1
|
Taniguchi T, Mogi K, Tomita H, Okada H, Mori K, Imaizumi Y, Ichihashi K, Okubo T, Niwa A, Kanayma T, Yamakita Y, Suzuki A, Sugie S, Yoshihara M, Hara A. Sugar-binding profiles of the mesothelial glycocalyx in frozen tissues of mice revealed by lectin staining. Pathol Res Pract 2024; 262:155538. [PMID: 39191196 DOI: 10.1016/j.prp.2024.155538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
The mesothelium is a non-adhesive protective surface that lines the serosal cavities and organs within the body. The glycocalyx is a complex structure that coats the outer layer of the mesothelium. However, due to the limitations of conventional fixation techniques, studies on glycans are limited. In this study, lectin staining of frozen tissues was performed to investigate the diversity of glycans in the glycocalyx of mesothelial cells in mice. Datura stramonium lectin (DSL), which recognizes lactosamine and binds to Galectin-3 and -1, was broadly bound to the mesothelial cells of the visceral and parietal peritoneum but not to the pancreas, liver, intestine, or heart. Furthermore, human mesothelial cells in the omentum and parietal peritoneum were positive for DSL. Erythrina cristagalli lectin binding was specific to mesothelial cells in the parietal peritoneum, that is, the pleura, diaphragm, and peritoneum. Intriguingly, surface sialylation, the key element in reducing peritoneal dissemination and implantation, and promoting ascites formation by ovarian carcinoma cells, was much higher in the parietal peritoneum than in the omentum. These findings revealed slight differences in the glycans of mesothelial cells of different organs, which may be related to clinical diseases. These results also suggest that there may be differences in the functions of parietal and visceral mesothelial cells.
Collapse
Affiliation(s)
- Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazumasa Mogi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Medical Genomics Center, Nagoya University Hospital, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayma
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiko Yamakita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
2
|
Yang Y, Wu B, Zou W, Han F. Unveiling the molecular characteristics and antibacterial activity of tandem-repeat-type Galectin-8 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109849. [PMID: 39173981 DOI: 10.1016/j.fsi.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Galectin-8 (Gal-8) is a versatile carbohydrate-binding protein with pivotal roles in immune regulation and cellular processes. This study introduces a novel galectin-8 protein, LcGal-8, from the large yellow croaker (Larimichthys crocea), showcasing typical characteristics of tandem-repeat-type galectins, including the absence of a signal peptide or transmembrane region and the presence of conserved sugar-binding motifs. Phylogenetic analysis reveals its conservation among fish species. Expression profiling indicates widespread distribution in immune tissues, particularly the spleen, implicating involvement in immune processes. The subcellular localization analysis reveals that LcGal-8 is present in both the cytoplasm and nucleus. Upon bacterial challenge, LcGal-8 is up-regulated in immune tissues, suggesting a role in host defense. Functional assays demonstrate that LcGal-8 can agglutinate gram-negative bacteria. The recombinant LcGal-8 protein agglutinates red blood cells from the large yellow croaker independently of Ca2⁺, however, this activity is inhibited by lipopolysaccharide (LPS) at 2.5 μg/mL. Fluorescence detection kits and scanning electron microscopy (SEM) confirm the agglutination and bactericidal effects of LcGal-8 against various gram-negative bacteria, including Vibrio harveyi, Aeromondaceae hydrophila, Aeromondaceae veronii, Pseudomonas plecoglossicida, Edwardsiella tarda. These findings contribute valuable insights into the genetic basis of disease resistance in the large yellow croaker and could support molecular breeding strategies to enhance disease resistance.
Collapse
Affiliation(s)
- Yao Yang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Baolan Wu
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wenzheng Zou
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
3
|
Huang Y, Du SH, Cui LF, Jiang FH, Zhao Z. Molecular cloning and functional characterization of eight galectin genes from Takifugu obscurus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109917. [PMID: 39307256 DOI: 10.1016/j.fsi.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Galectins are a family of animal lectins involved in the immune response against pathogens. However, the roles of fish galectins during pathogen infection require comprehensive studies. In the present research, eight different galectin genes from Takifugu obscurus (named ToGalec1-8) were identified and characterized. ToGalec1-8 encoded proteins of 240, 182, 373, 145, 452, 135, 359 and 346 amino acids, respectively. All predicted ToGalec1-8 proteins possessed one or more conserved carbohydrate recognition domains (CRDs). Phylogenetic analysis revealed that ToGalec1-8 were evolutionarily closely related to their counterparts in other selected vertebrates, hinting their genetic relationship. Tissue distribution analysis showed that most ToGalec genes were distributed ubiquitously in all detected tissues, with relatively high expression in immune tissues. After stimulation by Vibrio harveyi and Staphylococcus aureus, the mRNA transcripts of ToGalec1-8 in liver and kidney were significantly upregulated. In addition, RNA interference experiments indicated that knockdown of ToGalec1 and ToGalec7 inhibited the clearance of bacteria in vivo. Taken together, these obtained results suggested that ToGalec1-8 play an important role in innate immunity and defense against bacterial infection in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Sheng-Hao Du
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
6
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
7
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Prins CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, de Almeida JS, Silva NMB, Almeida FM, Martinez AMB. Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice. Exp Neurol 2024; 377:114785. [PMID: 38670250 DOI: 10.1016/j.expneurol.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.
Collapse
Affiliation(s)
- Caio Andrade Prins
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Leite de Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Laboratório de lmunofisiologia, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuela Bezerra Dos Santos Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Moraes Bechelli Silva
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Anatomia Patológica, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Premeaux TA, Bowler S, Friday CM, Moser CB, Hoenigl M, Lederman MM, Landay AL, Gianella S, Ndhlovu LC. Machine learning models based on fluid immunoproteins that predict non-AIDS adverse events in people with HIV. iScience 2024; 27:109945. [PMID: 38812553 PMCID: PMC11134891 DOI: 10.1016/j.isci.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Despite the success of antiretroviral therapy (ART), individuals with HIV remain at risk for experiencing non-AIDS adverse events (NAEs), including cardiovascular complications and malignancy. Several surrogate immune biomarkers in blood have shown predictive value in predicting NAEs; however, composite panels generated using machine learning may provide a more accurate advancement for monitoring and discriminating NAEs. In a nested case-control study, we aimed to develop machine learning models to discriminate cases (experienced an event) and matched controls using demographic and clinical characteristics alongside 49 plasma immunoproteins measured prior to and post-ART initiation. We generated support vector machine (SVM) classifier models for high-accuracy discrimination of individuals aged 30-50 years who experienced non-fatal NAEs at pre-ART and one-year post-ART. Extreme gradient boosting generated a high-accuracy model at pre-ART, while K-nearest neighbors performed poorly all around. SVM modeling may offer guidance to improve disease monitoring and elucidate potential therapeutic interventions.
Collapse
Affiliation(s)
- Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Courtney M. Friday
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carlee B. Moser
- Center for Biostatistics in AIDS Research in the Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sara Gianella
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Peltan EL, Riley NM, Flynn RA, Roberts DS, Bertozzi CR. Galectin-3 does not interact with RNA directly. Glycobiology 2024; 34:cwad076. [PMID: 37815932 DOI: 10.1093/glycob/cwad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023] Open
Abstract
Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out. Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant, well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous epitope tags to achieve the specificity required to evaluate potential interactions.
Collapse
Affiliation(s)
- Egan L Peltan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive CCSR 4145 Stanford, CA 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford ChEM-H Building 290 Jane Stanford Way Stanford, CA 94305, United States
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford ChEM-H Building 290 Jane Stanford Way Stanford, CA 94305, United States
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, CA 94305, United States
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02445, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, United States
| | - David S Roberts
- Sarafan ChEM-H, Stanford University, Stanford ChEM-H Building 290 Jane Stanford Way Stanford, CA 94305, United States
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, CA 94305, United States
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford ChEM-H Building 290 Jane Stanford Way Stanford, CA 94305, United States
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, 279 Campus Drive Room B202 Stanford, CA 94305-5323, United States
| |
Collapse
|
12
|
Pirone L, Lenza MP, Di Gaetano S, Capasso D, Filocaso M, Russo R, Di Carluccio C, Saviano M, Silipo A, Pedone E. Biophysical and Structural Characterization of the Interaction between Human Galectin-3 and the Lipopolysaccharide from Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:2895. [PMID: 38474141 PMCID: PMC10932368 DOI: 10.3390/ijms25052895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| | - Domenica Capasso
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Martina Filocaso
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Rita Russo
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Michele Saviano
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| |
Collapse
|
13
|
Dong H, Wen X, Zhang BW, Wu Z, Zou W. Astrocytes in intracerebral hemorrhage: impact and therapeutic objectives. Front Mol Neurosci 2024; 17:1327472. [PMID: 38419793 PMCID: PMC10899346 DOI: 10.3389/fnmol.2024.1327472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Intracerebral hemorrhage (ICH) manifests precipitously and profoundly impairs the neurological function in patients who are affected. The etiology of subsequent injury post-ICH is multifaceted, characterized by the intricate interplay of various factors, rendering therapeutic interventions challenging. Astrocytes, a distinct class of glial cells, interact with neurons and microglia, and are implicated in a series of pathophysiological alterations following ICH. A comprehensive examination of the functions and mechanisms associated with astrocytic proteins may shed light on the role of astrocytes in ICH pathology and proffer innovative therapeutic avenues for ICH management.
Collapse
Affiliation(s)
- Hao Dong
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Wen
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhe Wu
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Duscher AA, Vroom MM, Foster JS. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci Rep 2024; 14:2912. [PMID: 38316910 PMCID: PMC10844198 DOI: 10.1038/s41598-024-53477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.
Collapse
Affiliation(s)
- Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Chesapeake Bay Governor's School, Warsaw, VA, 22572, USA
| | - Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
- Vaxxinity, Space Life Sciences Lab, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
15
|
Piramoon S, Tahoori MT, Owlia MB, Royaei MR. PRP as a modulator of inflammation in FLS of RA patients by regulation of galectins and TGF-β1. Heliyon 2024; 10:e24036. [PMID: 38268610 PMCID: PMC10806333 DOI: 10.1016/j.heliyon.2024.e24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
An autoimmune and inflammatory condition known as rheumatoid arthritis is characterized by joint inflammation and an aggressive fibroblast-like synoviocytes. (FLS) One of the most significant immunological regulators are the galectins. Platelet-rich plasma are probably effective in immunomodulation. The aim of the present work is to investigate the role of platelet rich plasma (PRP) as a modulation of inflammation, which affects the expression of galectins and TGF-β in FLS from Rheumatoid arthritis (RA) patients. Methods Human FLS cells from RA patients' synovial fluid were cultured in DMEM-F12 medium, characterized by flowcytometry, treated with PRP alone, TNF-α+PRP, SF + PRP, TNF-α alone, and untreated control groups. Expression of Galectin-1, Galectin-3, Galectin-9, and TGF-β1 genes was assessed by Real-Time PCR. Results In SF + PRP, TNF + PRP, and PRP groups, the gene expression of Galectin-3 was considerably reduced (P > 0.05). Galectin-1 and TGF-β1 expression levels were also lowered (P > 0.05) in the TNF + PRP groups. Galectin-9 expression increased significantly in the PRP group (P > 0.05). Galectin-3 expression was markedly and extensively reduced in multiple study groups after treatment of FLS cells with 10 % PRP. Galectin-3 expression was considerably reduced when FLS were exposed to TNF- and synovial fluid in conjunction with PRP to simulate localized body inflammation. Conclusion Our results showed that PRP may be useful in lowering FLS-induced inflammation in RA patients' joints, particularly when Galectin-3 is involved. In the future, inflammatory illnesses like RA may be treated locally using PRP or its derivatives, which will have a larger immune modulation role and more likely pathways.
Collapse
Affiliation(s)
- Shourangiz Piramoon
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Owlia
- Division of Rheumatology, Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Royaei
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
16
|
Toudic C, Maurer M, St-Pierre G, Xiao Y, Bannert N, Lafond J, Rassart É, Sato S, Barbeau B. Galectin-1 Modulates the Fusogenic Activity of Placental Endogenous Retroviral Envelopes. Viruses 2023; 15:2441. [PMID: 38140682 PMCID: PMC10747188 DOI: 10.3390/v15122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Syncytin-1 and -2 are glycoproteins encoded by human endogenous retrovirus (hERV) that, through their fusogenic properties, are needed for the formation of the placental syncytiotrophoblast. Previous studies suggested that these proteins, in addition to the EnvP(b) envelope protein, are also involved in other cell fusion events. Since galectin-1 is a β-galactoside-binding protein associated with cytotrophoblast fusion during placental development, we previously tested its effect on Syncytin-mediated cell fusion and showed that this protein differently modulates the fusogenic potential of Syncytin-1 and -2. Herein, we were interested in comparing the impact of galectin-1 on hERV envelope proteins in different cellular contexts. Using a syncytium assay, we first demonstrated that galectin-1 increased the fusion of Syncytin-2- and EnvP(b)-expressing cells. We then tested the infectivity of Syncytin-1 and -2 vs. VSV-G-pseudotyped viruses toward Cos-7 and various human cell lines. In the presence of galectin-1, infection of Syncytin-2-pseudotyped viruses augmented for all cell lines. In contrast, the impact of galectin-1 on the infectivity of Syncytin-1-pseudotyped viruses varied, being cell- and dose-dependent. In this study, we report the functional associations between three hERV envelope proteins and galectin-1, which should provide information on the fusogenic activity of these proteins in the placenta and other biological and pathological processes.
Collapse
Affiliation(s)
- Caroline Toudic
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Maike Maurer
- Robert-Koch Institute, 13353 Berlin, Germany; (M.M.); (N.B.)
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases and Axe Maladies Infectieuses et Immunitaires, Laval University, Quebec City, QC G1V 0A6, Canada; (G.S.-P.); (S.S.)
| | - Yong Xiao
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Norbert Bannert
- Robert-Koch Institute, 13353 Berlin, Germany; (M.M.); (N.B.)
| | - Julie Lafond
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Éric Rassart
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases and Axe Maladies Infectieuses et Immunitaires, Laval University, Quebec City, QC G1V 0A6, Canada; (G.S.-P.); (S.S.)
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre d’excellence en Recherche sur les Maladies Orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (C.T.); (Y.X.); (J.L.); (É.R.)
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Montréal, QC H2X 1E3, Canada
| |
Collapse
|
17
|
Xiong L, Chen Y, Chen L, Hua R, Shen N, Yang G. Enhanced protective immunity against Baylisascaris schroederi infection in mice through a multi-antigen cocktail vaccine approach. Parasitol Res 2023; 123:20. [PMID: 38072876 DOI: 10.1007/s00436-023-08016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Baylisascaris schroederi is among the most severe intestinal nematodes affecting giant pandas. Developing effective and secure vaccines can be used as a novel strategy for controlling repeated roundworm infection and addressing drug resistance. In our previous study, three recombinant antigens (rBsHP2, rBsGAL, and rBsUP) exhibited promising effects against B. schroederi infection in the mice model. This study extends the findings by formulating four-form cocktail vaccines (GAL+UP, HP2+UP, GAL+HP2, and GAL+HP2+UP) using three B. schroederi recombinant antigens to improve protection in mice further. Additionally, the protective differences after immunizing mice with different doses of cocktail antigens (150 μg, 100 μg, and 50 μg) were analyzed. Administration of rBs(GAL+UP), rBs(HP2+UP), rBs(GAL+HP2), and rBs(GAL+HP2+UP) significantly reduced liver and lung lesions, along with a decrease in L3 larvae by 83.7%, 82.1%, 76.4%, and 75.1%, respectively. These vaccines induced a Th1/Th2 mixed immunity, evidenced by elevated serum antibody levels (IgG, IgG1, IgG2a, IgE, and IgA) and splenocyte cytokines [interferon gamma (IFN-γ), interleukin (IL)-5, and IL-10]. Furthermore, varying cocktail vaccine dosages did not significantly affect protection. The results confirm that a 50 μg rBs(GAL+UP) dosage holds promise as a better candidate vaccine combination against B. schroederi infection, providing a basis for developing the B. schroederi vaccine.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China.
| |
Collapse
|
18
|
Chen S, Gao T, Li X, Huang K, Yuan L, Zhou S, Jiang J, Wang Y, Xie J. Molecular characterization and functional analysis of galectin-1 from silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109209. [PMID: 37944682 DOI: 10.1016/j.fsi.2023.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Galectins, as members of lectin families, exhibit a high affinity for β-galactosides and play diverse roles in biological processes. They function as pattern recognition receptors (PRRs) with important roles in immune defense. In this study, galectin-1, designated as SpGal-1, was identified and characterized from silver pomfret (Pampus argenteus). The SpGal-1 comprises an open reading frame (ORF) spanning 396 base pairs (bp) and encodes a deduced amino acid (aa) sequence containing a single carbohydrate recognition domain (CRD). Sublocalization analysis revealed that SpGal-1 was mainly expressed in the cytoplasm. The mRNA transcripts of SpGal-1 were ubiquitously detected in various tissues, with a higher expression level in the intestine. In addition, when exposed to Photobacterium damselae subsp. damselae (PDD) infection, both the liver and head kidney exhibited significantly increased SpGal-1 mRNA expression. The recombinant protein of SpGal-1 (named as rSpGal-1) demonstrated hemagglutination against red blood cells (RBCs) from Larimichthys crocea and P. argenteus in a Ca2+ or β-Mercaptoethanol (β-ME)-independent manner. Notably, rSpGal-1 could bind with various pathogen-associated molecular patterns (PAMPs) including D-galactose, D-mannose, lipopolysaccharide (LPS), and peptidoglycan (PGN), with highest affinity to PGN. Moreover, rSpGal-1 effectively interacted with an array of bacterial types encompassing Gram-positive bacteria (Staphylococcus aureus and Nocardia seriolae) and Gram-negative bacteria (PDD and Escherichia coli, among others), with the most robust binding affinity towards PDD. Collectively, these findings highlight that SpGal-1 is a crucial PRR with involvement in the host immune defense of silver pomfret.
Collapse
Affiliation(s)
- Suyang Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Tingting Gao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lu Yuan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Suming Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Yang Q, Sun J, Wu W, Xing Z, Yan X, Lv X, Wang L, Song L. A galectin-9 involved in the microbial recognition and haemocyte autophagy in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105063. [PMID: 37730190 DOI: 10.1016/j.dci.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Galectin-9 is a tandem-repeat type member of galectin family participating in various immune responses, such as cell agglutination, phagocytosis, and autophagy. In the present study, a tandem repeat galectin-9 (defined as CgGal-9) was identified from Pacific oyster Crassostrea gigas, which consisted of two conserved carbohydrate recognition domains (CRDs) joined by a linker peptide. CgGal-9 was closely clustered with CaGal-9 from C. angulata, and they were assigned into the branch of invertebrate galectin-9s in the phylogenetic tree. The mRNA transcripts of CgGal-9 were detected in all the tested tissues, with the highest expression level in haemocytes. The mRNA expressions of CgGal-9 in haemocytes increased significantly after lipopolysaccharide (LPS) and Vibrio splendidus stimulation. The recombinant CgGal-9 was able to bind all the examined pathogen-associated molecular patterns (LPS, peptidoglycan, and mannose) and microbes (V. splendidus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Pichia pastoris), and agglutinated most of them in the presence of Ca2+. In CgGal-9-RNAi oysters, the mRNA expressions of autophagy related genes (CgBeclin1, CgATG5, CgP62 and CgLC3) in haemocytes decreased significantly while that of CgmTOR increased significantly at 3 h after V. splendidus stimulation. The autophagy level and mRNA expressions of autophagy related genes decreased in haemocytes after CgGal-9 was blocked by the corresponding antibody. These results revealed that CgGal-9 was able to bind different microbes and might be involved in haemocyte autophagy in the immune response of oyster.
Collapse
Affiliation(s)
- Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
20
|
Sato Y, Matsunaga R, Tasumi S, Mizuno N, Nakane M, Hosoya S, Yamamoto A, Nakamura O, Tsutsui S, Shiozaki K, Kikuchi K. l-fucoside localization in the gills of the genus Takifugu and its possible implication in the parasitism of Heterobothrium okamotoi (Monogenea: Diclidophoridae). Biochim Biophys Acta Gen Subj 2023; 1867:130467. [PMID: 37777092 DOI: 10.1016/j.bbagen.2023.130467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The monogenean parasite Heterobothrium okamotoi only parasitizes the gills of Takifugu rubripes. In this study, we hypothesized that the carbohydrates contribute to high host specificity of H. okamotoi. METHODS T. rubripes, T. niphobles, T. snyderi, and T. pardalis were used for UEA I staining of the gills and an in vivo challenge test against H. okamotoi. To examine the effect of l-fucose, an in vitro detachment test was conducted using the host's gills. Additionally, fucosylated proteins were isolated from the membrane proteins of T. niphobles gills. RESULTS The location of l-fucoside and the infection dynamics in four species were correlated to some extent; H. okamotoi detached relatively quickly from T. niphobles possessing l-fucoside both on the surface of the gills and in certain types of cells, including mucus cells, but detached slowly from T. snyderi possessing l-fucoside in only certain types of cells, including mucus cells. Under the conditions examined, H. okamotoi exhibited minimal detachment from T. rubripes and T. pardalis, and l-fucoside was not detected. The significantly higher detachment rate of H. okamotoi from the host's gills incubated in l-fucose-containing medium compared with the controls suggests that l-fucose in the non-host gills induced detachment of H. okamotoi. Four fucosylated proteins, including mucin5AC-like, were identified as potential factors for the detachment of H. okamotoi. CONCLUSIONS Fucosylated proteins covering the surface of non-host gills might contribute to H. okamotoi detachment. GENERAL SIGNIFICANCE This research shows the possible involvement of oligosaccharides in the host specificity of monogenean parasites.
Collapse
Affiliation(s)
- Yoshiki Sato
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Ryohei Matsunaga
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Satoshi Tasumi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan.
| | - Naoki Mizuno
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Motoyuki Nakane
- Kumamoto Prefectural Fisheries Research Center, 2450-2 Oyanomachinaka, Amakusa, Kumamoto 869-3603, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| |
Collapse
|
21
|
Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, Orfanos SE, Dimakopoulou V, Schinas G, Tzouvelekis A, Aidinis V, Kotanidou A. Increased Levels of Galectin-3 in Critical COVID-19. Int J Mol Sci 2023; 24:15833. [PMID: 37958814 PMCID: PMC10650562 DOI: 10.3390/ijms242115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Karolina Akinosoglou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Vasiliki Dimakopoulou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Georgios Schinas
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University General Hospital of Patras, 26504 Patras, Greece;
| | - Vassilis Aidinis
- Institute of Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece;
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| |
Collapse
|
22
|
Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109040. [PMID: 37648118 DOI: 10.1016/j.fsi.2023.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Galectins, a family of lectins that bind to β-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.
Collapse
Affiliation(s)
- Tingyi Luo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuai Guan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
23
|
Xiong L, Chen L, Chen Y, Shen N, Hua R, Yang G. Evaluation of the immunoprotective effects of eight recombinant proteins from Baylisascaris schroederi in mice model. Parasit Vectors 2023; 16:254. [PMID: 37501169 PMCID: PMC10375773 DOI: 10.1186/s13071-023-05886-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Baylisascaris schroederi is the most common and harmful intestinal parasitic nematode of giant pandas, causing ascariasis. Although drug deworming is the main measure to control ascariasis in captive giant pandas, prolonged and repeated use of deworming drugs might induce resistance in nematodes and drug residues in giant pandas. Therefore, developing a safe and effective vaccine might provide a novel strategy to prevent ascariasis in captive giant pandas. METHODS Four highly expressed secretome genes encoding excretory and secretory proteins of B. schroederi, including transthyretin-like protein 46 (BsTLP), uncharacterized protein (BsUP), hypothetical protein 1 (BsHP1), and hypothetical protein 2 (BsHP2) and four functional genes [(encoding Galectin (BsGAL), glutathione S-transferase (BsGST), fatty acid-binding protein (BsFABP), and thioredoxin peroxidase (BsTPX)] were identified based on genome and transcriptome databases of B. schroederi and used to construct recombinant proteins via prokaryotic expression. Kunming mice were vaccinated subcutaneously twice with the recombinant proteins (50 μg/mouse) mixed with Quil A adjuvant with a 2-week interval and then orally challenged with 3000 infective eggs. The immunoprotective effects of the eight recombinant proteins on mice were assessed comprehensively using surface lesion histology scores of the mouse liver and lung, larval worm reduction, serum antibody levels (IgG, IgE, IgA, IgG1, and IgG2a), and cytokine production [interferon gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-5, and IL-10]. RESULTS Mice vaccinated with recombinant (r)BsUP (76.5%), rBsGAL (74.7%), and rBsHP2 (71.5%) showed a significant (P < 0.001) reduction in the larval worm rate compared with that in the adjuvant control. Besides, the surface lesions in the liver and lung of the vaccinated mice were alleviated. Serum levels of total IgG, IgE, IgA, IgG1, IgG2a, and cytokines, including IL-10, IL-5, and IFN-γ, were significantly higher (P < 0.001) than those in the control group. CONCLUSIONS The results showed that candidate three vaccines (rBsUP, rBsGAL, and rBsHP2) could provide effective protection against egg infection in mice associated with a mixed Th1/2-type immune response.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Yang Y, Wu B, Li W, Han F. Molecular Characterization of Galectin-3 in Large Yellow Croaker Larimichthys crocea Functioning in Antibacterial Activity. Int J Mol Sci 2023; 24:11539. [PMID: 37511297 PMCID: PMC10380712 DOI: 10.3390/ijms241411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Galectins are proteins that play a crucial role in the innate immune response against pathogenic microorganisms. Previous studies have suggested that Galectin-3 could be a candidate gene for antibacterial immunity in the large yellow croaker Larimichthys crocea. In this study, we cloned the Galectin-3 gene in the large yellow croaker, and named it LcGal-3. The deduced amino acid sequence of LcGal-3 contains a carbohydrate recognition domain with two conserved β-galactoside binding motifs. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that LcGal-3 was expressed in all the organs/tissues that were tested, with the highest expression level in the gill. In Larimichthys crocea kidney cell lines, LcGal-3 protein was distributed in both the cytoplasm and nucleus. Moreover, we found that the expression of LcGal-3 was significantly upregulated upon infection with Pseudomonas plecoglossicida, as demonstrated by qRT-PCR analyses. We also purified the LcGal-3 protein that was expressed in prokaryotes, and found that it has the ability to agglutinate large yellow croaker red blood cells in a Ca2+-independent manner. The agglutination activity of LcGal-3 was inhibited by lipopolysaccharides (LPS) in a concentration-dependent manner, as shown in the sugar inhibition test. Additionally, LcGal-3 exhibited agglutination and antibacterial activities against three Gram-negative bacteria, including P. plecoglossicida, Vibrio parahaemolyticus, and Vibrio harveyi. Furthermore, we studied the agglutination mechanism of the LcGal-3 protein using blood coagulation tests with LcGal-3 deletion and point mutation proteins. Our results indicate that LcGal-3 protein plays a critical role in the innate immunity of the large yellow croaker, providing a basis for further studies on the immune mechanism and disease-resistant breeding in L. crocea and other marine fish.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| |
Collapse
|
25
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
27
|
Ghosh S, Ahearn CP, Isabella CR, Marando VM, Dodge GJ, Bartlett H, McPherson RL, Dugan AE, Jain S, Neznanova L, Tettelin H, Putnik R, Grimes CL, Ruhl S, Kiessling LL, Imperiali B. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host-microbe interactions with oral commensals. Proc Natl Acad Sci U S A 2023; 120:e2216304120. [PMID: 37216558 PMCID: PMC10235990 DOI: 10.1073/pnas.2216304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christian P. Ahearn
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | | | - Victoria M. Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gregory J. Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert L. McPherson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda E. Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shikha Jain
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Lubov Neznanova
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD21201
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
28
|
Lete M, Hoffmann M, Schomann N, Martínez-Castillo A, Peccati F, Konietzny PB, Delgado S, Snyder NL, Jiménez-Oses G, Abrescia NGA, Ardá A, Hartmann L, Jiménez-Barbero J. Molecular Recognition of Glycan-Bearing Glycomacromolecules Presented at Membrane Surfaces by Lectins: An NMR View. ACS OMEGA 2023; 8:16883-16895. [PMID: 37214724 PMCID: PMC10193412 DOI: 10.1021/acsomega.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.
Collapse
Affiliation(s)
- Marta
G. Lete
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Miriam Hoffmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Nils Schomann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Ane Martínez-Castillo
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Francesca Peccati
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Patrick B. Konietzny
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sandra Delgado
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Nicole L. Snyder
- Department
of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Gonzalo Jiménez-Oses
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Nicola G. A. Abrescia
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas, Instituto de Salud Carlos
III, Madrid 28029, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Laura Hartmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| |
Collapse
|
29
|
Ahmed R, Anam K, Ahmed H. Development of Galectin-3 Targeting Drugs for Therapeutic Applications in Various Diseases. Int J Mol Sci 2023; 24:8116. [PMID: 37175823 PMCID: PMC10179732 DOI: 10.3390/ijms24098116] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 (Gal3) is one of the most studied members of the galectin family that mediate various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Since Gal3 is pro-inflammatory, it is involved in many diseases that are associated with chronic inflammation such as cancer, organ fibrosis, and type 2 diabetes. As a multifunctional protein involved in multiple pathways of many diseases, Gal3 has generated significant interest in pharmaceutical industries. As a result, several Gal3-targeting therapeutic drugs are being developed to address unmet medical needs. Based on the PubMed search of Gal3 to date (1987-2023), here, we briefly describe its structure, carbohydrate-binding properties, endogenous ligands, and roles in various diseases. We also discuss its potential antagonists that are currently being investigated clinically or pre-clinically by the public and private companies. The updated knowledge on Gal3 function in various diseases could initiate new clinical or pre-clinical investigations to test therapeutic strategies, and some of these strategies could be successful and recognized as novel therapeutics for unmet medical needs.
Collapse
Affiliation(s)
| | | | - Hafiz Ahmed
- GlycoMantra Inc., Biotechnology Center, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
30
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Galectins are critical regulators of cytokine signalling at feto-maternal interface in infection-associated spontaneous preterm birth. Placenta 2023; 138:10-19. [PMID: 37146535 DOI: 10.1016/j.placenta.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Spontaneous preterm birth (sPTB) is a global health issue. Studies suggest infections are chiefly associated with sPTB and galectins (gals) play a role in regulation of innate and adaptive maternal immune response against pathogens during sPTB. The aim of this study was to describe the gene expression of gal -1, -3, -8, -9, -13 in relation to gene expression of cyclooxygenase-2 (COX-2) and the cytokines IL-8, IL-10, TNF-α, IFN-ϒ in the setting of sPTB and confirmed infection with Chlamydia trachomatis, Mycoplasma hominis, and Ureaplasma urealyticum. METHODS Placental samples were collected from 120 term control and 120 sPTB pregnancies. PCR was used to detect specific pathogens. Gene expression of galectins, cytokines, and COX-2 was performed using real time qPCR. RESULTS Fold-change expression of gal -1, -3, -8, -9, -13 was 5.13, 6.11, 1.14, 5.23 and 7.16 (p<0.001), respectively; while IL-10, IL-8, TNF-α, IFN-ϒ and COX-2 was 6.29, 6.55, 6.35, 6.36 and 2.73-fold upregulated (p<0.05), respectively in infected sPTB. Gal-1 was positively correlated with IL-10 (r=0.49, p=0.003) while gal-3 showed significant correlation with IL-8 (r=0.42, p=0.0113), TNF-α (r=0.65, p=< 0.001) and COX-2 (r=0.72, p=0.001). However, gal-8 was not significantly correlated with any cytokine. Gal-9, -13 were negatively correlated with IFN-ϒ (r=-0.45, p=0.006) and IL-8 (r=-0.39, p=0.018). DISCUSSION Gal-1, -9, -13 are anti-inflammatory and might play role in immune-tolerance while gal-3 is pro-inflammatory and possibly responsible for immunogenic response, having potential to anticipate the clinical beginning of preterm labour during infection.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India.
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India.
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
31
|
Wu SC, Jan HM, Vallecillo-Zúniga ML, Rathgeber MF, Stowell CS, Murdock KL, Patel KR, Nakahara H, Stowell CJ, Nahm MH, Arthur CM, Cummings RD, Stowell SR. Whole microbe arrays accurately predict interactions and overall antimicrobial activity of galectin-8 toward distinct strains of Streptococcus pneumoniae. Sci Rep 2023; 13:5324. [PMID: 37005394 PMCID: PMC10067959 DOI: 10.1038/s41598-023-27964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Matthew F Rathgeber
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Caleb S Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Ave South Birmingham, Alabama, 35294, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Labbé F, Abdeladhim M, Abrudan J, Araki AS, Araujo RN, Arensburger P, Benoit JB, Brazil RP, Bruno RV, Bueno da Silva Rivas G, Carvalho de Abreu V, Charamis J, Coutinho-Abreu IV, da Costa-Latgé SG, Darby A, Dillon VM, Emrich SJ, Fernandez-Medina D, Figueiredo Gontijo N, Flanley CM, Gatherer D, Genta FA, Gesing S, Giraldo-Calderón GI, Gomes B, Aguiar ERGR, Hamilton JGC, Hamarsheh O, Hawksworth M, Hendershot JM, Hickner PV, Imler JL, Ioannidis P, Jennings EC, Kamhawi S, Karageorgiou C, Kennedy RC, Krueger A, Latorre-Estivalis JM, Ligoxygakis P, Meireles-Filho ACA, Minx P, Miranda JC, Montague MJ, Nowling RJ, Oliveira F, Ortigão-Farias J, Pavan MG, Horacio Pereira M, Nobrega Pitaluga A, Proveti Olmo R, Ramalho-Ortigao M, Ribeiro JMC, Rosendale AJ, Sant’Anna MRV, Scherer SE, Secundino NFC, Shoue DA, da Silva Moraes C, Gesto JSM, Souza NA, Syed Z, Tadros S, Teles-de-Freitas R, Telleria EL, Tomlinson C, Traub-Csekö YM, Marques JT, Tu Z, Unger MF, Valenzuela J, Ferreira FV, de Oliveira KPV, Vigoder FM, Vontas J, Wang L, Weedall GD, Zhioua E, Richards S, Warren WC, Waterhouse RM, Dillon RJ, McDowell MA. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World. PLoS Negl Trop Dis 2023; 17:e0010862. [PMID: 37043542 PMCID: PMC10138862 DOI: 10.1371/journal.pntd.0010862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023] Open
Abstract
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
Collapse
Affiliation(s)
- Frédéric Labbé
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jenica Abrudan
- Genomic Sciences & Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alejandra Saori Araki
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Rafaela V. Bruno
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gustavo Bueno da Silva Rivas
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Vinicius Carvalho de Abreu
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jason Charamis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Iliano V. Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | | | - Alistair Darby
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Viv M. Dillon
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Catherine M. Flanley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Fernando A. Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sandra Gesing
- Discovery Partners Institute, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Gloria I. Giraldo-Calderón
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
- Dept. Ciencias Biológicas & Dept. Ciencias Básicas Médicas, Universidad Icesi, Cali, Colombia
| | - Bruno Gomes
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - James G. C. Hamilton
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Omar Hamarsheh
- Department of Life Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine
| | - Mallory Hawksworth
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Jacob M. Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul V. Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, Texas, United States of America
| | - Jean-Luc Imler
- CNRS-UPR9022 Institut de Biologie Moléculaire et Cellulaire and Faculté des Sciences de la Vie-Université de Strasbourg, Strasbourg, France
| | - Panagiotis Ioannidis
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charikleia Karageorgiou
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Genomics Group – Bioinformatics and Evolutionary Biology Lab, Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ryan C. Kennedy
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Andreas Krueger
- Medical Entomology Branch, Dept. Microbiology, Bundeswehr Hospital, Hamburg, Germany
- Medical Zoology Branch, Dept. Microbiology, Central Bundeswehr Hospital, Koblenz, Germany
| | - José M. Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Patrick Minx
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Jose Carlos Miranda
- Laboratório de Imunoparasitologia, CPqGM, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald J. Nowling
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Marcio G. Pavan
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Transmissores de Hematozoários, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Horacio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Andre Nobrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Ramalho-Ortigao
- F. Edward Hebert School of Medicine, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Andrew J. Rosendale
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Mauricio R. V. Sant’Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Steven E. Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | | | - Nataly Araujo Souza
- Laboratory Interdisciplinar em Vigilancia Entomologia em Diptera e Hemiptera, Fiocruz, Rio de Janeiro, Brazil
| | - Zainulabueddin Syed
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Samuel Tadros
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | - Erich L. Telleria
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - João Trindade Marques
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Zhijian Tu
- Fralin Life Science Institute and Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria F. Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jesus Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Flávia V. Ferreira
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karla P. V. de Oliveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe M. Vigoder
- Universidade Federal do Rio de Janeiro, Instituto de Biologia. Rio de Janeiro, Brazil
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Athens Greece
| | - Lihui Wang
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Elyes Zhioua
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wesley C. Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - Robert M. Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Rod J. Dillon
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
33
|
Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol 2023; 156:127-135. [PMID: 36921487 PMCID: PMC10154945 DOI: 10.1016/j.molimm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
34
|
Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D. An Oral Galectin Inhibitor in COVID-19—A Phase II Randomized Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040731. [PMID: 37112643 PMCID: PMC10140888 DOI: 10.3390/vaccines11040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. Aim: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. Methods: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. Results: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. Conclusion: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.
Collapse
Affiliation(s)
- Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd., Bengaluru 560025, Karnataka, India
- Correspondence: ; Tel.: +9188-8443-1444
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hana Chen-Walden
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| | - Surendar Reddy
- Department of Pulmonology, ESIC Medical College and Hospital, Sanath Nagar, Hyderabad 500038, Telangana, India
| | - David Platt
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| |
Collapse
|
35
|
Galectin-9 Facilitates Epstein-Barr Virus Latent Infection and Lymphomagenesis in Human B Cells. Microbiol Spectr 2023; 11:e0493222. [PMID: 36622166 PMCID: PMC9927364 DOI: 10.1128/spectrum.04932-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immune regulator galectin-9 (Gal-9) is commonly involved in the regulation of cell proliferation, but with various impacts depending on the cell type. Here, we revealed that Gal-9 expression was persistently increased in Epstein-Barr virus (EBV)-infected primary B cells from the stage of early infection to the stage of mature lymphoblastoid cell lines (LCLs). This sustained upregulation paralleled that of gene sets related to cell proliferation, such as oxidative phosphorylation, cell cycle activation, and DNA replication. Knocking down or blocking Gal-9 expression obstructed the establishment of latent infection and outgrowth of EBV-infected B cells, while exogenous Gal-9 protein promoted EBV acute and latent infection and outgrowth of EBV-infected B cells at the early infection stage. Mechanically, stimulator of interferon gene (STING) activation or signal transducer and activator of transcription 3 (STAT3) inhibition impeded the outgrowth of EBV-infected B cells and promotion of Gal-9-induced lymphoblastoid cell line (LCL) transformation. Accordingly, Gal-9 expression was upregulated by forced EBV nuclear antigen 1 (EBNA1) expression in 293T cells in vitro. Clinical data showed that Gal-9 expression in B-cell lymphomas (BCLs) correlated positively with EBNA1 and disease stage. Targeting Gal-9 slowed LCL tumor growth and metastasis in xenografted immunodeficient mice. These findings highlight an oncogenic role of Gal-9 in EBV-associated BCLs, indicating that Gal-9 boosts the transformation of EBV-infected B cells. IMPORTANCE The cross talk between Epstein-Barr virus (EBV) and the host cell transcriptome assumes important roles in the oncogenesis of EBV-associated malignancies. Here, we first observed that endogenous Gal-9 expression was persistently increased along with an overturned V-type change in antivirus signaling during the immortalization of EBV-transformed B cells. Upregulation of Gal-9 promoted the outgrowth and latent infection of EBV-infected B cells, which was linked to B-cell-origin tumors by suppressing STING signaling and subsequently promoting STAT3 phosphorylation. EBV nuclear antigen EBNA1 induced Gal-9 expression and formed a positive feedback loop with Gal-9 in EBV-infected B cells. Tumor Gal-9 levels were positively correlated with disease stage and EBNA1 expression in patients with B-cell lymphomas (BCLs). Targeting Gal-9 slowed the growth and metastases of LCL tumors in immunodeficient mice. Altogether, our findings indicate that Gal-9 is involved in the lymphomagenesis of EBV-positive BCLs through cross talk with EBNA1 and STING signals.
Collapse
|
36
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
37
|
Molecular Cloning and Functional Characterization of Galectin-1 in Yellow Drum ( Nibea albiflora). Int J Mol Sci 2023; 24:ijms24043298. [PMID: 36834706 PMCID: PMC9963236 DOI: 10.3390/ijms24043298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora.
Collapse
|
38
|
Tsai MT, Yang RB, Ou SM, Tseng WC, Lee KH, Yang CY, Chang FP, Tarng DC. Plasma Galectin-9 Is a Useful Biomarker for Predicting Renal Function in Patients Undergoing Native Kidney Biopsy. Arch Pathol Lab Med 2023; 147:167-176. [PMID: 35687787 DOI: 10.5858/arpa.2021-0466-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Galectin-9 reduces tissue damage in certain immune-mediated glomerular diseases. However, its role in structural and functional renal changes in patients with varying types of chronic kidney disease (CKD) is less clear. OBJECTIVE.— To investigate the association between plasma galectin-9 levels, proteinuria, tubulointerstitial lesions, and renal function in different CKD stages. DESIGN.— We measured plasma galectin-9 levels in 243 patients undergoing renal biopsy for determining the CKD etiology. mRNA and protein expression levels of intrarenal galectin-9 were assessed by quantitative real-time polymerase chain reaction and immunostaining. Relationships between plasma galectin-9, clinical characteristics, and tubulointerstitial damage were analyzed with logistic regression. We investigated galectin-9 expression patterns in vitro in murine J774 macrophages treated with differing stimuli. RESULTS.— To analyze the relationship between galectin-9 and clinical features, we divided the patients into 2 groups according to median plasma galectin-9 levels. The high galectin-9 group tended to be older and to have decreased renal function, higher proteinuria, and greater interstitial fibrosis. After multivariable adjustment, elevated plasma galectin-9 levels were independently associated with stage 3b or higher CKD. An analysis of gene expression in the tubulointerstitial compartment in the biopsy samples showed a significant positive correlation between intrarenal galectin-9 mRNA expression and plasma galectin-9 levels. Immunohistochemistry confirmed increased galectin-9 expression in the renal interstitium of patients with advanced CKD, and most galectin-9-positive cells were macrophages, as determined by double-immunofluorescence staining. In vitro experiments showed that galectin-9 expression in macrophages was significantly increased after interferon-γ stimulation. CONCLUSIONS.— Our findings suggest that plasma galectin-9 is a good biomarker for diagnosing advanced CKD.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsai and R-B Yang contributed equally to this manuscript
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R-B Yang).,Tsai and R-B Yang contributed equally to this manuscript
| | - Shuo-Ming Ou
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Cheng Tseng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hua Lee
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yu Yang
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- From the Department of Pathology and Laboratory Medicine (Chang), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Cherng Tarng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,From the Department and Institute of Physiology (Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
39
|
Cytosolic galectin-4 enchains bacteria, restricts their motility, and promotes inflammasome activation in intestinal epithelial cells. Proc Natl Acad Sci U S A 2023; 120:e2207091120. [PMID: 36689650 PMCID: PMC9945948 DOI: 10.1073/pnas.2207091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Galectin-4, a member of the galectin family of animal glycan-binding proteins (GBPs), is specifically expressed in gastrointestinal epithelial cells and is known to be able to bind microbes. However, its function in host-gut microbe interactions remains unknown. Here, we show that intracellular galectin-4 in intestinal epithelial cells (IECs) coats cytosolic Salmonella enterica serovar Worthington and induces the formation of bacterial chains and aggregates. Galectin-4 enchains bacteria during their growth by binding to the O-antigen of lipopolysaccharides. Furthermore, the binding of galectin-4 to bacterial surfaces restricts intracellular bacterial motility. Galectin-4 enhances caspase-1 activation and mature IL-18 production in infected IECs especially when autophagy is inhibited. Finally, orally administered S. enterica serovar Worthington, which is recognized by human galectin-4 but not mouse galectin-4, translocated from the intestines to mesenteric lymph nodes less effectively in human galectin-4-transgenic mice than in littermate controls. Our results suggest that galectin-4 plays an important role in host-gut microbe interactions and prevents the dissemination of pathogens. The results of the study revealed a novel mechanism of host-microbe interactions that involves the direct binding of cytosolic lectins to glycans on intracellular microbes.
Collapse
|
40
|
Abstract
The galectin family consists of carbohydrate (glycan) binding proteins that are expressed by a wide variety of cells and bind to galactose-containing glycans. Galectins can be located in the nucleus or the cytoplasm, or can be secreted into the extracellular space. They can modulate innate and adaptive immune cells by binding to glycans on the surface of immune cells or intracellularly via carbohydrate-dependent or carbohydrate-independent interactions. Galectins expressed by immune cells can also participate in host responses to infection by directly binding to microorganisms or by modulating antimicrobial functions such as autophagy. Here we explore the diverse ways in which galectins have been shown to impact immunity and discuss the opportunities and challenges in the field.
Collapse
|
41
|
Lee IG, Joo YH, Jeon H, Jeong R, Kim EH, Chung H, Eyun SI, Kim J, Seo YJ, Hong SH. Galectin-4 increases the ability of M2 macrophages to enhance antiviral CD4+ T-cell responses. J Leukoc Biol 2023; 113:71-83. [PMID: 36822160 DOI: 10.1093/jleuko/qiac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/12/2023] Open
Abstract
Galectin-4 (Gal-4) is a β-galactoside-binding protein belonging to the galectin family. Although Gal-4 is known to be involved in several physiologic processes of the gastrointestinal tract, its immunomodulatory roles remain unclear. In this study, we investigated whether Gal-4 influences the function of M1 and M2 macrophages. Gal-4 treatment drove more robust changes in the gene expression of M2 macrophages compared to M1 macrophages. Antiviral immune response-related genes were significantly upregulated in Gal-4-treated M2 macrophages. Gal-4 significantly enhanced the immunostimulatory activity of M2 macrophages upon Toll-like receptor 7 stimulation or infection with lymphocytic choriomeningitis virus (LCMV). Moreover, the antibody production against LCMV infection and the antiviral CD4+ T-cell responses, but not the antiviral CD8+ T-cell responses, were greatly increased by Gal-4-treated M2 macrophages in vivo. The present results indicate that Gal-4 enhances the ability of M2 macrophages to promote antiviral CD4+ T-cell responses. Thus, Gal-4 could be used to boost antiviral immune responses.
Collapse
Affiliation(s)
- In-Gu Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yong-Hyun Joo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoyeon Jeon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Raehyuk Jeong
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam 13488, Republic of Korea
| | - Hyunwoo Chung
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| |
Collapse
|
42
|
Cinkir U, Bir LS, Tekin S, Karagulmez AM, Avci Cicek E, Senol H. Investigation of anti-galectin-8 levels in patients with multiple sclerosis: A consort-clinical study. Medicine (Baltimore) 2023; 102:e32621. [PMID: 36607856 PMCID: PMC9829274 DOI: 10.1097/md.0000000000032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ± standard deviations. RESULTS The mean blood anti-galectin-8 value of the patient group was 4.84 ± 4.53 ng/mL, while it was 4.67 ± 3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.
Collapse
Affiliation(s)
- Ufuk Cinkir
- T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Istanbul, Turkey
- * Correspondence: Ufuk Cinkir, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam Ve Sakura Sehir Hastanesi, Istanbul 34480, Turkey (e-mail: )
| | - Levent Sinan Bir
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Selma Tekin
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Ahmet Magrur Karagulmez
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Esin Avci Cicek
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Hande Senol
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| |
Collapse
|
43
|
de Arruda MCS, da Silva MROB, Cavalcanti VLR, Brandao RMPC, de Araújo Viana Marques D, de Lima LRA, Porto ALF, Bezerra RP. Antitumor lectins from algae: A systematic review. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
What Is Hot and New in Basic and Translational Science in Liver Transplantation in 2022? Report of the Basic and Translational Research Committee of the International Liver Transplantation Society. Transplantation 2022; 107:808-814. [PMID: 36550624 DOI: 10.1097/tp.0000000000004476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Henderson MI, Eygeris Y, Jozic A, Herrera M, Sahay G. Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles. Mol Pharm 2022; 19:4275-4285. [PMID: 36129254 PMCID: PMC9916253 DOI: 10.1021/acs.molpharmaceut.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipid nanoparticles containing messenger RNA (mRNA-LNPs) have launched to the forefront of nonviral delivery systems with their realized potential during the COVID-19 pandemic. Here, we investigate the impact of commonly used biological buffers on the performance and durability of mRNA-LNPs. We tested the compatibility of three common buffers─HEPES, Tris, and phosphate-buffered saline─with a DLin-MC3-DMA mRNA-LNP formulation before and after a single controlled freeze-thaw cycle. We hypothesized that buffer composition would affect lipid-aqueous phase separation. Indeed, the buffers imposed structural changes in LNP morphology as indicated by electron microscopy, differential scanning calorimetry, and membrane fluidity assays. We employed in vitro and in vivo models to measure mRNA transfection and found that Tris or HEPES-buffered LNPs yielded better cryoprotection and transfection efficiency compared to PBS. Understanding the effects of various buffers on LNP morphology and efficacy provides valuable insights into maintaining the stability of LNPs after long-term storage.
Collapse
Affiliation(s)
- Michael I Henderson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
46
|
Yan P, Lin C, He M, Zhang Z, Zhao Q, Li E. Immune regulation mediated by JAK/STAT signaling pathway in hemocytes of Pacific white shrimps, Litopenaeus vannamei stimulated by lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2022; 130:141-154. [PMID: 35932985 DOI: 10.1016/j.fsi.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
To understand the regulatory mechanism of Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway on the immune system of the Pacific white shrimp, Litopenaeus vannamei, RNA interference technique was used to investigate the effects of JAK/STAT signaling pathway on the immune response of hemocyte in Litopenaeus vannamei stimulated by lipopolysaccharide (LPS). The results showed that 1) after 6 h of LPS stimulation, the expression levels of immune genes in hemocyte were significantly up-regulated (P < 0.05), the immune defense ability (hemocyte number, phagocytosis rate, hemagglutination activity, bacteriolytic activity, antibacterial activity, prophenoloxidase system activity) and the hemocyte antioxidant ability were significantly higher than the control group, especially at 12 h. 2) After 48 h of STAT gene interference, the expression levels of immune genes in hemocytes were significantly down-regulated, and the immune defense ability (hemocyte count, phagocytosis rate, plasma agglutination activity, lysozyme activity, antibacterial activity, proPO system activity) and the antioxidant ability were reduced and significantly lower than control. Concurrently, after LPS stimulation, the immune indexes were significantly up-regulated at 12 h to the maximum but was still lower the undisturbed LPS group. These results indicate that JAK/STAT signaling pathway is involved in the immune regulation mechanism of L. vannamei against LPS stimulation through positive regulation of cellular immune and humoral immune. These results provide a basis for further research on the role and status of JAK/STAT signaling pathway in the immune defense of crustaceans.
Collapse
Affiliation(s)
- Peiyu Yan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Cheng Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Meng He
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuofan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
47
|
Galectin-1 and Galectin-9 Concentration in Maternal Serum: Implications in Pregnancies Complicated with Preterm Prelabor Rupture of Membranes. J Clin Med 2022; 11:jcm11216330. [PMID: 36362558 PMCID: PMC9658671 DOI: 10.3390/jcm11216330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm prelabor rupture of membranes (pPROM) accounts for nearly half of premature births. Although several risk factors have been identified, no markers allowing for effective prevention have been discovered. In this study, we investigated how the maternal serum levels of galectin-1 and galectin-9 change in patients with pPROM in comparison to uncomplicated pregnancies. A total of 75 patients were enrolled to both study and control group (37 vs. 38, respectively). The serum concentration of galectin-1 and galectin-9 were assayed in duplicate using an enzyme-linked immunoassay. All analyses were performed using PQ Stat v. 1.8.4 software. Galectin-1 levels were significantly higher in the controls (13.32 vs. 14.71 ng/mL, p = 0.02). Galectin-9 levels were similar in both groups (13.31 vs. 14.76 ng/mL, p = 0.30). Lower galectin levels were detected for early pPROM (before 32nd GW) in comparison to late pPROM and the controls (8.85 vs. 14.45 vs. 14.71 ng/mL, p = 0.0004). Similar trend was observed in galectin-9 levels, although no statistical significance was found (11.57 vs. 14.25 vs. 14.76 ng/mL, p = 0.26). Low galectin-1 maternal serum level is associated with the incidence of preterm prelabor rupture of membranes. Galectin-9 maternal serum levels were not significantly correlated with pPROM. However, in order to investigate gal-1 and gal-9 levels as potential, promising markers of pPROM, further clinical studies on larger groups are required.
Collapse
|
48
|
Ou C, Li C, Feng C, Tong X, Vasta GR, Wang LX. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg Med Chem 2022; 72:116974. [PMID: 36108470 PMCID: PMC10349921 DOI: 10.1016/j.bmc.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of β-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 μM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
49
|
N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Sci Rep 2022; 12:16948. [PMID: 36216861 PMCID: PMC9551102 DOI: 10.1038/s41598-022-20608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Human cervicovaginal fluid (CVF) is a complex, functionally important and glycan rich biological fluid, fundamental in mediating physiological events associated with reproductive health. Using a comprehensive glycomic strategy we reveal an extremely rich and complex N-glycome in CVF of pregnant and non-pregnant women, abundant in paucimannose and high mannose glycans, complex glycans with 2-4 N-Acetyllactosamine (LacNAc) antennae, and Poly-LacNAc glycans decorated with fucosylation and sialylation. N-glycosylation profiles were observed to differ in relation to pregnancy status, microbial composition, immune activation, and pregnancy outcome. Compared to CVF from women experiencing term birth, CVF from women who subsequently experienced preterm birth showed lower sialylation, which correlated to the presence of a diverse microbiome, and higher fucosylation, which correlated positively to pro-inflammatory cytokine concentration. This study is the first step towards better understanding the role of cervicovaginal glycans in reproductive health, their contribution to the mechanism of microbial driven preterm birth, and their potential for preventative therapy.
Collapse
|
50
|
Viana JT, Rocha RDS, Maggioni R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:152-160. [PMID: 36058435 DOI: 10.1016/j.fsi.2022.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Lectins are important pattern recognition receptors (PRRs) and their immunological action is related to the recognition of glycans present in the pathogen cells surface. The lectins described for Litopenaeus vannamei are divided into C-type, L-type and galectin, which are mainly expressed in hepatopancreas and hemocytes. They are involved in several immune response pathways, such as phagocytosis, hemocytes recruitment, prophenoloxidase activation, and gene regulation. Although lectins have multiple immune functions, most experimental challenges focus only on WSSV and Vibrio sp. This article is a detailed review on the role of lectins in L. vannamei immune system, bringing together information on molecular structure, temporal and special expression and immune function, highlighting the wide participation of these molecules in shrimp innate immune system.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|