1
|
Hu L, Li X, Li C, Wang L, Han L, Ni W, Zhou P, Hu S. Characterization of a novel multifunctional glycoside hydrolase family in the metagenome-assembled genomes of horse gut. Gene 2024; 927:148758. [PMID: 38977109 DOI: 10.1016/j.gene.2024.148758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.
Collapse
Affiliation(s)
- Lingling Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Lin Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Abellanas P, de Andrades D, Alcántara AR, de Lourdes Teixeira de Moraes Polizeli M, Rocha-Martin J, Fernandez-Lafuente R. Optimizing the activation of agarose beads with divinyl sulfone for enzyme immobilization and stabilization. Int J Biol Macromol 2024; 282:136812. [PMID: 39490861 DOI: 10.1016/j.ijbiomac.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports. The higher the pH, the more vinyl sulfone groups are incorporated into the support, but lower reactivity versus ethylamine is observed. Too long activation times led to similar results. A N/S ratio of 1 means that all vinyl sulfone groups were reactive, and it was always lower than tis figure. The N in the support was 50 % of the amount observed for glyoxyl supports activated with ethylenediamine, suggesting the VS polymerization may be a likely explanation for this result. The higher N/S ratio in the support (modified with ethylamine), the higher the obtained stabilization, very likely by the lower polymerization of the vinyl sulfone on the support. We propose 360 mM divinyl sulfone, at pH 11.5 and 2 h as optimal conditions to reach the highest enzyme stabilization by immobilization in this support.
Collapse
Affiliation(s)
- Pedro Abellanas
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid, 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
3
|
Nasseri SA, Lazarski AC, Lemmer IL, Zhang CY, Brencher E, Chen HM, Sim L, Panwar D, Betschart L, Worrall LJ, Brumer H, Strynadka NCJ, Withers SG. An alternative broad-specificity pathway for glycan breakdown in bacteria. Nature 2024; 631:199-206. [PMID: 38898276 DOI: 10.1038/s41586-024-07574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and β stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.
Collapse
Affiliation(s)
- Seyed Amirhossein Nasseri
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleksander C Lazarski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Blood Research, University of British Columbia, Vancouver, Canada
| | - Imke L Lemmer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chloe Y Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Brencher
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lyann Sim
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepesh Panwar
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leo Betschart
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Blood Research, University of British Columbia, Vancouver, Canada
| | - Harry Brumer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Blood Research, University of British Columbia, Vancouver, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Chuzel L, Sinha A, Cunningham CV, Taron CH. High-throughput nanopore DNA sequencing of large insert fosmid clones directly from bacterial colonies. Appl Environ Microbiol 2024; 90:e0024324. [PMID: 38767355 PMCID: PMC11218629 DOI: 10.1128/aem.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step toward the identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate the accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.IMPORTANCELarge-insert clone (fosmids or cosmids) sequencing is challenging and arguably the most limiting step of functional metagenomic screening workflows. Our study establishes a new method for high-throughput nanopore sequencing of fosmid clones directly from lysed Escherichia coli cells. It also describes a companion bioinformatic pipeline that enables de novo assembly of fosmid DNA insert sequences. The devised method widens the potential of functional metagenomic screening by providing a simple, high-throughput approach to fosmid clone sequencing that dramatically speeds the pace of discovery.
Collapse
Affiliation(s)
- Léa Chuzel
- New England Biolabs, Ipswich, Massachusetts, USA
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | |
Collapse
|
5
|
Hogg BN, Schnepel C, Finnigan JD, Charnock SJ, Hayes MA, Turner NJ. The Impact of Metagenomics on Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402316. [PMID: 38494442 PMCID: PMC11497237 DOI: 10.1002/anie.202402316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.
Collapse
Affiliation(s)
- Bethany N. Hogg
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| | - Christian Schnepel
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Industrial BiotechnologyKTH Royal Institute of TechnologyAlbaNova University Center11421StockholmSE
| | | | | | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&D AstraZenecaMölndal 431 50GothenburgSE
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
6
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
7
|
Holstein T, Muth T. Bioinformatic Workflows for Metaproteomics. Methods Mol Biol 2024; 2820:187-213. [PMID: 38941024 DOI: 10.1007/978-1-0716-3910-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The strong influence of microbiomes on areas such as ecology and human health has become widely recognized in the past years. Accordingly, various techniques for the investigation of the composition and function of microbial community samples have been developed. Metaproteomics, the comprehensive analysis of the proteins from microbial communities, allows for the investigation of not only the taxonomy but also the functional and quantitative composition of microbiome samples. Due to the complexity of the investigated communities, methods developed for single organism proteomics cannot be readily applied to metaproteomic samples. For this purpose, methods specifically tailored to metaproteomics are required. In this work, a detailed overview of current bioinformatic solutions and protocols in metaproteomics is given. After an introduction to the proteomic database search, the metaproteomic post-processing steps are explained in detail. Ten specific bioinformatic software solutions are focused on, covering various steps including database-driven identification and quantification as well as taxonomic and functional assignment.
Collapse
Affiliation(s)
- Tanja Holstein
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
- VIB-UGent Center for Medical Biotechnology, VIB and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany.
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland.
| |
Collapse
|
8
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
9
|
Irazoqui JM, Eberhardt MF, Santiago GM, Amadio AF. Characterization of novel proteases identified by metagenomic analysis from dairy stabilization ponds. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12591-4. [PMID: 37231159 DOI: 10.1007/s00253-023-12591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Cheese whey is the main by-product of dairy industries. It is used as a raw material for other value-added products, like whey protein concentrate. By using enzymes, this product can be further treated to obtain new higher value products, like whey protein hydrolysates. Proteases (EC: 3.4) represent a large segment of industrial enzymes, since they are used in several industries, including food. In this work, we describe three novel enzymes identified using a metagenomic approach. Metagenomic DNA from dairy industry stabilization ponds were sequenced, and the predicted genes were compared against the MEROPS database, focusing on families commercially used to produce whey protein hydrolysates. From a total of 849 candidates, 10 were selected for cloning and expression and three showed activities with both the chromogenic substrate, azocasein, and whey proteins. Particularly, Pr05, an enzyme from the yet uncultured phylum Patescibacteria, showed activity that is comparable to a commercial protease. All these novel enzymes could represent an alternative for dairy industries to produce value-added products from industrial by-products. KEY POINTS: • Over 19,000 proteases were predicted in a sequence-based metagenomic analysis. • Three proteases were successfully expressed and showed activity with whey proteins. • The enzyme Pr05 showed hydrolysis profiles of interest for food industry.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| |
Collapse
|
10
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
11
|
Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins. Appl Environ Microbiol 2023; 89:e0170422. [PMID: 36719236 PMCID: PMC9972953 DOI: 10.1128/aem.01704-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/β-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal β-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.
Collapse
|
12
|
Tyagi JL, Sharma M, Gulati K, Kairamkonda M, Kumar D, Poluri KM. Engineering of a T7 Bacteriophage Endolysin Variant with Enhanced Amidase Activity. Biochemistry 2023; 62:330-344. [PMID: 35060722 DOI: 10.1021/acs.biochem.1c00710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The therapeutic use of bacteriophage-encoded endolysins as enzybiotics has increased significantly in recent years due to the emergence of antibiotic resistant bacteria. Phage endolysins lyse the bacteria by targeting their cell wall. Various engineering strategies are commonly used to modulate or enhance the utility of therapeutic enzymes. This study employed a structure-guided mutagenesis approach to engineer a T7 bacteriophage endolysin (T7L) with enhanced amidase activity and lysis potency via replacement of a noncatalytic gating residue (His 37). Two H37 variants (H37A and H37K) were designed and characterized comprehensively using integrated biophysical and biochemical techniques to provide mechanistic insights into their structure-stability-dynamics-activity paradigms. Among the studied proteins, cell lysis data suggested that the obtained H37A variant exhibits amidase activity (∼35%) enhanced compared to that of wild-type T7 endolysin (T7L-WT). In contrast to this, the H37K variant is highly unstable, prone to aggregation, and less active. Comparison of the structure and dynamics of the H37A variant to those of T7L-WT evidenced that the alteration at the site of H37 resulted in long-range structural perturbations, attenuated the conformational heterogeneity, and quenched the microsecond to millisecond time scale motions. Stability analysis confirmed the altered stability of H37A compared to that of its WT counterpart. All of the obtained results established that the H37A variant enhances the lysis activity by regulating the stability-activity trade-off. This study provided deeper atomic level insights into the structure-function relationships of endolysin proteins, thus aiding researchers in the rational design of engineered endolysins with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Jaya Lakshmi Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
13
|
Apjok G, Számel M, Christodoulou C, Seregi V, Vásárhelyi BM, Stirling T, Eszenyi B, Sári T, Vidovics F, Nagrand E, Kovács D, Szili P, Lantos II, Méhi O, Jangir PK, Herczeg R, Gálik B, Urbán P, Gyenesei A, Draskovits G, Nyerges Á, Fekete G, Bodai L, Zsindely N, Dénes B, Yosef I, Qimron U, Papp B, Pál C, Kintses B. Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nat Microbiol 2023; 8:410-423. [PMID: 36759752 PMCID: PMC9981461 DOI: 10.1038/s41564-023-01320-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.
Collapse
Affiliation(s)
- Gábor Apjok
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Chryso Christodoulou
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Viktória Seregi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tamás Stirling
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bálint Eszenyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tóbiás Sári
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Fanni Vidovics
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Nagrand
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Dorina Kovács
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Petra Szili
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Ildikó Ilona Lantos
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Orsolya Méhi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Pramod K. Jangir
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.4991.50000 0004 1936 8948Present Address: Department of Zoology, University of Oxford, Oxford, UK
| | - Róbert Herczeg
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bence Gálik
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Péter Urbán
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Gábor Draskovits
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos Nyerges
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Bodai
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- grid.9008.10000 0001 1016 9625Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- grid.432859.10000 0004 4647 7293Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ido Yosef
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Balázs Papp
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary. .,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary. .,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
14
|
Weiland-Bräuer N, Saleh L, Schmitz RA. Functional Metagenomics as a Tool to Tap into Natural Diversity of Valuable Biotechnological Compounds. Methods Mol Biol 2023; 2555:23-49. [PMID: 36306077 DOI: 10.1007/978-1-0716-2795-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Livía Saleh
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Kalia VC, Gong C, Shanmugam R, Lee JK. Prospecting Microbial Genomes for Biomolecules and Their Applications. Indian J Microbiol 2022; 62:516-523. [PMID: 36458216 PMCID: PMC9705627 DOI: 10.1007/s12088-022-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022] Open
Abstract
Bioactive molecules of microbial origin are finding increasing biotechnological applications. Their sources range from the terrestrial, marine, and endophytic to the human microbiome. These biomolecules have unique chemical structures and related groups, which enable them to improve the efficiency of the bioprocesses. This review focuses on the applications of biomolecules in bioremediation, agriculture, food, pharmaceutical industries, and human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Chunjie Gong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 People’s Republic of China
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
16
|
Gökdemir FŞ, İşeri ÖD, Sharma A, Achar PN, Eyidoğan F. Metagenomics Next Generation Sequencing (mNGS): An Exciting Tool for Early and Accurate Diagnostic of Fungal Pathogens in Plants. J Fungi (Basel) 2022; 8:1195. [PMID: 36422016 PMCID: PMC9699264 DOI: 10.3390/jof8111195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/19/2023] Open
Abstract
Crop output is directly impacted by infections, with fungi as the major plant pathogens, making accurate diagnosis of these threats crucial. Developing technology and multidisciplinary approaches are turning to genomic analyses in addition to traditional culture methods in diagnostics of fungal plant pathogens. The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping identification of organisms, identification at the species level, illumination of metabolic pathways, and determination of microbiota. Moreover, the data obtained so far show that this new approach is promising as an emerging new trend in fungal disease detection. Another approach covered by mNGS technologies, known as metabarcoding, enables use of specific markers specific to a genetic region and allows for genotypic identification by facilitating the sequencing of certain regions. Although the core concept of mNGS remains constant across applications, the specific sequencing methods and bioinformatics tools used to analyze the data differ. In this review, we focus on how mNGS technology, including metabarcoding, is applied for detecting fungal pathogens and its promising developments for the future.
Collapse
Affiliation(s)
- Fatma Şeyma Gökdemir
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
| | - Premila N. Achar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Füsun Eyidoğan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| |
Collapse
|
17
|
Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Immobilization-stabilization of the dimeric D-amino acid oxidase from porcine kidney. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Rodrigues CJC, de Carvalho CCCR. Marine Bioprospecting, Biocatalysis and Process Development. Microorganisms 2022; 10:1965. [PMID: 36296241 PMCID: PMC9610463 DOI: 10.3390/microorganisms10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Oceans possess tremendous diversity in microbial life. The enzymatic machinery that marine bacteria present is the result of extensive evolution to assist cell survival under the harsh and continuously changing conditions found in the marine environment. Several bacterial cells and enzymes are already used at an industrial scale, but novel biocatalysts are still needed for sustainable industrial applications, with benefits for both public health and the environment. Metagenomic techniques have enabled the discovery of novel biocatalysts, biosynthetic pathways, and microbial identification without their cultivation. However, a key stage for application of novel biocatalysts is the need for rapid evaluation of the feasibility of the bioprocess. Cultivation of not-yet-cultured bacteria is challenging and requires new methodologies to enable growth of the bacteria present in collected environmental samples, but, once a bacterium is isolated, its enzyme activities are easily measured. High-throughput screening techniques have also been used successfully, and innovative in vitro screening platforms to rapidly identify relevant enzymatic activities continue to improve. Small-scale approaches and process integration could improve the study and development of new bioprocesses to produce commercially interesting products. In this work, the latest studies related to (i) the growth of marine bacteria under laboratorial conditions, (ii) screening techniques for bioprospecting, and (iii) bioprocess development using microreactors and miniaturized systems are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
19
|
Neun S, Brear P, Campbell E, Tryfona T, El Omari K, Wagner A, Dupree P, Hyvönen M, Hollfelder F. Functional metagenomic screening identifies an unexpected β-glucuronidase. Nat Chem Biol 2022; 18:1096-1103. [PMID: 35799064 DOI: 10.1038/s41589-022-01071-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for β-glucuronidase activity. We identified SN243, a genuine β-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added β-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently 'unpredictable' by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.
Collapse
Affiliation(s)
- Stefanie Neun
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eleanor Campbell
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Australian Synchrotron, Clayton, VIC, Australia
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
20
|
Guimarães JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R. Stabilization of immobilized lipases by treatment with metallic phosphate salts. Int J Biol Macromol 2022; 213:43-54. [DOI: 10.1016/j.ijbiomac.2022.05.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
|
21
|
Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, Tacias-Pascacio VG, Fernandez-Lafuente R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol 2022; 210:682-702. [PMID: 35508226 DOI: 10.1016/j.ijbiomac.2022.04.224] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Juan M Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
22
|
Zhang Y, Pedersen JN, Eser BE, Guo Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol Adv 2022; 60:107991. [PMID: 35654281 DOI: 10.1016/j.biotechadv.2022.107991] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
The global production of plastics has continuously been soaring over the last decades due to their extensive use in our daily life and in industries. Although synthetic plastics offer great advantages from packaging to construction and electronics, their low biodegradability induce serious plastic pollution that damage the environment, human health and make irreversible changes in the ecological cycle. In particular, plastics containing only carbon-carbon (C-C) backbone are less susceptible to degradation due to the lack of hydrolysable groups. The representative polyethylene (PE) and polystyrene (PS) account for about 40% of the total plastic production. Various chemical and biological processes with great potential have been developed for plastic recycle and reuse, but biodegradation seems to be the most attractive and eco-friendly method to combat this growing environmental problem. In this review, we first summarize the current advances in PE and PS biodegradation, including isolation of microbes and potential degrading enzymes from different sources. Next, the state-of-the-art techniques used for evaluating and monitoring PE and PS degradation, the scientific toolboxes for enzyme discovery as well as the challenges and strategies for plastic biodegradation are intensively discussed. In return, it inspires a further technological exploration in expanding the diversity of species and enzymes, disclosing the essential pathways and developing new approaches to utilize plastic waste as feedstock for recycling and upcycling.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | | | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
23
|
Escuder-Rodríguez JJ, DeCastro ME, Saavedra-Bouza A, González-Siso MI, Becerra M. Bioprospecting for Thermozymes and Characterization of a Novel Lipolytic Thermozyme Belonging to the SGNH/GDSL Family of Hydrolases. Int J Mol Sci 2022; 23:5733. [PMID: 35628544 PMCID: PMC9145741 DOI: 10.3390/ijms23105733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Functional screenings were conducted on two metagenomic libraries from hot springs in order to find novel thermozymes with potential biotechnological applications. These included enzymes acting on plant cell walls such as endoglucanases and exoglucanases, β-glucosidases, xylanases, and β-xylosidases, and broad application enzymes such as proteases and lipolytic hydrolases. Of all the enzymes found by this bioprospection, we selected a novel lipolytic enzyme for further characterization. The protein was found to belong to the SGNH/GDSL family of hydrolases. It was purified and its biochemical parameters determined. We found that the enzyme was most active at 60 °C and pH 9 using pNP-laurate as substrate and was highly thermostable. It also showed preference for short-chained substrates and activation with temperature and with certain detergents such as Tween 80. Proteins of this family of hydrolases are relevant for their broad substrate specificity, that coupled with this protein's high temperature optima, broad pH range, and thermostability further highlights its biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - María-Isabel González-Siso
- EXPRELA Group, Advanced Scientific Research Center (CICA), Department of Biology, Faculty of Sciences, Universidade da Coruña, 15071 A Coruña, Spain; (J.-J.E.-R.); (M.-E.D.); (A.S.-B.)
| | - Manuel Becerra
- EXPRELA Group, Advanced Scientific Research Center (CICA), Department of Biology, Faculty of Sciences, Universidade da Coruña, 15071 A Coruña, Spain; (J.-J.E.-R.); (M.-E.D.); (A.S.-B.)
| |
Collapse
|
24
|
Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. Int J Mol Sci 2022; 23:5304. [PMID: 35628115 PMCID: PMC9141793 DOI: 10.3390/ijms23105304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Mesbah NM. Industrial Biotechnology Based on Enzymes From Extreme Environments. Front Bioeng Biotechnol 2022; 10:870083. [PMID: 35480975 PMCID: PMC9036996 DOI: 10.3389/fbioe.2022.870083] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Biocatalysis is crucial for a green, sustainable, biobased economy, and this has driven major advances in biotechnology and biocatalysis over the past 2 decades. There are numerous benefits to biocatalysis, including increased selectivity and specificity, reduced operating costs and lower toxicity, all of which result in lower environmental impact of industrial processes. Most enzymes available commercially are active and stable under a narrow range of conditions, and quickly lose activity at extremes of ion concentration, temperature, pH, pressure, and solvent concentrations. Extremophilic microorganisms thrive under extreme conditions and produce robust enzymes with higher activity and stability under unconventional circumstances. The number of extremophilic enzymes, or extremozymes, currently available are insufficient to meet growing industrial demand. This is in part due to difficulty in cultivation of extremophiles in a laboratory setting. This review will present an overview of extremozymes and their biotechnological applications. Culture-independent and genomic-based methods for study of extremozymes will be presented.
Collapse
Affiliation(s)
- Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Nogueira WG, Gois BVA, Pinheiro KDC, Aragão ADO, Queiroz ALC, da Silva AL, Folador AC, Ramos RTJ. Viral Metagenomics Reveals Widely Diverse Viral Community of Freshwater Amazonian Lake. Front Public Health 2022; 10:869886. [PMID: 35548089 PMCID: PMC9081339 DOI: 10.3389/fpubh.2022.869886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the importance of understanding the ecology of freshwater viruses, there are not many studies on the subject compared to marine viruses. The microbiological interactions in these environments are still poorly known, especially between bacteriophages and their host bacteria and between cyanophages and cyanobacteria. Lake Bologna, Belém, capital of the Brazilian State of Pará, is a water source that supplies the city and its metropolitan region. However, it remains unexplored regarding the contents of its virome and viral diversity composition. Therefore, this work aims to explore the taxonomic diversity of DNA viruses in this lake, especially bacteriophages and cyanophages, since they can act as transducers of resistance genes and reporters of water quality for human consumption. We used metagenomic sequencing data generated by previous studies. We analyzed it at the taxonomic level using the tools Kraken2, Bracken, and Pavian; later, the data was assembled using Genome Detective, which performs the assembly of viruses. The results observed here suggest the existence of a widely diverse viral community and established microbial phage-regulated dynamics in Lake Bolonha. This work is the first ever to describe the virome of Lake Bolonha using a metagenomic approach based on high-throughput sequencing, as it contributes to the understanding of water-related public health concerns regarding the spreading of antibiotic resistance genes and population control of native bacteria and cyanobacteria.
Collapse
Affiliation(s)
| | | | | | - Andressa de Oliveira Aragão
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | | | - Artur Luiz da Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Adriana Carneiro Folador
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Rommel Thiago Jucá Ramos
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- *Correspondence: Rommel Thiago Jucá Ramos
| |
Collapse
|
27
|
Noby N, Johnson RL, Tyzack JD, Embaby AM, Saeed H, Hussein A, Khattab SN, Rizkallah PJ, Jones DD. Structure-Guided Engineering of a Family IV Cold-Adapted Esterase Expands Its Substrate Range. Int J Mol Sci 2022; 23:ijms23094703. [PMID: 35563094 PMCID: PMC9100969 DOI: 10.3390/ijms23094703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cold active esterases have gained great interest in several industries. The recently determined structure of a family IV cold active esterase (EstN7) from Bacillus cohnii strain N1 was used to expand its substrate range and to probe its commercially valuable substrates. Database mining suggested that triacetin was a potential commercially valuable substrate for EstN7, which was subsequently proved experimentally with the final product being a single isomeric product, 1,2-glyceryl diacetate. Enzyme kinetics revealed that EstN7’s activity is restricted to C2 and C4 substrates due to a plug at the end of the acyl binding pocket that blocks access to a buried water-filled cavity. Residues M187, N211 and W206 were identified as key plug forming residues. N211A stabilised EstN7 allowing incorporation of the destabilising M187A mutation. The M187A-N211A double mutant had the broadest substrate range, capable of hydrolysing a C8 substrate. W206A did not appear to have any significant effect on substrate range either alone or when combined with the double mutant. Thus, the enzyme kinetics and engineering together with a recently determined structure of EstN7 provide new insights into substrate specificity and the role of acyl binding pocket plug residues in determining family IV esterase stability and substrate range.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
- Correspondence: (N.N.); (D.D.J.)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Jonathan D. Tyzack
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK;
| | - Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Sherine N. Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | | | - D. Dafydd Jones
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
- Correspondence: (N.N.); (D.D.J.)
| |
Collapse
|
28
|
Singh N, Singh V, Singh MP. Microbial degradation of lignocellulosic biomass for bioenergy production: A metagenomic-based approach. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2056451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Allahabad, India
- School of Biochemical Engineering, IIT (BHU), Varanasi, India
| | - Veer Singh
- Centre of Biotechnology, University of Allahabad, Allahabad, India
| | - Mohan P. Singh
- Centre of Biotechnology, University of Allahabad, Allahabad, India
| |
Collapse
|
29
|
Chen A, Wang D, Ji R, Li J, Gu S, Tang R, Ji C. Structural and Catalytic Characterization of TsBGL, a β-Glucosidase From Thermofilum sp. ex4484_79. Front Microbiol 2021; 12:723678. [PMID: 34659150 PMCID: PMC8517440 DOI: 10.3389/fmicb.2021.723678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.
Collapse
Affiliation(s)
- Anke Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rong Tang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Mohamed SS, Abdelhamid SA, Ali RH. Isolation and identification of marine microbial products. J Genet Eng Biotechnol 2021; 19:162. [PMID: 34665351 PMCID: PMC8526645 DOI: 10.1186/s43141-021-00259-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Background The ocean is one of the world’s most important sources of bioactive chemicals in the marine environment. Microbiologists, ecologists, agronomists, taxonomists, and evolutionary biologists have been increasingly interested in marine microbial natural products (MMNPs) in recent decades. Main body Diverse marine bacteria appear to get the ability to manufacture an astounding diversity of MMNPs with a wide range of biological actions, including anti-tumor, antimicrobial, and anti-cardiovascular agents according to numerous studies. Short conclusions Innovative isolation and culture methodologies, tactics for identifying novel MMNPs via routine screens, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology are all discussed in this review. There is also a discussion of potential issues and future directions for studying MMNPs.
Collapse
Affiliation(s)
- Sahar Saleh Mohamed
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
31
|
Klaus M, Zurek PJ, Kaminski TS, Pushpanath A, Neufeld K, Hollfelder F. Ultrahigh-Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Microfluidic Droplets with a Direct Fluorogenic Assay. Chembiochem 2021; 22:3292-3299. [PMID: 34643305 PMCID: PMC9291573 DOI: 10.1002/cbic.202100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/02/2022]
Abstract
The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh‐throughput assays that use monodisperse water‐in‐oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz speeds, requiring only micrograms of reagents. The scope of this powerful platform for the discovery of new sequence space is, however, hampered by the limited availability of assay substrates, restricting the functions and reaction types that can be investigated. Here, we broaden the scope of detectable biochemical transformations in droplet microfluidics by introducing the first fluorogenic assay for alcohol dehydrogenases (ADHs) in this format. We have synthesized substrates that release a pyranine fluorophore (8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid, HPTS) when enzymatic turnover occurs. Pyranine is well retained in droplets for >6 weeks (i. e. 14‐times longer than fluorescein), avoiding product leakage and ensuring excellent assay sensitivity. Product concentrations as low as 100 nM were successfully detected, corresponding to less than one turnover per enzyme molecule on average. The potential of our substrate design was demonstrated by efficient recovery of a bona fide ADH with an >800‐fold enrichment. The repertoire of droplet screening is enlarged by this sensitive and direct fluorogenic assay to identify dehydrogenases for biocatalytic applications.
Collapse
Affiliation(s)
- Miriam Klaus
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: ICB Nuvisan GmbH, Müllerstraße 178, 13353, Berlin, Germany
| | - Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: BioNTech Cell & Gene Therapies GmbH, An der Goldgrube 12, 55131, Mainz, Germany
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ahir Pushpanath
- Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK
| | - Katharina Neufeld
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: Janssen Pharmaceutica, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| |
Collapse
|
32
|
Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions. Microorganisms 2021; 9:microorganisms9102021. [PMID: 34683342 PMCID: PMC8537179 DOI: 10.3390/microorganisms9102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
In the past ten years, microbiome studies have shown tremendous potentiality for implementation of understanding microbiome structures and functions of various biomes and application of this knowledge for human betterment. Saudi Arabia is full of geographical, ecological, ethnical, and industrial diversities and scientific capacities. Therefore, there is a great potential in Saudi Arabia to conduct and implement microbiome-based research and applications. However, there is no review available on where Saudi Arabia stands with respect to global microbiome research trends. This review highlights the metagenome-assisted microbiome research from Saudi Arabia compared to the global focuses on microbiome research. Further, it also highlights the gaps and areas that should be focused on by Saudi microbiome researchers and the possible initiatives to be taken by Saudi government and universities. This literature review shows that the global trends of microbiome research cover a broad spectrum of human and animal health conditions and diseases, environmental and antimicrobial resistance surveillance, surveillance of food and food processing, production of novel industrial enzymes and bioactive pharmaceutical products, and space applications. However, Saudi microbiome studies are mostly confined to very few aspects of health (human and animal) and environment/ecology in last ten years, without much application. Therefore, Saudi Arabia should focus more on applied microbiome research through government, academic, and industry initiatives and global cooperation to match the global trends.
Collapse
|
33
|
Jones K, Snodgrass HM, Belsare K, Dickinson BC, Lewis JC. Phage-Assisted Continuous Evolution and Selection of Enzymes for Chemical Synthesis. ACS CENTRAL SCIENCE 2021; 7:1581-1590. [PMID: 34584960 PMCID: PMC8461764 DOI: 10.1021/acscentsci.1c00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/04/2023]
Abstract
Ligand-dependent biosensors are valuable tools for coupling the intracellular concentrations of small molecules to easily detectable readouts such as absorbance, fluorescence, or cell growth. While ligand-dependent biosensors are widely used for monitoring the production of small molecules in engineered cells and for controlling or optimizing biosynthetic pathways, their application to directed evolution for biocatalysts remains underexplored. As a consequence, emerging continuous evolution technologies are rarely applied to biocatalyst evolution. Here, we develop a panel of ligand-dependent biosensors that can detect a range of small molecules. We demonstrate that these biosensors can link enzymatic activity to the production of an essential phage protein to enable biocatalyst-dependent phage-assisted continuous evolution (PACE) and phage-assisted continuous selection (PACS). By combining these phage-based evolution and library selection technologies, we demonstrate that we can evolve enzyme variants with improved and expanded catalytic properties. Finally, we show that the genetic diversity resulting from a highly mutated PACS library is enriched for active enzyme variants with altered substrate scope. These results lay the foundation for using phage-based continuous evolution and selection technologies to engineer biocatalysts with novel substrate scope and reactivity.
Collapse
Affiliation(s)
- Krysten
A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harrison M. Snodgrass
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Ketaki Belsare
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- E-mail:
| | - Jared C. Lewis
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- E-mail:
| |
Collapse
|
34
|
Wu H, Chen Q, Zhang W, Mu W. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Crit Rev Food Sci Nutr 2021; 63:2057-2073. [PMID: 34445912 DOI: 10.1080/10408398.2021.1970508] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysts such as enzymes are environmentally friendly and have substrate specificity, which are preferred in the production of various industrial products. However, the strict reaction conditions in industry including high temperature, organic solvents, strong acids and bases and other harsh environments often destabilize enzymes, and thus substantially compromise their catalytic functions, and greatly restrict their applications in food, pharmaceutical, textile, bio-refining and feed industries. Therefore, developing industrial enzymes with high thermostability becomes very important in industry as thermozymes have more advantages under high temperature. Discovering new thermostable enzymes using genome sequencing, metagenomics and sample isolation from extreme environments, or performing molecular modification of the existing enzymes with poor thermostability using emerging protein engineering technology have become an effective means of obtaining thermozymes. Based on the thermozymes as biocatalytic chips in industry, this review systematically analyzes the ways to discover thermostable enzymes from extreme environment, clarifies various interaction forces that will affect thermal stability of enzymes, and proposes different strategies to improve enzymes' thermostability. Furthermore, latest development in the thermal stability modification of industrial enzymes through rational design strategies is comprehensively introduced from structure-activity relationship point of view. Challenges and future research perspectives are put forward as well.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
35
|
Alex Wong CF, van Vliet L, Bhujbal SV, Guo C, Sletmoen M, Stokke BT, Hollfelder F, Lale R. A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution. ACS Synth Biol 2021; 10:1882-1894. [PMID: 34260196 PMCID: PMC8383311 DOI: 10.1021/acssynbio.1c00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water-in-oil emulsion
droplets are an attractive format for ultrahigh-throughput
screening in functional metagenomics and directed evolution applications
that allow libraries with more than 107 members to be characterized
in a day. Single library members are compartmentalized in droplets
that are generated in microfluidic devices and tested for the presence
of target biocatalysts. The target proteins can be produced intracellularly,
for example, in bacterial hosts in-droplet cell lysis is therefore
necessary to allow the enzymes to encounter the substrate to initiate
an activity assay. Here, we present a titratable lysis-on-demand (LoD)
system enabling the control of the cell lysis rate in Escherichia
coli. We demonstrate that the rate of cell lysis can be controlled
by adjusting the externally added inducer concentration. This LoD
system is evaluated both at the population level (by optical density
measurements) and at the single-cell level (on single-cell arrays
and in alginate microbeads). Additionally, we validate the LoD system
by droplet screening of a phosphotriesterase expressed from E. coli, with cell lysis triggered by inducer concentrations
in the μM range. The LoD system yields sufficient release of
the intracellularly produced enzymes to bring about a detectable quantity
of product (measured by fluorescence in flow cytometry of double emulsions),
while leaving viable cells for the downstream recovery of the genetic
material.
Collapse
Affiliation(s)
- Che Fai Alex Wong
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Liisa van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Swapnil Vilas Bhujbal
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Chengzhi Guo
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marit Sletmoen
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Rahmi Lale
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
36
|
Díaz M, Jarrín-V P, Simarro R, Castillejo P, Tenea GN, Molina CA. The Ecuadorian Microbiome Project: a plea to strengthen microbial genomic research. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1938900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Magdalena Díaz
- Institute of Research on Zoonoses (CIZ), Central University of Ecuador, Quito, Ecuador
- Chemistry Engineering Faculty, Central University of Ecuador, Quito, Ecuador
| | - Pablo Jarrín-V
- Health and Environment Research Group, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Raquel Simarro
- Department of Biology, Geology, Physics and Inorganic Chemistry,ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Pablo Castillejo
- Faculty of Environmental Sciences, SEK International University, Quito, Ecuador
- Applied Sciences and Engineering Faculty, Universidad De Las Américas, Quito, Ecuador
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - C. Alfonso Molina
- Institute of Research on Zoonoses (CIZ), Central University of Ecuador, Quito, Ecuador
- Faculty of Veterinary Medicine and Zootechnics, Central University of Ecuador, Quito, Ecuador
| |
Collapse
|
37
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
38
|
Metagenomics and Culture-Based Diversity Analysis of the Bacterial Community in the Zharkent Geothermal Spring in Kazakhstan. Curr Microbiol 2021; 78:2926-2934. [PMID: 34047830 DOI: 10.1007/s00284-021-02545-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Diversity of the microbial community in the Zharkent geothermal hot spring, located in the southeastern region of Kazakhstan, was assessed using both culture-dependent and -independent approaches. Shotgun metagenomic sequencing of DNA extracted from the spring water yielded 11,061,725 high-quality sequence reads, totaling >1,67 Gb of nucleotide sequences. Furthermore, water samples were enriched in nutrient broth at varying high temperatures, and colonies isolated by being streaked onto nutrient agar. Finally, DNA extraction and amplification, as well as sequencing and phylogenetic analysis, were conducted. Bacteria constituted more than 99.97% of the total prokaryotic abundance, with Archaea contributing only an extremely small component; Firmicutes, Proteobacteria, and Actinobacteria dominated the community. At genus level, Firmicutes reads affiliated with Desmospora, Parageobacillus, Paenibacillus, and Brevibacillus, accounting for more than 60% of total prokaryotic abundance. Eight morphologically distinct, aerobic, endospore-forming thermophilic bacteria were recovered; isolates differed significantly in substrate utilization patterns, as well as their production of thermophilic, extracellular, hydrolytic enzymes for degradation of starch, lipids, cellulose, and protein. Five strains could degrade all four macromolecular types at temperatures ranging from 55 to 75 °C. Phylogenetic analyses based on 16S rRNA gene sequences placed all isolates into the genus Geobacillus with some of them possibly representing novel species. The results indicate that this hot spring represents a rich source of novel thermophilic bacteria and potentially useful thermostable enzymes.
Collapse
|
39
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
40
|
Zhu B, Wang D, Wei N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol 2021; 40:22-37. [PMID: 33676748 DOI: 10.1016/j.tibtech.2021.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Dong Wang
- Department of Computer Science and Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
41
|
Kant Bhatia S, Vivek N, Kumar V, Chandel N, Thakur M, Kumar D, Yang YH, Pugazendhi A, Kumar G. Molecular biology interventions for activity improvement and production of industrial enzymes. BIORESOURCE TECHNOLOGY 2021; 324:124596. [PMID: 33440311 DOI: 10.1016/j.biortech.2020.124596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Metagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Meenu Thakur
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan 173212, Himachal Pradesh, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Arivalagan Pugazendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho ChiMinh City, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
42
|
Semenov MV. Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. ACTA ACUST UNITED AC 2021. [DOI: 10.1134/s2079086421010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Zhu C, Chen Y, Isupov MN, Littlechild JA, Sun L, Liu X, Wang Q, Gong H, Dong P, Zhang N, Wu Y. Structural Insights into a Novel Esterase from the East Pacific Rise and Its Improved Thermostability by a Semirational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1079-1090. [PMID: 33445864 DOI: 10.1021/acs.jafc.0c06338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipolytic enzymes are essential biocatalysts in food processing as well as pharmaceutical and pesticide industries, catalyzing the cleavage of ester bonds in a variety of acyl chain substrates. Here, we report the crystal structure of an esterase from the deep-sea hydrothermal vent of the East Pacific Rise (EprEst). The X-ray structure of EprEst in complex with the ligand, acetate, has been determined at 2.03 Å resolution. The structure reveals a unique spatial arrangement and orientation of the helix cap domain and α/β hydrolase domain, which form a substrate pocket with preference for short-chain acyl groups. Molecular docking analysis further demonstrated that the active site pocket could accommodate p-nitrophenyl (pNP) carboxyl ligands of varying lengths (≤6 C atoms), with pNP-butyrate ester predicted to have the highest binding affinity. Additionally, the semirational design was conducted to improve the thermostability of EprEst by enzyme engineering based on the established structure and multiple sequence alignment. A mutation, K114P, introduced in the hinge region of the esterase, which displayed increased thermostability and enzyme activity. Collectively, the structural and functional data obtained herein could be used as basis for further protein engineering to ultimately expand the scope of industrial applications of marine-derived lipolytic enzymes.
Collapse
Affiliation(s)
- Chunhua Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Na Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
44
|
Zurek PJ, Hours R, Schell U, Pushpanath A, Hollfelder F. Growth amplification in ultrahigh-throughput microdroplet screening increases sensitivity of clonal enzyme assays and minimizes phenotypic variation. LAB ON A CHIP 2021; 21:163-173. [PMID: 33242058 DOI: 10.1039/d0lc00830c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic ultrahigh-throughput screening of enzyme activities provides information on libraries with millions of variants in a day. Each individual library member is represented by a recombinant single cell, compartmentalised in an emulsion droplet, in which an activity assay is carried out. Key to the success of this approach is the precision and sensitivity of the assay. Assay quality is most profoundly challenged when initially weak, promiscuous activities are to be enhanced in early rounds of directed evolution or when entirely novel catalysts are to be identified from metagenomic sources. Implementation of measures to widen the dynamic range of clonal assays would increase the chances of finding and generating new biocatalysts. Here, we demonstrate that the assay sensitivity and DNA recovery can be improved by orders of magnitude by growth of initially singly compartmentalised cells in microdroplets. Homogeneous cell growth is achieved by continuous oxygenation and recombinant protein expression is regulated by diffusion of an inducer from the oil phase. Reaction conditions are adjusted by directed droplet coalescence to enable full control of buffer composition and kinetic incubation time, creating level playing field conditions for library selections. The clonal amplification multiplies the product readout because more enzyme is produced per compartment. At the same time, phenotypic variation is reduced by measuring monoclonal populations rather than single cells and recovery efficiency is increased. Consequently, this workflow increases the efficiency of lysate-based microfluidic enzyme assays and will make it easier for protein engineers to identify or evolve new enzymes for applications in synthetic and chemical biology.
Collapse
Affiliation(s)
- Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK.
| | | | | | | | | |
Collapse
|
45
|
Verma D, Satyanarayana T. Xylanolytic Extremozymes Retrieved From Environmental Metagenomes: Characteristics, Genetic Engineering, and Applications. Front Microbiol 2020; 11:551109. [PMID: 33042057 PMCID: PMC7527525 DOI: 10.3389/fmicb.2020.551109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023] Open
Abstract
Xylanolytic enzymes have extensive applications in paper, food, and feed, pharmaceutical, and biofuel industries. These industries demand xylanases that are functional under extreme conditions, such as high temperature, acidic/alkaline pH, and others, which are prevailing in bioprocessing industries. Despite the availability of several xylan-hydrolyzing enzymes from cultured microbes, there is a huge gap between what is available and what industries require. DNA manipulations as well as protein-engineering techniques are also not quite satisfactory in generating xylan-hydrolyzing extremozymes. With a compound annual growth rate of 6.6% of xylan-hydrolyzing enzymes in the global market, there is a need for xylanolytic extremozymes. Therefore, metagenomic approaches have been employed to uncover hidden xylanolytic genes that were earlier inaccessible in culture-dependent approaches. Appreciable success has been achieved in retrieving several unusual xylanolytic enzymes with novel and desirable characteristics from different extreme environments using functional and sequence-based metagenomic approaches. Moreover, the Carbohydrate Active Enzymes database includes approximately 400 GH-10 and GH-11 unclassified xylanases. This review discusses sources, characteristics, and applications of xylanolytic enzymes obtained through metagenomic approaches and their amelioration by genetic engineering techniques.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
46
|
Ma F, Guo T, Zhang Y, Bai X, Li C, Lu Z, Deng X, Li D, Kurabayashi K, Yang GY. An ultrahigh-throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries. Environ Microbiol 2020; 23:996-1008. [PMID: 32985743 DOI: 10.1111/1462-2920.15257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/26/2020] [Indexed: 11/27/2022]
Abstract
Uncultivable microbial communities provide enormous reservoirs of enzymes, but their experimental identification by functional metagenomics is challenging, mainly due to the difficulty of screening enormous metagenomic libraries. Here, we propose a reliable and convenient ultrahigh-throughput screening platform based on flow cytometric droplet sorting (FCDS). The FCDS platform employs water-in-oil-in-water double emulsion droplets serving as single-cell enzymatic micro-reactors and a commercially available flow cytometer, and it can efficiently isolate novel biocatalysts from metagenomic libraries by processing single cells as many as 108 per day. We demonstrated the power of this platform by screening a metagenomic library constructed from domestic running water samples. The FCDS assay screened 30 million micro-reactors in only 1 h, yielding a collection of esterase genes. Among these positive hits, Est WY was identified as a novel esterase with high catalytic efficiency and distinct evolutionary origin from other lipolytic enzymes. Our study manifests that the FCDS platform is a robust tool for functional metagenomics, with the potential to significantly improve the efficiency of exploring novel enzymes from nature.
Collapse
Affiliation(s)
- Fuqiang Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Tianjie Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yifan Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changlong Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Zelin Lu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xi Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daixi Li
- Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
47
|
Kirubakaran R, ArulJothi KN, Revathi S, Shameem N, Parray JA. Emerging priorities for microbial metagenome research. BIORESOURCE TECHNOLOGY REPORTS 2020; 11:100485. [PMID: 32835181 PMCID: PMC7319936 DOI: 10.1016/j.biteb.2020.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.
Collapse
Affiliation(s)
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, J&K, India
| | - Javid A Parray
- Department of Environmental Science, Govt SAM Degree College Budgam, J&K, India
| |
Collapse
|
48
|
Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. REVIEWS IN AQUACULTURE 2020; 12:1903-1927. [DOI: 10.1111/raq.12416] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 10/16/2023]
Abstract
AbstractFish gut microbiome confers various effects to the host fish; this includes overall size, metabolism, feeding behaviour and immune response in the fish. The emergence of antimicrobial‐resistant (AMR) bacteria and hard to cure fish diseases warrant the possible utilization of gut microbes that exhibits a positive effect on the fish and thus lead to the usage of these microbes as probiotics. The widespread and systematic use of antibiotics has led to severe biological and ecological problems, especially the development of antibiotic resistance that affects the gut microbiota of aquatic organisms. Probiotics are proposed as an effective and environmentally friendly alternative to antibiotics, known as beneficial microbes. At the same time, prebiotics are considered beneficial to the host's health and growth by decreasing the prevalence of intestinal pathogens and/or changing the development of bacterial metabolites related to health. Uprise of sequencing technology and the development of intricate bioinformatics tools has provided a way to study these gut microbes through metagenomic analysis. From various metagenomic studies, ample of information was obtained; such information includes the effect of the gut microbiome on the physiology of fish, gut microbe composition of different fish, factors affecting the gut microbial composition of the fish and the immunological effect of gut microbes in fish; such this information related to the fish gut microbiome, their function and their importance in aquaculture is discussed in this review.
Collapse
Affiliation(s)
| | - Praveen Kumar
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Parimannan Sivachandran
- Faculty of Applied Sciences Centre of Excellence for Omics-Driven Computational Biodiscovery (CO MBio) AIMST University Bedong Malaysia
- Faculty of Science School of Life and Environmental Sciences Engineering and Built Environment Deakin University, Waurn Ponds Campus Geelong Australia
| | - Kasi Marimuthu
- Department of Biotechnology AIMST University Semeling Kedah Darul Aman Malaysia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) Universiti Putra Malaysia Serdang Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
- Laboratory of Marine Biotechnology Institute of Bioscience Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Bilal Ahmad Paray
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
49
|
Neun S, Zurek PJ, Kaminski TS, Hollfelder F. Ultrahigh throughput screening for enzyme function in droplets. Methods Enzymol 2020; 643:317-343. [PMID: 32896286 DOI: 10.1016/bs.mie.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water-in-oil droplets, made and handled in microfluidic devices, provide a new experimental format, in which ultrahigh throughput experiments can be conducted faster and with minimal reagent consumption. An increasing number of studies have emerged that applied this approach to directed evolution and metagenomic screening of enzyme catalysts. Here, we review the considerations necessary to implement robust workflows, based on choices of device design, detection modes, emulsion formulations and substrates, and scope out which enzyme classes have become amenable to droplet screening.
Collapse
Affiliation(s)
- Stefanie Neun
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Zurek
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
50
|
A Rapid Method for the Selection of Amidohydrolases from Metagenomic Libraries by Applying Synthetic Nucleosides and a Uridine Auxotrophic Host. Catalysts 2020. [DOI: 10.3390/catal10040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the development of a rapid, high-throughput method for the selection of amide-hydrolysing enzymes from the metagenome is described. This method is based on uridine auxotrophic Escherichia coli strain DH10B ∆pyrFEC and the use of N4-benzoyl-2’-deoxycytidine as a sole source of uridine in the minimal microbial M9 medium. The approach described here permits the selection of unique biocatalysts, e.g., a novel amidohydrolase from the activating signal cointegrator homology (ASCH) family and a polyethylene terephthalate hydrolase (PETase)-related enzyme.
Collapse
|