the immobilization and protection of biological entities is their encapsulation via the in situ synthesis of metal-organic frameworks (MOFs). To ensure the preservation of the bioentities, mild synthetic conditions, including aqueous media and ambient conditions (temperature and pressure), are preferred. In this study, we investigated the synthesis of various aluminum polycarboxylate-based MOFs, including the fumarate, terephthalate, amino-terephthalate, and muconate forms of MIL-53(Al), as well as the MIL-110 and MIL-160 MOF types. The potential as immobilization matrices was then assessed using bovine serum albumin (BSA). Finally, MIL-53(Al)-fum was selected for the encapsulation of a mixture of polysaccharides and more structurally complex bioentities (viruses).
Collapse
Affiliation(s)
- Ioanna Christodoulou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Effrosyni Gkaniatsou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Aymric Kisserli
- Nanosciences Research Laboratory LRN EA 4682, University of Rheims Champagne-Ardenne, 51685 Rheims, France
- Oncogeriatric Coordination Unit, Rheims University Hospital, 51100 Rheims, France
| | - Jacques H M Cohen
- Nanosciences Research Laboratory LRN EA 4682, University of Rheims Champagne-Ardenne, 51685 Rheims, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
14
|
Ma W, Xu Z, Teng C, Cao C, Wu R, Meng X, Sui Q, Gao Q, Zong C, Li T. Enhanced Antitumor Immunity of a Globo H-Based Vaccine Enabled by the Combination Adjuvants of 3D-MPL and QS-21. Angew Chem Int Ed Engl 2025; 64:e202418948. [PMID: 39679641 DOI: 10.1002/anie.202418948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Globo H, a specific carbohydrate antigen overexpressed on various human malignancies, has attracted considerable interest as an antigenic target for anticancer vaccine development. Despite several Globo H-based carbohydrate vaccines that have been designed, efficient access to Globo H hexasaccharide antigen and development of powerful adjuvants for enhancing antitumor immunity remain challenging. Herein, we reported a streamlined chemoenzymatic approach to prepare this hexasaccharide antigen, relying on chemical synthesis of Gb5 pentasaccharide by a stereoconvergent [2+3] strategy and subsequent enzymatic α-fucosylation to easily install α1,2-fucose residue. Separately, a modular assembly approach to efficiently synthesize 3-O-deacyl-monophosphoryl lipid A (3D-MPL) was developed by the integration of stereocontrolled glycosylation, regioselective acylation, site-specific phosphorylation, and facile global deprotection. After efficient construction of Globo H-CRM197 conjugate, we conducted systematic immunological evaluations of Globo H-CRM197 formulated with various adjuvants and adjuvant combinations, comprising saponin QS-21, synthetic 3D-MPL and α-galactosylceramide derivative S34. The results revealed that Globo H-CRM197 conjugate adjuvanted with QS-21 and 3D-MPL elicited robust IgG2a and IgG3 antibody responses and Th1 cellular immunity in mice. Moreover, antibodies induced by this formulation effectively bound to Globo H-positive MCF-7 cancer cells and exhibited superior complement-dependent cytotoxicity and antibody-dependent cellular phagocytosis, holding promise for further development of effective anticancer vaccines.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changcai Teng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruixue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sui
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Qi Gao
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Chengli Zong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
15
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
16
|
Kussini J, Mühlenbein S, Didona D, Pfützner W. Cutaneous reactions to vaccination. J Dtsch Dermatol Ges 2025; 23:195-209. [PMID: 39865751 PMCID: PMC11803346 DOI: 10.1111/ddg.15477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/05/2024] [Indexed: 01/28/2025]
Abstract
Vaccination is a fundamental principle of preventive health care. Administration of the vaccine, which contains the antigen(s) of a pathogen, activates the immune system and provides protection against infection. The immunogenicity and allergenicity of a vaccine may lead to various adverse reactions, depending on the responsiveness and susceptibility of the vaccinated individual. Cutaneous adverse events are among the most common and can manifest as various local or generalized vaccination reactions. Understanding their pathogenesis and clinical manifestations is essential for therapy, for further diagnostic clarification if necessary, and for managing any booster vaccination that may be required. Appropriate dermatological expertise therefore plays a crucial role in managing patients with a history of vaccination reactions.
Collapse
Affiliation(s)
- Jacqueline Kussini
- Department of Dermatology and AllergologyUniversity Hospital MarburgPhilipps University MarburgMarburgGermany
| | - Stefan Mühlenbein
- Department of Dermatology and AllergologyUniversity Hospital MarburgPhilipps University MarburgMarburgGermany
| | - Dario Didona
- Department of Dermatology and AllergologyUniversity Hospital MarburgPhilipps University MarburgMarburgGermany
| | - Wolfgang Pfützner
- Department of Dermatology and AllergologyUniversity Hospital MarburgPhilipps University MarburgMarburgGermany
| |
Collapse
|
17
|
Song Z, Zhou Y, Jiao L, Zhu T, Yu R, Wang Z, Qiu Y, Miao J, Cai T, Zhang S, Liu H, Sun H, Sun Y, Wang D, Liu Z. Lovastatin enhances humoral and cellular immune responses to H1N1 influenza vaccine. Vet Microbiol 2025; 300:110331. [PMID: 39662203 DOI: 10.1016/j.vetmic.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The Swine Influenza Virus (SIV) is a major respiratory pathogen in swine, causing acute, febrile, and highly transmissible infections. This virus is widespread globally and poses significant risks to human health and social development. Traditional prevention strategies for SIV rely on the use of inactivated vaccines combined with Alum adjuvants. However, this method is limited by insufficient protection due to the lack of cellular immunity provided by Alum adjuvants. In this study, we investigated the effect of lovastatin, a specific inhibitor of the mevalonate pathway, on the immune response in mice vaccinated with the H1N1 vaccine. We focused on its impact on antibody production, as well as T-cell and B-cell development. Our findings reveal that the combination of lovastatin and H1N1 vaccine (Lov/H1N1) significantly enhances the production of H1N1-specific serum IgG and hemagglutination inhibition (HI) antibodies. Additionally, it promotes T-cell activation in both draining lymph nodes (dLNs) and the spleen. Analysis of cytokines produced after antigenic restimulation of splenic lymphocytes from immunized mice showed that the Lov/H1N1 combination induces both Th1-type (IFNγ, TNFα) and Th2-type (IL4, IL6) responses. Moreover, Lov/H1N1 facilitates the formation of germinal centers (GCs), which are crucial for the generation of memory B cells and long-lived plasma cells. These results indicate that lovastatin is a promising adjuvant candidate, capable of inducing robust cellular and humoral immune responses, thereby overcoming the limitations of Alum adjuvants. Our study provides a foundation for future research on combined vaccine strategies, highlighting Lovastatin's potential to enhance vaccine efficacy through improved immune responses.
Collapse
Affiliation(s)
- Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yantong Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruihong Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315032, PR China
| | - Shun Zhang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315032, PR China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315032, PR China
| | - Haifeng Sun
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuechao Sun
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315032, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315032, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Ontiveros-Padilla L, Bachelder EM, Ainslie KM. Microparticle and nanoparticle-based influenza vaccines. J Control Release 2024; 376:880-898. [PMID: 39427775 DOI: 10.1016/j.jconrel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally, we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
21
|
Danielsson R, Mile I, Eriksson H. Adsorption and Desorption of Immune-Modulating Substances by Aluminium-Based Adjuvants: An Overlooked Feature of the Immune-Stimulating Mechanisms of Aluminium-Based Adjuvants. Int J Mol Sci 2024; 25:12399. [PMID: 39596470 PMCID: PMC11594729 DOI: 10.3390/ijms252212399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Vaccine antigens are partly adsorbed onto aluminium-based adjuvant particles, forming an unstable corona. At the inoculation site, the corona will be restructured, and the adsorbed antigens will be released through replacement with biomolecules from the interstitial fluid of the recipient. Aluminium-based adjuvants (ABAs) carrying a corona of serum proteins as a model of particles with a pre-formed antigen corona were shown to adsorb several categories of cytokines and growth factors, as assessed from a protein array covering 18 different analytes. Out of the 18 analytes, 12 were shown to be adsorbed by the aluminium-based adjuvant Alhydrogel®, which had a pre-formed protein corona. The adsorption of TNF-α, IL-2, IL-4, IL-10, and IFN-γ was studied in detail. Among the studied cytokines, IL-2, IL-4, and IFN-γ, were adsorbed by Alhydrogel®. Adsorbed IFN-γ was further studied to show that the adsorption of IFN-γ did not denature the cytokine, and the cytokine could be desorbed from adjuvant particles in a biologically active form and in relevant amounts. The adsorption of immune-stimulating molecules onto ABAs at the administration site of a vaccine is a neglected event in the mode of action of aluminium-based adjuvants. This process may modulate the immune response with a profound impact on initiating the innate immune response and consequently the adaptive immune response.
Collapse
Affiliation(s)
| | | | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
22
|
Ge L, Guo H, Zhou W, Shi W, Yue J, Wu Y. Manganese-mediated potentiation of antitumor immune responses by enhancing KLRG1 + Macrophage function. Int Immunopharmacol 2024; 141:112951. [PMID: 39153309 DOI: 10.1016/j.intimp.2024.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Manganese (Mn) play a crucial role in various biological processes in the body. Studies have primarily focused on their ability to enhance immune cell function and activation against tumors, particularly in dendritic cells (DCs), macrophages, and T cells. Tumor-associated macrophages (TAMs) are often the most abundant immune cell population present in the tumor microenvironment (TME). Thus, it would be valuable to investigate the mechanism by which Mn2+ regulates TAMs' involvement in anti-tumor immunity, as it be crucial for advancing our understanding of cancer biology and developing new treatments for cancer. Here, in the present study we discovered that Mn2+ treatment led to a significant increase in KLRG1+ macrophages (KLRG1+ Mφ) in tumor tissues, and most of these cells exhibited an M1 phenotype. Knocking down KLRG1 in macrophages not only impaired their ability to induce downstream anti-tumor immunity of adaptive immune cells, but also impaired their direct cytotoxicity against tumor cells. Moreover, the changes in the polarization phenotype of KLRG1+ macrophages further lead to T cell proliferation and the polarization of CD4+ T cells towards a Th1 phenotype, thereby establishing a foundation for the antitumor immune response. Our study expands the understanding of the anti-tumor mechanism of Mn2+ and demonstrates, for the first time, that Mn2+ can regulate the function of KLRG1+ Mφ to participate in anti-tumor activities. These findings suggest that KLRG1 may represent a promising target for developing new tumor therapy.
Collapse
Affiliation(s)
- Liyan Ge
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou 215123, China
| | - Hui Guo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Wei Zhou
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jiawei Yue
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yumin Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Nano and Soft Materials (FUNSOM) College of Nano Science &Technology (CNST) Suzhou, Jiangsu 215123, China.
| |
Collapse
|
23
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
24
|
Zhang C, Liu Y, Li Y, Guo S, Wang S, Cheng S. Study on the Continuous Whole Process Preparation of Peptizable Pseudoboehmite by High Gravity Strengthening Reaction of CO 2 and Heat Transfer. ACS OMEGA 2024; 9:43570-43582. [PMID: 39494026 PMCID: PMC11525502 DOI: 10.1021/acsomega.4c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The preparation of highly peptizable pseudoboehmite faces challenges such as slow reaction rate, prolonged aging times leading to poor peptization performance, and difficulty in achieving continuous production. In this study, a novel approach was proposed involving a high gravity reactor to enhance carbonation reaction control for pseudoboehmite nucleation, a high gravity steam heating process, and a continuous aging process in pipelines. By coupling these three processes, the continuous whole process production of highly peptizable pseudoboehmite under high gravity conditions was achieved. First, the effect of high gravity reactor enhancement on the reaction and the resulting solid phase was investigated. Second, the impact of aging temperature and time on the solid phase formed at different reaction end points was studied using high gravity and steam heating of the liquid phase. Furthermore, the influence of synthesis conditions on the peptization performance of pseudoboehmite was extensively examined. Finally, the nucleation and growth mechanisms of pseudoboehmite under high gravity conditions were analyzed. It was found that increasing high gravity factor, CO2 gas flow rate, and CO2 content accelerated carbonation reaction rate, promoting pseudoboehmite crystal nucleation. Increasing aging temperature and time facilitated the growth of pseudoboehmite nuclei and improved peptization performance. The high gravity device altered the gas-liquid phase contact state of traditional kettle-type equipment, reducing the reaction time and heating time from minutes to seconds, thus achieving the continuous whole process production of pseudoboehmite with a peptization index of 100% from sodium aluminate solution by kiln flue gas.
Collapse
Affiliation(s)
- Chengqian Zhang
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| | - Youzhi Liu
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| | - Yuliang Li
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| | - Shuwei Guo
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| | - Shufei Wang
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| | - Shangyuan Cheng
- School of
Chemistry and Chemical Engineer, North University
of China, Taiyuan 030051, China
- Shanxi
Province
Key Laboratory of Chemical Process Intensification, Taiyuan 030051, China
| |
Collapse
|
25
|
Di Benedetto R, Massai L, Wright M, Mancini F, Cleveland M, Rossi O, Giannelli C, Berlanda Scorza F, Micoli F. Adjuvanted Modified Bacterial Antigens for Single-Dose Vaccines. Int J Mol Sci 2024; 25:11461. [PMID: 39519015 PMCID: PMC11546299 DOI: 10.3390/ijms252111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Alum is the most used vaccine adjuvant, due to its safety, low cost and adjuvanticity to various antigens. However, the mechanism of action of alum is complex and not yet fully understood, and the immune responses elicited can be weak and antigen-dependent. While several antigens rapidly desorb from alum upon exposure to serum, phosphorylated proteins remain tightly bound through a ligand-exchange reaction with surface hydroxyls on alum. Here, bacterial proteins and glycoconjugates have been modified with phosphoserines, aiming at enhancing the binding to alum and prolonging their bioavailability. Tetanus toxoid protein and Salmonella Typhi fragmented Vi-CRM conjugate were used. Both antigens rapidly and completely desorbed from alum after incubation with serum, verified via a competitive ELISA assay, and set up to rapidly evaluate in vitro antigen desorption from alum. After antigen modification with phosphoserines, desorption from alum was slowed down, and modified antigens demonstrated more prolonged retention at the injection sites through in vivo optical imaging in mice. Both modified antigens elicited stronger immune responses in mice, after a single injection only, compared to unmodified antigens. A stronger binding to alum could result in potent single-dose vaccine candidates and opens the possibility to design novel carrier proteins for glycoconjugates and improved versions of bacterial recombinant proteins.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Mark Wright
- GSK, Stevenage SG1 2NFX, Hertfordshire, UK; (M.W.); (M.C.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesco Berlanda Scorza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| |
Collapse
|
26
|
Ho TL, Ahn SY, Ko EJ. Adjuvant potential of Peyssonnelia caulifera extract on the efficacy of an influenza vaccine in a murine model. Sci Rep 2024; 14:25353. [PMID: 39455811 PMCID: PMC11512024 DOI: 10.1038/s41598-024-76736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Natural adjuvants have recently garnered interest in the field of vaccinology as their immunostimulatory effects. In this study, we aimed to investigate the potential use of Peyssonnelia caulifera (PC), a marine alga, as a natural adjuvant for an inactivated split A/Puerto Rico/8/1934 H1N1 influenza vaccine (sPR8) in a murine model. We administered PC-adjuvanted vaccines to a murine model via intramuscular prime and boost vaccinations, and subsequently analyzed the induced immunological responses, particularly the production of antigen-specific IgG1 and IgG2a antibodies, memory T and B cell responses, and the protective efficacy against a lethal viral infection. PC extract significantly bolstered the vaccine efficacy, demonstrating balanced Th1/Th2 responses, increased memory T and B cell activities, and improved protection against viral infection. Notably, within 3 days post-vaccination, the PC adjuvant stimulated activation markers on dendritic cells (DCs) and macrophages at the inguinal lymph nodes (ILN), emphasizing its immunostimulatory capabilities. Furthermore, the safety profile of PC was confirmed, showing minimal local inflammation and no significant adverse effects post-vaccination. These findings contribute to our understanding of the immunomodulatory properties of natural adjuvants and suggest the promising roles of natural adjuvants in the development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
27
|
Petri FAM, Malcher CS, Mechler-Dreibi ML, Panneitz AK, Braga ER, Aguiar GAD, Toledo LT, Martins TS, Cides-da-Silva LC, Fantini MCA, Sant'Anna OA, Montassier HJ, Oliveira LGD. Shedding reduction and immunity modulation in piglets with an inactivated Mycoplasma hyopneumoniae vaccine encapsulated in nanostructured SBA-15 silica. Vaccine 2024; 42:126268. [PMID: 39208565 DOI: 10.1016/j.vaccine.2024.126268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mycoplasma (M.) hyopneumoniae is a primary etiological agent of porcine enzootic pneumonia (PEP), a disease that causes significant economic losses to pig farming worldwide. Current commercial M. hyopneumoniae vaccines induce partial protection, decline in preventing transmission of this pathogen or inducing complete immunity, evidencing the need for improving vaccines against PEP. In our study, we aimed to test the effectiveness of the SBA-15 ordered mesoporous silica nanostructured particles as an immune adjuvant of a vaccine composed of M. hyopneumoniae strain 232 proteins encapsulated in SBA-15 and administered by intramuscular route in piglets to evaluate the immune responses and immune-protection against challenge. Forty-eight 24-day-old M. hyopneumoniae-free piglets were divided into four experimental groups with different protocols, encompassing a commercial vaccine against M. hyopneumoniae, SBA-15 vaccine, SBA-15 adjuvant without antigens and a non-immunized group. All piglets were challenged with the virulent strain 232 of M. hyopneumoniae. Piglets that received the SBA-15 and commercial vaccine presented marked immune responses characterized by anti-M. hyopneumoniae IgA and IgG antibodies in serum, anti-M. hyopneumoniae IgA antibodies in nasal mucosa and showed an upregulation of IL-17 and IL-4 cytokines and downregulation of IFN-γ in lungs 35 days post-infection. Piglets immunized with SBA-15 vaccine presented a reduction of bacterial shedding compared to piglets immunized with a commercial bacterin. In addition, piglets from SBA-15 adjuvant suspension group presented increased IL-17 gene expression in the lungs without involvement of Th1 and Th2 responses after challenge. These results indicated that SBA-15 vaccine induced both humoral and cell-mediated responses in the upper respiratory tract and lungs, first site of replication and provided protection against M. hyopneumoniae infection with a homologous strain with reduction of lung lesions and bacterial shedding. Finally, these results enhance the potential use of new technologies such as nanostructured particles applied in vaccines for the pig farming industry.
Collapse
Affiliation(s)
| | - Clarisse Sena Malcher
- São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil
| | | | - Ana Karolina Panneitz
- São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil
| | - Eduarda Ribeiro Braga
- São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil
| | | | - Leonardo Teófilo Toledo
- Federal University of Viçosa (UFV), Laboratory of Bacterial Diseases (LDBAC), Viçosa, Brazil
| | - Tereza Silva Martins
- Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | | | | | | | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil
| | - Luís Guilherme de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil.
| |
Collapse
|
28
|
Lampinen V, Ojanen MJT, Caro FM, Gröhn S, Hankaniemi MM, Pesu M, Hytönen VP. Experimental VLP vaccine displaying a furin antigen elicits production of autoantibodies and is well tolerated in mice. NANOSCALE ADVANCES 2024:d4na00483c. [PMID: 39430302 PMCID: PMC11485048 DOI: 10.1039/d4na00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Proprotein convertase (PCSK) enzymes serve a wide range of regulatory roles in mammals, for example in metabolism and immunity, and altered activity of PCSKs is associated with disorders, such as cardiovascular disease and cancer. Inhibition of PCSK9 activity with therapeutic antibodies or small interfering RNAs is used in the clinic to lower blood cholesterol, and RNA interference -based silencing of FURIN (PCSK3) is being evaluated in clinical trials as a cancer treatment. Inhibiting these proteins through vaccine-induced autoantibodies could be a patient-friendly way to reduce the frequency of intervention and the overall price of treatment. Here, we show that a self-directed immune response against PCSK9 and furin can be generated in mice by presenting fragments of the proteins on norovirus-like particles (noro-VLPs). We genetically fused three PCSK peptides and the P domain of furin to the SpyCatcher linker protein and covalently conjugated them on noro-VLPs via SpyCatcher/SpyTag linkage. Both PCSK9 peptides and the furin P domain generated antigen specific IgGs even without conventional adjuvants. Importantly, vaccinating against furin did not cause adverse events or immune-mediated inflammatory disease. This study adds further support for the feasibility of VLP-based anti-PCSK9 vaccines and shows that the same principles can be applied to make novel vaccine candidates against other endogenous proteins such as furin. We also demonstrate that the noro-VLP can be used as a vaccine platform for presenting self-antigens.
Collapse
Affiliation(s)
- Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Markus J T Ojanen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Fernanda Muñoz Caro
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Stina Gröhn
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Marko Pesu
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
- Fimlab Laboratories Ltd FI-33014 Tampere Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
- Fimlab Laboratories Ltd FI-33014 Tampere Finland
| |
Collapse
|
29
|
Sun D, Ding C, Wei X, Mai Q, Jin Y, Liu W, Wu Y, Wang Y, Hu T, Cui H, Wang Y, Zeng W. Evaluation of virulence of Aeromonas veronii strain GZ21-2 and development of a highly effective vaccine for grass carp with the potential for industrial application. Microb Pathog 2024; 195:106913. [PMID: 39236968 DOI: 10.1016/j.micpath.2024.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Bacterial septicemia represents a significant disease affecting cultured grass carp culture, with the primary etiological agent identified as the Gram-negative bacterium Aeromonas veronii. In response to an outbreak of septicemia in Guangzhou, we developed a formaldehyde-inactivated vaccine against an A. veronii strain designated AV-GZ21-2. This strain exhibited high pathogenicity in experimental infections across at all developmental stages of grass carp. Mortality rates for grass carp weighing 15 ± 5 g ranged from 16 % to 92 % at exposure temperatures of 19 °C-34 °C, respectively. The median lethal dose (LD50) for grass carp groups weighing 15 ± 5 g, 60 ± 10 g, 150 ± 30 g and 500 ± 50 g were determined to be 1.43, 2.52, 4.65 and 7.12 × 107(CFU/mL), respectively. We investigated the inactivated vaccine in conbination with aluminum hydroxide gel (AV-AHG), Montanide ISA201VG (AV-201VG), and white oil (AV-WO) adjuvants. This study aimed to optimize inactivation conditions and identify the adjuvant that elicits the most robust immune response. The AV-GZ21-2 inactivated bacterial solution (AV),when combined with various adjuvants, was capable of inducing a strong specific immune response in grass carp. The relative percent survival (RPS) following a lethal challenge with AV-GZ21-2 were 94 % for AV-AHG, 88 % for AV-201VG, 84 % for AV-WO and 78 % for AV alone. The minimum immunization dose of the AV-AHG vaccine was determined to be 6.0 × 107 CFU per fish, providing immunity for a duration of six months with an immune protection level exceeding 75 %. Furthermore, the AV-AHG vaccine demonstrated significant protective efficacy against various epidemic isolates of A. veronii. Consequently, we developed an inactivated vaccine targeting a highly pathogenic strain of A. veronii, incorporating an aluminum hydroxide gel adjuvant, which resulted in high immune protection and a duration of immunity exceeding six months. These findings suggest that the AV-AHG vaccine holds substantial potential for industrial application.
Collapse
Affiliation(s)
- Dongli Sun
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Chengzhang Ding
- Foshan Institute of Agricultural Sciences, Foshan, 528145, Guangdong, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qianyi Mai
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Yuqi Jin
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Weiqiang Liu
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Foshan, 528145, Guangdong, China
| | - Yuhui Wang
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Tianmei Hu
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Hongye Cui
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Yaoda Wang
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Weiwei Zeng
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| |
Collapse
|
30
|
Wang Z, Cortez-Jugo C, Yang Y, Chen J, Wang T, De Rose R, Cui J, Caruso F. A Metal-Phenolic Network-Enabled Nanoadjuvant to Modulate Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401776. [PMID: 39031853 DOI: 10.1002/smll.202401776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Indexed: 07/22/2024]
Abstract
The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.
Collapse
Affiliation(s)
- Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
31
|
Ren H, Zhu A, Yang W, Jia Y, Cheng H, Wu Y, Tang Z, Ye W, Sun M, Xie Y, Yu M, Chen Y. 2D Differential Metallic Immunopotentiators Drive High Diversity and Capability of Antigen-specific Immunity Against Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405729. [PMID: 39225346 PMCID: PMC11516112 DOI: 10.1002/advs.202405729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
The therapeutic efficacy of vaccines for treating cancers in clinics remains limited. Here, a rationally designed cancer vaccine by placing immunogenically differential and clinically approved aluminum (Al) or manganese (Mn) in a 2D nanosheet (NS) architecture together with antigens is reported. Structurally optimal NS with a high molar ratio of Mn to Al (MANS-H) features distinctive immune modulation, markedly promoting the influx of heterogeneous innate immune cells at the injection site. Stimulation of multiple subsets of dendritic cells (DCs) significantly increases the levels, subtypes, and functionalities of antigen-specific T cells. MANS-H demonstrates even greater effectiveness in the production of antigen-specific antibodies than the commercial adjuvant (Alhydrogel) by priming T helper (Th)2 cells rather than T follicular helper (Tfh) cells. Beyond humoral immunity, MANS-H evokes high frequencies of antigen-specific Th1 and CD8+ cell immunity, which are comparable with Quil-A that is widely used in veterinary vaccines. Immunized mice with MANS-H adjuvanted vaccines exert strong potency in tumor regression by promoting effector T cells infiltrating at tumor and overcoming tumor resistance in multiple highly aggressive tumor models. The engineered immunogen with an intriguing NS architecture and safe immunopotentiators offers the next clinical advance in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Anqi Zhu
- Department of Medical UltrasoundShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200070China
| | - Wei Yang
- Department of UrologyXinhua HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200092China
| | - Yiwen Jia
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Ye Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Zhengqi Tang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Weifan Ye
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Mayu Sun
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yujie Xie
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Meihua Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| |
Collapse
|
32
|
Wan D, Bai Z, Zhang Y, Chen L, Que H, Lan T, Hong W, Huang J, He C, Wei Y, Pu Q, Wei X. Simultaneous enhancement of cellular and humoral immunity by the lymph node-targeted cholesterolized TLR7 agonist liposomes. Acta Pharm Sin B 2024; 14:4577-4590. [PMID: 39525596 PMCID: PMC11544185 DOI: 10.1016/j.apsb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor (TLR) agonists, as promising adjuvants and immunotherapeutic agents, have the potential to enhance immune responses and modulate antigen-dependent T-cell immune memory through activation of distinct signaling pathways. However, their clinical application is hindered by uncontrolled systemic inflammatory reactions. Therefore, it is imperative to create a vaccine adjuvant for TLR receptors that ensures both safety and efficacy. In this study, we designed lymph node-targeted cholesterolized TLR7 agonist cationic liposomes (1V209-Cho-Lip+) to mitigate undesired side effects. Co-delivery of the model antigen OVA and cholesterolized TLR7 agonist facilitated DC maturation through TLR activation while ensuring optimal presentation of the antigen to CD8+ T cells. The main aim of the present study is to evaluate the adjuvant effectiveness of 1V209-Cho-Lip+ in tumor vaccines. Following immunization with 1V209-Cho-Lip++OVA, we observed a pronounced "depot effect" and enhanced trafficking to secondary lymphoid organs. Prophylactic vaccination with 1V209-Cho-Lip++OVA significantly delays tumor development, prolongs mouse survival, and establishes durable immunity against tumor recurrence. Additionally, 1V209-Cho-Lip++OVA, while used therapeutic tumor vaccine, has demonstrated its efficacy in inhibiting tumor progression, and when combined with anti-PD-1, it further enhances antitumor effects. Therefore, the co-delivery of antigen and lymph node-targeted cholesterolized TLR7 agonist shows great promise as a cancer vaccine.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayu Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Oboge H, Riitho V, Nyamai M, Omondi GP, Lacasta A, Githaka N, Nene V, Aboge G, Thumbi SM. Safety and efficacy of toll-like receptor agonists as therapeutic agents and vaccine adjuvants for infectious diseases in animals: a systematic review. Front Vet Sci 2024; 11:1428713. [PMID: 39355141 PMCID: PMC11442433 DOI: 10.3389/fvets.2024.1428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Strengthening global health security relies on adequate protection against infectious diseases through vaccination and treatment. Toll-like receptor (TLR) agonists exhibit properties that can enhance immune responses, making them potential therapeutic agents or vaccine adjuvants. Methods We conducted an extensive systematic review to assess the efficacy of TLR agonists as therapeutic agents or vaccine adjuvants for infectious diseases and their safety profile in animals, excluding rodents and cold-blooded animals. We collected qualitative and available quantitative data on the efficacy and safety outcomes of TLR agonists and employed descriptive analysis to summarize the outcomes. Results Among 653 screened studies, 51 met the inclusion criteria. In this review, 82% (42/51) of the studies used TLR agonists as adjuvants, while 18% (9/51) applied TLR agonist as therapeutic agents. The predominant TLR agonists utilized in animals against infectious diseases was CpG ODN, acting as a TLR9 agonist in mammals, and TLR21 agonists in chickens. In 90% (46/51) of the studies, TLR agonists were found effective in stimulating specific and robust humoral and cellular immune responses, thereby enhancing the efficacy of vaccines or therapeutics against infectious diseases in animals. Safety outcomes were assessed in 8% (4/51) of the studies, with one reporting adverse effects. Discussion Although TLR agonists are efficacious in enhancing immune responses and the protective efficacy of vaccines or therapeutic agents against infectious diseases in animals, a thorough evaluation of their safety is imperative to in-form future clinical applications in animal studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323122.
Collapse
Affiliation(s)
- Harriet Oboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Victor Riitho
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Mutono Nyamai
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - George P Omondi
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Anna Lacasta
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Naftaly Githaka
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Vishvanath Nene
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Gabriel Aboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - S M Thumbi
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Shi Z, Gao Z, Zhuang X, Si X, Huang Z, Di Y, Ma S, Guo Z, Li C, Jin N, Huang L, Tian M, Song W, Chen X. Dynamic Covalent Hydrogel as a Single-Dose Vaccine Adjuvant for Sustained Antigen Release and Significantly Elevated Humoral Immunity. Adv Healthc Mater 2024; 13:e2400886. [PMID: 38824421 DOI: 10.1002/adhm.202400886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, 10-30 d constant release of the loaded recombinant protein antigens is successfully realized, and it is proved that sustained release of antigens can significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32 000 times and 8000 times improvement is observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant is confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines.
Collapse
MESH Headings
- Animals
- Hydrogels/chemistry
- Mice, Inbred C57BL
- Mice
- Immunity, Humoral/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- SARS-CoV-2/immunology
- Antigens, Viral/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/administration & dosage
- Female
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/chemistry
- Influenza Vaccines/administration & dosage
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zihan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zichao Huang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yaxin Di
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wantong Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
35
|
Li Y, Wang C, Lv H, Li J, Zhang X, Zhang S, Shen Q, Wu Q, Liu Y, Peng R, Liu Z. Manganese-Modified Aluminum Adjuvant Enhances both Humoral and Cellular Immune Responses. Adv Healthc Mater 2024:e2401675. [PMID: 39177146 DOI: 10.1002/adhm.202401675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Aluminum adjuvants remain the most commonly used vaccine adjuvants. Being rather effective in triggering humoral immunity, however, aluminum adjuvants usually show limited abilities in activating cellular immunities. Herein, by adding manganese ions during the preparation of aluminum adjuvant, a manganese-modified aluminum (Mn-Al) adjuvant is obtained, which can effectively stimulate both humoral and cellular immune responses. Such Mn-Al adjuvant can enhance antigen adsorption and promote antigen internalization by dendritic cells (DCs). Subsequently, the released Mn2+ can activate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway to further promote DC activation. When combines with the model antigen ovalbumin (OVA), the Mn-Al-adjuvantes vaccine can induce high levels of antigen-specific antibody titers and high proportions of antigen-specific cytotoxic T cells in vivo. Moreover, the Mn-Al-adjuvanted vaccine elicited stronger antigen-specific humoral and cellular immune responses than high-dose of the aluminum-based adjuvant. Additionally, immunization of mice with OVA in the presence of the Mn-Al adjuvant significantly inhibited the growth of B16-OVA tumors. Furthermore, when formulated with human papillomavirus antigens, Mn-Al-adjuvanted vaccines show better in vivo vaccination performance than aluminum-adjuvanted vaccines. Therefore, the manganese-modified aluminum adjuvant may thus become a new vaccine adjuvant with the potential to replace conventional aluminum adjuvants.
Collapse
Affiliation(s)
- Yaxin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chenya Wang
- InnoBM Pharmaceuticals Co., Ltd., Suzhou, Jiangsu, 215123, China
| | - Haoyuan Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingting Li
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Xupei Zhang
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Shiyuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qianqian Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yong Liu
- Jiangsu Recbio Technology Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
36
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
37
|
Evtushenko E, Ryabchevskaya E, Kovalenko A, Granovskiy D, Arkhipenko M, Vasiliev Y, Nikitin N, Karpova O. Wuhan Sequence-Based Recombinant Antigens Expressed in E. coli Elicit Antibodies Capable of Binding with Omicron S-Protein. Int J Mol Sci 2024; 25:9016. [PMID: 39201702 PMCID: PMC11354337 DOI: 10.3390/ijms25169016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The development of cross-reactive vaccines is one of the central aims of modern vaccinology. Continuous mutation and the emergence of new SARS-CoV-2 variants and subvariants create the problem of universal coronavirus vaccine design. Previously, the authors devised three recombinant coronavirus antigens, which were based on the sequence collected in 2019 (the Wuhan variant) and produced in an E. coli bacterial expression system. The present work has shown, for the first time, that these recombinant antigens induce the production of antibodies that clearly interact with produced in CHO full-length S-protein of the Omicron variant. The immunogenicity of these recombinant antigens was studied in formulations with different adjuvants: Freund's adjuvant, Al(OH)3 and an adjuvant based on spherical particles (SPs), which are structurally modified plant virus. All adjuvanted formulations effectively stimulated Omicron-specific IgG production in mice. These universal coronavirus antigens could be considered the main component for the further development of broad-spectrum coronavirus vaccines for the prevention of SARS-CoV-2 infection. The present work also provides evidence that the synthetic biology approach is a promising strategy for the development of highly cross-reactive vaccines. Moreover, it is important to note that the bacterial expression system might be appropriate for the production of antigenically active universal antigens.
Collapse
Affiliation(s)
- Ekaterina Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | - Ekaterina Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | - Angelina Kovalenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | - Dmitriy Granovskiy
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | - Marina Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| | - Olga Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (A.K.); (D.G.); (M.A.); (N.N.); (O.K.)
| |
Collapse
|
38
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
39
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
40
|
Zhivaki D, Kennedy SN, Park J, Boriello F, Devant P, Cao A, Bahleda KM, Murphy S, McCabe C, Evavold CL, Chapman KL, Zanoni I, Ashenberg O, Xavier RJ, Kagan JC. Correction of age-associated defects in dendritic cells enables CD4 + T cells to eradicate tumors. Cell 2024; 187:3888-3903.e18. [PMID: 38870946 PMCID: PMC11283364 DOI: 10.1016/j.cell.2024.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.
Collapse
Affiliation(s)
- Dania Zhivaki
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Stephanie N Kennedy
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Josh Park
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesco Boriello
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Pascal Devant
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Anh Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Kristin M Bahleda
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Shane Murphy
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles L Evavold
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Kate L Chapman
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
41
|
de Lima VA, Nunes JPS, Rosa DS, Ferreira R, Oliva MLV, Andreata‐Santos R, Duarte‐Barbosa M, Janini LMR, Maricato JT, Akamatsu MA, Ho PL, Schenkman S. Development and characterization of a multimeric recombinant protein using the spike protein receptor binding domain as an antigen to induce SARS-CoV-2 neutralization. Immun Inflamm Dis 2024; 12:e1353. [PMID: 39056544 PMCID: PMC11273545 DOI: 10.1002/iid3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.
Collapse
Affiliation(s)
- Veronica A. de Lima
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - João P. S. Nunes
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Daniela S. Rosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Rodrigo Ferreira
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria L. V. Oliva
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Robert Andreata‐Santos
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Marcia Duarte‐Barbosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Luiz M. R. Janini
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Juliana T. Maricato
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Milena A. Akamatsu
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Paulo L. Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| |
Collapse
|
42
|
Wan Y, He S, Wang S, Xu T, Qi M, Gan P. Efficacy and Safety of Interleukin-1 Inhibitors in the Management of Patients with Recurrent Pericarditis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2024; 24:537-545. [PMID: 38809412 DOI: 10.1007/s40256-024-00653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The efficacy and safety of interleukin-1 (IL-1) inhibitors in patients with recurrent pericarditis (RP) remain to be determined. OBJECTIVE We aimed to conduct a meta-analysis to investigate the impact of IL-1 inhibitors on patients suffering from RP. METHODS The Cochrane Library, PubMed, EMBASE, ClinicalTrials.gov, and Web of Science databases were systematically searched to identify articles investigating the effects of IL-1 inhibitors in patients with RP up until January 2024. Relevant data on study characteristics and results were selected based on predefined criteria. The results were combined using a random effects model. RESULTS The study included a total of 102 patients from three open-label randomized controlled trials. Overall, the use of IL-1 inhibitors, in comparison to placebo, demonstrated a significant reduction in the risk of pericarditis recurrence [risk ratio (RR) 0.13; 95% confident interval (CI) 0.05-0.30; p < 0.05; I2 = 0%]. However, the administration of IL-1 inhibitors may lead to certain adverse events (AEs), including infections and injection-site reactions. The risk of AEs is significantly higher with IL-1 inhibitors compared with placebo (RR 1.88; 95% CI 1.30-2.72; p < 0.05; I2 = 0%). Nevertheless, the occurrence of serious AEs among patients was relatively rare, and no fatalities were reported. CONCLUSION This meta-analysis showed that IL-1 inhibitors can effectively reduce the risk of recurrence in patients with RP and are relatively safe. REGISTRATION PROSPERO identifier number CRD42023492904.
Collapse
Affiliation(s)
- Yong Wan
- Department of Endocrinology, Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Shuai He
- Department of Hand and Foot Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shasha Wang
- Department of Intensive Care Rehabilitation, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Tingli Xu
- Department of Intensive Care Rehabilitation, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Minfang Qi
- Department of Intensive Care Rehabilitation, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Pengcheng Gan
- Department of Intensive Care Rehabilitation, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
43
|
Sun J, Ma J, Chen L, Xiao S, Xiao X, Fang L. Orf virus as an adjuvant enhances the immune response to a PCV2 subunit vaccine. Vet Microbiol 2024; 293:110088. [PMID: 38640639 DOI: 10.1016/j.vetmic.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1β, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.
Collapse
Affiliation(s)
- Jie Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Longfei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
44
|
Dillard JA, Taft-Benz SA, Knight AC, Anderson EJ, Pressey KD, Parotti B, Martinez SA, Diaz JL, Sarkar S, Madden EA, De la Cruz G, Adams LE, Dinnon KH, Leist SR, Martinez DR, Schäfer A, Powers JM, Yount BL, Castillo IN, Morales NL, Burdick J, Evangelista MKD, Ralph LM, Pankow NC, Linnertz CL, Lakshmanane P, Montgomery SA, Ferris MT, Baric RS, Baxter VK, Heise MT. Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. Nat Commun 2024; 15:3738. [PMID: 38702297 PMCID: PMC11068739 DOI: 10.1038/s41467-024-47450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey C Knight
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katia D Pressey
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Breantié Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sabian A Martinez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Diaz
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah L Morales
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lauren M Ralph
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Pankow
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Premkumar Lakshmanane
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Dallas Tissue Research, Farmers Branch, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Liao J, Zhang X, Zeng X, Zhao Z, Sun T, Xia Z, Jing H, Yuan Y, Chen Z, Gou Q, Zhao L, Zhang W, Zou Q, Zhang J. A rational designed multi-epitope vaccine elicited robust protective efficacy against Klebsiella pneumoniae lung infection. Biomed Pharmacother 2024; 174:116611. [PMID: 38643540 DOI: 10.1016/j.biopha.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.
Collapse
Affiliation(s)
- Jingwen Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xi Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China; Department of Phamacy, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Tianjun Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhenping Xia
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
47
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
48
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
49
|
Wang YC, Chen CR, Chen CY, Liang PH. Synthesis of Quillaic Acid through Sustainable C-H Bond Activations. J Org Chem 2024; 89:5491-5497. [PMID: 38595071 DOI: 10.1021/acs.joc.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
To meet the demand for quillaic acid, a multigram synthesis of quillaic acid was accomplished in 14 steps, starting from oleanolic acid, leading to an overall yield of 3.4%. Key features include C-H activation at C-16 and C-23. Through Pd-catalyzed C-H acetoxylation, the oxidation at C-23 was observed as the major product, as opposed to at C-24. A copper-mediated C-H hydroxylation using O2 successfully afforded the single isomer, 16β-ol triterpenoid, followed by configuration inversion to the desired 16α-ol compound. In summary, with steps optimized and conducted on a multigram scale, quillaic acid could be feasibly acquired through C-H activation with inexpensive copper catalysts, promoting a more sustainable approach.
Collapse
Affiliation(s)
- Yi-Chi Wang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Ru Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chien-Yi Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
50
|
Cen Y, Chen S, Wei S, Wu S, Tao M, Fu Y, Wang Y, Chen J, Ma Y, Liu H, Song B, Ma J, Wang B, Cui Y. A Unique Combination of Mn 2+ and Aluminum Adjuvant Acted the Synergistic Effect. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:7502110. [PMID: 38660494 PMCID: PMC11042911 DOI: 10.1155/2024/7502110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Introduction The development of combinatorial adjuvants is a promising strategy to boost vaccination efficiency. Accumulating evidence indicates that manganese exerts strong immunocompetence and will become an enormous potential adjuvant. Here, we described a novel combination of Mn2+ plus aluminum hydroxide (AH) adjuvant that significantly exhibited the synergistic immune effect. Methodology. Initially, IsdB3 proteins as the immune-dominant fragment of IsdB proteins derived from Staphylococcus aureus (S. aureus) were prepared. IsdB3 proteins were identified by western blotting. Furthermore, we immunized C57/B6 mice with IsdB3 proteins plus Mn2+ and AH adjuvant. After the second immunization, the proliferation of lymphocytes was measured by the cell counting kit-8 (CCK-8) and the level of IFN-γ, IL-4, IL-10, and IL-17 cytokine from spleen lymphocytes in mice and generation of the antibodies against IsdB3 in serum was detected with ELISA, and the protective immune response was assessed through S. aureus challenge. Results IsdB3 proteins plus Mn2+ and AH obviously stimulated the proliferation of spleen lymphocytes and increased the secretion of IFN-γ, IL-4, IL-10, and IL-17 cytokine in mice, markedly enhanced the generation of the antibodies against IsdB3 in serum, observably decreased bacterial load in organs, and greatly improved the survival rate of mice. Conclusion These data showed that the combination of Mn2+ and AH significantly acted a synergistic effect, reinforced the immunogenicity of IsdB3, and offered a new strategy to increase vaccine efficiency.
Collapse
Affiliation(s)
- Yuwei Cen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shujie Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuyu Wei
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuangshuang Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingyang Tao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Youxi Fu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuncheng Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hongyan Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baifen Song
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Beiyan Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|