1
|
Wang W, Sun DF, Dong Z, Zhang WL. Icariin suppresses osteogenic differentiation and promotes bone regeneration in Porphyromonas gingivalis-infected conditions through EphA2-RhoA signaling pathway. Int Immunopharmacol 2024; 143:113302. [PMID: 39388889 DOI: 10.1016/j.intimp.2024.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Periodontitis is associated with multiple systemic diseases and can cause bone loss. Porphyromonas gingivalis (P. gingivalis) is one of the most virulent periodontal pathogens. Icariin is a flavonoid extracted from the traditional Chinese herbal medicine Herba Epimedii, and can regulate bone metabolism. However, its effects on promoting bone metabolism have not been fully elucidated. In this experiment, we infected MC3T3-E1 cells with P. gingivalis. Flow cytometry results show that persistent bacterial infection does not affect cell proliferative activity. Western blotting, ALP activity detection, mineral content determination, and immunofluorescence blotting confirmed that icariin improved osteogenic differentiation in the inflammatory state, and this effect may be more obvious in the early stage of osteogenic differentiation. The antibacterial assays, ROS and MMP fluorescence assays demonstrated that icariin exerted a significant inhibitory effect on bacterial growth and attenuated the inflammatory response in bacterial-infected conditions. The results of in vivo experiments in animals further validated the excellent properties exerted by icariin in the repair of bone defects. Additionally, in the P. gingivalis-infected state, icariin exert a regulatory effect on EphA2-RhoA signaling pathway to augment osteogenic differentiation. These exciting findings suggest that icariin holds significant potential for therapeutic application in the management of periodontal bone loss.
Collapse
Affiliation(s)
- Wei Wang
- Jinzhou Medical University, Jinzhou 121000, China
| | - Dan-Fang Sun
- Jinzhou Medical University, Jinzhou 121000, China
| | - Zhe Dong
- Jinzhou Medical University, Jinzhou 121000, China
| | - Wen-Lu Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
2
|
Mineev KS, Gande SL, Linhard V, Moghaddam SK, Schwalbe H. NMR resonance assignment of a ligand-binding domain of ephrin receptor A2. BIOMOLECULAR NMR ASSIGNMENTS 2024:10.1007/s12104-024-10211-4. [PMID: 39695021 DOI: 10.1007/s12104-024-10211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation. Here, we report on the complete 1H, 15N and 13C NMR chemical shift assignment of EphA2 ligand binding domain that provides the basis for NMR-assisted drug design.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Santosh L Gande
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Sattar Khashkhashi Moghaddam
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
3
|
Ma J, Lu Q, Zhao Y, Wang X, Ding G, Wang Y, Cheng X. Microglia-astrocyte crosstalk is regulated by Astragalus polysaccharides mediated through suppression of Sema4D-PlexinB2 signaling in experimental autoimmune encephalomyelitis. Brain Res 2024; 1845:149275. [PMID: 39401575 DOI: 10.1016/j.brainres.2024.149275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The crosstalk between microglia inflamed in multiple sclerosis (MIMS) and astrocytes inflamed in MS (AIMS) is a crucial factor in the formation of the central inflammatory microenvironment and neurotoxicity. Astragalus polysaccharides (APS), an important bioactive component extracted from the dried root of Astragalus, was previously found by our team to attenuate the formation of pro-inflammatory microglia and neurological dysfunction in the experimental autoimmune encephalomyelitis (EAE) mice, a classic model of MS. To investigate the effect of APS on the MIMS-AIMS crosstalk and its underlying mechanism, in this study, a mouse model of EAE and a co-culture model of microglia-astrocytes in vitro were established. It was discovered that APS can alleviate the neurological dysfunction of EAE mice and effectively inhibit the formation of MIMS and AIMS both in vivo and in vitro. Furthermore, it was found that APS can suppress the inflammatory factors of MIMS-AIMS crosstalk in EAE mice and the resulting neurotoxicity in vivo and in vitro. The Sema4D-PlexinB2 signaling is essential for MIMS-AIMS crosstalk and promotes CNS inflammation. We demonstrated that APS can inhibit this signaling in vivo and in vitro. Treatment of recombinant Sema4D protein on cultured astrocytes in vitro significantly increases pro-inflammatory and neurotoxic factors, while APS significantly inhibits them. Conversely, after knockdown of Sema4D expression in microglia, APS no longer improves the neurotoxicity from MIMS-AIMS crosstalk. Overall, these results indicate that APS may modulate MIMS-AIMS crosstalk via the Sema4D-PlexinB2 signaling. This study provides a scientific basis for APS as a potential treatment candidate for demyelinating diseases.
Collapse
Affiliation(s)
- Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaohan Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
4
|
Nguyen QH, Tran HN, Jeong Y. Regulation of neuronal fate specification and connectivity of the thalamic reticular nucleus by the Ascl1-Isl1 transcriptional cascade. Cell Mol Life Sci 2024; 81:478. [PMID: 39625482 PMCID: PMC11615174 DOI: 10.1007/s00018-024-05523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
The thalamic reticular nucleus (TRN) is an anatomical and functional hub that modulates the flow of information between the cerebral cortex and thalamus, and its dysfunction has been linked to sensory disturbance and multiple behavioral disorders. Therefore, understanding how TRN neurons differentiate and establish connectivity is crucial to clarify the basics of TRN functions. Here, we showed that the regulatory cascade of the transcription factors Ascl1 and Isl1 promotes the fate of TRN neurons and concomitantly represses the fate of non-TRN prethalamic neurons. Furthermore, we found that this cascade is necessary for the correct development of the two main axonal connections, thalamo-cortical projections and prethalamo-thalamic projections. Notably, the disruption of prethalamo-thalamic axons can cause the pathfinding defects of thalamo-cortical axons in the thalamus. Finally, forced Isl1 expression can rescue disruption of cell fate specification and prethalamo-thalamic projections in in vitro primary cultures of Ascl1-deficient TRN neurons, indicating that Isl1 is an essential mediator of Ascl1 function in TRN development. Together, our findings provide insights into the molecular mechanisms for TRN neuron differentiation and circuit formation.
Collapse
Affiliation(s)
- Quy-Hoai Nguyen
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hong-Nhung Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yongsu Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
5
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Okagawa S, Sakaguchi M, Okubo Y, Takekuma Y, Igata M, Kondo T, Takeda N, Araki K, Brandao BB, Qian WJ, Tseng YH, Kulkarni RN, Kubota N, Kahn CR, Araki E. Hepatic SerpinA1 improves energy and glucose metabolism through regulation of preadipocyte proliferation and UCP1 expression. Nat Commun 2024; 15:9585. [PMID: 39532838 PMCID: PMC11557585 DOI: 10.1038/s41467-024-53835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Lipodystrophy and obesity are associated with insulin resistance and metabolic syndrome accompanied by fat tissue dysregulation. Here, we show that serine protease inhibitor A1 (SerpinA1) expression in the liver is increased during recovery from lipodystrophy caused by the adipocyte-specific loss of insulin signaling in mice. SerpinA1 induces the proliferation of white and brown preadipocytes and increases the expression of uncoupling protein 1 (UCP1) to promote mitochondrial activation in mature white and brown adipocytes. Liver-specific SerpinA1 transgenic mice exhibit increased browning of adipose tissues, leading to increased energy expenditure, reduced adiposity and improved glucose tolerance. Conversely, SerpinA1 knockout mice exhibit decreased adipocyte mitochondrial function, impaired thermogenesis, obesity, and systemic insulin resistance. SerpinA1 forms a complex with the Eph receptor B2 and regulates its downstream signaling in adipocytes. These results demonstrate that SerpinA1 is an important hepatokine that improves obesity, energy expenditure and glucose metabolism by promoting preadipocyte proliferation and activating mitochondrial UCP1 expression in adipocytes.
Collapse
Affiliation(s)
- Shota Okagawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan.
| | - Yuma Okubo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Yuri Takekuma
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Bruna Brasil Brandao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, BIDMC and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| |
Collapse
|
7
|
Chen D, Tang Y, Lapinski PE, Wiggins D, Sevick EM, Davis MJ, King PD. EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. Circ Res 2024; 135:1048-1066. [PMID: 39421925 PMCID: PMC11560524 DOI: 10.1161/circresaha.124.325383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND EPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves. METHODS We used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo. RESULTS LV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV valve specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV valve development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos. CONCLUSIONS EPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Yipei Tang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - David Wiggins
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eva M. Sevick
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| |
Collapse
|
8
|
Offenhäuser C, Dave KA, Beckett KJ, Smith FM, Jayakody BA, Cooper LT, Agyei-Yeboah H, McCarron JK, Li Y, Bastick K, Al-Ejeh F, Cullen JK, Coulthard MG, Gorman JJ, Boyd AW, Day BW. EphA2 regulates vascular permeability and prostate cancer metastasis via modulation of cell junction protein phosphorylation. Oncogene 2024:10.1038/s41388-024-03206-x. [PMID: 39511410 DOI: 10.1038/s41388-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Prostate cancer morbidity and mortality demonstrate a need for more effective targeted therapies. One potential target is EphA2, although paradoxically, pro- and anti-oncogenic effects have been shown to be mediated by EphA2. We demonstrate that unique activating and blocking EphA2-targeting monoclonal antibodies display opposing tumor-suppressive and oncogenic properties in vivo. To further explore this complexity, we performed detailed phosphoproteomic analysis following ligand-induced EphA2 activation. Our analysis identified altered phosphorylation of 73 downstream proteins related to the PI3K/AKT/mTOR and ERK/MAPK pathways, with the majority implicated in cell junction and cytoskeletal organization, cell motility, and tumor metastasis. We demonstrate that the adapter protein SHB is an essential component in mediating the inhibition of the ERK/MAPK pathway in response to EphA2 receptor activation. Furthermore, we identify the adherence junction protein afadin as an EphA2-regulated phosphoprotein which is involved in prostate cancer migration and invasion.
Collapse
Affiliation(s)
- Carolin Offenhäuser
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Keyur A Dave
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Kirrilee J Beckett
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Fiona M Smith
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Buddhika A Jayakody
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Leanne T Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helen Agyei-Yeboah
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jennifer K McCarron
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Yuchen Li
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kate Bastick
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fares Al-Ejeh
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jason K Cullen
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, The University of Queensland, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
| | - Jeffrey J Gorman
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Andrew W Boyd
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bryan W Day
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
9
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Gomez GT, Shi L, Fohner AE, Chen J, Yang Y, Fornage M, Duggan MR, Peng Z, Daya GN, Tin A, Schlosser P, Longstreth WT, Kalani R, Sharma M, Psaty BM, Nevado-Holgado AJ, Buckley NJ, Gottesman RF, Lutsey PL, Jack CR, Sullivan KJ, Mosley T, Hughes TM, Coresh J, Walker KA. Plasma proteome-wide analysis of cerebral small vessel disease identifies novel biomarkers and disease pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24314972. [PMID: 39417098 PMCID: PMC11483013 DOI: 10.1101/2024.10.07.24314972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort. Our proteome-wide analysis of older adults (mean age: 76) identified 13 WMH-associated plasma proteins involved in synaptic function, endothelial integrity, and angiogenesis, two of which remained associated with late-life WMH volume when measured nearly 20 years earlier, during midlife. We replicated the relationship between 9 candidate proteins and WMH volume in one or more external cohorts; we found that 11 of the 13 proteins were associated with risk for future dementia; and we leveraged publicly available proteomic data from brain tissue to demonstrate that a subset of WMH-associated proteins was differentially expressed in the context of cerebral atherosclerosis, pathologically-defined Alzheimer's disease, and cognitive decline. Bidirectional two-sample Mendelian randomization analyses examined the causal relationships between candidate proteins and WMH volume, while pathway and network analyses identified discrete biological processes (lipid/cholesterol metabolism, NF-kB signaling, hemostasis) associated with distinct forms of SVD. Finally, we synthesized these findings to identify two plasma proteins, oligodendrocyte myelin glycoprotein (OMG) and neuronal pentraxin receptor (NPTXR), as top candidate biomarkers for elevated WMH volume and its clinical manifestations.
Collapse
|
11
|
Guidetti L, Castelli R, Zappia A, Ferrari FR, Giorgio C, Barocelli E, Pagliaro L, Vento F, Roti G, Scalvini L, Vacondio F, Rivara S, Mor M, Lodola A, Tognolini M. Discovery of a new 1-(phenylsulfonyl)-1H-indole derivative targeting the EphA2 receptor with antiproliferative activity on U251 glioblastoma cell line. Eur J Med Chem 2024; 276:116681. [PMID: 39024966 DOI: 10.1016/j.ejmech.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
In our continuing effort devoted at developing agents targeting the EphA2 receptor by means of protein-protein interaction (PPI) inhibitors, we report here the design and synthesis of a new class of l-β-homotryptophan conjugates of 3-β-hydroxy-Δ5-cholenic acid bearing a set of arylsulfonyl substituents at the indole nitrogen atom. An extensive structure-activity relationship (SAR) analysis indicates that the presence of a bulky lipophilic moiety at the indole nitrogen is fundamental for improving potency on the EphA2 receptor, while abrogating activity on the EphB1-EphB3 receptor subtypes. A rational exploration, guided by the combined application of an experimental design on σp and π physicochemical descriptors and docking simulations, led to the discovery of UniPR1454, a 1-(4-(trifluoromethyl)phenyl)sulfonyl derivative acting as potent and competitive EphA2 antagonist able to inhibit ephrin-A1 dependent signals and to reduce proliferation of glioblastoma (U251) cell line at micromolar concentration.
Collapse
Affiliation(s)
- Lorenzo Guidetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Alfonso Zappia
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | | | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Elisabetta Barocelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Luca Pagliaro
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Ematologia e CTMO, Azienda Ospedaliero Universitaria di Parma, Parma, Italy; Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy
| | - Federica Vento
- Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy; Dipartimento di Scienze Mediche, Università di Ferrara, Ferrara, Italy
| | - Giovanni Roti
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Ematologia e CTMO, Azienda Ospedaliero Universitaria di Parma, Parma, Italy; Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Federica Vacondio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy; Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
12
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. Toxicol Sci 2024; 201:263-281. [PMID: 38995845 PMCID: PMC11424889 DOI: 10.1093/toxsci/kfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with an increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 wk of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points-birth, 6, 12, and 36 wk old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of differential modification of cytosines with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late-life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
13
|
Kraski A, Migdał P, Klopfleisch R, Räckel C, Sharbati J, Heimesaat MM, Alter T, Hanisch C, Gölz G, Einspanier R, Sharbati S. Structured multicellular intestinal spheroids (SMIS) as a standardized model for infection biology. Gut Pathog 2024; 16:47. [PMID: 39289703 PMCID: PMC11406839 DOI: 10.1186/s13099-024-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND 3D cell culture models have recently garnered increasing attention for replicating organ microarchitecture and eliciting in vivo-like responses, holding significant promise across various biological disciplines. Broadly, 3D cell culture encompasses organoids as well as single- and multicellular spheroids. While the latter have found successful applications in tumor research, there is a notable scarcity of standardized intestinal models for infection biology that mimic the microarchitecture of the intestine. Hence, this study aimed to develop structured multicellular intestinal spheroids (SMIS) specifically tailored for studying molecular basis of infection by intestinal pathogens. RESULTS We have successfully engineered human SMIS comprising four relevant cell types, featuring a fibroblast core enveloped by an outer monolayer of enterocytes and goblet cells along with monocytic cells. These SMIS effectively emulate the in vivo architecture of the intestinal mucosal surface and manifest differentiated morphological characteristics, including the presence of microvilli, within a mere two days of culture. Through analysis of various differentiation factors, we have illustrated that these spheroids attain heightened levels of differentiation compared to 2D monolayers. Moreover, SMIS serve as an optimized intestinal infection model, surpassing the capabilities of traditional 2D cultures, and exhibit a regulatory pattern of immunological markers similar to in vivo infections after Campylobacter jejuni infection. Notably, our protocol extends beyond human spheroids, demonstrating adaptability to other species such as mice and pigs. CONCLUSION Based on the rapid attainment of enhanced differentiation states, coupled with the emergence of functional brush border features, increased cellular complexity, and replication of the intestinal mucosal microarchitecture, which allows for exposure studies via the medium, we are confident that our innovative SMIS model surpasses conventional cell culture methods as a superior model. Moreover, it offers advantages over stem cell-derived organoids due to scalability and standardization capabilities of the protocol. By showcasing differentiated morphological attributes, our model provides an optimal platform for diverse applications. Furthermore, the investigated differences of several immunological factors compared to monotypic monolayers after Campylobacter jejuni infection underline the refinement of our spheroid model, which closely mimics important features of in vivo infections.
Collapse
Affiliation(s)
- Angelina Kraski
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paweł Migdał
- Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Clara Räckel
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic study of taste perception genes in African Americans reveals SNPs linked to Alzheimer's disease. Sci Rep 2024; 14:21560. [PMID: 39284855 PMCID: PMC11405524 DOI: 10.1038/s41598-024-71669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute On Alcohol Abuse and Alcoholism, National Institue of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
15
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
16
|
Thowfeequ S, Fiorentino J, Hu D, Solovey M, Ruane S, Whitehead M, Zhou F, Godwin J, Mateo-Otero Y, Vanhaesebroeck B, Scialdone A, Srinivas S. An integrated approach identifies the molecular underpinnings of murine anterior visceral endoderm migration. Dev Cell 2024; 59:2347-2363.e9. [PMID: 38843837 PMCID: PMC11511681 DOI: 10.1016/j.devcel.2024.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2023] [Accepted: 05/14/2024] [Indexed: 09/12/2024]
Abstract
The anterior visceral endoderm (AVE) differs from the surrounding visceral endoderm (VE) in its migratory behavior and ability to restrict primitive streak formation to the opposite side of the mouse embryo. To characterize the molecular bases for the unique properties of the AVE, we combined single-cell RNA sequencing of the VE prior to and during AVE migration with phosphoproteomics, high-resolution live-imaging, and short-term lineage labeling and intervention. This identified the transient nature of the AVE with attenuation of "anteriorizing" gene expression as cells migrate and the emergence of heterogeneities in transcriptional states relative to the AVE's position. Using cell communication analysis, we identified the requirement of semaphorin signaling for normal AVE migration. Lattice light-sheet microscopy showed that Sema6D mutants have abnormalities in basal projections and migration speed. These findings point to a tight coupling between transcriptional state and position of the AVE and identify molecular controllers of AVE migration.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Di Hu
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Solovey
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sharon Ruane
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Whitehead
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Felix Zhou
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan Godwin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Yentel Mateo-Otero
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK; Unit of Cell Biology, Department of Biology, University of Girona, Girona 17004, Spain
| | | | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.
| | - Shankar Srinivas
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK.
| |
Collapse
|
17
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Büyük B, Aydeğer C, Adalı Y, Eroğlu HA. The Effect of Topically Applied Boric Acid on Ephrin-Eph Pathway in Wound Treatment: An Experimental Study. INT J LOW EXTR WOUND 2024; 23:379-389. [PMID: 34775861 DOI: 10.1177/15347346211055260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Wound healing has a vital importance for the organism and various agents are used to accelerate wound healing. Although the effect of boron on wound healing is known, its mechanisms are not completely clear yet. In this study, the effect of boron in the Ephrin /Eph pathway will be evaluated. Methods: Forty adult female rats were used in the study. A full-thickness excisional wound model was created in all groups divided as Control, Fito, Boron and Plu groups. After the applications performed twice a day and lasting 7 days, skin tissues obtained and evaluated histopathological (inflammatory cell infiltration, oedema, and fibroblast proliferation density) and immunohistochemical (TNF-α, EphrinA1, EphrinB1, EphrinB2 and EphB4). Results: Inflammatory cell infiltration score was found to be higher in the Fito group compared to Boron group (p = .018). Fibroblast proliferation density was higher in Plu group than Boron group (p = .012). While TNF-α was lower in boron group than Plu (p = .027) and Fito (p = .016) groups, EphrinA1 was higher in Boron group than Plu group (p = .005). EphrinB1 expression was higher in Boron group compared to Plu (p = .015) and Fito (p = .015) groups, and the same difference was also observed in EphrinB2 (p values .000). Similarly, EphB4 immunoreactivity was higher in the Boron group compared to Plu (p = .000) and Fito (p = .002). Conclusion: One of the mechanisms of action of boron in wound healing is to increase EphrinB1, EphrinB2 and EphB4. Low TNF-α and histopathological findings indicate that boron limits extensive wound healing.
Collapse
Affiliation(s)
| | - Cemre Aydeğer
- Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | | | | |
Collapse
|
19
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
20
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic Study of Taste Perception Genes in African Americans Reveals SNPs Linked to Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607452. [PMID: 39372803 PMCID: PMC11451608 DOI: 10.1101/2024.08.10.607452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. Methods This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. Results The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Conclusions Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, National Institue of Nursing Research, Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
22
|
Lee JE, Lee H, Baek E, Choi B, Yun HS, Yoo YK, Lee YS, Song GJ, Cho KS. The role of glial and neuronal Eph/ephrin signaling in Drosophila mushroom body development and sleep and circadian behavior. Biochem Biophys Res Commun 2024; 720:150072. [PMID: 38749187 DOI: 10.1016/j.bbrc.2024.150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea
| | - Young-Sun Lee
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea; Korea Hemp Institute, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
23
|
Rodríguez-Sosa MR, Del Castillo LM, Belarra A, Zapata AG, Alfaro D. The lack of EphB3 receptor prevents bone loss in mouse models of osteoporosis. J Bone Miner Res 2024; 39:1008-1024. [PMID: 38739682 DOI: 10.1093/jbmr/zjae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7. To clarify the underlying molecular mechanisms, we found that the lack of EphB3 signaling alters the genetic profile of differentiating MSCs, reducing the expression of many inhibitory molecules and antagonists of the BMP signaling pathway, and increasing Bmp7 expression, a robust bone inductor. Then, to confirm the osteogenic role of EphB3 in vivo, we studied the condition of 2 mouse models of induced bone loss (ovariectomy or long-term glucocorticoid treatment). Interestingly, in both models, both WT and EphB2-/- mice equally developed the disease but EphB3-/- mice did not exhibit the typical bone loss, nor an increase in urine Ca2+ or blood serum CTX-1. This phenotype in EphB3-KO mice could be due to their significantly higher proportions of osteoprogenitor cells and preosteoblasts, and their lower number of osteoclasts, as compared with WT and EphB2-KO mice. Thus, we conclude that EphB3 acts as a negative regulator of the osteogenic differentiation, and its absence prevents bone loss in mice subjected to ovariectomy or dexamethasone treatment.
Collapse
Affiliation(s)
- Mariano R Rodríguez-Sosa
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
- Research Institute Hospital "12 de Octubre" (imas12), C.P. 28041, Madrid, Spain
| | - Luis M Del Castillo
- Reproductive Medicine Research Group, IVI Foundation, Health Research Institute Hospital La Fe (IIS La Fe), C.P. 46026, Valencia, Spain
| | - Adrián Belarra
- Micro-CT Laboratory, Central Radioactive Facility, Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| |
Collapse
|
24
|
Zhao Z, Liu A, Citu C, Enduru N, Chen X, Manuel A, Sinha T, Gorski D, Fernandes B, Yu M, Schulz P, Simon L, Soto C. Single-nucleus multiomics reveals the disrupted regulatory programs in three brain regions of sporadic early-onset Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4622123. [PMID: 39149497 PMCID: PMC11326379 DOI: 10.21203/rs.3.rs-4622123/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis-regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.
Collapse
Affiliation(s)
- Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xian Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Astrid Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Tirthankar Sinha
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brisa Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Meifang Yu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Paul Schulz
- Department of Neurology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lukas Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
25
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
26
|
Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J. Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Dev Cell 2024; 59:1689-1706.e8. [PMID: 38636517 DOI: 10.1016/j.devcel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Sun
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Handan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiaxin Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiazhe Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | | | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China.
| |
Collapse
|
27
|
Liu A, Citu C, Enduru N, Chen X, Manuel AM, Sinha T, Gorski D, Fernandes BS, Yu M, Schulz PE, Simon LM, Soto C, Zhao Z. Single-nucleus multiomics reveals the disrupted regulatory programs in three brain regions of sporadic early-onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600720. [PMID: 38979371 PMCID: PMC11230393 DOI: 10.1101/2024.06.25.600720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis- regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.
Collapse
|
28
|
Schuck RJ, Ward AE, Sahoo AR, Rybak JA, Pyron RJ, Trybala TN, Simmons TB, Baccile JA, Sgouralis I, Buck M, Lamichhane R, Barrera FN. Cholesterol inhibits assembly and activation of the EphA2 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598255. [PMID: 38915729 PMCID: PMC11195142 DOI: 10.1101/2024.06.10.598255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The receptor tyrosine kinase EphA2 drives cancer malignancy by facilitating metastasis. EphA2 can be found in different self-assembly states: as a monomer, dimer, and oligomer. However, our understanding remains limited regarding which EphA2 state is responsible for driving pro-metastatic signaling. To address this limitation, we have developed SiMPull-POP, a single-molecule method for accurate quantification of membrane protein self-assembly. Our experiments revealed that a reduction of plasma membrane cholesterol strongly promoted EphA2 self-assembly. Indeed, low cholesterol caused a similar effect to the EphA2 ligand ephrinA1-Fc. These results indicate that cholesterol inhibits EphA2 assembly. Phosphorylation studies in different cell lines revealed that low cholesterol increased phospho-serine levels, the signature of oncogenic signaling. Investigation of the mechanism that cholesterol uses to inhibit the assembly and activity of EphA2 indicate an in-trans effect, where EphA2 is phosphorylated by protein kinase A downstream of beta-adrenergic receptor activity, which cholesterol also inhibits. Our study not only provides new mechanistic insights on EphA2 oncogenic function, but also suggests that cholesterol acts as a molecular safeguard mechanism that prevents uncontrolled self-assembly and activation of EphA2.
Collapse
Affiliation(s)
- Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Alyssa E Ward
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Jennifer A Rybak
- Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Thomas N Trybala
- Department of Chemistry, University of Tennessee, Knoxville, USA
| | - Timothy B Simmons
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, USA
| | | | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| |
Collapse
|
29
|
Tanaka J, Kondo Y, Sakurai M, Sawada A, Hwang Y, Miura A, Shimamura Y, Shimizu D, Hu Y, Sarmah H, Ninish Z, Cai J, Wu J, Mori M. Ephrin Forward Signaling Controls Interspecies Cell Competition in Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597057. [PMID: 38895424 PMCID: PMC11185521 DOI: 10.1101/2024.06.02.597057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In the animal kingdom, evolutionarily conserved mechanisms known as cell competition eliminate unfit cells during development. Interestingly, cell competition also leads to apoptosis of donor cells upon direct contact with host cells from a different species during interspecies chimera formation. The mechanisms underlying how host animal cells recognize and transmit cell death signals to adjacent xenogeneic human cells remain incompletely understood. In this study, we developed an interspecies cell contact reporter system to dissect the mechanisms underlying competitive interactions between mouse and human pluripotent stem cells (PSCs). Through single-cell RNA-seq analyses, we discovered that Ephrin A ligands in mouse cells play a crucial role in signaling cell death to adjacent human cells that express EPHA receptors during interspecies PSC co-culture. We also demonstrated that blocking the Ephrin A-EPHA receptor interaction pharmacologically, and inhibiting Ephrin forward signaling genetically in the mouse cells, enhances the survival of human PSCs and promotes chimera formation both in vitro and in vivo . Our findings elucidate key mechanisms of interspecies PSC competition during early embryogenesis and open new avenues for generating humanized tissues or organs in animals, potentially revolutionizing regenerative medicine.
Collapse
|
30
|
Huuki-Myers LA, Spangler A, Eagles NJ, Montgomery KD, Kwon SH, Guo B, Grant-Peters M, Divecha HR, Tippani M, Sriworarat C, Nguyen AB, Ravichandran P, Tran MN, Seyedian A, Hyde TM, Kleinman JE, Battle A, Page SC, Ryten M, Hicks SC, Martinowich K, Collado-Torres L, Maynard KR. A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex. Science 2024; 384:eadh1938. [PMID: 38781370 PMCID: PMC11398705 DOI: 10.1126/science.adh1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/06/2023] [Indexed: 05/25/2024]
Abstract
The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.
Collapse
Affiliation(s)
- Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Nicholas J Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Chaichontat Sriworarat
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annie B Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Prashanthi Ravichandran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Arta Seyedian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590998. [PMID: 38746441 PMCID: PMC11092502 DOI: 10.1101/2024.04.26.590998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C. Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Sierra L. Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
33
|
Yao N, Ma Q, Yi W, Zhu Y, Liu Y, Gao X, Zhang Q, Luo W. Artesunate attenuates the tumorigenesis of choroidal melanoma via inhibiting EFNA3 through Stat3/Akt signaling pathway. J Cancer Res Clin Oncol 2024; 150:202. [PMID: 38630320 PMCID: PMC11024049 DOI: 10.1007/s00432-024-05711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Choroidal melanoma (CM), a kind of malignant tumor, is the main type of Uveal melanoma and one half of CM patients develop metastases. As a member of Eph/ephrin pathway that plays vital role in tumors, EphrinA3 (EFNA3) has been proved to promote tumorigenesis in many tumors. But the effect of EFNA3 in CM has not been studied yet. Through inhibiting angiogenesis, inducing apoptosis and autophagy and so on, Artesunate (ART) plays a key anti-tumor role in many tumors, including CM. However, the exact mechanisms of anti-tumor in CM remain unclear. METHODS The UALCAN and TIMER v2.0 database analyzed the role of EFNA3 in CM patients. Quantitative real time polymerase chain reaction (qPCR) and Western blot were used to detect the expression of EFNA3 in CM. The growth ability of CM was tested by clonogenic assay and Cell counting kit-8 assay, and the migration ability using Transwell assay. RESULTS Our results found EFNA3 boosted CM cells' growth and migration through activating Stat3/Akt signaling pathway, while ART inhibited the tumor promoting effect of CM via downregulating EFNA3. In xenograft tumor model, EFNA3 knockdown and ART significantly inhibited tumor growth. CONCLUSION EFNA3 could be a valuable prognostic factor in CM.
Collapse
Affiliation(s)
- Ningning Yao
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qingyue Ma
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wendan Yi
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanzhang Zhu
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yichong Liu
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaodi Gao
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Zhang
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wenjuan Luo
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
34
|
Al-Jamaei AAH, Subramanyam RV, Helder MN, Forouzanfar T, van der Meij EH, Al-Jamei S, de Visscher JGAM. A narrative review of the role of Eph receptors in head and neck squamous cell carcinoma. Oral Dis 2024; 30:833-845. [PMID: 37279081 DOI: 10.1111/odi.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Tyrosine kinase receptors (TKR) coordinate a variety of pathological processes in head and neck squamous cell carcinoma (HNSCC), and eventually play a role in patient outcomes. In this review, the role of Eph receptors in HNSCC progression and the possibility of targeting these receptors are illustrated. All relevant studies were identified through a comprehensive search of four electronic databases, including PubMed, Scopus, web of science, and Embase till August 2022. EphA2 and EphB4, along with ephrin-B2, were the most extensively studied proteins in this family. However, overexpression of EphB4 and its ligand ephrin-B2 were the only proteins that consistently showed association with a poor outcome, indicating that these proteins might serve as valuable prognostic markers in HNSCC. High expression of EphA3 and EphB4 was found to play a crucial role in radioresistance of HNSCC. EphB4 loss, in particular, was observed to induce an immunosuppression phenotypic HNSCC. Currently, ongoing clinical trials are investigating the benefits of EphB4-ephrin-B2 blockade in combination with standard of care treatment in HNSCC. Further efforts are needed to explore the biological role and behavioral complexity of this family of TKR in HNSCC with great attention to avoid heterogeneity of HNSCC subsites.
Collapse
Affiliation(s)
- Aisha A H Al-Jamaei
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral Surgery and Oral Medicine, Collage of Dentistry, Al-Razi University, Sana'a, Yemen
| | | | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Erik H van der Meij
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Sayida Al-Jamei
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus TU, Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan G A M de Visscher
- Department of Oral and Maxillofacial Surgery/Oral Pathology, AmsterdamUMC-location VUmc/Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
35
|
Vanden Broek K, Ryu JR, Perrier R, Tyndall AV, Childs SJ, Au PYB. SAM domain variants of EPHB4 associated with aberrant signaling are linked to lymphatic-related fetal hydrops and facial dysmorphology. Clin Genet 2024; 105:386-396. [PMID: 38151336 DOI: 10.1111/cge.14467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Variants in EPHB4 (Ephrin type B receptor 4), a transmembrane tyrosine kinase receptor, have been identified in individuals with various vascular anomalies including Capillary Malformation-Arteriovenous Malformation syndrome 2 and lymphatic-related (non-immune) fetal hydrops (LRHF). Here, we identify two novel variants in EPHB4 that disrupt the SAM domain in two unrelated individuals. Proband 1 presented within the LRHF phenotypic spectrum with hydrops, and proband 2 presented with large nuchal translucency prenatally that spontaneously resolved in addition to dysmorphic features on exam postnatally. These are the first disease associated variants identified that do not disrupt EPHB4 protein expression or tyrosine-kinase activity. We identify that EPHB4 SAM domain disruptions can lead to aberrant downstream signaling, with a loss of the SAM domain resulting in elevated MAPK signaling in proband 1, and a missense variant within the SAM domain resulting in increased cell proliferation in proband 2. This data highlights that a functional SAM domain is required for proper EPHB4 function and vascular development.
Collapse
Affiliation(s)
- Kara Vanden Broek
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jae-Ryeon Ryu
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Renee Perrier
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Amanda V Tyndall
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Sarah J Childs
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ping Yee Billie Au
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Montero-Herradón S, García-Ceca J, Villarejo-Torres M, Zapata AG. Peripheral T-cell responses of EphB2- and EphB3-deficient mice in a model of collagen-induced arthritis. Cell Mol Life Sci 2024; 81:159. [PMID: 38558087 PMCID: PMC10984909 DOI: 10.1007/s00018-024-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.
| |
Collapse
|
37
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
38
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
39
|
Sasine JP, Kozlova NY, Valicente L, Dukov J, Tran DH, Himburg HA, Kumar S, Khorsandi S, Chan A, Grohe S, Li M, Kan J, Sehl ME, Schiller GJ, Reinhardt B, Singh BK, Ho R, Yue P, Pasquale EB, Chute JP. Inhibition of Ephrin B2 Reverse Signaling Abolishes Multiple Myeloma Pathogenesis. Cancer Res 2024; 84:919-934. [PMID: 38231476 PMCID: PMC10940855 DOI: 10.1158/0008-5472.can-23-1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs. Expression of ephrin B2 (EFNB2), the binding partner for EPHB1 and EPHB4, was significantly increased in multiple myeloma cells. Silencing EPHB1 or EPHB4 in ECs suppressed multiple myeloma growth in coculture. Similarly, loss of EFNB2 in multiple myeloma cells blocked multiple myeloma proliferation and survival in vitro, abrogated multiple myeloma engraftment in immune-deficient mice, and increased multiple myeloma sensitivity to chemotherapy. Administration of an EFNB2-targeted single-chain variable fragment also suppressed multiple myeloma growth in vivo. In contrast, overexpression of EFNB2 in multiple myeloma cells increased STAT5 activation, increased multiple myeloma cell survival and proliferation, and decreased multiple myeloma sensitivity to chemotherapy. Conversely, expression of mutant EFNB2 lacking reverse signaling capacity in multiple myeloma cells increased multiple myeloma cell death and sensitivity to chemotherapy and abolished multiple myeloma growth in vivo. Complementary analysis of multiple myeloma patient data revealed that increased EFNB2 expression is associated with adverse-risk disease and decreased survival. This study suggests that EFNB2 reverse signaling controls multiple myeloma pathogenesis and can be therapeutically targeted to improve multiple myeloma outcomes. SIGNIFICANCE Ephrin B2 reverse signaling mediated by endothelial cells directly regulates multiple myeloma progression and treatment resistance, which can be overcome through targeted inhibition of ephrin B2 to abolish myeloma.
Collapse
Affiliation(s)
- Joshua P. Sasine
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Natalia Y. Kozlova
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lisa Valicente
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Jennifer Dukov
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Dana H. Tran
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sanjeev Kumar
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Sarah Khorsandi
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aldi Chan
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Samantha Grohe
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Mary E. Sehl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Gary J. Schiller
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Bryanna Reinhardt
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brijesh Kumar Singh
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Ritchie Ho
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Peibin Yue
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - John P. Chute
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
40
|
Fischer F, Ernst L, Frey A, Holstein K, Prasad D, Weichselberger V, Balaji R, Classen AK. A mismatch in the expression of cell surface molecules induces tissue-intrinsic defense against aberrant cells. Curr Biol 2024; 34:980-996.e6. [PMID: 38350446 DOI: 10.1016/j.cub.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/29/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Tissue-intrinsic error correction enables epithelial cells to detect abnormal neighboring cells and facilitate their removal from the tissue. One of these pathways, "interface surveillance," is triggered by cells with aberrant developmental and cell-fate-patterning pathways. It remains unknown which molecular mechanisms provide cells with the ability to compare fate between neighboring cells. We demonstrate that Drosophila imaginal discs express an array of cell surface molecules previously implicated in neuronal axon guidance processes. They include members of the Robo, Teneurin, Ephrin, Toll-like, or atypical cadherin families. Importantly, a mismatch in expression levels of these cell surface molecules between adjacent cells is sufficient to induce interface surveillance, indicating that differences in expression levels between neighboring cells, rather than their absolute expression levels, are crucial. Specifically, a mismatch in Robo2 and Robo3, but not Robo1, induces enrichment of actin, myosin II, and Ena/Vasp, as well as activation of JNK and apoptosis at clonal interfaces. Moreover, Robo2 can induce interface surveillance independently of its cytosolic domain and without the need for the Robo-ligand Slit. The expression of Robo2 and other cell surface molecules, such as Teneurins or the Ephrin receptor is regulated by fate-patterning pathways intrinsic and extrinsic to the wing disc, as well as by expression of oncogenic RasV12. Combined, we demonstrate that neighboring cells respond to a mismatch in surface code patterns mediated by specific transmembrane proteins and reveal a novel function for these cell surface proteins in cell fate recognition and removal of aberrant cells during development and homeostasis of epithelial tissues.
Collapse
Affiliation(s)
- Friedericke Fischer
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, 79108 Freiburg, Germany
| | - Laurin Ernst
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, 79108 Freiburg, Germany
| | - Anna Frey
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Holstein
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Deepti Prasad
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Vanessa Weichselberger
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany; Aix Marseille University, CNRS, UMR 7288, IBDM, 13288 Marseille, France
| | - Ramya Balaji
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
41
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
42
|
Zhang S, Zhao J, Sha WM, Zhang XP, Mai JY, Bartlett PF, Hou ST. Inhibition of EphA4 reduces vasogenic edema after experimental stroke in mice by protecting the blood-brain barrier integrity. J Cereb Blood Flow Metab 2024; 44:419-433. [PMID: 37871622 PMCID: PMC10870966 DOI: 10.1177/0271678x231209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Cerebral vasogenic edema, a severe complication of ischemic stroke, aggravates neurological deficits. However, therapeutics to reduce cerebral edema still represent a significant unmet medical need. Brain microvascular endothelial cells (BMECs), vital for maintaining the blood-brain barrier (BBB), represent the first defense barrier for vasogenic edema. Here, we analyzed the proteomic profiles of the cultured mouse BMECs during oxygen-glucose deprivation and reperfusion (OGD/R). Besides the extensively altered cytoskeletal proteins, ephrin type-A receptor 4 (EphA4) expressions and its activated phosphorylated form p-EphA4 were significantly increased. Blocking EphA4 using EphA4-Fc, a specific and well-tolerated inhibitor shown in our ongoing human phase I trial, effectively reduced OGD/R-induced BMECs contraction and tight junction damage. EphA4-Fc did not protect OGD/R-induced neuronal and astrocytic death. However, administration of EphA4-Fc, before or after the onset of transient middle cerebral artery occlusion (tMCAO), reduced brain edema by about 50%, leading to improved neurological function recovery. The BBB permeability test also confirmed that cerebral BBB integrity was well maintained in tMCAO brains treated with EphA4-Fc. Therefore, EphA4 was critical in signaling BMECs-mediated BBB breakdown and vasogenic edema during cerebral ischemia. EphA4-Fc is promising for the treatment of clinical post-stroke edema.
Collapse
Affiliation(s)
- Shuai Zhang
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Jing Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Wei-Meng Sha
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Xin-Pei Zhang
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Jing-Yuan Mai
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sheng-Tao Hou
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| |
Collapse
|
43
|
Rasool D, Burban A, Sharanek A, Madrigal A, Hu J, Yan K, Qu D, Voss AK, Slack RS, Thomas T, Bonni A, Picketts DJ, Soleimani VD, Najafabadi HS, Jahani-Asl A. PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS. EMBO Rep 2024; 25:1256-1281. [PMID: 38429579 PMCID: PMC10933485 DOI: 10.1038/s44319-024-00082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montréal, QC, H3A 0G1, Canada
| | - Jinghua Hu
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Azad Bonni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Picketts
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Vahab D Soleimani
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada.
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montréal, QC, H3A 0G1, Canada.
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa, Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
44
|
Assali A, Chenaux G, Cho JY, Berto S, Ehrlich NA, Cowan CW. EphB1 controls long-range cortical axon guidance through a cell non-autonomous role in GABAergic cells. Development 2024; 151:dev201439. [PMID: 38345254 PMCID: PMC10946438 DOI: 10.1242/dev.201439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.
Collapse
Affiliation(s)
- Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Chenaux
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan A. Ehrlich
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Rubinfeld H, Cohen ZR, Bendavid U, Fichman-Horn S, Levy-Barda A, David C, Melamed P, Shimon I. Erythropoietin-producing hepatocellular receptor B6 is highly expressed in non-functioning pituitary neuroendocrine tumors and its expression correlates with tumor size. Mol Biol Rep 2024; 51:297. [PMID: 38341842 PMCID: PMC10859332 DOI: 10.1007/s11033-023-09186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular (EPH) receptors are the largest known family of receptor tyrosine kinases characterized in humans. These proteins are involved in tissue organization, synaptic plasticity, vascular development and the progression of various diseases including cancer. The Erythropoietin-producing hepatocellular receptor tyrosine kinase member EphB6 is a pseudokinase which has not attracted an equivalent amount of interest as its enzymatically-active counterparts. The aim of this study was to assess the expression of EphB6 in pituitary tumors. METHODS AND RESULTS Human normal pituitaries and pituitary tumors were examined for EphB6 mRNA expression using real-time PCR and for EphB6 protein by immunohistochemistry and Western blotting. EphB6 was highly expressed in non-functioning pituitary neuroendocrine tumors (NF-PitNETs) versus the normal pituitary and GH-secreting PitNETs. EphB6 mRNA expression was correlated with tumor size. CONCLUSIONS Our results suggest EphB6 aberrant expression in NF-PitNETs. Future studies are warranted to determine the role and significance of EphB6 in NF-PitNETs tumorigenesis.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uzi Bendavid
- Department of Neurosurgery, Rabin Medical Center, Petah Tikva, Israel
| | | | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Cfir David
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilan Shimon
- Institute of Endocrinology, Diabetes & Metabolism and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Hu Y, Xie Q, Zhao J, Yang R, Qin J, Li H, Zhao Y, Du X, Shi C. Interaction between the EPHB2 receptor and EFNB1 ligand drives gastric cancer invasion and metastasis via the Wnt/β-catenin/FAK pathway. Int J Biol Macromol 2024; 258:128848. [PMID: 38114003 DOI: 10.1016/j.ijbiomac.2023.128848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
The survival benefit for patients with gastric cancer (GC) is modest due to its high transfer potential. Targeted therapy for metastasis-related genes in GC may be a viable approach, however, inhibitors specifically targeting GC are limited. In this study, GC patient-derived xenografts (PDX) with metastatic burden were established via orthotopic transplantation. PCR-Array analysis of primary and metastatic tumors revealed EPH receptor B2 (EPHB2) as the most significantly upregulated gene. The interaction between the EPHB2 receptor and its cognate-specific EFNB1 ligands was high in GC and correlated with a poor prognosis. Fc-EFNB1 treatment increased the invasion and migration abilities of GC cells and induced a high EPHB2 expression. EPHB2 knockdown in GC cells completely abolished the ephrin ligand-induced effects on invasion and migration abilities. Signal transduction analysis revealed Wnt/β-catenin and FAK as downstream signaling mediators potentially inducing the EPHB2 phenotype. In conclusion, the observed deregulation of EPHB2/EFNB1 expression in GC enhances the invasive phenotype, suggesting a potential role of EPHB2/EFNB1 compound in local tumor cell invasion and the formation of metastasis.
Collapse
Affiliation(s)
- Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Pathology, Affiliated Hospital of Yan'an University, Yanan, Shaanxi 716000, China
| | - Qinghua Xie
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, Shaanxi 716000, China
| | - Runze Yang
- Gansu University of traditional Chinese Medicine, Lanzhou, Gansu 730030, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiong Du
- Department of Pathology, Affiliated Hospital of Yan'an University, Yanan, Shaanxi 716000, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
47
|
Zhu Z, Tao X, Dai T, Wu J, Han C, Huang P, Gong W. Cognitive-exercise dual-task attenuates chronic cerebral ischemia-induced cognitive impairment by activating cAMP/PKA pathway through inhibiting EphrinA3/EphA4. Exp Neurol 2024; 372:114617. [PMID: 38007209 DOI: 10.1016/j.expneurol.2023.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The prevalence of vascular cognitive impairment induced by chronic cerebral ischemia (CCI) is increasing year by year. Cognitive-exercise dual-task intervention has shown beneficial effects on improving cognitive performance in ischemic patients. It is well known that the tyrosine kinase ligand-receptor (Ephrin-Eph) system plays an important role in synaptic transmission and that the cAMP/PKA pathway is associated with cognitive function. However, it is unclear whether they are responsible for the dual-task improving cognitive impairment in CCI. METHODS Bilateral common carotid artery occlusion (BCCAO) in SD rats was used to establish the CCI model. The effects of dual-task and single-task on cognitive function and the expressions of EphrinA3, EphA4, cAMP, and PKA in rats were detected by the novel object recognition (NOR) test, immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting (WB), respectively. Overexpression or knockdown of EphrinA3 in astrocytes or rats were constructed by lentivirus infection to verify the effects of EphrinA3/EphA4 on the cAMP/PKA pathway. RESULTS After dual-task intervention, the discrimination index of rats increased significantly compared with the rats in the CCI group. The expressions of EphrinA3 and EphA4 were decreased, while the expressions of cAMP and PKA were increased. Furthermore, knockdown of EphrinA3 alleviated the trend of CCI-induced cognitive decline in rats and OGD-stimulated cellular damage. It also increased cAMP/PKA expression in hippocampal neurons. CONCLUSION Cognitive-exercise dual-task can significantly improve the cognitive impairment induced by CCI, and this effect may be better than that of the cognitive or exercise single-task intervention. The improvement may be related to the inhibition of EphrinA3/EphA4, followed by activation of the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tengteng Dai
- The Second Clinical Medical College of Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Jilin Wu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Conglin Han
- Rehabilitation Medicine Academy, Weifang Medical University, Shandong 261053, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| |
Collapse
|
48
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
49
|
Madan B, Wadia SR, Patnaik S, Harmston N, Tan E, Tan IBH, Nes WD, Petretto E, Virshup DM. The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling. J Clin Invest 2024; 134:e171222. [PMID: 38488003 PMCID: PMC10940096 DOI: 10.1172/jci171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/β-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Shawn R. Wadia
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Siddhi Patnaik
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Science Division, Yale-NUS College, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Iain Bee Huat Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
| | - W. David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
50
|
Kim Y, Miller WT. Contrasting Effects of Cancer-Associated Mutations in EphA3 and EphB2 Kinases. Biochemistry 2024:10.1021/acs.biochem.3c00674. [PMID: 38252844 PMCID: PMC11265570 DOI: 10.1021/acs.biochem.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors are a family of tyrosine kinases that can act as tumor promoters or tumor suppressors, depending on the receptor and cancer cell type. Cancer-associated somatic mutations have been identified in all Eph receptors, but in most cases, the functional effects of the mutations are unknown. In this study, we expressed and purified the kinase domains of wild-type (WT) EphA3 and EphB2 along with 16 cancer-associated mutants. We identified mutations that decrease EphA3 activity and both activating and inhibitory mutations in EphB2. To shed light on the mechanisms by which the mutations altered kinase activity, we measured the thermal stabilities of the enzymes and performed steady-state kinetic experiments. We also expressed the full-length receptors in HEK293T cells to determine the cellular effects. WT EphB2 promoted downstream ERK signaling, while a kinase-inactive mutant (S706F) was similar to the control cells. In contrast, WT EphA3 (but not loss-of-function mutants) inhibited ERK signaling. The reciprocal effects of EphB2 and EphA3 on ERK phosphorylation in HEK293T cells were also evident in Ras-GTP loading. Thus, consistent with the dual roles of Eph receptors as tumor promoters and tumor suppressors, somatic mutations have the potential to increase or decrease Eph function, resulting in changes in the downstream signaling transduction.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Veterans Affairs Medical Center, Northport, New York 11768, United States
| |
Collapse
|