1
|
Ji LL. Nuclear Factor κB Signaling Revisited: Its Role in Skeletal Muscle and Exercise. Free Radic Biol Med 2025:S0891-5849(25)00088-7. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
2
|
Albalawi W, Thomas J, Mughal F, Kotsiri A, Roper KJ, Alshehri A, Kelbrick M, Pollakis G, Paxton WA. SARS-CoV-2 S, M, and E Structural Glycoproteins Differentially Modulate Endoplasmic Reticulum Stress Responses. Int J Mol Sci 2025; 26:1047. [PMID: 39940816 PMCID: PMC11816748 DOI: 10.3390/ijms26031047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
We have previously shown that the hepatitis C virus (HCV) E1E2 envelope glycoprotein can regulate HIV-1 long-terminal repeat (LTR) activity through disruption to NF-κB activation. This response is associated with upregulation of the endoplasmic reticulum (ER) stress response pathway. Here, we demonstrate that the SARS-CoV-2 S, M, and E but not the N structural protein can perform similar downmodulation of HIV-1 LTR activation, and in a dose-dependent manner, in both HEK293 and lung BEAS-2B cell lines. This effect is highest with the SARS-CoV-2 Wuhan S strain and decreases over time for the subsequent emerging variants of concern (VOC), with Omicron providing the weakest effect. We developed pseudo-typed viral particle (PVP) viral tools that allowed for the generation of cell lines constitutively expressing the four SARS-CoV-2 structural proteins and utilising the VSV-g envelope protein to deliver the integrated gene construct. Differential gene expression analysis (DGEA) was performed on cells expressing S, E, M, or N to determine cell activation status. Gene expression differences were found in a number of interferon-stimulated genes (ISGs), including IF16, IFIT1, IFIT2, and ISG15, as well as for a number of heat shock protein (HSP) genes, including HSPH1, HSPA6, and HSPBP1, with all four SARS-CoV-2 structural proteins. There were also differences observed in expression patterns of transcription factors, with both SP1 and MAVS upregulated in the presence of S, M, and E but not the N protein. Collectively, the results indicate that gene expression patterns associated with ER stress pathways can be activated by SARS-CoV-2 envelope glycoprotein expression. The results suggest the SARS-CoV-2 infection can modulate an array of cell pathways, resulting in disruption to NF-κB signalling, hence providing alterations to multiple physiological responses of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Aljouf, Sakakah 72388, Saudi Arabia
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Farah Mughal
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Aurelia Kotsiri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Kelly J. Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone KT15 3NB, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Matthew Kelbrick
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| |
Collapse
|
3
|
Zeng Y, Wu Z, Xiong M, Liang Z, Chen Z, Huang H, Yang H, Chen Q. Piezo1 promotes vibration-induced vascular smooth muscle injury by regulating the NF-κB/p65 axis. Commun Biol 2025; 8:96. [PMID: 39833492 PMCID: PMC11747106 DOI: 10.1038/s42003-025-07524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Vibration induced damage to the peripheral circulatory system is thought to be an early stage of hand-arm vibration syndrome (HAVS) caused by occupational exposure to hand-transmitted vibration (HTV). This study investigated the mechanisms underlying vibration-induced vascular injury, focusing on the role of Piezo1, a mechanosensitive channel, and its association with the NF-κB/p65 signaling pathway. We demonstrated that vibration exposure leads to Piezo1-mediated upregulation of angiogenic chemokines, including CCL2, CCL5, CXCL1, CXCL2, and CXCL10, through the NF-κB/p65 pathway. To mimic the effects of vibration, a rat vibration model and a cellular vibration model were used. Animal and cellular models showed that vibration-induced vascular dysfunction while increasing Piezo1 expression. Piezo1 knockdown or p65 inhibition attenuated these effects, suggesting a crucial role for the Piezo1-NF-κB/p65 axis in vascular dysfunction. Furthermore, chemokines were identified as potential biomarkers for early diagnosis of HAVS in occupationally exposed individuals. These results highlight Piezo1 and the NF-κB/p65 pathway as potential therapeutic targets for HAVS and underscore the need for further validation in human samples and exploration of additional signaling mechanisms involved in vibration-induced vascular injury.
Collapse
Affiliation(s)
- Yingshan Zeng
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Zhiquan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Mengtian Xiong
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Zhishan Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Ziyu Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Huimin Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China
| | - Hongyu Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China.
| | - Qingsong Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment (2019GCZX012), Guangdong Pharmaceutical University, Guangdong, China.
| |
Collapse
|
4
|
Yao M, Wang B, Li Z, Wu S, Zhao B, Sun N, Xiao H, Wang J, Liu G, Huang T. Se-methylselenocysteine inhibits inflammatory response in an LPS-stimulated chicken HD11 macrophage-like cell model through the NFKB2 pathway. Front Vet Sci 2025; 11:1503436. [PMID: 39846017 PMCID: PMC11751066 DOI: 10.3389/fvets.2024.1503436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
Among the various sources of selenium supplementations, the Se-methylselenocysteine (SeMC) is a natural organic selenium compound that has been demonstrated to have multiple advantages in terms of metabolism efficiency and biosafety in animals. Nevertheless, the genome-wide impact of SeMC on gene transcription remains to be elucidated. In this study, we employed an LPS-stimulated chicken HD11 macrophage-like cell model to identify the principal transcription factors involved in transcriptome regulation responsible for SeMC treatment. RNA-seq identified 3,263 transcripts that exhibited a statistically significant differential expression between the SeMC-treated group and the control group and 1,344 transcripts that exhibited a statistically significant differential expression between the LPS + SeMC- and LPS-treated groups (FDR < 0.05, FDR > 1.5). The bioinformatic analysis identified six transcription factors (NFKB2, RFX2, E2F5, ETV5, BACH1, and E2F7) as potential candidate genes for transcriptome regulation in SeMC-treated HD11 cells. Subsequent experimental verification demonstrated that SeMC suppressed the inflammatory response in an LPS-stimulated chicken HD11 cell model via the TXN2-NF-κB pathway. The administration SeMC was observed to reduce the production of ROS as well as the transcription and translation of inflammatory cytokines in both cell culture and in vivo animal studies. One candidate pathway by which SeMC exerts its effects is through the targeting of the transcription factor, NFKB2, by selenoprotein TXN2. This study identified key transcription factors and revealed one of the potential mechanisms through which SeMC exerts its anti-inflammatory effects from the perspective of transcriptional regulation.
Collapse
Affiliation(s)
- Min Yao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Binyu Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Zitong Li
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Suqing Wu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Bingyu Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Ning Sun
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Huiping Xiao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jianwu Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Tinghua Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Jiang Y, Li T, Liu B, Tian Y, Wang Y, Li T, Zhang D. Soyasaponin Bb/Gelatin-Methacryloyl Hydrogel for Cartilage Inflammation Inhibition. ACS OMEGA 2024; 9:49597-49608. [PMID: 39713654 PMCID: PMC11656367 DOI: 10.1021/acsomega.4c07489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
The main causes of failure for cartilage tissue engineering implants are tissue integration, inflammation, and infection. The development of biomaterials with antiforeign body response (FBR) is of particular importance. Herein, we developed a hydrogel loaded with anti-inflammatory drugs to reduce the inflammatory response that follows implantation. The human chondrocytes were used for in vitro study, and cell-laden hydrogel samples were implanted with the backs of rabbits for in vivo study. Soyasaponin Bb (SsBb) as a traditional Chinese medicine could significantly (P < 0.05) downregulate the expression levels of inflammation-related markers including iNOS, COX-2, and IL-6 in chondrocytes induced by IL-1β through the NF-κB signaling pathway. The in vitro experiments demonstrated that a gelatin-methacryloyl (GelMA) hydrogel loaded with SsBb (SsBb/GelMA) could similarly reduce the gene and protein expression levels of inflammation-related markers (iNOS, COX-2, and IL-6). The in vivo anti-inflammatory effects of the SsBb/GelMA hydrogels were assessed by immunohistochemical staining. The results demonstrated that SsBb/GelMA hydrogels inhibited the inflammatory response and downregulated the expression of the inflammatory cytokine IL-6. Therefore, SsBb/GelMA hydrogels are promising candidates for promoting anti-inflammation and cartilage tissue regeneration of implant surfaces.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Tenghai Li
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Bingzhang Liu
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Yufeng Tian
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Yixin Wang
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Tian Li
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| | - Duo Zhang
- Department of Plastic and
Reconstructive Surgery, The First Hospital
of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
6
|
Omaetxebarria MJ, Sendino M, Arrizabalaga L, Mota I, Zubiaga AM, Rodríguez JA. Mutations of Key Functional Residues in CRM1/XPO1 Differently Alter Its Intranuclear Localization and the Nuclear Export of Endogenous Cargos. Biomolecules 2024; 14:1578. [PMID: 39766285 PMCID: PMC11674046 DOI: 10.3390/biom14121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos. We identify A541K as a separation-of-function mutant that reveals the independent nature of the Cajal body and nucleolar localizations of CRM1. We also show that the F572A mutation may have strikingly opposite effects on the export of specific cargos. Importantly, and in contrast to previous claims, our findings indicate that S1055 phosphorylation is not generally required for CRM1 function and that the Q742 is not a function-defining residue in human CRM1. Collectively, our findings provide new insights into an understudied aspect of CRM1 biology and highlight several important issues related to CRM1 function and regulation that need to be re-evaluated and addressed in more detail.
Collapse
Affiliation(s)
- Miren Josu Omaetxebarria
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Liher Arrizabalaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Irune Mota
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Ana Maria Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - José Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| |
Collapse
|
7
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2024:10.1038/s41401-024-01416-3. [PMID: 39548290 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Guan ZH, Yang D, Wang Y, Ma JB, Wang GN. Ectodysplasin-A2 receptor (EDA2R) knockdown alleviates myocardial ischemia/reperfusion injury through inhibiting the activation of the NF-κB signaling pathway. Exp Anim 2024; 73:376-389. [PMID: 38797667 PMCID: PMC11534487 DOI: 10.1538/expanim.24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Guan
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Di Yang
- Department of Anesthesiology, Heilongjiang Hospital, Beijing Children's Hospital, Capital Medical University, No. 57, Youyi Road, Harbin, 150028, P.R. China
| | - Yi Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Jia-Bin Ma
- Department of Medical Service, Heilongjiang Province Healthcare Security Administration, No. 68, Zhongshan Road, Harbin, 150036, P.R. China
| | - Guo-Nian Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| |
Collapse
|
9
|
Zhu Z, Yu M, Xu M, Ji X, Zong X, Zhang Z, Shang W, Zhang L, Fang P. Baicalin suppresses macrophage JNK-mediated adipose tissue inflammation to mitigate insulin resistance in obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118355. [PMID: 38762213 DOI: 10.1016/j.jep.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1β, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1β, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.
Collapse
Affiliation(s)
- Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengfan Xu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Ji
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xicui Zong
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Yang J, Geng Y, Zhao B, Liu T, Luo JL, Gao XJ. Green tea polyphenols alleviate TBBPA-induced gastric inflammation and apoptosis by modulating the ROS-PERK/IRE-1/ATF6 pathway in mouse models. Food Funct 2024; 15:10179-10189. [PMID: 39301672 DOI: 10.1039/d4fo03012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Green tea polyphenols (GTP), an important phytochemical in the daily human diet, bind to various cellular receptors and exert anti-inflammatory and antioxidant benefits. The environmental contaminant tetrabromobisphenol A (TBBPA) enters the digestive system through multiple pathways, resulting in oxidative stress (OS), gastroenteritis, and mucosal injury. The aim of this study was to explore the molecular mechanisms of TBBPA-induced gastritis in mice treated with GTP in vivo and in an in vitro model. The results showed that exposure to TBBPA increased reactive oxygen species (ROS) levels, activated oxidative stress (OS) induced endoplasmic reticulum stress (ERS), and the expression of endoplasmic reticulum stress-related factors (e.g., GRP78, PERK, IRE-1, ATF-6, etc.) increased. The inflammatory pathway NF-κB was activated, and the pro-inflammatory factors TNF-α, IL-1β, and IL-6 increased, while triggering a cascade reaction mediated by caspase-3. However, the addition of GTP could inhibit OS, restore the balance of endoplasmic reticulum homeostasis, and improve the inflammatory infiltration and apoptosis of gastric mucosal epithelial cells. Therefore, GTP alleviated ERS, reduced inflammation and apoptosis, and restored the gastric mucosal barrier by alleviating TBBPA-induced OS in mouse gastric tissues and GES-1 cells. This provides basic information for exploring the antioxidant mechanism of GTP and further investigating the toxic effects of TBBPA on mouse gastric mucosa.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Tianjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Ji-Long Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
11
|
Nassar A, Kaplanski J, Azab AN. A Selective Nuclear Factor-κB Inhibitor, JSH-23, Exhibits Antidepressant-like Effects and Reduces Brain Inflammation in Rats. Pharmaceuticals (Basel) 2024; 17:1271. [PMID: 39458912 PMCID: PMC11509963 DOI: 10.3390/ph17101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that nuclear factor (NF)-κB is involved in the pathophysiology of mood disorders. OBJECTIVES AND METHODS We conducted two experimental protocols in rats to investigate the effects of a selective NF-κB inhibitor (JSH-23) on (i) lipopolysaccharide (LPS)-induced inflammation and (ii) on behavioral phenotypes in rat models of depression (sucrose consumption test and forced swim test) and mania (amphetamine-induced hyperactivity test). Additionally, we tested the effects of JSH-23 on levels of inflammatory components (interleukin-6, prostaglandin E2, nuclear phospho-p65, and tumor necrosis factor-α) in the brain. RESULTS Acute treatment with JSH-23 (10 mg/kg, intraperitoneally [ip]) led to potent anti-inflammatory effects in LPS-treated rats, including a diminished hypothermic response to LPS and a reduction in pro-inflammatory mediators' levels in the brain. Chronic treatment with JSH-23 (3 mg/kg, ip, once daily, for 14 days) resulted in robust antidepressant-like effects (increased sucrose consumption and decreased immobility time). The antidepressant-like effects of JSH-23 were mostly accompanied by a reduction in levels of pro-inflammatory mediators in the brain. On the other hand, JSH-23 did not reduce amphetamine-induced hyperactivity. CONCLUSIONS Altogether, these data suggest that NF-κB may be a potential therapeutic target for pharmacological interventions for depression.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Shen M, Li Z, Wang J, Xiang H, Xie Q. Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits. Front Immunol 2024; 15:1408474. [PMID: 39364399 PMCID: PMC11446781 DOI: 10.3389/fimmu.2024.1408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Chinese Herbal Medicine (CHM) is being more and more used in cancer treatment because of its ability to regulate the immune system. Chinese Herbal Medicine has several advantages over other treatment options, including being multi-component, multi-target, and having fewer side effects. Dendritic cells (DCs) are specialized antigen presenting cells that play a vital part in connecting the innate and adaptive immune systems. They are also important in immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and its components can positively impact the immune response by targeting key functions of dendritic cells. In this review, we have summarized the influences of Chinese Herbal Medicine on the immunobiological feature of dendritic cells, emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out deficiencies in the regulation of DC function by Chinese Herbal Medicine and outlined future research directions.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhen Li
- School of Preventive Medicine Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
14
|
Bourner LA, Chung LA, Long H, McGettrick AF, Xiao J, Roth K, Bailey JD, Strickland M, Tan B, Cunningham J, Lutzke B, McGee J, Otero FJ, Gemperline DC, Zhang L, Wang YC, Chalmers MJ, Yang CW, Gutierrez JA, O'Neill LAJ, Dorsey FC. Endogenously produced itaconate negatively regulates innate-driven cytokine production and drives global ubiquitination in human macrophages. Cell Rep 2024; 43:114570. [PMID: 39093697 DOI: 10.1016/j.celrep.2024.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1β in response to these innate activators. In contrast, the production of interferon (IFN)β, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Luke A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linda A Chung
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Haiyan Long
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Junpeng Xiao
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kenneth Roth
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jade D Bailey
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Marie Strickland
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Bo Tan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jason Cunningham
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Barry Lutzke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James McGee
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francella J Otero
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - David C Gemperline
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lin Zhang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ying C Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michael J Chalmers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Chiao-Wen Yang
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jesus A Gutierrez
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Frank C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
15
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
16
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
17
|
Pandey K, Acharya A, Pal D, Jain P, Singh K, Durden DL, Kutateladze TG, Deshpande AJ, Byrareddy SN. SRX3177, a CDK4/6-PI3K-BET inhibitor, in combination with an RdRp inhibitor, Molnupiravir, or an entry inhibitor MU-UNMC-2, has potent antiviral activity against the Omicron variant of SARS-CoV-2. Antiviral Res 2024; 227:105904. [PMID: 38729306 DOI: 10.1016/j.antiviral.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.
Collapse
Affiliation(s)
- Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Prashant Jain
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aniruddha J Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA.
| |
Collapse
|
18
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
19
|
Peng CY, Liao YC, Yang YC, Hung YW, Huang LR, Peng YC. Ursodeoxycholic Acid Modulates the Interaction of miR-21 and Farnesoid X Receptor and NF-κB Signaling. Biomedicines 2024; 12:1236. [PMID: 38927442 PMCID: PMC11200433 DOI: 10.3390/biomedicines12061236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: This study investigates the effects of Ursodeoxycholic acid (UDCA) on NF-κB signaling, farnesoid X receptor (FXR) singling, and microRNA-21 in HepG2 cells. (2) Methods: HepG2 cells were treated with lipopolysaccharide (LPS) to simulate hepatic inflammation. The investigation focused on the expression of NF-κB activation, which was analyzed using Western blot, confocal microscopy, and Electrophoretic Mobility-shift Assays (EMSA). Additionally, NF-κB and farnesoid X receptor (FXR) singling expressions of micro-RNA-21, COX-2, TNF-α, IL-6, cyp7A1, and shp were assessed by RT-PCR. (3) Results: UDCA effectively downregulated LPS-induced expressions of NF-κB/65, p65 phosphorylation, and also downregulated FXR activity by Western blot. Confocal microscopy and EMSA results confirmed UDCA's role in modulating NF-κB signaling. UDCA reduced the expressions of LPS-induced COX-2, TNF-α, and IL-6, which were related to NF-κB signaling. UDCA downregulated LPS-induced cyp7A1 gene expression and upregulated shp gene expression, demonstrating selective gene regulation via FXR. UDCA also significantly decreased micro-RNA 21 levels. (4) Conclusions: This study demonstrates UDCA's potent anti-inflammatory effects on NF-κB and FXR signaling pathways, and thus its potential to modulate hepatic inflammation and carcinogenesis through interactions with NF-κB and FXR. The decrease in micro-RNA 21 expression further underscores its therapeutic potential.
Collapse
Affiliation(s)
- Chi-Yi Peng
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402202, Taiwan;
| | - Yi-Chun Liao
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- School of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yi-Chin Yang
- Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Yi-Wen Hung
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Lan-Ru Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Yen-Chun Peng
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
20
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
22
|
Wang H, Chen W, Wang Y, Gao Y, Zhang Z, Mi S, Wang L, Xue M. SUB1 promotes colorectal cancer metastasis by activating NF-κB signaling via UBR5-mediated ubiquitination of UBXN1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1199-1211. [PMID: 38240906 DOI: 10.1007/s11427-023-2429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 06/07/2024]
Abstract
Metastasis accounts for the major cause of colorectal cancer (CRC) related mortality due to the lack of effective treatments. In this study, we integrated the single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data and identified the transcriptional coactivator SUB1 homolog (Sac-Saccharomyces cerevisiae)/PC4 (positive cofactor 4) associated with CRC metastasis. Elevated SUB1 expression was correlated with advanced tumor stage and poor survival in CRC. In vivo and vitro assays showed that SUB1 depletion could inhibit the invasive and metastatic abilities of CRC cells. SUB1 activated NF-κB signaling and its transcriptional target genes CXCL1 and CXCL3 to drive CRC metastasis. Mechanistically, SUB1 integrated with the E3 ubiquitin-protein ligase UBR5 and increased its protein level in CRC cells. Subsequently, the increased UBR5 mainly mediated Lys11-linked polyubiquitination and degradation of NF-κB negative regulator UBXN1, thus to activate the NF-κB signaling. Overall, our study demonstrated that SUB1 promoted CRC progression by modulating UBR5/UBXN1 and activating NF-κB signaling, providing a new therapeutic strategy for treating metastatic CRC through targeting SUB1.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Yanting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zizhen Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
24
|
Li Z, Yu Z, Cui S, Hu S, Li B, Chen T, Qu C, Yang B. AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 133:112080. [PMID: 38613882 DOI: 10.1016/j.intimp.2024.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhili Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
25
|
Kim CG, Choi JH, Ku SK, Song CH. Immunostimulatory Effects of Korean Mineral-Rich Seawaters on Cyclophosphamide-Induced Immunosuppression in Mice. Mar Drugs 2024; 22:234. [PMID: 38921545 PMCID: PMC11204486 DOI: 10.3390/md22060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Deep seawater (DS), obtained from a depth over 200 m, has health benefits due to its rich nutrients and minerals, and intake of DS has shown diverse immunomodulatory effects in allergies and cancer. Therefore, the immunostimulatory effects of Korean mineral-rich seawaters were examined in a cyclophosphamide (CPA)-induced immunosuppression model. Three samples of Korean seawater, namely DS from the East Sea off the coasts of Pohang (PDS) and Uljin (UDS), and seawater from the West Sea off the coast of Boryeong (BS), were collected. The seawaters were abundant in several minerals (calcium, iron, zinc, selenium, etc.). Mice were orally administered the seawaters for 42 days, followed by CPA-induced immunosuppression. The CPA induction reduced the weight of the spleen and lymph nodes; however, the administration of seawaters increased the weight of the lymphoid organs, accompanied by stimulation of natural killer cells' activity and NF-kB-mediated cytokine production (IFNγ, TNFα, IL1β, IL6, and IL12). The mouse-derived splenocytes showed lymphoproliferation without cytotoxicity in the seawater groups. Histopathological analysis revealed that the seawaters improved the CPA-induced atrophic changes by promoting lymphoproliferation in the spleen and lymph nodes. These results provide useful information for the use of Korean mineral-rich seawaters, particularly PDS and UDS, as alternative immunostimulants under immunosuppressive conditions.
Collapse
Affiliation(s)
- Choong-Gon Kim
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (C.-G.K.); (J.H.C.)
| | - Jae Ho Choi
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (C.-G.K.); (J.H.C.)
- Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
26
|
Li SZ, Shu QP, Zhou HM, Liu YY, Fan MQ, Liang XY, Qi LZ, He YN, Liu XY, Du XH, Huang XC, Chen YZ, Du RL, Liang YX, Zhang XD. CLK2 mediates IκBα-independent early termination of NF-κB activation by inducing cytoplasmic redistribution and degradation. Nat Commun 2024; 15:3901. [PMID: 38724505 PMCID: PMC11082251 DOI: 10.1038/s41467-024-48288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.
Collapse
Affiliation(s)
- Shang-Ze Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Qi-Peng Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hai-Meng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Meng-Qi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Ya-Nan He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xi-Chen Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Zhen Chen
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Yue-Xiu Liang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
27
|
Vu QV, Baba K, Sasaki S, Kawaguchi K, Hirano H, Osada H, Kataoka T. Alantolactone derivatives inhibit the tumor necrosis factor α-induced nuclear factor κB pathway by a different mechanism from alantolactone. Eur J Pharmacol 2024; 969:176458. [PMID: 38395373 DOI: 10.1016/j.ejphar.2024.176458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Alantolactone is a eudesmane-type sesquiterpene lactone that exerts various biological effects, including anti-inflammatory activity. In the present study, screening using the RIKEN Natural Products Depository chemical library identified alantolactone derivatives that inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells stimulated with proinflammatory cytokines and Toll-like receptor ligands. In human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α), six alantolactone derivatives inhibited ICAM-1 expression in a dose-dependent manner and at IC50 values of 13-21 μM, whereas that of alantolactone was 5 μM. Alantolactone possesses an α-methylene-γ-lactone moiety, whereas alantolactone derivatives do not. In the nuclear factor κB (NF-κB) signaling pathway, alantolactone prevented the TNF-α-induced phosphorylation and degradation of the inhibitor of NF-κB α (IκBα) protein, and its downstream signaling pathway. In contrast, alantolactone derivatives neither reduced TNF-α-induced IκBα degradation nor the nuclear translocation of the NF-κB subunit RelA, but inhibited the binding of RelA to the ICAM-1 promoter. The inhibitory activities of alantolactone and alantolactone derivatives were attenuated by glutathione. These results indicate that alantolactone derivatives inhibit the TNF-α-induced NF-κB pathway by a different mechanism from alantolactone.
Collapse
Affiliation(s)
- Quy Van Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Koichiro Kawaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
28
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Qi B, Li T, Luo H, Hu L, Feng R, Wang D, Peng T, Ren G, Guo D, Liu M, Wang Q, Zhang M, Li Y. Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation. MedComm (Beijing) 2024; 5:e503. [PMID: 38420163 PMCID: PMC10901281 DOI: 10.1002/mco2.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Multiple molecular mechanisms are involved in the development of heart failure (HF) after myocardial infarction (MI). However, interventions targeting these pathological processes alone remain clinically ineffective. Therefore, it is essential to identify new therapeutic targets for alleviating cardiac dysfunction after MI. Here, gain- and loss-of-function approaches were used to investigate the role of reticulon 3 (RTN3) in HF after MI. We found that RTN3 was elevated in the myocardium of patients with HF and mice with MI. Cardiomyocyte-specific RTN3 overexpression decreased systolic function in mice under physiological conditions and exacerbated the development of HF induced by MI. Conversely, RTN3 knockout alleviated cardiac dysfunction after MI. Mechanistically, RTN3 bound and mediated heat shock protein beta-1 (HSPB1) translocation from the cytosol to the endoplasmic reticulum. The reduction of cytosolic HSPB1 was responsible for the elevation of TLR4, which impaired mitochondrial function and promoted inflammation through toll-like receptor 4 (TLR4)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha(PGC-1α) and TLR4/Nuclear factor-kappa B(NFκB) pathways, respectively. Furthermore, the HSPB1 inhibitor reversed the protective effect of RTN3 knockout on MI. Additionally, elevated plasma RTN3 level is associated with decreased cardiac function in patients with acute MI. This study identified RTN3 as a critical driver of HF after MI and suggests targeting RTN3 as a promising therapeutic strategy for MI and related cardiovascular diseases.
Collapse
Affiliation(s)
- Bingchao Qi
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tiantian Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Haixia Luo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Lang Hu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Renqian Feng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Di Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tingwei Peng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Gaotong Ren
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Dong Guo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingchuan Liu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Qiuhe Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingming Zhang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Yan Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| |
Collapse
|
30
|
Geng X, Wang C, Abdelrahman S, Perera T, Saed B, Hu YS, Wolfe A, Reneau J, Murga-Zamalloa C, Wilcox RA. GATA-3-dependent Gene Transcription is Impaired upon HDAC Inhibition. Clin Cancer Res 2024; 30:1054-1066. [PMID: 38165708 PMCID: PMC10922852 DOI: 10.1158/1078-0432.ccr-23-1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Many peripheral and cutaneous T-cell lymphoma (CTCL) subtypes are poorly responsive to conventional chemotherapeutic agents and associated with dismal outcomes. The zinc finger transcription factor GATA-3 and the transcriptional program it instigates are oncogenic and highly expressed in various T-cell neoplasms. Posttranslational acetylation regulates GATA-3 DNA binding and target gene expression. Given the widespread use of histone deacetylase inhibitors (HDACi) in relapsed/refractory CTCL, we sought to examine the extent to which these agents attenuate the transcriptional landscape in these lymphomas. EXPERIMENTAL DESIGN Integrated GATA-3 chromatin immunoprecipitation sequencing and RNA sequencing analyses were performed in complementary cell line models and primary CTCL specimens treated with clinically available HDACi. RESULTS We observed that exposure to clinically available HDACi led to significant transcriptional reprogramming and increased GATA-3 acetylation. HDACi-dependent GATA-3 acetylation significantly impaired both its ability to bind DNA and transcriptionally regulate its target genes, thus leading to significant transcriptional reprogramming in HDACi-treated CTCL. CONCLUSIONS Beyond shedding new light on the mechanism of action associated with HDACi in CTCL, these findings have significant implications for their use, both as single agents and in combination with other novel agents, in GATA-3-driven lymphoproliferative neoplasms.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
31
|
Assis SISD, Amendola LS, Okamoto MM, Ferreira GDS, Iborra RT, Santos DR, Santana MDFM, Santana KG, Correa-Giannella ML, Barbeiro DF, Soriano FG, Machado UF, Passarelli M. The Prolonged Activation of the p65 Subunit of the NF-Kappa-B Nuclear Factor Sustains the Persistent Effect of Advanced Glycation End Products on Inflammatory Sensitization in Macrophages. Int J Mol Sci 2024; 25:2713. [PMID: 38473959 DOI: 10.3390/ijms25052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.
Collapse
Affiliation(s)
- Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Leonardo Szalo Amendola
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Guilherme da Silva Ferreira
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Rodrigo Tallada Iborra
- Ciências Biológicas e da Saúde, Campos Mooca, Universidade São Judas Tadeu, São Paulo 03408-050, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Kelly Gomes Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| |
Collapse
|
32
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Li K, Song X, Li H, Kuang X, Liu S, Liu R, Li D. Mussel oil is superior to fish oil in preventing atherosclerosis of ApoE -/- mice. Front Nutr 2024; 11:1326421. [PMID: 38410635 PMCID: PMC10894946 DOI: 10.3389/fnut.2024.1326421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives The present study aimed to explore the preventive effect of mussel oil (MO) on atherosclerosis and the potential mechanism in apolipoprotein E-null (ApoE-/-) mice. Methods ApoE-/- mice were fed with a high-fat and high-cholesterol chow and given corn oil (CO), fish oil (FO), MO, or aspirin (ASP, dissolved in CO) by gavage for 12 weeks. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.01%) and FO (46.82%) were comparable (mainly C22:6n-3 and C20:5n-3). Wild-type mice were fed with a normal chow and given equivalent CO as health control (CON). Results Compared with the CON group, obvious atherosclerotic plaque appeared at aorta and aortic sinus in the CO group. Compared with the CO group, MO but not FO had a significantly smaller atherosclerotic plaque area in the aorta. The aortic atherosclerotic plaque area was comparable in the MO, CON, and ASP groups. The MO group had a significantly smaller atherosclerotic plaque area, lower lipid deposition, lower contents of smooth muscle cell (SMC), and slightly lower contents of macrophage at the aortic sinus than the FO group. Serum concentrations of IL-1β, NF-κB, and VCAM-1 were comparable in the MO and FO groups and were significantly lower than the CO group. Compared with the CO group, the MO group but not FO group had significantly lower aortic protein levels of p65NF-κB, p38MAPK, and VCAM-1. The aortic protein levels of p-p65NF-κB and p-p38MAPK were significantly lower in the MO group than the FO group. Conclusion In conclusion, MO is more potent than FO in preventing atherosclerosis, and the possible mechanism may be by downregulating p38MAPK/NF-κB signaling pathway, decreasing VCAM-1 and macrophage, and inhibiting proliferation and migration of SMC.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Tobaruela EDC, Brasili E, Zeraik L, Milenkovic D, Hassimotto NMA, Lajolo FM. Plasma proteome profiling reveals molecular mechanisms underlying the effects of daily consumption of 'Bahia' and 'Cara Cara' orange juices. Food Funct 2024; 15:1031-1049. [PMID: 38193367 DOI: 10.1039/d3fo04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Orange juice is an important food source of bioactive compounds, mainly the flavanones hesperidin and narirutin. This study aimed to investigate the underlying molecular mechanisms of action of orange juice's health properties by analyzing changes in the plasma proteome of healthy Brazilian volunteers after consuming juices made from 'Bahia' (BOJ-source of flavanones) and 'Cara Cara' (CCOJ-source of flavanones and carotenoids) oranges cultivated in Brazil. We used an untargeted proteomic approach, with a particular emphasis on the juices' effects on blood coagulant activity. We identified 247 differentially expressed proteins, of which 170 significantly increased or decreased after BOJ consumption and 145 after CCOJ. These proteins are involved in 105 processes that can significantly regulate cell adhesion, cell signaling, cell metabolism, inflammation, or others. Bioinformatic analysis evidenced proteins with major cellular regulatory capacity (e.g., FN1 and GAPDH) and predicted transcription factors (TFs) (e.g., SP1 and CEBPA) and miRNAs (e.g., miR-1-3p and miR-615-3p) that could be involved in the regulation of differentially expressed proteins. In-silico docking analyses between flavanone metabolites and TFs evidenced the higher binding capacity of narirutin phase II metabolites with akt1 and p38, interactions that suggest how the expression of genes of differentially expressed proteins were activated or inhibited. Moreover, the study shed light on proteins of coagulation cascade that presented expression modulated by both juices, proposing the modulation of blood coagulant activity as a potential benefit of OJ (mainly CCOJ) consumption. Taken together, this study revealed that BOJ and CCOJ consumption affected plasma proteome in healthy individuals, suggesting potential molecular targets and mechanisms of OJ bioactive compounds in humans.
Collapse
Affiliation(s)
- Eric de Castro Tobaruela
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Laila Zeraik
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Franco Maria Lajolo
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
36
|
Wu J, Han Y, Xu H, Sun H, Wang R, Ren H, Wang G. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway. SCIENCE ADVANCES 2023; 9:eadi8343. [PMID: 37801503 PMCID: PMC10558133 DOI: 10.1126/sciadv.adi8343] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Neuroinflammation is a pathological change that is involved in the progression of Parkinson's disease. Dysfunction of chaperone-mediated autophagy (CMA) has proinflammatory effects. However, the mechanism by which CMA mediates inflammation and whether CMA affects microglia and microglia-mediated neuronal damage remain to be elucidated. In the present study, we found that LAMP2A, a limiting protein for CMA, was decreased in lipopolysaccharide (LPS)-treated primary microglia. Activation of CMA by the activator CA significantly repressed LPS-induced microglial activation, whereas CMA dysfunction exacerbated microglial activation. We further identified that the protein p300 was a substrate of CMA. Degradation of p300 by CMA reduced p65 acetylation, thereby inhibiting the transcription of proinflammatory factors and the activation of the NLRP3 inflammasome. Furthermore, CA pretreatment inhibited microglia-mediated inflammation and, in turn, attenuated neuronal death in vitro and in vivo. Our findings suggest repressive effects of CMA on microglial activation through the p300-associated NF-κB signaling pathway, thus uncovering a mechanistic link between CMA and neuroinflammation.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yingying Han
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
- MOE Key Laboratory, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
37
|
Li B, Du M, Sun Q, Cao Z, He H. m 6 A demethylase Fto regulates the TNF-α-induced inflammatory response in cementoblasts. Oral Dis 2023; 29:2806-2815. [PMID: 36227651 DOI: 10.1111/odi.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/21/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Apical periodontitis is the most frequently occurring pathological lesion. Fat mass and obesity-associated protein (Fto) is the first identified RNA N6-methyladenosine demethylase. However, whether Fto regulates apical periodontitis remains unclear. This study aimed to explore the mechanisms of Fto in the tumor necrosis factor-α (TNF-α)-induced inflammatory response. MATERIALS AND METHODS We established an apical periodontitis model. An immortalized cementoblast cell line (OCCM-30) cells were exposed to TNF-α. Fto, Il6, Mcp1, and Mmp9 expressions were assessed by qRT-PCR. We knocked down Fto using lentiviruses and detected TNF-α-induced inflammation-related gene expressions and mRNA stability. RESULTS Mice with apical periodontitis showed downregulation of Fto expression. OCCM-30 cells exposed to TNF-α showed an upregulation of inflammation-related genes with a decrease in Fto. Furthermore, knockdown of Fto promoted the expressions of Il6, Mcp1, and Mmp9 in TNF-α-treated OCCM-30 cells as compared with negative control cells, whereas it did not affect the mRNA stability. Interestingly, Fto knockdown activated the p65, p38, and ERK1/2 pathways, and it slightly activated the JNK signaling pathway after TNF-α administration in OCCM-30 cells. CONCLUSION A TNF-α-induced decrease in the expression of Fto might play a critical role in the inflammatory response in cementoblasts, and knockdown of Fto might upregulate the inflammatory response.
Collapse
Affiliation(s)
- Biao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiao Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Saber MM, Mahmoud MM, Amin HM, Essam RM. Therapeutic effects of combining curcumin and swimming in osteoarthritis using a rat model. Biomed Pharmacother 2023; 166:115309. [PMID: 37573656 PMCID: PMC10538387 DOI: 10.1016/j.biopha.2023.115309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a common debilitating degenerative disease of the elderly. We aimed to study the therapeutic effects of combining curcumin and swimming in monosodium iodoacetate (MIA)-induced OA in a rat model. The rats were divided into 5 groups (n = 9). Group 1 received saline and served as a control group. Groups 2-5 were injected intra-articularly in the right knee with 100 μL MIA. One week later, groups 3 and 5 were started on daily swimming sessions that gradually increased to 20-mins per session, and for groups 4 and 5, oral curcumin was administered at a dose of 200 mg/kg for 4 weeks. The combination therapy (curcumin + swimming) showed the most effective results in alleviating pain and joint stiffness as well as improving histological and radiological osteoarthritis manifestations in the knee joints. The combination modality also reduced serum C-reactive protein and tissue cartilage oligomeric matrix protein levels. Mechanistically, rats received dual treatment exhibited restoration of miR-130a and HDAC3 expression. The dual treatment also upregulated PPAR-γ alongside downregulation of NF-κB and its inflammatory cytokine targets TNF-α and IL-1β. Additionally, there was downregulation of MMP1 and MMP13 in the treated rats. In conclusion, our data showed that there is a therapeutic potential for combining curcumin with swimming in OA, which is attributed, at least in part, to the modulation of miR-130a/HDAC3/PPAR-γ signaling axis.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Hesham M Amin
- Divison of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
39
|
Khanolkar A, Liu G, Simpson Schneider BM. Defining the Basal and Immunomodulatory Mediator-Induced Phosphoprotein Signature in Pediatric B Cell Acute Lymphoblastic Leukemia (B-ALL) Diagnostic Samples. Int J Mol Sci 2023; 24:13937. [PMID: 37762241 PMCID: PMC10531382 DOI: 10.3390/ijms241813937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Guorong Liu
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | |
Collapse
|
40
|
Verhoeven D, Grinwis L, Marsman C, Jansen MH, Van Leeuwen EM, Kuijpers TW. B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses. Life Sci Alliance 2023; 6:e202302214. [PMID: 37419630 PMCID: PMC10331639 DOI: 10.26508/lsa.202302214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lucas Grinwis
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Casper Marsman
- Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Department of Immunopathology, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ester Mm Van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
42
|
Hiraike Y, Saito K, Oguchi M, Wada T, Toda G, Tsutsumi S, Bando K, Sagawa J, Nagano G, Ohno H, Kubota N, Kubota T, Aburatani H, Kadowaki T, Waki H, Yanagimoto S, Yamauchi T. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2308750120. [PMID: 37487068 PMCID: PMC10401007 DOI: 10.1073/pnas.2308750120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.
Collapse
Affiliation(s)
- Yuta Hiraike
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
- The University of Tokyo Excellent Young Researcher Program, The University of Tokyo, Tokyo113-8654, Japan
| | - Kaede Saito
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Misato Oguchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Takahito Wada
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Gotaro Toda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Shuichi Tsutsumi
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Junji Sagawa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo113-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo103-0002, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo162-8636, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | | | - Hironori Waki
- Department of Diabetes and Endocrinology, Akita University Graduate School of Medicine, Akita010-8543, Japan
| | - Shintaro Yanagimoto
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| |
Collapse
|
43
|
Akinsulie OC, Shahzad S, Ogunleye SC, Oladapo IP, Joshi M, Ugwu CE, Gbadegoye JO, Hassan FO, Adeleke R, Afolabi Akande Q, Adesola RO. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases. Front Immunol 2023; 14:1224102. [PMID: 37600803 PMCID: PMC10434535 DOI: 10.3389/fimmu.2023.1224102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
There are overwhelming reports on the promotional effect of hypoxia on the malignant behavior of various forms of cancer cells. This has been proposed and tested exhaustively in the light of cancer immunotherapy. However, there could be more interesting functions of a hypoxic cellular micro-environment than malignancy. There is a highly intricate crosstalk between hypoxia inducible factor (HIF), a transcriptional factor produced during hypoxia, and nuclear factor kappa B (NF-κB) which has been well characterized in various immune cell types. This important crosstalk shares common activating and inhibitory stimuli, regulators, and molecular targets. Impaired hydroxylase activity contributes to the activation of HIFs. Inflammatory ligands activate NF-κB activity, which leads to the expression of inflammatory and anti-apoptotic genes. The eventual sequelae of the interaction between these two molecular players in immune cells, either bolstering or abrogating functions, is largely cell-type dependent. Importantly, this holds promise for interesting therapeutic interventions against several infectious diseases, as some HIF agonists have helped prevent immune-related diseases. Hypoxia and inflammation are common features of infectious diseases. Here, we highlighted the role of this crosstalk in the light of functional immunity against infection and inflammation, with special focus on various innate and adaptive immune cells. Particularly, we discussed the bidirectional effects of this crosstalk in the regulation of immune responses by monocytes/macrophages, dendritic cells, neutrophils, B cells, and T cells. We believe an advanced understanding of the interplay between HIFs and NF-kB could reveal novel therapeutic targets for various infectious diseases with limited treatment options.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sammuel Shahzad
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Charles Egede Ugwu
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qudus Afolabi Akande
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
44
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Wang Y, Liu J, Wang Y. Role of TNF-α-induced m6A RNA methylation in diseases: a comprehensive review. Front Cell Dev Biol 2023; 11:1166308. [PMID: 37554306 PMCID: PMC10406503 DOI: 10.3389/fcell.2023.1166308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is ubiquitous in the human body and plays a significant role in various physiological and pathological processes. However, TNF-α-induced diseases remain poorly understood with limited efficacy due to the intricate nature of their mechanisms. N6-methyladenosine (m6A) methylation, a prevalent type of epigenetic modification of mRNA, primarily occurs at the post-transcriptional level and is involved in intranuclear and extranuclear mRNA metabolism. Evidence suggests that m6A methylation participates in TNF-α-induced diseases and signaling pathways associated with TNF-α. This review summarizes the involvement of TNF-α and m6A methylation regulators in various diseases, investigates the impact of m6A methylation on TNF-α-induced diseases, and puts forth potential therapeutic targets for treating TNF-α-induced diseases.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
46
|
ShokriShokri F, Mozdarani H, Omrani MD. Rel-A/PACER/miR 7 Axis May Play a Role in Radiotherapy Treatment in Breast Cancer Patients. IRANIAN BIOMEDICAL JOURNAL 2023; 27:173-82. [PMID: 37507347 PMCID: PMC10507291 DOI: 10.61186/ibj.3901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 12/17/2023]
Abstract
Background Radiotherapy has become the standard form of treatment for breast cancer (BC). Radioresistance is an issue that limits the effectiveness of radiotherapy (RT). Therefore, predictive biomarkers are needed to choose the appropriate RT for the patient. Activation of the proinflammatory transcription factor, nuclear factor-kappa B (NF-κB), is a frequently noted pathway in BC. Investigating the relationship between RT and alterations in gene expression involved in the immune pathway can help better control the disease. This research investigated the impact of RT on the expression levels of Rel-A, PACER, and miR-7 within the NF-κB signaling pathway. Methods Blood samples (n = 15) were obtained from BC patients during four different time intervals: 72 hours prior to initiating RT, as well as one, two, and four weeks following RT completion. Samples were also collected from 20 healthy women who had no immune or cancer-related diseases. Blood RNA was extracted, and complementary DNA was synthesized. Gene expression level was determined using R real-time polymerase chain reaction (RT-PCR). Results There was a significant difference in the expression level of Rel-A between patients and normal individual blood samples (p < 0.05). After four weeks of RT, qRT-PCR revealed a significant downregulation of miR-7 and upregulation of Rel-A and PACER in BC patients. Also, there was a significant association between Rel-A expression and monocyte numbers during RT (p < 0.001). Conclusion The expression level of PACER, miR-7 and Rel-A, changed after RT; therefore, these genes could be used as diagnostic and therapeutic RT markers in BC.
Collapse
Affiliation(s)
- Fazlollah ShokriShokri
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Huang Y, Wu J, Zhan C, Liu R, Zhou Z, Huang X, Tian Y, Lin Z, Song Z. TRAF-STOP alleviates osteoclastogenesis in periodontitis. Front Pharmacol 2023; 14:1119847. [PMID: 37261283 PMCID: PMC10229065 DOI: 10.3389/fphar.2023.1119847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The enhanced osteoclastogenesis contributes to alveolar bone resorption in periodontitis, which increases the risk of tooth loss. To reduce bone destruction, the inhibition of osteoclast development is proposed as a feasible treatment. CD40L-CD40-TRAF6 signal transduction plays a crucial role in inflammation, but how it regulates osteoclast activity in periodontitis has not been elucidated. In this study, we showed the potential role of CD40L-CD40-TRAF6 signaling in periodontitis. CD40L obviously promoted osteoclast formation and bone resorption capacity in vitro. Mechanistically, we found that osteoclastogenesis was enhanced by the overexpression of NFATc1 and NF-κB activation. Importantly, osteoclast activity was effectively suppressed by TRAF-STOP, a small molecular inhibitor of TRAF6. Furthermore, local injection of TRAF-STOP-loaded injectable PLGA-PEG-PLGA hydrogel could alleviate ligation-induced periodontitis in vivo. Taken together, TRAF-STOP shows promising clinical efficacy in periodontitis through alleviating osteoclastogenesis.
Collapse
Affiliation(s)
- Yaxian Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Jinyan Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Chi Zhan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangzhou, China
| | - Zhaocai Zhou
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Xin Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Yaguang Tian
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| | - Zhi Song
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangzhou, China
| |
Collapse
|
48
|
Wang H, Zhai Y, Lei Z, Chen S, Sun M, Yin P, Duan Z, Wang X. Latroeggtoxin-VI protects nerve cells and prevents depression by inhibiting NF-κB signaling pathway activation and excessive inflammation. Front Immunol 2023; 14:1171351. [PMID: 37256144 PMCID: PMC10225626 DOI: 10.3389/fimmu.2023.1171351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Depression has a high incidence and seriously endangers human health. Accumulated evidence indicates that targeting neuroinflammation is a potential avenue for neuroprotection and thus depression prevention. Herein, the effects of latroeggtoxin-VI (LETX-VI), a bioactive protein from the eggs of spider Latrodectus tredecimguttatus, on lipopolysaccharide (LPS)-induced inflammation and depression were systematically investigated using RAW264.7 macrophages and depression mouse model. Pretreatment with LETX-VI suppressed LPS-evoked NF-κB signaling pathway activation, inhibited LPS-induced over-production of NO, iNOS, IL-6 and TNF-α; at the same time LETX-VI mitigated the inhibitory effect of LPS on the expression of anti-inflammatory factors such as Arg-1, thereby suppressing oxidative stress and excessive inflammation. Culture of PC12 cells with the conditioned medium of RAW264.7 cells pretreated with LETX-VI demonstrated the neuroprotective effect of LETX-VI due to its anti-inflammation effect. In the LPS-induced depression mouse model, pretreatment with LETX-VI improved the LPS-induced depression-like behaviors, inhibited the activation of microglia and astrocytes, prevented the down-regulation of Nurr1 expression and alleviated the LPS-caused adverse changes in the brain tissues. Taken together, these in vitro and in vivo findings provide powerful insights into the anti-inflammation-based neuroprotective and antidepressant mechanisms of LETX-VI, which is helpful to deeply reveal the biological effects and potential applications of LETX-VI.
Collapse
|
49
|
Hashemi Sheikhshabani S, Amini-Farsani Z, Modarres P, Amini-Farsani Z, Khazaei Feyzabad S, Shaygan N, Hussen BM, Omrani MD, Ghafouri-Fard S. In silico identification of potential miRNAs -mRNA inflammatory networks implicated in the pathogenesis of COVID-19. HUMAN GENE (AMSTERDAM, NETHERLANDS) 2023; 36:201172. [PMID: 37520333 PMCID: PMC10085880 DOI: 10.1016/j.humgen.2023.201172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 08/01/2023]
Abstract
COVID-19 has been found to affect the expression profile of several mRNAs and miRNAs, leading to dysregulation of a number of signaling pathways, particularly those related to inflammatory responses. In the current study, a systematic biology procedure was used for the analysis of high-throughput expression data from blood specimens of COVID-19 and healthy individuals. Differentially expressed miRNAs in blood specimens of COVID-19 vs. healthy specimens were then identified to construct and analyze miRNA-mRNA networks and predict key miRNAs and genes in inflammatory pathways. Our results showed that 171 miRNAs were expressed as outliers in box plot and located in the critical areas according to our statistical analysis. Among them, 8 miRNAs, namely miR-1275, miR-4429, miR-4489, miR-6721-5p, miR-5010-5p, miR-7110-5p, miR-6804-5p and miR-6881-3p were found to affect expression of key genes in NF-KB, JAK/STAT and MAPK signaling pathways implicated in COVID-19 pathogenesis. In addition, our results predicted that 25 genes involved in above-mentioned inflammatory pathways were targeted not only by these 8 miRNAs but also by other obtained miRNAs (163 miRNAs). The results of the current in silico study represent candidate targets for further studies in COVID-19.
Collapse
Affiliation(s)
- Somayeh Hashemi Sheikhshabani
- Student Research Committee, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Amini-Farsani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Modarres
- Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Zahra Amini-Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539 Munich, Germany
| | - Sharareh Khazaei Feyzabad
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nasibeh Shaygan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Zhang S, Xu P, Zhu Z, Zhou L, Li J, Zhou R, Kan Y, Li Y, Yu X, Zhao J, Jin Y, Yan J, Fang P, Shang W. Acetylation of p65 Lys310 by p300 in macrophages mediates anti-inflammatory property of berberine. Redox Biol 2023; 62:102704. [PMID: 37086629 PMCID: PMC10172918 DOI: 10.1016/j.redox.2023.102704] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiao Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaru Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|