1
|
Han X, Wang Z, Cao H, Liu W, Sun L, Xiao Q. Dietary human milk oligosaccharides reduce allergic airway inflammation by modulating SCFAs level and ILC2 activity. Immunology 2024; 173:562-574. [PMID: 39108003 DOI: 10.1111/imm.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a crucial role in the progression of asthma, yet the regulatory mechanisms modulating ILC2 responses in asthma remain underexplored. Human milk oligosaccharides (HMOs), vital non-nutritive components of breast milk, are known to significantly shape immune system development and influence the incidence of allergic diseases. However, their impact on ILC2-driven asthma is not fully understood. Our research reveals that dietary HMOs act as potent inhibitors of ILC2 responses and allergic airway inflammation. Treatment with 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL) significantly reduced ILC2-related airway inflammation induced by papain or Alternaria alternata in mice, evidenced by decreased eosinophil (EOS) infiltration and lower IL-5 and IL-13 levels in BALF. Notably, while ILC2 expresses HMO receptors, HMO did not act directly on ILC2 but potentially modulated their activity through alterations in gut microbiota derived SCFAs. HMO treatments alleviated airway inflammation in SCFA-dependent manners, with SCFA depletion or receptor blocking reversing these beneficial effects. This study reveals the potential of dietary HMOs in managing asthma through modulation of ILC2 activity and the gut-lung axis, proposing a new therapeutic avenue that utilises the immunomodulatory capacities of nutritional components to combat respiratory diseases.
Collapse
Affiliation(s)
- Xu Han
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongjie Wang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hongchuan Cao
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weiwei Liu
- The Affiliated Junior Secondary School of Sun Yat-sen University Zhuhai Campus, Zhuhai, China
| | - Lijie Sun
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiang Xiao
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Kim S, Liu TT, Ou F, Murphy TL, Murphy KM. Anatomy of a superenhancer. Adv Immunol 2024; 163:51-96. [PMID: 39271259 DOI: 10.1016/bs.ai.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
3
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Qin M, Fang Y, Zheng Q, Peng M, Wang L, Sang X, Cao G. Tissue microenvironment induces tissue specificity of ILC2. Cell Death Discov 2024; 10:324. [PMID: 39013890 PMCID: PMC11252336 DOI: 10.1038/s41420-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Type 2 innate lymphoid cells were found to be members of the innate immune cell family, which is involved in innate and adaptive immunity to resist the invasion of foreign antigens and induce allergic reactions caused by allergens. The advancement of ILC2 research has pointed out that ILC2s have a high degree of diversity, challenging the notion of their homogeneity as a cellular population. An increasing number of studies indicate that ILC2 is a cell population with tissue specificity which can be induced by the tissue microenvironment. In addition, crosstalk between tissues can change ILC2 functions of migration and activation. Here, we emphasize that ILC2 undergoes adaptive changes under the regulation of the tissue microenvironment and distant tissues, thereby coordinating the organization's operation. In addition, ILC2 alterations induced by the tissue microenvironment are not limited to the ILC2 cell population, and ILC2 can also transdifferentiate into another class of ILC cell population (ILC1 or ILC3). In this review, we summarized the tissue-specific effects of ILC2 by tissue microenvironment and focused on the function of ILC2 in inter-tissue crosstalk. Lastly, we discussed the transdifferentiations of ILC2 caused by the abnormal change in tissue environment.
Collapse
Affiliation(s)
- Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Serafini N, Di Santo JP. Group 3 innate lymphoid cells: A trained Gutkeeper. Immunol Rev 2024; 323:126-137. [PMID: 38491842 DOI: 10.1111/imr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
6
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
7
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Ulezko Antonova A, Lonardi S, Monti M, Missale F, Fan C, Coates ML, Bugatti M, Jaeger N, Fernandes Rodrigues P, Brioschi S, Trsan T, Fachi JL, Nguyen KM, Nunley RM, Moratto D, Zini S, Kong L, Deguine J, Peeples ME, Xavier RJ, Clatworthy MR, Wang T, Cella M, Vermi W, Colonna M. A distinct human cell type expressing MHCII and RORγt with dual characteristics of dendritic cells and type 3 innate lymphoid cells. Proc Natl Acad Sci U S A 2023; 120:e2318710120. [PMID: 38109523 PMCID: PMC10756205 DOI: 10.1073/pnas.2318710120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Recent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt+ MHCII+ type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs. While RORγt+ APCs have been actively investigated in mice, the identity and function of these cell subsets in humans remain elusive. Herein, we identify a rare subset of RORγt+ cells with dendritic cell (DC) features through integrated single-cell RNA sequencing and single-cell ATAC sequencing. These cells, which we term RORγt+ DC-like cells (R-DC-like), exhibit DC morphology, express the MHC class II machinery, and are distinct from all previously reported DC and ILC3 subsets, but share transcriptional and epigenetic similarities with DC2 and ILC3. We have developed procedures to isolate and expand them in vitro, enabling their functional characterization. R-DC-like cells proliferate in vitro, continue to express RORγt, and differentiate into CD1c+ DC2-like cells. They stimulate the proliferation of allogeneic T cells. The identification of human R-DC-like cells with proliferative potential and plasticity toward CD1c+ DC2-like cells will prompt further investigation into their impact on immune homeostasis, inflammation, and autoimmunity.
Collapse
Affiliation(s)
- Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek Nederlands Kanker Instituut, Amsterdam1066, The Netherlands
| | - Changxu Fan
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO63110
| | - Matthew L. Coates
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, CambridgeCB2 0QH, United Kingdom
- Cambridge University Hospitals National Health Service Foundation Trust, CambridgeCB2 0QQ, United Kingdom
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | | | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - Khai M. Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - Ryan M. Nunley
- Washington University Orthopedics, Barnes Jewish Hospital, Saint Louis, MO63110
| | - Daniele Moratto
- Department of Lab Diagnostics, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia25100, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
| | - Lingjia Kong
- Immunology Program, Broad Institute of Massachussets Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jacques Deguine
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Mark E. Peeples
- Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH43205
- Department of Pediatrics, The Ohio State University, Columbus, OH43210
| | - Ramnik J. Xavier
- Immunology Program, Broad Institute of Massachussets Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA02114
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, CambridgeCB2 0QH, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, CambridgeCB10 1SA, United Kingdom
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25125, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
10
|
Kandalla PK, Subburayalu J, Cocita C, de Laval B, Tomasello E, Iacono J, Nitsche J, Canali MM, Cathou W, Bessou G, Mossadegh‐Keller N, Huber C, Mouchiroud G, Bourette RP, Grasset M, Bornhäuser M, Sarrazin S, Dalod M, Sieweke MH. M-CSF directs myeloid and NK cell differentiation to protect from CMV after hematopoietic cell transplantation. EMBO Mol Med 2023; 15:e17694. [PMID: 37635627 PMCID: PMC10630876 DOI: 10.15252/emmm.202317694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.
Collapse
Affiliation(s)
- Prashanth K Kandalla
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Clément Cocita
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Elena Tomasello
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Johanna Iacono
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Jessica Nitsche
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
| | - Maria M Canali
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Gilles Bessou
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Caroline Huber
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Roland P Bourette
- CNRS, INSERM, CHU Lille, University LilleUMR9020‐U1277 ‐ CANTHER – Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
- National Center for Tumor Diseases (NCT), DresdenDresdenGermany
| | - Sandrine Sarrazin
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| |
Collapse
|
11
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
12
|
Wang R, Cui W, Yang H. The interplay between innate lymphoid cells and microbiota. mBio 2023; 14:e0039923. [PMID: 37318214 PMCID: PMC10470585 DOI: 10.1128/mbio.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Innate lymphoid cells (ILCs) are mainly resident in mucosal tissues such as gastrointestinal tract and respiratory tract, so they are closely linked to the microbiota. ILCs can protect commensals to maintain homeostasis and increase resistance to pathogens. Moreover, ILCs also play an early role in defense against a variety of pathogenic microorganisms including pathogenic bacteria, viruses, fungi and parasites, before the intervention of adaptive immune system. Due to the lack of adaptive antigen receptors expressed on T cells and B cells, ILCs need to use other means to sense the signals of microbiota and play a role in corresponding regulation. In this review, we focus on and summarize three major mechanisms used in the interaction between ILCs and microbiota: the mediation of accessory cells represented by dendritic cells; the metabolic pathways of microbiota or diet; the participation of adaptive immune cells.
Collapse
Affiliation(s)
- Rui Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenwen Cui
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Cozzi G, Scagnellato L, Lorenzin M, Savarino E, Zingone F, Ometto F, Favero M, Doria A, Vavricka SR, Ramonda R. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00984-8. [PMID: 37386288 DOI: 10.1038/s41584-023-00984-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient's subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA-IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA-IBD.
Collapse
Affiliation(s)
- Giacomo Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Laura Scagnellato
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zürich and Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy.
| |
Collapse
|
14
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
15
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
16
|
Ding Y, Harly C, Das A, Bhandoola A. Early Development of Innate Lymphoid Cells. Methods Mol Biol 2023; 2580:51-69. [PMID: 36374450 DOI: 10.1007/978-1-0716-2740-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Kenney D, Harly C. Purification of Bone Marrow Precursors to T Cells and ILCs. Methods Mol Biol 2023; 2580:211-232. [PMID: 36374460 DOI: 10.1007/978-1-0716-2740-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).
Collapse
Affiliation(s)
- Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Christelle Harly
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
18
|
Li Y, Li S, Gu M, Liu G, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. Application of network composite module analysis and verification to explore the bidirectional immunomodulatory effect of Zukamu granules on Th1 / Th2 cytokines in lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115674. [PMID: 36064149 DOI: 10.1016/j.jep.2022.115674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu granules (ZKMG), as the preferred drug for the treatment of colds in Uygur medical theory, has been used for 1500 years. It is also widely used in China and included in the National Essential Drugs List (2018 edition). It has unique anti-inflammatory, antitussive and analgesic effects. AIM OF THE STUDY Aiming at the research of traditional Chinese medicine (TCM) with the characteristics of overall regulation of body diseases and the immune regulation mechanism with the concept of integrity, this paper put forward the integrated application of network composite module analysis and animal experiment verification to study the immune regulation mechanism of TCM. MATERIALS AND METHODS The active components and targets of ZKMG were predicted, and network module analysis was performed to explore their potential immunomodulatory mechanisms. Then acute lung injury (ALI) mice and idiopathic pulmonary fibrosis (IPF) rats were used as pathological models to observe the effects of ZKMG on the pathological conditions of infected ALI and IPF rats, determine the contents of Th1, Th2 characteristic cytokines and immunoglobulins, and study the intervention of GATA3/STAT6 signal pathway. RESULTS The results of network composite module analysis showed that ZKMG contained 173 pharmacodynamic components and 249 potential targets, and four key modules were obtained. The immunomodulatory effects of ZKMG were related to T cell receptor signaling pathway. The validation results of bioeffects that ZKMG could carry out bidirectional immune regulation on Th1/Th2 cytokines in the stage of ALI and IPF, so as to play the role of regulating immune homeostasis and organ protection. CONCLUSIONS The network composite module analysis and verification method is an exploration to study the immune regulation mechanism of TCM by combining the network module prediction analysis with animal experiments, which provides a reference for subsequent research.
Collapse
Affiliation(s)
- Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China.
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
19
|
Melsen JE, van Ostaijen-ten Dam MM, Schoorl DJA, Schol PJ, van den Homberg DAL, Lankester AC, Lugthart G, Schilham MW. Single-cell transcriptomics in bone marrow delineates CD56 dimGranzymeK + subset as intermediate stage in NK cell differentiation. Front Immunol 2022; 13:1044398. [PMID: 36505452 PMCID: PMC9730327 DOI: 10.3389/fimmu.2022.1044398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Human natural killer (NK) cells in lymphoid tissues can be categorized into three subsets: CD56brightCD16+, CD56dimCD16+ and CD69+CXCR6+ lymphoid tissue-resident (lt)NK cells. How the three subsets are functionally and developmentally related is currently unknown. Therefore, we performed single-cell RNA sequencing combined with oligonucleotide-conjugated antibodies against CD56, CXCR6, CD117 and CD34 on fresh bone marrow NK cells. A minor CD56dimGzmK+ subset was identified that shared features with CD56bright and CD56dimGzmK- NK cells based on transcriptome, phenotype (NKG2AhighCD16lowKLRG1highTIGIThigh) and functional analysis in bone marrow and blood, supportive for an intermediate subset. Pseudotime analysis positioned CD56bright, CD56dimGzmK+ and CD56dimGzmK- cells in one differentiation trajectory, while ltNK cells were developmentally separated. Integrative analysis with bone marrow cells from the Human Cell Atlas did not demonstrate a developmental connection between CD34+ progenitor and NK cells, suggesting absence of early NK cell stages in bone marrow. In conclusion, single-cell transcriptomics provide new insights on development and differentiation of human NK cells.
Collapse
|
20
|
Thomas CM, Peebles RS. Development and function of regulatory innate lymphoid cells. Front Immunol 2022; 13:1014774. [PMID: 36275689 PMCID: PMC9581395 DOI: 10.3389/fimmu.2022.1014774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a critical element of the innate immune system and are potent producers of pro-inflammatory cytokines. Recently, however, the production of the anti-inflammatory cytokine IL-10 has been observed in all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a regulatory phenotype that serves to maintain lung and gut homeostasis. Other studies advocate a potential therapeutic role of these IL-10-expressing ILCs in allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection. Herein, we review IL-10 producing ILCs, discussing their development, function, regulation, and immunotherapeutic potential through suppressing harmful inflammatory responses. Furthermore, we address inconsistencies in the literature regarding these regulatory IL-10 producing ILCs, as well as directions for future research.
Collapse
Affiliation(s)
- Christopher M. Thomas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States,Research Service, Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, United States,*Correspondence: R. Stokes Peebles Jr,
| |
Collapse
|
21
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
22
|
RNA methylation in immune cells. Adv Immunol 2022; 155:39-94. [PMID: 36357012 DOI: 10.1016/bs.ai.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Patrolling ILC3 cells monitor intestinal tissue in response to inflammation. Nat Immunol 2022; 23:1305-1306. [PMID: 36002646 DOI: 10.1038/s41590-022-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
25
|
Gao X, Shen X, Liu K, Lu C, Fan Y, Xu Q, Meng X, Hong S, Huang Z, Liu X, Lu L, Wang L. The Transcription Factor ThPOK Regulates ILC3 Lineage Homeostasis and Function During Intestinal Infection. Front Immunol 2022; 13:939033. [PMID: 35844574 PMCID: PMC9285022 DOI: 10.3389/fimmu.2022.939033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been identified as a heterogeneous population of lymphocytes that mirrors the cytokine and transcriptional profile of adaptive T cells. The dynamic balance between key transcription factors determines the heterogeneity, plasticity, and functions of ILC subsets. The transcription factor ThPOK is highly conserved in biological evolution and exerts pivotal functions in the differentiation of T cells. However, the function of ThPOK in ILC3s has not been identified. Here, we found that ThPOK regulated the homeostasis of ILC3s, as mice lacking ThPOK showed decreased NKp46+ ILC3s and increased CCR6- NKp46- ILC3s. ThPOK-deficient mice were more sensitive to S. typhimurium infection due to the impaired IFN-γ secretion of NKp46+ ILC3s. Furthermore, ThPOK participates in ILC3-mediated control of C. rodentium infection by negatively regulating IL-17A secretion. ThPOK preserves the identity of NKp46+ ILC3s by repressing RORγt, which indirectly releases T-bet expression. On the molecular level, ThPOK directly binds to Rorc and Il23r to restrain their expression which further modulates IL-17A secretion. Collectively, our analysis revealed a critical role of ThPOK in the homeostasis and functions of ILC3 subsets.
Collapse
Affiliation(s)
- Xianzhi Gao
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Shen
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuai Liu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyu Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Meng
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xia Liu
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Lie Wang,
| |
Collapse
|
26
|
Calvi M, Di Vito C, Frigo A, Trabanelli S, Jandus C, Mavilio D. Development of Human ILCs and Impact of Unconventional Cytotoxic Subsets in the Pathophysiology of Inflammatory Diseases and Cancer. Front Immunol 2022; 13:914266. [PMID: 35720280 PMCID: PMC9204637 DOI: 10.3389/fimmu.2022.914266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) were firstly described by different independent laboratories in 2008 as tissue-resident innate lymphocytes mirroring the phenotype and function of T helper cells. ILCs have been subdivided into three distinct subgroups, ILC1, ILC2 and ILC3, according to their cytokine and transcriptional profiles. Subsequently, also Natural Killer (NK) cells, that are considered the innate counterpart of cytotoxic CD8 T cells, were attributed to ILC1 subfamily, while lymphoid tissue inducer (LTi) cells were attributed to ILC3 subgroup. Starting from their discovery, significant advances have been made in our understanding of ILC impact in the maintenance of tissue homeostasis, in the protection against pathogens and in tumor immune-surveillance. However, there is still much to learn about ILC ontogenesis especially in humans. In this regard, NK cell developmental intermediates which have been well studied and characterized prior to the discovery of helper ILCs, have been used to shape a model of ILC ontogenesis. Herein, we will provide an overview of the current knowledge about NK cells and helper ILC ontogenesis in humans. We will also focus on the newly disclosed circulating ILC subsets with killing properties, namely unconventional CD56dim NK cells and cytotoxic helper ILCs, by discussing their possible role in ILC ontogenesis and their contribution in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Calvi
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
27
|
Reichwald JJ, Risch F, Neumann AL, Frohberger SJ, Scheunemann JF, Lenz B, Ehrens A, Strutz W, Schumak B, Hoerauf A, Hübner MP. ILC2s Control Microfilaremia During Litomosoides sigmodontis Infection in Rag2-/- Mice. Front Immunol 2022; 13:863663. [PMID: 35757689 PMCID: PMC9222899 DOI: 10.3389/fimmu.2022.863663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are inducers of type 2 immune responses, but their role during filarial infection remains unclear. In the present study, we used the Litomosoides sigmodontis rodent model of filariasis to analyze ILC2s during infection in susceptible BALB/c mice that develop a chronic infection with microfilaremia and semi-susceptible C57BL/6 mice that eliminate the filariae shortly after the molt into adult worms and thus do not develop microfilaremia. ILC2s (CD45+ Lineage- TCRβ- CD90.2+ Sca-1+ IL-33R+ GATA-3+) were analyzed in the pleural cavity, the site of L. sigmodontis infection, after the infective L3 larvae reached the pleural cavity (9 days post infection, dpi), after the molt into adult worms (30dpi) and during the peak of microfilaremia (70dpi). C57BL/6 mice had significantly increased ILC2 numbers compared to BALB/c mice at 30dpi, accompanied by substantially higher IL-5 and IL-13 levels, indicating a stronger type 2 immune response in C57BL/6 mice upon L. sigmodontis infection. At this time point the ILC2 numbers positively correlated with the worm burden in both mouse strains. ILC2s and GATA-3+ CD4+ T cells were the dominant source of IL-5 in L. sigmodontis-infected C57BL/6 mice with ILC2s showing a significantly higher IL-5 expression than CD4+ T cells. To investigate the importance of ILC2s during L. sigmodontis infection, ILC2s were depleted with anti-CD90.2 antibodies in T and B cell-deficient Rag2-/- C57BL/6 mice on 26-28dpi and the outcome of infection was compared to isotype controls. Rag2-/- mice were per se susceptible to L. sigmodontis infection with significantly higher worm burden than C57BL/6 mice and developed microfilaremia. Depletion of ILC2s did not result in an increased worm burden in Rag2-/- mice, but led to significantly higher microfilariae numbers compared to isotype controls. In conclusion, our data demonstrate that ILC2s are essentially involved in the control of microfilaremia in Rag2-/- C57BL/6 mice.
Collapse
Affiliation(s)
- Julia J. Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Johanna F. Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Wiebke Strutz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
28
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
29
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
30
|
Dietary antigens suppress the proliferation of type 2 innate lymphoid cells by restraining homeostatic IL-25 production. Sci Rep 2022; 12:7443. [PMID: 35523930 PMCID: PMC9076687 DOI: 10.1038/s41598-022-11466-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary antigens affect the adaptive immunity of the host by inducing regulatory T cells and IgE-producing B cells. However, their roles in innate immune compartments such as innate lymphoid cells (ILCs) and intestinal epithelial cells (IECs) are unclear. Here, using antigen-free (AF) mice, which are germ-free (GF) mice fed with amino-acid-based diet, we found dietary proteins suppress the development of GATA-3-expressing ILC2s independent of the adaptive immune cells. These cells produce more type 2 cytokines and upregulated proliferation and activation markers such as Ki-67, CD69, and CD25. With this, AF mice had increased expressions of tuft cell-specific transcripts such as Il25, Il33, Dclk1, Trpm5, and Pou2f3 in IECs. Accordingly, expanded ILC2s upregulated IL-17RB, a receptor of IL-25, and their proliferation was blocked by IL-25 neutralizing or IL-17RB blocking antibodies. These results suggest a new dialogue between dietary antigens, IECs, and ILCs in which dietary antigens suppress ILC2 activation and proliferation by restraining homeostatic IL-25 production, potentially limiting type 2 immunity by food antigens.
Collapse
|
31
|
Intestinal fibroblastic reticular cell niches control innate lymphoid cell homeostasis and function. Nat Commun 2022; 13:2027. [PMID: 35440118 PMCID: PMC9018819 DOI: 10.1038/s41467-022-29734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known. Using single-cell transcriptomic analysis of lamina propria fibroblasts, we identify fibroblastic reticular cells (FRCs) that underpin cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Genetic ablation of lymphotoxin-β receptor expression in Ccl19-expressing FRCs blocks the maturation of CPs into mature ILFs. Interactome analysis shows the major niche factors and processes underlying FRC-ILC crosstalk. In vivo validation confirms that a sustained lymphotoxin-driven feedforward loop of FRC activation including IL-7 generation is critical for the maintenance of functional ILC populations. In sum, our study indicates critical fibroblastic niches within the intestinal lamina propria that control ILC homeostasis and functionality and thereby secure protective gut immunity. Fibroblastic reticular cells (FRCs) support localisation of immune cells in secondary lymphoid tissues but less is known about the lamina propria. Here the authors use scRNA-seq and intestinal infection to characterise FRCs in the intestinal lamina propria and show specialised niches that foster innate lymphoid cells during homeostasis and infection.
Collapse
|
32
|
Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol 2022; 23:619-631. [PMID: 35332328 PMCID: PMC8989654 DOI: 10.1038/s41590-022-01164-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
Innate lymphocytes encompass a diverse array of phenotypic identities with specialized functions. DNA methylation and hydroxymethylation are essential for epigenetic fidelity and fate commitment. The landscapes of these modifications are unknown in innate lymphocytes. Here, we characterized the whole-genome distribution of methyl-CpG and 5-hydroxymethylcytosine in mouse ILC3, ILC2, and NK cells. We identified differentially methylated and hydroxymethylated DNA regions between ILC-NK subsets and correlated them with transcriptional signatures. We associated lineage-determining transcription factors with demethylation and demonstrated unique patterns of DNA methylation/hydroxymethylation in relationship to open chromatin regions, histone modifications, and transcription factor binding sites. We further discovered a novel association between hydroxymethylation and NK cell super-enhancers. Using mice lacking DNA hydroxymethylase TET2, we showed its requirement for optimal production of hallmark cytokines by ILC3 and IL-17A by inflammatory ILC2. These findings provide a powerful resource for studying innate lymphocyte epigenetic regulation and decode the regulatory logic governing their identity.
Collapse
|
33
|
Lv X, Zhu S, Wu J, Chen J. Transcriptional control of mature ILC3 function and plasticity: not just RORγt. Cell Mol Immunol 2022; 19:142-144. [PMID: 34992276 PMCID: PMC8803961 DOI: 10.1038/s41423-021-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Xinping Lv
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
ILC Differentiation in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:25-39. [DOI: 10.1007/978-981-16-8387-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Grimaldi A, Pietropaolo G, Stabile H, Kosta A, Capuano C, Gismondi A, Santoni A, Sciumè G, Fionda C. The Regulatory Activity of Noncoding RNAs in ILCs. Cells 2021; 10:cells10102742. [PMID: 34685721 PMCID: PMC8534545 DOI: 10.3390/cells10102742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concurs to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.
Collapse
Affiliation(s)
- Alessio Grimaldi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- Correspondence: ; Tel.: +39-0649255118; Fax: +39-0644340632
| |
Collapse
|
37
|
Mukherjee N, Ji N, Tan X, Lin C, Rios E, Chen C, Huang T, Svatek RS. Bladder tumor ILC1s undergo Th17-like differentiation in human bladder cancer. Cancer Med 2021; 10:7101-7110. [PMID: 34496133 PMCID: PMC8525153 DOI: 10.1002/cam4.4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Niannian Ji
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Xi Tan
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Lin Lin
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Emily Rios
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Liang Chen
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Tim Huang
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Robert S. Svatek
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| |
Collapse
|
38
|
Liu C, Gong Y, Zhang H, Yang H, Zeng Y, Bian Z, Xin Q, Bai Z, Zhang M, He J, Yan J, Zhou J, Li Z, Ni Y, Wen A, Lan Y, Hu H, Liu B. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells. Cell Res 2021; 31:1106-1122. [PMID: 34239074 PMCID: PMC8486758 DOI: 10.1038/s41422-021-00529-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA- lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2- CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Han Zhang
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Man Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy, Chengdu, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
39
|
Zhang P, Liu Z, Peng L, Zhou J, Wang M, Li J, Lu H, Hu C, Zhao L, Yang H, Wang Q, Fei Y, Zhang X, Zhao Y, Zeng X, Zhang W. Phenotype, function and clinical significance of innate lymphoid cells in immunoglobulin G4-related disease. Rheumatology (Oxford) 2021; 61:2197-2209. [PMID: 34554231 DOI: 10.1093/rheumatology/keab610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Innate immune system participates in immunoglobulin G4 related disease (IgG4-RD). While the role of innate lymphoid cells (ILCs) in IgG4-RD remains to be elucidated, we aimed to evaluate the phenotype, function and clinical significance of ILCs in IgG4-RD patients. METHODS Sixty-seven untreated IgG4-RD patients, age and sex matched healthy controls (HCs) were enrolled. Circulating and tissue infiltration of ILCs were detected by flow cytometry. Serum suppression of tumorigenicity 2 (sST2) was detected by ELISA and membrane-bound ST2 (ST2L) was detected by flow cytometry. Tissue infiltration of IL-33 was measured by immunohistochemistry staining. RT-qPCR was performed to analyze the expression pattern of ILC2 associated genes between HCs and IgG4-RD patients. In addition, correlation analysis was performed in order to evaluate clinical significance of ILCs in IgG4-RD. RESULTS The frequency of circulating pan ILCs in IgG4-RD patients was lower than in HCs. ILC2s was higher in IgG4-RD compared with HCs, whereas ILC1s was lower in IgG4-RD. sST2 and ST2L were increased in IgG4-RD than HC. Infiltration of ILC1s in submandibular glands of IgG4-RD was more prominent than ILC2s. Intracellular secretion of IL-9 was increased in ILC2s of IgG4-RD than in HCs. Circulating ILC2s correlated positively with Treg cells, the surface expression of CD154, PD-1 and CXCR5 in ILC2s correlated positively with CD19+B cells, serum IgG4 level and serum IgE, respectively. CONCLUSION ILCs and their subsets were significantly altered in IgG4-RD. We demonstrated the dysfunction of ILC2s in IgG4-RD by phenotype, correlation analysis, and function investigation, revealing ILC2s participated in the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Liu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Hui Lu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Lidan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Huaxia Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Yunyun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
40
|
Host genetic control of natural killer cell diversity revealed in the Collaborative Cross. Proc Natl Acad Sci U S A 2021; 118:2018834118. [PMID: 33649222 DOI: 10.1073/pnas.2018834118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are innate effectors armed with cytotoxic and cytokine-secreting capacities whose spontaneous antitumor activity is key to numerous immunotherapeutic strategies. However, current mouse models fail to mirror the extensive immune system variation that exists in the human population which may impact on NK cell-based therapies. We performed a comprehensive profiling of NK cells in the Collaborative Cross (CC), a collection of novel recombinant inbred mouse strains whose genetic diversity matches that of humans, thereby providing a unique and highly diverse small animal model for the study of immune variation. We demonstrate that NK cells from CC strains displayed a breadth of phenotypic and functional variation reminiscent of that reported for humans with regards to cell numbers, key marker expression, and functional capacities. We took advantage of the vast genetic diversity of the CC and identified nine genomic loci through quantitative trait locus mapping driving these phenotypic variations. SNP haplotype patterns and variant effect analyses identified candidate genes associated with lung NK cell numbers, frequencies of CD94+ NK cells, and expression levels of NKp46. Thus, we demonstrate that the CC represents an outstanding resource to study NK cell diversity and its regulation by host genetics.
Collapse
|
41
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
42
|
Group 3 innate lymphoid cells mediate host defense against attaching and effacing pathogens. Curr Opin Microbiol 2021; 63:83-91. [PMID: 34274597 DOI: 10.1016/j.mib.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) are innate effector cells that have essential roles in lymphoid organogenesis and maintenance of tissue homeostasis under steady-state and pathogenic conditions. ILC3 also promote immune defense, notably during bacterial breach of epithelial barriers, including those caused by attaching and effacing (A/E) pathogens for which Citrobacter rodentium infection in mice is a relevant pre-clinical model. Through their ability to sustain interactions with tissue-resident immune cells, epithelial cells, neurons or stromal cells, ILC3 constitute a key orchestrator that maintains the intestinal barrier. In this review, we will examine the function of murine ILC3 in host defense against C. rodentium infection and provide a discussion of recent advances that help elucidate the specific roles of these novel innate immune effector cells at mucosal surfaces.
Collapse
|
43
|
Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc Natl Acad Sci U S A 2021; 118:2101169118. [PMID: 34244432 DOI: 10.1073/pnas.2101169118] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.
Collapse
|
44
|
Falquet M, Ercolano G, Jandus P, Jandus C, Trabanelli S. Healthy and Patient Type 2 Innate Lymphoid Cells are Differently Affected by in vitro Culture Conditions. J Asthma Allergy 2021; 14:773-783. [PMID: 34239308 PMCID: PMC8259735 DOI: 10.2147/jaa.s304126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Type 2 innate lymphoid cells (ILC2s) have emerged as key players in the development of type 2 driven diseases such as allergy and asthma. Due to their low number in the circulation, in vitro expansion is needed to unravel their mechanisms of action. Purpose The aim of this study is to assess the impact of different culture conditions and address whether the method of expansion may distinctly affect healthy donor or patient-derived ILC2s. Methods Here, we described the impact of six different culture conditions on the proliferation, phenotype and function of human ILC2s freshly obtained from healthy donors (healthy ILC2s) and allergic patients (patient ILC2s). Results We showed that the cytokine cocktail or the PHA induced the highest proliferation of healthy ILC2s and patient ILC2s, respectively. We observed that the stromal cells OP9, used as ILC2 feeders, did not boost their proliferation, but impaired the activation marker expression and the function of patient ILC2s. Furthermore, we demonstrated that the culture conditions differently impacted the activation state of c-Kithigh and c-Kitlow ILC2s, in both healthy donors and allergic patients. Last, we also observed that ILC2s expanded only with IL-2 and IL-7 were the most prone to secrete IL-5 and IL-13 upon IL-33 stimulation. In contrast, in patients, the addition of OP9 cells during the expansion restrained their type 2 cytokine secretory functions. Conclusion This report highlights that culture conditions distinctly impacted on the healthy or patient ILC2 behavior, with important consequences for their study in disease settings.
Collapse
Affiliation(s)
- Maryline Falquet
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giuseppe Ercolano
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sara Trabanelli
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y, Wang T. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J 2021; 40:e105320. [PMID: 33591591 PMCID: PMC8167358 DOI: 10.15252/embj.2020105320] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c-type lectin Dectin-3 (Dectin-3-/- ) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin-7 (IL-7) secretion. IL-7 induced IL-22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL-22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans-driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.
Collapse
Affiliation(s)
- Yanan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Tao Shi
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Xia Lu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Junxing Qu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Guoping Shi
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yugen Chen
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
46
|
Liu B, Liu N, Zhu X, Yang L, Ye B, Li H, Zhu P, Lu T, Tian Y, Fan Z. Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m 6A demethylation of Nr4a1 mRNA. Cell Mol Immunol 2021; 18:1412-1424. [PMID: 33911218 PMCID: PMC8166869 DOI: 10.1038/s41423-021-00680-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play critical roles in innate immunity and gut homeostasis. However, how ILC3 homeostasis is regulated remains elusive. Here, we identified a novel circular RNA, circZbtb20, that is highly expressed in ILC3s and required for their maintenance and function. CircZbtb20 deletion causes reduced ILC3 numbers, increasing susceptibility to C. rodentium infection. Mechanistically, circZbtb20 enhances the interaction of Alkbh5 with Nr4a1 mRNA, leading to ablation of the m6A modification of Nr4a1 mRNA to promote its stability. Nr4a1 initiates Notch2 signaling activation, which contributes to the maintenance of ILC3 homeostasis. Deletion of Alkbh5 or Nr4a1 also impairs ILC3 homeostasis and increases susceptibilities to bacterial infection. Thus, our findings reveal an important role of circular RNA in the regulation of innate lymphoid cell homeostasis.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- Animals
- Cell Proliferation
- Cell Survival
- Demethylation
- Gastrointestinal Tract/immunology
- Homeostasis
- Immunity, Innate/genetics
- Lymphocytes/metabolism
- Mice, Knockout
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Binding
- RNA Stability
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Notch2/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Nian Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tiankun Lu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Abstract
While there is growing evidence that perturbation of the gut microbiota can result in a variety of pathologies including gut tumorigenesis, the influence of commensal fungi remains less clear. In this issue, Zhu et al (2021) show that mycobiota dysbiosis stimulates energy metabolism changes in subepithelial macrophages promoting colon cancer via enhancing innate lymphoid cell activity. These findings provide insights into a role of the gut flora in intestinal carcinogenesis and suggest opportunities for adjunctive antifungal or immunotherapeutic strategies to prevent colorectal cancer.
Collapse
Affiliation(s)
- Nicolas Papon
- Host‐Pathogen Interaction Study Group (GEIHP, EA 3142)UNIV AngersUNIV BrestAngersFrance,Federative Structure of Research « Cellular Interactions and Therapeutic Applications »SFR 4208 ICATUniv AngersAngersFrance
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of ExeterExeterUK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of ExeterExeterUK,The Aberdeen Fungal GroupSchool of Medicine, Medical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
48
|
Yoshikawa G, Miyazaki K, Ogata H, Miyazaki M. The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System. Int J Mol Sci 2021; 22:ijms22115888. [PMID: 34072618 PMCID: PMC8199221 DOI: 10.3390/ijms22115888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity relies on the V(D)J DNA recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes, which enables the recognition of highly diverse antigens and the elicitation of antigen-specific immune responses. This process is mediated by recombination-activating gene (Rag) 1 and Rag2 (Rag1/2), whose expression is strictly controlled in a cell type-specific manner; the expression of Rag1/2 genes represents a hallmark of lymphoid lineage commitment. Although Rag genes are known to be evolutionally conserved among jawed vertebrates, how Rag genes are regulated by lineage-specific transcription factors (TFs) and how their regulatory system evolved among vertebrates have not been fully elucidated. Here, we reviewed the current body of knowledge concerning the cis-regulatory elements (CREs) of Rag genes and the evolution of the basic helix-loop-helix TF E protein regulating Rag gene CREs, as well as the evolution of the antagonist of this protein, the Id protein. This may help to understand how the adaptive immune system develops along with the evolution of responsible TFs and enhancers.
Collapse
Affiliation(s)
- Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (H.O.); (M.M.)
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
- Correspondence: (H.O.); (M.M.)
| |
Collapse
|
49
|
A follicular regulatory Innate Lymphoid Cell population impairs interactions between germinal center Tfh and B cells. Commun Biol 2021; 4:563. [PMID: 33980982 PMCID: PMC8115650 DOI: 10.1038/s42003-021-02079-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILCFR) that to our knowledge has not been previously identified. ILCFR have a distinct phenotype and transcriptional program when compared to other defined ILCs. Surprisingly, ILCFR inhibit the ability of follicular helper T (Tfh) cells to provide B cell help. The localization of ILCFR to the germinal centers suggests these cells may interfere with germinal center B cell (GC-B) and germinal center Tfh cell (GC-Tfh) interactions through the production of transforming growth factor beta (TGF-β. Intriguingly, under conditions of impaired GC-Tfh-GC-B cell interactions, such as human immunodeficiency virus (HIV) infection, the frequency of these cells is increased. Overall, we predict a role for ILCFR in regulating GC-Tfh-GC-B cell interactions and propose they expand in chronic inflammatory conditions. Margaret O’Connor et al. report a new Innate Lymphoid Cell population in human tonsils and lymph nodes that inhibit the functional interaction of follicular helper T cells and germinal center B cells. They show that this cell population is expanded under chronic HIV infection and results in decreased antibody production, suggesting a potential role for these cells in diseases with dysregulated immune responses.
Collapse
|
50
|
Neuromedin U, a Key Molecule in Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22084238. [PMID: 33921859 PMCID: PMC8074168 DOI: 10.3390/ijms22084238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides. One of these neuropeptides, neuromedin U (NMU), was isolated in the 1980s, and its specific receptors, NMUR1 and NMUR2, were defined in 2000. A series of subsequent studies has revealed many of the physiological roles of the NMU system, including in feeding behavior, energy expenditure, stress responses, circadian rhythmicity, and inflammation. Particularly over the past decades, many reports have indicated that the NMU system plays an essential and direct role in regulating body weight, feeding behavior, energy metabolism, and insulin secretion, which are tightly linked to obesity pathophysiology. Furthermore, another ligand of NMU receptors, NMS (neuromedin S), was identified in 2005. NMS has physiological functions similar to those of NMU. This review summarizes recent observations of the NMU system in relation to the pathophysiology of obesity in both the central nervous systems and the peripheral tissues.
Collapse
|