1
|
Al-Sharif NB, Zavaliangos-Petropulu A, Narr KL. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacology 2024; 50:211-229. [PMID: 38902355 PMCID: PMC11525636 DOI: 10.1038/s41386-024-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.
Collapse
Affiliation(s)
- Noor B Al-Sharif
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Artemis Zavaliangos-Petropulu
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Iima M, Miki Y, Naganawa S. 40 years of diffusion MRI: a journey from basic science to clinical breakthrough. Jpn J Radiol 2024:10.1007/s11604-024-01669-2. [PMID: 39465482 DOI: 10.1007/s11604-024-01669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
McElroy S, Tomi-Tricot R, Cleary J, Tan HEI, Kinsella S, Jeljeli S, Goh V, Neji R. 3D distortion-free, reduced FOV diffusion-prepared gradient echo at 3 T. Magn Reson Med 2024. [PMID: 39462469 DOI: 10.1002/mrm.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers. METHODS A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI). Five healthy volunteers were scanned at 3 T using the proposed sequence, DW-SS-EPI, and a clinical diffusion-weighted multi-shot readout-segmented EPI sequence (RESOLVE) for cervical spinal cord imaging. Image quality, perceived SNR, and image distortion were assessed by two expert radiologists. ADC maps were calculated, and ADC values obtained with the proposed sequence were compared to those obtained using DW-SS-EPI and RESOLVE. RESULTS Consistent ADC estimates were measured in the diffusion phantom with the proposed sequence and the conventional DW-SS-EPI sequence, and the ADC values were in close agreement with the reference values provided by the manufacturer of the phantom. In vivo, the proposed sequence demonstrated improved image quality, improved perceived SNR, and reduced perceived distortion compared to DW-SS-EPI, whereas all measures were comparable against RESOLVE. There were no significant differences in ADC values estimated in vivo for each of the sequences. CONCLUSION 3D distortion-free diffusion-prepared imaging can be achieved using the proposed sequence.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Raphael Tomi-Tricot
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare, Courbevoie, France
| | - Jon Cleary
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Shawna Kinsella
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sami Jeljeli
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Boulant N, Mauconduit F, Gras V, Amadon A, Le Ster C, Luong M, Massire A, Pallier C, Sabatier L, Bottlaender M, Vignaud A, Le Bihan D. In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner. Nat Methods 2024:10.1038/s41592-024-02472-7. [PMID: 39420141 DOI: 10.1038/s41592-024-02472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The understanding of the human brain is one of the main scientific challenges of the twenty-first century. In the early 2000s, the French Atomic Energy Commission launched a program to conceive and build a human magnetic resonance imaging scanner operating at 11.7 T. We have now acquired human brain images in vivo at such a magnetic field. We deployed parallel transmission tools to mitigate the radiofrequency field inhomogeneity problem and tame the specific absorption rate. The safety of human imaging at such high field strength was demonstrated using physiological, vestibular, behavioral and genotoxicity measurements on the imaged volunteers. Our technology yields T2 and T2*-weighted images reaching mesoscale resolutions within short acquisition times and with a high signal and contrast-to-noise ratio.
Collapse
Affiliation(s)
- Nicolas Boulant
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Franck Mauconduit
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Vincent Gras
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexis Amadon
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Caroline Le Ster
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Luong
- DACM, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | | | - Christophe Pallier
- Cognitive Neuroimaging Unit, NeuroSpin, INSERM, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Laure Sabatier
- DIREI, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Ouachikh O, Chaix R, Sontheimer A, Coste J, Aider OA, Dautkulova A, Abdelouahab K, Hafidi A, Salah MB, Pereira B, Lemaire JJ. Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108449. [PMID: 39378632 DOI: 10.1016/j.cmpb.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND OBJECTIVE The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives. METHODS We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). RESULTS Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. CONCLUSIONS DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
Collapse
Affiliation(s)
- Omar Ouachikh
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Remi Chaix
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Jerome Coste
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Omar Ait Aider
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Aigerim Dautkulova
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Kamel Abdelouahab
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Aziz Hafidi
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Maha Ben Salah
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de la Recherche Clinique et de l'Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Aslan K, Genç B, Bolat N, Incesu L. Diffusion tensor imaging in Behcet's disease with and without neurological involvement patients: evaluation of microstructural white matter abnormality with a tract-based spatial statistical analysis. Br J Radiol 2024; 97:1645-1652. [PMID: 39180418 PMCID: PMC11417355 DOI: 10.1093/bjr/tqae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE This study aims to assess the microstructural abnormalities in white matter (WM) among Behcet's disease (BD) patients, both with and without neurological involvement, utilising tract-based spatial statistics (TBSS) to elucidate the underlying causes of WM microstructural changes. METHODS This prospective study comprised 43 BD patients without neurological involvement, 15 neuro-Behcet's disease (NBD) patients with normal conventional MRI, and 54 healthy controls matched for age and sex. TBSS was applied in this diffusion tensor imaging study to conduct a whole-brain voxel-wise analysis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of WM. RESULTS Compared to the control group, BD patients exhibited decreased FA and increased MD and RD in nearly all WM tracts, along with increased AD in the left corticospinal tract (CST), left inferior longitudinal fasciculus (ILF), and left superior longitudinal fasciculus (SLF). NBD patients also showed a widespread decrease in FA and increased MD and RD, similar to BD patients without neurological involvement. Additionally, NBD patients had increased AD in the left CST, left ILF, left SLF, left inferior fronto-occipital fasciculus (IFOF), and right CST. Compared to BD patients without neurological involvement, NBD patients exhibited a greater reduction in FA and an increase in MD and RD in WM tracts, with no significant differences in AD. CONCLUSION These results suggest that the main mechanism of microstructural changes in the WM of BD patients may be related to impaired fibre integrity, demyelination, and decreased myelin sheath integrity. ADVANCES IN KNOWLEDGE This study demonstrated BD patients without neurological involvement and NBD patients a decrease in FA and an increase in MD and RD were observed in larger areas of major WM tracts, while an increase in AD values was observed in fewer tracts. Our findings may be useful in understanding the pathophysiology underlying subclinical parenchymal involvement and neurological dysfunction in BD patients and the management of BD patients.
Collapse
Affiliation(s)
- Kerim Aslan
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Necdet Bolat
- Department of Neurology, Bayburt State Hospital, Bayburt, Turkey
| | - Lutfi Incesu
- Department of Radiology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
7
|
Billaud CHA, Yu J. Fixel-based and tensor-derived white matter abnormalities in relation to memory impairment and neurocognitive disorders. GeroScience 2024:10.1007/s11357-024-01340-8. [PMID: 39271569 DOI: 10.1007/s11357-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging-related neurocognitive disorders, including Alzheimer's disease (AD) and mild cognitive impairment (MCI), have been characterised by altered brain white matter (WM), relying widely on diffusion tensor imaging (DTI). DTI's limited accuracy in assessing crossing fibres prompted novel methods that distinguish fibres crossing through same voxel-spaces, such as fixel-based analysis (FBA), highlighting subtle macrostructural and microstructural alterations in AD and MCI. We examined the FBA and DTI's specificity in determining WM features relevant to memory in the neurocognitive aging spectrum. Diffusion-weighted images were analysed in 560 participants with various neurocognitive diagnoses from the Alzheimer's Disease Neuroimaging Initiative (F:297; mean age: 73.2 ± 8). Verbal memory was measured in 488 participants using the Rey Auditory Verbal Learning Test. FBA-derived measures of fibre density (FD), fibre-bundle cross-section (FC), and their combination (FDC), DTI fractional anisotropy (FA) and mean diffusivity (MD) were examined in relation to diagnoses and memory scores, controlling for age, sex, and intracranial volume. MCI and AD groups significantly differed from controls, with lower FD and FDC in the fornix and bilateral fibres extending to the medial temporal lobes (MTL). Memory was positively associated with FD and FDC in the fornix and MTL fibres, and FC in the anterior commissure (AC). Widespread FA reductions and MD increases were observed in AD and MCI and widely associated with memory. Fixel-wise measures highlight fibre tracts that are altered distinctly at the macroscopic and microscopic level in neurocognitive aging, and reveals structures associated with memory performance that are more specifically located than tensor-derived measures.
Collapse
Affiliation(s)
- Charly Hugo Alexandre Billaud
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, PsychologySingapore, 639798, Singapore.
| | - Junhong Yu
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, PsychologySingapore, 639798, Singapore
| |
Collapse
|
8
|
Xing Z, Pan L, Yu A, Zhang J, Dong C, Chen J, Xing W, He X, Zhang Z. Value of ultra-high b-value diffusion-weighted imaging for the evaluation of renal ischemia-reperfusion injury. Magn Reson Imaging 2024; 111:1-8. [PMID: 38574980 DOI: 10.1016/j.mri.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
To explore the feasibility of ultra-high b-value diffusion-weighted imaging (ubDWI) in assessment of renal IRI. Thirty-five rabbits were randomized into a control group (n = 7) and a renal IRI group (n = 28). The rabbits in the renal IRI group underwent left renal artery clamping for 60 min. Rabbits underwent axial ubDWI before and at 1, 12, 24, and 48 h after IRI. Apparent diffusion coefficient (ADCst) were calculated from ubDWI with two b-values (b = 0, 1000 s/mm2). Triexponential fits were applied to calculate the pure diffusion coefficients (D), perfusion-related diffusion coefficient (D⁎), and ultra-high ADC (ADCuh). The interobserver reproducibility were evaluated. The repeated measurement analysis of variance and Spearman correlation analysis was used for statistical analysis. The ADCst, D, and ADCuh values showed good reproducibility. The ADCst, D, and D⁎ values of renal Cortex (CO) and outer medulla (OM) significantly decreased after IRI (all P < 0.05). The ADCuh values significantly increased from pre-IRI to 1 h after IRI (P < 0.05) and significantly declined at 24 h and 48 h after IRI (all P < 0.05). ADCuh was strongly positively correlated with AQP-1 in the renal CO and OM (ρ = 0.643, P < 0.001; ρ = 0.662, P < 0.001, respectively). ubDWI can be used to non-invasively evaluate early renal IRI, ADCuh may be adopted to reflect AQP-1 expression.
Collapse
Affiliation(s)
- Zhaoyu Xing
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Anding Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Congsong Dong
- Department of Radiology, Affiliated Hospital 6 of Nantong University (Yancheng Third People's Hospital), Yancheng, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Zhiping Zhang
- Department of Radiology, Affiliated Hospital 6 of Nantong University (Yancheng Third People's Hospital), Yancheng, China.
| |
Collapse
|
9
|
Tinney EM, España-Irla G, Warren AEL, Whitehurst LN, Stillman AM, Hillman CH, Morris TP. Axonal injury, sleep disturbances, and memory following traumatic brain injury. Ann Clin Transl Neurol 2024; 11:2314-2326. [PMID: 39031956 DOI: 10.1002/acn3.52145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) is associated with sleep deficits, but it is not clear why some report sleep disturbances and others do not. The objective of this study was to assess the associations between axonal injury, sleep, and memory in chronic and acute TBI. METHODS Data were acquired from two independent datasets which included 156 older adult veterans (69.8 years) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with prior moderate-to-severe TBIs and 90 (69.2 years) controls and 374 (39.6 years) from Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) with a recent mild TBI (mTBI) and 87 controls (39.6 years), all who completed an MRI, memory assessment, and sleep questionnaire. RESULTS Older adults with a prior TBI had a significant association between axonal injury and sleep disturbances [β = 9.52, 95% CI (4.1, 14.9), p = 0.01]. Axonal injury predicted changes in memory over 1-year in TBI [β = -8.72, 95% CI (-18, -2.7), p = 0.03]. We externally validated those findings in TRACK-TBI where axonal injury within 2 weeks after mTBI was significantly associated with higher sleep disturbances in the TBI group at 2 weeks[β = -7.2, 95% CI (-14, -0.50), p = 0.04], 6 months [β = -16, 95% CI (-24, -7.6), p ≤ 0.01], and 12 months post-injury [β = -11, 95% CI (-19, -0.85), p = 0.03]. These associations were not significant in controls. INTERPRETATIONS Axonal injury, specifically to the left anterior internal capsule is robustly associated with sleep disturbances in multiple TBI populations. Early assessment of axonal injury following mTBI could identify those at risk for persistent sleep disturbances following injury.
Collapse
Affiliation(s)
- Emma M Tinney
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Goretti España-Irla
- Center for Cognitive & Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alexandra M Stillman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy P Morris
- Center for Cognitive & Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Applied Psychology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Shin YS, Christensen D, Wang J, Shirley DJ, Orlando AM, Romero RA, Wilkes BJ, Vaillancourt DE, Coombes S, Wang Z. Transcallosal white matter and cortical gray matter variations in autistic adults ages 30-73 years: A bi-tensor free water imaging approach. RESEARCH SQUARE 2024:rs.3.rs-4907999. [PMID: 39184088 PMCID: PMC11343291 DOI: 10.21203/rs.3.rs-4907999/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background: Autism spectrum disorder (ASD) has long been recognized as a lifelong condition, but brain aging studies in autistic adults aged >30 years are limited. Free water, a novel brain imaging marker derived from diffusion MRI (dMRI), has shown promise in differentiating typical and pathological aging and monitoring brain degeneration. We aimed to examine free water and free water corrected dMRI measures to assess white and gray matter microstructure and their associations with age in autistic adults. Methods: Forty-three autistic adults ages 30-73 years and 43 age, sex, and IQ matched neurotypical controls participated in this cross-sectional study. We quantified fractional anisotropy (FA), free water, and free water-corrected FA (fwcFA) across 32 transcallosal white matter tracts and 94 gray matter areas in autistic adults and neurotypical controls. Follow-up analyses assessed age effect on dMRI metrics of the whole brain for both groups and the relationship between dMRI metrics and clinical measures of ASD in regions that significantly differentiated autistic adults from controls. Results: We found globally elevated free water in 24 transcallosal tracts in autistic adults. We identified negligible differences in dMRI metrics in gray matter between the two groups. Age-associated FA reductions and free water increases were featured in neurotypical controls; however, this brain aging profile was largely absent in autistic adults. Additionally, greater autism quotient (AQ) total raw score was associated with increased free water in the inferior frontal gyrus pars orbitalis and lateral orbital gyrus in autistic adults. Limitations: All autistic adults were cognitively capable individuals, minimizing the generalizability of the research findings across the spectrum. This study also involved a cross-sectional design, which limited inferences about the longitudinal microstructural changes of white and gray matter in ASD. Conclusions: We identified differential microstructural configurations between white and gray matter in autistic adults and that autistic individuals present more heterogeneous brain aging profiles compared to controls. Our clinical correlation analysis offered new evidence that elevated free water in some localized white matter tracts may critically contribute to autistic traits in ASD. Our findings underscored the importance of quantifying free water in dMRI studies of ASD.
Collapse
|
11
|
Han X, Maharjan S, Chen J, Zhao Y, Qi Y, White LE, Johnson GA, Wang N. High-resolution diffusion magnetic resonance imaging and spatial-transcriptomic in developing mouse brain. Neuroimage 2024; 297:120734. [PMID: 39032791 PMCID: PMC11377129 DOI: 10.1016/j.neuroimage.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.
Collapse
Affiliation(s)
- Xinyue Han
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Jie Chen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Inglis FM, Taylor PA, Andrews EF, Pascalau R, Voss HU, Glen DR, Johnson PJ. A diffusion tensor imaging white matter atlas of the domestic canine brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-21. [PMID: 39301427 PMCID: PMC11409835 DOI: 10.1162/imag_a_00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
There is increasing reliance on magnetic resonance imaging (MRI) techniques in both research and clinical settings. However, few standardized methods exist to permit comparative studies of brain pathology and function. To help facilitate these studies, we have created a detailed, MRI-based white matter atlas of the canine brain using diffusion tensor imaging. This technique, which relies on the movement properties of water, permits the creation of a three-dimensional diffusivity map of white matter brain regions that can be used to predict major axonal tracts. To generate an atlas of white matter tracts, thirty neurologically and clinically normal dogs underwent MRI imaging under anesthesia. High-resolution, three-dimensional T1-weighted sequences were collected and averaged to create a population average template. Diffusion-weighted imaging sequences were collected and used to generate diffusivity maps, which were then registered to the T1-weighted template. Using these diffusivity maps, individual white matter tracts-including association, projection, commissural, brainstem, olfactory, and cerebellar tracts-were identified with reference to previous canine brain atlas sources. To enable the use of this atlas, we created downloadable overlay files for each white matter tract identified using manual segmentation software. In addition, using diffusion tensor imaging tractography, we created tract files to delineate major projection pathways. This comprehensive white matter atlas serves as a standard reference to aid in the interpretation of quantitative changes in brain structure and function in clinical and research settings.
Collapse
Affiliation(s)
- Fiona M Inglis
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Erica F Andrews
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Raluca Pascalau
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Henning U Voss
- Cornell Magnetic Resonance Imaging Facility, College of Human Ecology, Cornell University, Cornell, Ithaca, NY, United States
| | - Daniel R Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Philippa J Johnson
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Wu D, Lee HH, Ba R, Turnbill V, Wang X, Luo Y, Walczak P, Fieremans E, Novikov DS, Martin LJ, Northington FJ, Zhang J. In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI. SCIENCE ADVANCES 2024; 10:eadk1817. [PMID: 39018390 PMCID: PMC466947 DOI: 10.1126/sciadv.adk1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Hsi Lee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical School, Weifang, Shandong, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Litwin T, Rędzia-Ogrodnik B, Antos A, Przybyłkowski A, Członkowska A, Bembenek JP. Brain Magnetic Resonance Imaging in Wilson's Disease-Significance and Practical Aspects-A Narrative Review. Brain Sci 2024; 14:727. [PMID: 39061467 PMCID: PMC11274939 DOI: 10.3390/brainsci14070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in many organs, resulting in clinical symptoms, mostly hepatic and neuropsychiatric. As copper accumulates in the brain during WD, and almost 50% of WD patients at diagnosis present with neurological symptoms, neuroimaging studies (especially brain magnetic resonance imaging (MRI)) are part of WD diagnosis. The classical sequences (T1, T2, and fluid-attenuated inversion recovery) were used to describe brain MRI; however, with the development of neuroradiology, several papers proposed the use of new MRI sequences and techniques like susceptibility-weighted images, T2*, diffusion MRI, tractography, volumetric assessment and post-processing brain MRI analysis of paramagnetic accumulation-quantitative susceptibility mapping. Based on these neuroradiological data in WD, currently, brain MRI semiquantitative scale and the pathognomonic neuroradiological brain MRI signs in WD were proposed. Further, the volumetric studies and brain iron accumulation MRI analysis suggested brain atrophy and iron accumulation as biomarkers of neurological WD disease severity. All these results highlight the significance of brain MRI examinations in WD. Due to the extreme progress of these studies, based on the available literature, the authors present the current state of knowledge about the significance, practical aspects, and future directions of brain MRI in WD.
Collapse
Affiliation(s)
- Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Barbara Rędzia-Ogrodnik
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Adam Przybyłkowski
- Department of Gastroenterology, Medical University, Warsaw 02-097, Poland;
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Jan Paweł Bembenek
- Department of Neurophysiology, Institute Psychiatry and Neurology, 02-957 Warsaw, Poland;
| |
Collapse
|
15
|
Iima M, Kataoka M, Honda M, Le Bihan D. Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer. Korean J Radiol 2024; 25:623-633. [PMID: 38942456 PMCID: PMC11214919 DOI: 10.3348/kjr.2023.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Chan SY, Fitzgerald E, Ngoh ZM, Lee J, Chuah J, Chia JSM, Fortier MV, Tham EH, Zhou JH, Silveira PP, Meaney MJ, Tan AP. Examining the associations between microglia genetic capacity, early life exposures and white matter development at the level of the individual. Brain Behav Immun 2024; 119:781-791. [PMID: 38677627 DOI: 10.1016/j.bbi.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Collapse
Affiliation(s)
- Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Janice Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Chuah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Joanne S M Chia
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore; Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Elizabeth H Tham
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Juan H Zhou
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
17
|
Cai Y, Liu J, Yang H, Zheng L, Wu D, Xiao E, Dai Y. Utilizing multicompartmental restriction spectrum magnetic resonance imaging for liver fibrosis characterization in a mouse model. Med Phys 2024; 51:4635-4645. [PMID: 38753987 DOI: 10.1002/mp.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Currently, an advanced imaging method may be necessary for magnetic resonance imaging (MRI) to diagnosis and quantify liver fibrosis (LF). PURPOSE To evaluate the feasibility of the multicompartmental restriction spectrum imaging (RSI) model to characterize LF in a mouse model. METHODS Thirty mice with carbon tetrachloride (CCl4)-induced LF and eight control mice were investigated using multi-b-value (ranging from 0 to 2000 s/mm2) diffusion-weighted imaging (DWI) on a 3T scanner. DWI data were processed using RSI model (2-5 compartments) with the Bayesian Information Criterion (BIC) determining the optimal model. Conventional ADC value and signal fraction of each compartment in the optimal RSI model were compared across groups. Receiver operating characteristics (ROC) curve analysis was performed to determine the diagnosis performances of different parameters, while Spearman correlation analysis was employed to investigate the correlation between different tissue compartments and the stage of LF. RESULTS According to BIC results, a 4-compartment RSI model (RSI4) with optimal ADCs of 0.471 × 10-3, 1.653 × 10-3, 9.487 × 10-3, and > 30 × 10-3, was the optimal model to characterize LF. Significant differences in signal contribution fraction of the C1 and C3 compartments were observed between LF and control groups (P = 0.018 and 0.003, respectively). ROC analysis showed that RSI4-C3 was the most effective single diffusion parameter for characterizing LF (AUC = 0.876, P = 0.003). Furthermore, the combination of ADC values and RSI4-C3 value increased the diagnosis performance significantly (AUC = 0.894, P = 0.002). CONCLUSION The 4-compartment RSI model has the potential to distinguish LF from the control group based on diffusion parameters. RSI4-C3 showed the highest diagnostic performance among all the parameters. The combination of ADC and RSI4-C3 values further improved the discrimination performance.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - HaiTao Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Liyun Zheng
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yongming Dai
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Mattia GM, Villain E, Nemmi F, Le Lann MV, Franceries X, Péran P. Investigating the discrimination ability of 3D convolutional neural networks applied to altered brain MRI parametric maps. Artif Intell Med 2024; 153:102897. [PMID: 38810471 DOI: 10.1016/j.artmed.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Convolutional neural networks (CNNs) are gradually being recognized in the neuroimaging community as a powerful tool for image analysis. Despite their outstanding performances, some aspects of CNN functioning are still not fully understood by human operators. We postulated that the interpretability of CNNs applied to neuroimaging data could be improved by investigating their behavior when they are fed data with known characteristics. We analyzed the ability of 3D CNNs to discriminate between original and altered whole-brain parametric maps derived from diffusion-weighted magnetic resonance imaging. The alteration consisted in linearly changing the voxel intensity of either one (monoregion) or two (biregion) anatomical regions in each brain volume, but without mimicking any neuropathology. Performing ten-fold cross-validation and using a hold-out set for testing, we assessed the CNNs' discrimination ability according to the intensity of the altered regions, comparing the latter's size and relative position. Monoregion CNNs showed that the larger the modified region, the smaller the intensity increase needed to achieve good performances. Biregion CNNs systematically outperformed monoregion CNNs, but could only detect one of the two target regions when tested on the corresponding monoregion images. Exploiting prior information on training data allowed for a better understanding of CNN behavior, especially when altered regions were combined. This can inform about the complexity of CNN pattern retrieval and elucidate misclassified examples, particularly relevant for pathological data. The proposed analytical approach may serve to gain insights into CNN behavior and guide the design of enhanced detection systems exploiting our prior knowledge.
Collapse
Affiliation(s)
- Giulia Maria Mattia
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Edouard Villain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France; LAAS CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France.
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | | | - Xavier Franceries
- CRCT, Centre de Recherche en Cancérologie de Toulouse, Inserm, UPS, Toulouse, France.
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| |
Collapse
|
19
|
Xu X, Yang H, Cong J, Sydnor V, Cui Z. Structural connectivity matures along a sensorimotor-association connectional axis in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599267. [PMID: 38948845 PMCID: PMC11212872 DOI: 10.1101/2024.06.17.599267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, we observed a continuum of developmental profiles that spans from an early childhood increase in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in association-association connectional strength. The S-A connectional axis also captured spatial variations in associations between structural connectivity and both higher-order cognition and general psychopathology. Together, our findings reveal a hierarchical axis in the development of structural connectivity across the human connectome.
Collapse
Affiliation(s)
- Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University; Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Hang Yang
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Jing Cong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University; Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| | - Valerie Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center; Pittsburgh, PA, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing; Beijing, 102206, China
| |
Collapse
|
20
|
Gaudreault PO, King SG, Huang Y, Ceceli AO, Kronberg G, Alia-Klein N, Goldstein RZ. FRONTAL WHITE MATTER CHANGES INDICATE RECOVERY WITH INPATIENT TREATMENT IN HEROIN ADDICTION. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.10.24308719. [PMID: 38946983 PMCID: PMC11213111 DOI: 10.1101/2024.06.10.24308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Importance Amidst an unprecedented opioid epidemic, identifying neurobiological correlates of change with medication-assisted treatment of heroin use disorder is imperative. Distributed white matter (WM) impairments in individuals with heroin use disorder (iHUD) have been associated with increased drug craving, a reliable predictor of treatment outcomes. However, little is known about the extent of whole-brain structural connectivity changes with inpatient treatment and abstinence in iHUD. Objective To assess WM microstructure and associations with drug craving changes with inpatient treatment in iHUD (effects of time/re-scan compared to controls; CTL). Design Longitudinal cohort study (12/2020-09/2022) where iHUD and CTL underwent baseline magnetic resonance imaging (MRI#1) and follow-up (MRI#2) scans, (mean interval of 13.9 weeks in all participants combined). Setting The iHUD and CTL were recruited from urban inpatient treatment facilities and surrounding communities, respectively. Participants Thirty-four iHUD (42.1yo; 7 women), 25 age-/sex-matched CTL (40.5yo; 9 women). Intervention Between scans, inpatient iHUD continued their medically-assisted treatment and related clinical interventions. CTL participants were scanned at similar time intervals. Main Outcomes and Measures Changes in white matter diffusion metrics [fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivities (RD)] in addition to baseline and cue-induced drug craving, and other clinical outcome variables (mood, sleep, affect, perceived stress, and therapy attendance). Results Main findings showed HUD-specific WM microstructure changes encompassing mostly frontal major callosal, projection, and association tracts, characterized by increased FA (.949<1-p<.986) and decreased MD (.949<1-p<.997) and RD (.949<1-p<.999). The increased FA (r=-0.72, p<.00001) and decreased MD (r=0.69, p<.00001) and RD (r=0.67, p<.0001) in the genu and body of the corpus callosum and the left anterior corona radiata in iHUD were correlated with a reduction in baseline craving (.949<1-p<.999). No other WM correlations with outcome variables reached significance. Conclusions and Relevance Our findings suggest whole-brain normalization of structural connectivity with inpatient medically-assisted treatment in iHUD encompassing recovery in frontal WM pathways implicated in emotional regulation and top-down executive control. The association with decreases in baseline craving further supports the relevance of these WM markers to a major symptom in drug addiction, with implications for monitoring clinical outcomes.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Yuefeng Huang
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ahmet O Ceceli
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Greg Kronberg
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
21
|
Hanycz SA, Noorani A, Hung PSP, Walker MR, Zhang AB, Latypov TH, Hodaie M. Hippocampus diffusivity abnormalities in classical trigeminal neuralgia. Pain Rep 2024; 9:e1159. [PMID: 38655236 PMCID: PMC11037743 DOI: 10.1097/pr9.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Patients with chronic pain frequently report cognitive symptoms that affect memory and attention, which are functions attributed to the hippocampus. Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by paroxysmal attacks of unilateral orofacial pain. Given the stereotypical nature of TN pain and lack of negative symptoms including sensory loss, TN provides a unique model to investigate the hippocampal implications of chronic pain. Recent evidence demonstrated that TN is associated with macrostructural hippocampal abnormalities indicated by reduced subfield volumes; however, there is a paucity in our understanding of hippocampal microstructural abnormalities associated with TN. Objectives To explore diffusivity metrics within the hippocampus, along with its functional and structural subfields, in patients with TN. Methods To examine hippocampal microstructure, we utilized diffusion tensor imaging in 31 patients with TN and 21 controls. T1-weighted magnetic resonance images were segmented into hippocampal subfields and registered into diffusion-weighted imaging space. Fractional anisotropy (FA) and mean diffusivity were extracted for hippocampal subfields and longitudinal axis segmentations. Results Patients with TN demonstrated reduced FA in bilateral whole hippocampi and hippocampal body and contralateral subregions CA2/3 and CA4, indicating microstructural hippocampal abnormalities. Notably, patients with TN showed significant correlation between age and hippocampal FA, while controls did not exhibit this correlation. These effects were driven chiefly by female patients with TN. Conclusion This study demonstrates that TN is associated with microstructural hippocampal abnormalities, which may precede and potentially be temporally linked to volumetric hippocampal alterations demonstrated previously. These findings provide further evidence for the role of the hippocampus in chronic pain and suggest the potential for targeted interventions to mitigate cognitive symptoms in patients with chronic pain.
Collapse
Affiliation(s)
- Shaun Andrew Hanycz
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alborz Noorani
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ashley B. Zhang
- MD Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timur H. Latypov
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Liu Z, Hou B, You H, Yu C, Tian X, Li M, Zeng X, Wang Q, Feng F. Microstructural abnormality of white matter tracts in rheumatoid arthritis. Brain Res 2024; 1832:148862. [PMID: 38471645 DOI: 10.1016/j.brainres.2024.148862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Structural and functional brain imaging studies have reported abnormalities of gray matter morphology and functional activities in patients with rheumatoid arthritis (RA). However, it is largely unknown whether patients with RA show alterations of white matter microstructural organization. OBJECTIVES To automatically identify alteration of white matter microstructure in patients with RA and further examine how this alteration associates with clinical characteristics. METHODS This single-institutional prospective study included 66 participants (33 patients with RA [52 ± 9 years, 29 women] and 33 sex/age-matched healthy controls [53 ± 12 years, 27 women]), who underwent diffusion MRI scan from January 2021 to December 2021. The white matter microstructure was assessed using fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Voxelwise analyses were conducted on white matter skeleton using an automated, observer-independent tract-based spatial statistics analysis. The relationship between white matter microstructural alterations and clinical and neuropsychological variables was evaluated using correlation analysis. RESULTS Compared with healthy controls, patients with RA exhibited lower fractional anisotropy in several major white matter tracts (threshold-free cluster enhancement at P < 0.05 for multiple comparison correction, permutation test), involving the forceps minor, bilateral inferior fronto-occipital fasciculus, bilateral anterior thalamic radiation, and bilateral uncinate fasciculus. Lower fractional anisotropy values in the patients with RA were significantly associated with pain-related assessments, including tender joint count (r = -0.43, P = 0.015), Clinical Disease Activity Index score (r = -0.36, P = 0.049), pain severity rated through visual analogue scale (r = -0.45, P = 0.012), and Simplified Disease Activity Index score (r = -0.36, P = 0.045). No significant group difference was found in mean diffusivity, axial diffusivity, and radial diffusivity. CONCLUSIONS We report the first anatomical evidence for aberrant microstructure organization of several major white matter tracts and its associations with pain processing in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chen Yu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China.
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
23
|
Wu D, Kang L, Li H, Ba R, Cao Z, Liu Q, Tan Y, Zhang Q, Li B, Yuan J. Developing an AI-empowered head-only ultra-high-performance gradient MRI system for high spatiotemporal neuroimaging. Neuroimage 2024; 290:120553. [PMID: 38403092 DOI: 10.1016/j.neuroimage.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Recent advances in neuroscience requires high-resolution MRI to decipher the structural and functional details of the brain. Developing a high-performance gradient system is an ongoing effort in the field to facilitate high spatial and temporal encoding. Here, we proposed a head-only gradient system NeuroFrontier, dedicated for neuroimaging with an ultra-high gradient strength of 650 mT/m and 600 T/m/s. The proposed system features in 1) ultra-high power of 7MW achieved by running two gradient power amplifiers using a novel paralleling method; 2) a force/torque balanced gradient coil design with a two-step mechanical structure that allows high-efficiency and flexible optimization of the peripheral nerve stimulation; 3) a high-density integrated RF system that is miniaturized and customized for the head-only system; 4) an AI-empowered compressed sensing technique that enables ultra-fast acquisition of high-resolution images and AI-based acceleration in q-t space for diffusion MRI (dMRI); and 5) a prospective head motion correction technique that effectively corrects motion artifacts in real-time with 3D optical tracking. We demonstrated the potential advantages of the proposed system in imaging resolution, speed, and signal-to-noise ratio for 3D structural MRI (sMRI), functional MRI (fMRI) and dMRI in neuroscience applications of submillimeter layer-specific fMRI and dMRI. We also illustrated the unique strength of this system for dMRI-based microstructural mapping, e.g., enhanced lesion contrast at short diffusion-times or high b-values, and improved estimation accuracy for cellular microstructures using diffusion-time-dependent dMRI or for neurite microstructures using q-space approaches.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China.
| | - Liyi Kang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Haotian Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruicheng Ba
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zuozhen Cao
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Qian Liu
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Yingchao Tan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Qinwei Zhang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Bo Li
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Jianmin Yuan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| |
Collapse
|
24
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
25
|
Weiß L, Roth F, Rea-Ludmann P, Rosenstock T, Picht T, Vajkoczy P, Zdunczyk A. NTMS based tractography and segmental diffusion analysis in patients with brainstem gliomas: Risk stratification and clinical potential. BRAIN & SPINE 2024; 4:102753. [PMID: 38510608 PMCID: PMC10951762 DOI: 10.1016/j.bas.2024.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Surgery on the brainstem level is associated with a high-risk of postoperative morbidity. Recently, we have introduced the combination of navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography to define functionally relevant motor fibers tracts on the brainstem level to support operative planning and risk stratification in brainstem cavernomas. Research question Evaluate this method and assess it's clinical impact for the surgery of brainstem gliomas. Material and methods Patients with brainstem gliomas were examined preoperatively with motor nTMS and DTI tractography. A fractional anisotropy (FA) value of 75% of the individual FA threshold (FAT) was used to track descending corticospinal (CST) and -bulbar tracts (CBT). The distance between the tumor and the somatotopic tracts (hand, leg, face) was measured and diffusion parameters were correlated to the patients' outcome. Results 12 patients were enrolled in this study, of which 6 underwent surgical resection, 5 received a stereotactic biopsy and 1 patient received conservative treatment. In all patients nTMS mapping and somatotopic tractography were performed successfully. Low FA values correlated with clinical symptoms revealing tract alteration by the tumor (p = 0.049). A tumor-tract distance (TTD) above 2 mm was the critical limit to achieve a safe complete tumor resection. Discussion and conclusion nTMS based DTI tractography combined with local diffusion analysis is a valuable tool for preoperative visualization and functional assessment of relevant motor fiber tracts, improving planning of safe entry corridors and perioperative risk stratification in brainstem gliomas tumors. This technique allows for customized treatment strategy to maximize patients' safety.
Collapse
Affiliation(s)
- Lion Weiß
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Fabia Roth
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Pierre Rea-Ludmann
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Tizian Rosenstock
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
| | - Thomas Picht
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
- Cluster of Excellence Matters of Activity. Image Space Material, Humboldt Universität zu Berlin, Germany
| | - Peter Vajkoczy
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Anna Zdunczyk
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| |
Collapse
|
26
|
Wu Y, Liu X, Huang Y, Zhou T, Zhang F. An open relaxation-diffusion MRI dataset in neurosurgical studies. Sci Data 2024; 11:177. [PMID: 38326377 PMCID: PMC10850093 DOI: 10.1038/s41597-024-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Diffusion MRI (dMRI) is a safe and noninvasive technique that provides insight into the microarchitecture of brain tissue. Relaxation-diffusion MRI (rdMRI) is an extension of traditional dMRI that captures diffusion imaging data at multiple TEs to detect tissue heterogeneity between relaxation and diffusivity. rdMRI has great potential in neurosurgical research including brain tumor grading and treatment response evaluation. However, the lack of available data has limited the exploration of rdMRI in clinical settings. To address this, we are sharing a high-quality rdMRI dataset from 18 neurosurgical patients with different types of lesions, as well as two healthy individuals as controls. The rdMRI data was acquired using 7 TEs, where at each TE multi-shell dMRI with high spatial and angular resolutions is obtained at each TE. Each rdMRI scan underwent thorough artifact and distortion corrections using a specially designed processing pipeline. The dataset's quality was assessed using standard practices, including quality control and assurance. This resource is a valuable addition to neurosurgical studies, and all data are openly accessible.
Collapse
Affiliation(s)
- Ye Wu
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Yunzhi Huang
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Tao Zhou
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Chen X, Chu Q, Meng Q, Xu P, Zhang S. Alterations in white matter fiber tracts and their correlation with flying cadet behavior. Cereb Cortex 2024; 34:bhad548. [PMID: 38236724 DOI: 10.1093/cercor/bhad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
An increasing number of studies have shown that flight training alters the human brain structure; however, most studies have focused on gray matter, and the exploration of white matter structure has been largely neglected. This study aimed to investigate the changes in white matter structure induced by flight training and estimate the correlation between such changes and psychomotor and flight performance. Diffusion tensor imaging data were obtained from 25 flying cadets and 24 general college students. Data were collected in 2019 and 2022 and analyzed using automated fiber quantification. This study found no significant changes in the flight group in 2019. However, in 2022, the flight group exhibited significant alterations in the diffusion tensor imaging of the right anterior thalamic radiation, left cingulum cingulate, bilateral superior longitudinal fasciculus, and left arcuate fasciculus. These changes occurred within local nodes of the fiber tracts. In addition, we found that changes in fiber tracts in the 2022 flight group were correlated with the reaction time of the psychomotor test task and flight duration. These findings may help improve flight training programs and provide new ideas for the selection of excellent pilots.
Collapse
Affiliation(s)
- Xi Chen
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qi Chu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qingbin Meng
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Peiran Xu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Shicong Zhang
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| |
Collapse
|
28
|
Neher P, Hirjak D, Maier-Hein K. Radiomic tractometry reveals tract-specific imaging biomarkers in white matter. Nat Commun 2024; 15:303. [PMID: 38182594 PMCID: PMC10770385 DOI: 10.1038/s41467-023-44591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Tract-specific microstructural analysis of the brain's white matter (WM) using diffusion MRI has been a driver for neuroscientific discovery with a wide range of applications. Tractometry enables localized tissue analysis along tracts but relies on bare summary statistics and reduces complex image information along a tract to few scalar values, and so may miss valuable information. This hampers the applicability of tractometry for predictive modelling. Radiomics is a promising method based on the analysis of numerous quantitative image features beyond what can be visually perceived, but has not yet been used for tract-specific analysis of white matter. Here we introduce radiomic tractometry (RadTract) and show that introducing rich radiomics-based feature sets into the world of tractometry enables improved predictive modelling while retaining the localization capability of tractometry. We demonstrate its value in a series of clinical populations, showcasing its performance in diagnosing disease subgroups in different datasets, as well as estimation of demographic and clinical parameters. We propose that RadTract could spark the establishment of a new generation of tract-specific imaging biomarkers with benefits for a range of applications from basic neuroscience to medical research.
Collapse
Affiliation(s)
- Peter Neher
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Im Neuenheimer Feld 223, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany.
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Im Neuenheimer Feld 223, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and the university medical center Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Belge JB, van Eijndhoven P, Mulders PCR. Mechanism of Action of ECT in Depression. Curr Top Behav Neurosci 2024; 66:279-295. [PMID: 37962811 DOI: 10.1007/7854_2023_450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Chan JL, Carpentier AV, Middlebrooks EH, Okun MS, Wong JK. Current perspectives on tractography-guided deep brain stimulation for the treatment of mood disorders. Expert Rev Neurother 2024; 24:11-24. [PMID: 38037329 DOI: 10.1080/14737175.2023.2289573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an emerging therapy for mood disorders, particularly treatment-resistant depression (TRD). Different brain areas implicated in depression-related brain networks have been investigated as DBS targets and variable clinical outcomes highlight the importance of target identification. Tractography has provided insight into how DBS modulates disorder-related brain networks and is being increasingly used to guide DBS for psychiatric disorders. AREAS COVERED In this perspective, an overview of the current state of DBS for TRD and the principles of tractography is provided. Next, a comprehensive review of DBS targets is presented with a focus on tractography. Finally, the challenges and future directions of tractography-guided DBS are discussed. EXPERT OPINION Tractography-guided DBS is a promising tool for improving DBS outcomes for mood disorders. Tractography is particularly useful for targeting patient-specific white matter tracts that are not visible using conventional structural MRI. Developments in tractography methods will help refine DBS targeting for TRD and may facilitate symptom-specific precision neuromodulation. Ultimately, the standardization of tractography methods will be essential to transforming DBS into an established therapy for mood disorders.
Collapse
Affiliation(s)
- Jason L Chan
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Ariane V Carpentier
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Mosso J, Simicic D, Lanz B, Gruetter R, Cudalbu C. Diffusion-weighted SPECIAL improves the detection of J-coupled metabolites at ultrahigh magnetic field. Magn Reson Med 2024; 91:4-18. [PMID: 37771277 DOI: 10.1002/mrm.29805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE To improve the detection and subsequent estimation of the diffusion properties of strongly J-coupled metabolites in diffusion-weighted MRS (DWS). METHODS A new sequence for single-voxel diffusion-weighted 1 H MR spectroscopy, named DW-SPECIAL, is proposed. It combines the semi-adiabatic SPECIAL sequence with a stimulated echo diffusion block. Acquisitions with DW-SPECIAL and STE-LASER, the current gold standard for rodent DWS experiments at high fields, were performed at 14.1T on phantoms and in vivo on the rat brain. The apparent diffusion coefficient and intra-stick diffusivity (Callaghan's model, randomly-oriented sticks) were fitted and compared between the sequences for glutamate, glutamine, myo-inositol, taurine, total NAA, total Cho, total Cr, and the macromolecules. RESULTS The shorter TE achieved with DW-SPECIAL (18 ms against 33 ms with STE-LASER) substantially limited the metabolites' signal loss caused by J-evolution. In addition, DW-SPECIAL preserved the main advantages of STE-LASER: absence of cross-terms, diffusion time during a stimulated echo, and limited sensitivity to B1 inhomogeneities. In vivo, compared to STE-LASER, DW-SPECIAL yielded the same spectral quality and reduced the Cramer Rao Lower Bounds for J-coupled metabolites, irrespective of the b-value. DW-SPECIAL also reduced the SD of the metabolites' diffusion estimates based on individual animal fitting without loss of accuracy compared to the fit on the averaged decay. CONCLUSION We conclude that due to its reduced TE, DW-SPECIAL can serve as an alternative to STE-LASER when strongly J-coupled metabolites like glutamine are investigated, thereby extending the range of accessible metabolites in the context of DWS acquisitions.
Collapse
Affiliation(s)
- Jessie Mosso
- LIFMET, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Bernard Lanz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | | | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| |
Collapse
|
32
|
Wang M, Ching-Johnson JA, Yin H, O’Neil C, Li AX, Chu MWA, Bartha R, Pickering JG. Mapping microarchitectural degeneration in the dilated ascending aorta with ex vivo diffusion tensor imaging. EUROPEAN HEART JOURNAL OPEN 2024; 4:oead128. [PMID: 38162403 PMCID: PMC10755346 DOI: 10.1093/ehjopen/oead128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Aims Thoracic aortic aneurysms (TAAs) carry a risk of catastrophic dissection. Current strategies to evaluate this risk entail measuring aortic diameter but do not image medial degeneration, the cause of TAAs. We sought to determine if the advanced magnetic resonance imaging (MRI) acquisition strategy, diffusion tensor imaging (DTI), could delineate medial degeneration in the ascending thoracic aorta. Methods and results Porcine ascending aortas were subjected to enzyme microinjection, which yielded local aortic medial degeneration. These lesions were detected by DTI, using a 9.4 T MRI scanner, based on tensor disorientation, disrupted diffusion tracts, and altered DTI metrics. High-resolution spatial analysis revealed that fractional anisotropy positively correlated, and mean and radial diffusivity inversely correlated, with smooth muscle cell (SMC) and elastin content (P < 0.001 for all). Ten operatively harvested human ascending aorta samples (mean subject age 61.6 ± 13.3 years, diameter range 29-64 mm) showed medial pathology that was more diffuse and more complex. Nonetheless, DTI metrics within an aorta spatially correlated with SMC, elastin, and, especially, glycosaminoglycan (GAG) content. Moreover, there were inter-individual differences in slice-averaged DTI metrics. Glycosaminoglycan accumulation and elastin degradation were captured by reduced fractional anisotropy (R2 = 0.47, P = 0.043; R2 = 0.76, P = 0.002), with GAG accumulation also captured by increased mean diffusivity (R2 = 0.46, P = 0.045) and increased radial diffusivity (R2 = 0.60, P = 0.015). Conclusion Ex vivo high-field DTI can detect ascending aorta medial degeneration and can differentiate TAAs in accordance with their histopathology, especially elastin and GAG changes. This non-destructive window into aortic medial microstructure raises prospects for probing the risks of TAAs beyond lumen dimensions.
Collapse
Affiliation(s)
- Mofei Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Biochemistry, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - Justin A Ching-Johnson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Caroline O’Neil
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Alex X Li
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Michael W A Chu
- Department of Surgery, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- London Health Sciences Centre, 339 Windermere Rd, London, Ontario, Canada, N6A 5A5
| | - Robert Bartha
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Biochemistry, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- London Health Sciences Centre, 339 Windermere Rd, London, Ontario, Canada, N6A 5A5
- Department of Medicine, Western University, 1151 Richmond St. N. London, Canada N6A 3K7
| |
Collapse
|
33
|
Sanvito F, Kaufmann TJ, Cloughesy TF, Wen PY, Ellingson BM. Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. FRONTIERS IN RADIOLOGY 2023; 3:1267615. [PMID: 38152383 PMCID: PMC10751345 DOI: 10.3389/fradi.2023.1267615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Saar-Ashkenazy R, Guez J, Jacob Y, Veksler R, Cohen JE, Shelef I, Friedman A, Benifla M. White-matter correlates of anxiety: The contribution of the corpus-callosum to the study of anxiety and stress-related disorders. Int J Methods Psychiatr Res 2023; 32:e1955. [PMID: 36448238 DOI: 10.1002/mpr.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Traumatic stress has been associated with increased risk for brain alterations and development of anxiety disorders. Studies conducted in posttraumatic patients have shown white-mater volume and diffusion alterations in the corpus-callosum. Decreased cognitive performance has been demonstrated in acute stress disorder and posttraumatic patients. However, whether cognitive alterations result from stress related neuropathology or reflect a predisposition is not known. In the current study, we examined in healthy controls, whether individual differences in anxiety are associated with those cognitive and brain alterations reported in stress related pathologies. METHODS Twenty healthy volunteers were evaluated for anxiety using the state-trait inventory (STAI), and were tested for memory performance. Brain imaging was employed to extract volumetric and diffusion characteristics of the corpus-callosum. RESULTS Significant correlations were found between trait anxiety and all three diffusion parameters (fractional-anisotropy, mean and radial-diffusivity). Associative-memory performance and corpus-callosum volume were also significantly correlated. CONCLUSION We suggest that cognitive and brain alterations, as tested in the current work and reported in stress related pathologies, are present early and possibly persist throughout life. Our findings support the hypothesis that individual differences in trait anxiety predispose individuals towards negative cognitive outcomes and brain alterations, and potentially to stress related disorders.
Collapse
Affiliation(s)
- Rotem Saar-Ashkenazy
- Faculty of Social-Work, Ashkelon Academic College, Ashkelon, Israel
- Department of Brain and Cognitive Neuroscience, The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Guez
- Department of Psychology, Achva Academic College, Beer-Tuvia Regional Council, Shikmim, Israel
- Beer-Sheva Mental Health Center, Shikmim, Israel
| | - Yael Jacob
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronel Veksler
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan E Cohen
- Sharett Institute of Oncology and The Wohl Institute for Translational Medicine, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Brain and Cognitive Neuroscience, The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mony Benifla
- Department of Pediatric Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
35
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Yu Y, Liang Y. A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging. Magn Reson Imaging 2023; 103:84-91. [PMID: 37451520 DOI: 10.1016/j.mri.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is a method of capturing the signal of water molecules diffusing in heterogeneous materials. Gaussian diffusion is interrupted when water mobility is hampered by obstructions in complex structures, and the dMRI signal decay does not match the single exponential decay in Brownian motion. In this study, a concise continuous time random-walk diffusion model is derived with less parameters than the continuous time random walk (CTRW) model and used to characterize the attenuation signal of brain tissue. The fitting results are compared with the CTRW model and the mono-exponential model reflecting the sub-diffusion and the long tail phenomenon of signal decay. Three sample experiments on rat brain and human brain are chosen to evaluate the validity in explaining the anomalous diffusion of water molecules in biological tissues, particularly in brain tissues in diverse directions, which also extends the applications of the concise continuous time random-walk diffusion model. Furthermore, we note that the concise continuous time random-walk diffusion model has practical advantages over the classical exponential model from the perspective of computational accuracy especially in the case of large b values, and has less parameters and is comparable to the CTRW model.
Collapse
Affiliation(s)
- Yue Yu
- College of Mechanics and Materials, Hohai University, Nanjing, China
| | - Yingjie Liang
- College of Mechanics and Materials, Hohai University, Nanjing, China; Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Blanke N, Chang S, Novoseltseva A, Wang H, Boas DA, Bigio IJ. Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5946-5964. [PMID: 38021128 PMCID: PMC10659784 DOI: 10.1364/boe.499354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 12/01/2023]
Abstract
The combination of polarization-sensitive optical coherence tomography (PS-OCT) and birefringence microscopy (BRM) enables multiscale assessment of myelinated axons in postmortem brain tissue, and these tools are promising for the study of brain connectivity and organization. We demonstrate label-free imaging of myelin structure across the mesoscopic and microscopic spatial scales by performing serial-sectioning PS-OCT of a block of human brain tissue and periodically sampling thin sections for high-resolution imaging with BRM. In co-registered birefringence parameter maps, we observe good correspondence and demonstrate that BRM enables detailed validation of myelin (hence, axonal) organization, thus complementing the volumetric information content of PS-OCT.
Collapse
Affiliation(s)
- Nathan Blanke
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Shuaibin Chang
- Department of Electrical & Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Anna Novoseltseva
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hui Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Irving J. Bigio
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical & Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| |
Collapse
|
38
|
Kogan E, Lu J, Zuo Y. Cortical circuit dynamics underlying motor skill learning: from rodents to humans. Front Mol Neurosci 2023; 16:1292685. [PMID: 37965043 PMCID: PMC10641381 DOI: 10.3389/fnmol.2023.1292685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Motor learning is crucial for the survival of many animals. Acquiring a new motor skill involves complex alterations in both local neural circuits in many brain regions and long-range connections between them. Such changes can be observed anatomically and functionally. The primary motor cortex (M1) integrates information from diverse brain regions and plays a pivotal role in the acquisition and refinement of new motor skills. In this review, we discuss how motor learning affects the M1 at synaptic, cellular, and circuit levels. Wherever applicable, we attempt to relate and compare findings in humans, non-human primates, and rodents. Understanding the underlying principles shared by different species will deepen our understanding of the neurobiological and computational basis of motor learning.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
39
|
Gallagher RL, Koscik RL, Moody JF, Vogt NM, Adluru N, Kecskemeti SR, Van Hulle CA, Chin NA, Asthana S, Kollmorgen G, Suridjan I, Carlsson CM, Johnson SC, Dean DC, Zetterberg H, Blennow K, Alexander AL, Bendlin BB. Neuroimaging of tissue microstructure as a marker of neurodegeneration in the AT(N) framework: defining abnormal neurodegeneration and improving prediction of clinical status. Alzheimers Res Ther 2023; 15:180. [PMID: 37848950 PMCID: PMC10583332 DOI: 10.1186/s13195-023-01281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Alzheimer's disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neurodegeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been proposed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical. METHODS Participants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray matter and subcortical white matter regions of interest. We used general logistic regression with receiver operating characteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination). RESULTS Using internal robust norms, we found that NODDI metrics correlate with worsening cognitive status and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic prediction accuracy of AD clinical status, compared with models using CSF A and T status alone. CONCLUSION Using a robust norms approach, we show that abnormal AD-related neurodegeneration can be detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are potential sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, given the small sample sizes, the exploratory nature of the work must be acknowledged.
Collapse
Affiliation(s)
- Rigina L Gallagher
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Rebecca Langhough Koscik
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Jason F Moody
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Nicholas M Vogt
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Nagesh Adluru
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Waisman Research Center, Madison, WI, USA
| | | | - Carol A Van Hulle
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Nathaniel A Chin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Veterans Administration, Madison, WI, USA
| | | | | | - Cynthia M Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Veterans Administration, Madison, WI, USA
| | - Sterling C Johnson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Veterans Administration, Madison, WI, USA
| | - Douglas C Dean
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Waisman Research Center, Madison, WI, USA
| | - Henrik Zetterberg
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andrew L Alexander
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Waisman Research Center, Madison, WI, USA
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA.
- Wisconsin Alzheimer's Institute, Madison, WI, USA.
| |
Collapse
|
40
|
Li D, Nguyen P, Zhang Z, Dunson D. Tree representations of brain structural connectivity via persistent homology. Front Neurosci 2023; 17:1200373. [PMID: 37901431 PMCID: PMC10603366 DOI: 10.3389/fnins.2023.1200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
The brain structural connectome is generated by a collection of white matter fiber bundles constructed from diffusion weighted MRI (dMRI), acting as highways for neural activity. There has been abundant interest in studying how the structural connectome varies across individuals in relation to their traits, ranging from age and gender to neuropsychiatric outcomes. After applying tractography to dMRI to get white matter fiber bundles, a key question is how to represent the brain connectome to facilitate statistical analyses relating connectomes to traits. The current standard divides the brain into regions of interest (ROIs), and then relies on an adjacency matrix (AM) representation. Each cell in the AM is a measure of connectivity, e.g., number of fiber curves, between a pair of ROIs. Although the AM representation is intuitive, a disadvantage is the high-dimensionality due to the large number of cells in the matrix. This article proposes a simpler tree representation of the brain connectome, which is motivated by ideas in computational topology and takes topological and biological information on the cortical surface into consideration. We demonstrate that our tree representation preserves useful information and interpretability, while reducing dimensionality to improve statistical and computational efficiency. Applications to data from the Human Connectome Project (HCP) are considered and code is provided for reproducing our analyses.
Collapse
Affiliation(s)
- Didong Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phuc Nguyen
- Department of Statistical Science, Duke University, Durham, NC, United States
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David Dunson
- Department of Statistical Science, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Raspe J, Harder FN, Rupp S, McTavish S, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC, Van AT. Retrospective Motion Artifact Reduction by Spatial Scaling of Liver Diffusion-Weighted Images. Tomography 2023; 9:1839-1856. [PMID: 37888738 PMCID: PMC10610678 DOI: 10.3390/tomography9050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.
Collapse
Affiliation(s)
- Johannes Raspe
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
- School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Felix N. Harder
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Selina Rupp
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Sean McTavish
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | | | - Kilian Weiss
- Philips GmbH Market DACH, 22335 Hamburg, Germany
| | - Marcus R. Makowski
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Rickmer F. Braren
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Dimitrios C. Karampinos
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Anh T. Van
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| |
Collapse
|
42
|
Atasoy B, Balsak S, Donmez Z, Yurtsever I, Yabul F, Akcay A, Atila N, Cesme DH, Toluk O, Alkan A. Evaluation of the white matter integrity in morbidly obese patients before and after bariatric surgery; a diffusion tensor imaging study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1403-1409. [PMID: 37644657 DOI: 10.1002/jcu.23550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To investigate the difference in FA (Fractional anisotropy), ADC (Apparent diffusion coefficient), RD (Radial diffusivity) and AD (axial diffusivity) values of white matter (WM) tracts in morbidly obese subjects before and after bariatric surgery (BS). MATERIALS AND METHODS A group of thirty-nine morbidly obese subjects are evaluated before and 4-6 months after BS. ADC, FA, RD and AD values of 17 distinct neuroanatomic localizations are measured and DTI parameters are analyzed. RESULTS Following the BS, the patients' mean BMI decreased from 47.665.21 to 31.723.97. A significant difference is displayed between the pre-surgery and post-surgery FA values of SLF, SFOF, ALIC, fornix, ILF, CST, MCP (p = 0.010, p < 0.001, p = 0.048, p = 0.014, p = 0.012, p = 0.012, p = 0.040 respectively). Following BS, decrease in FA values in the mentioned areas are detected. ADC values obtained from MCP are significantly lower in the post-BS period compared to pre-BS period (p = 0.018). There was a statistically significant difference between the pre-surgery and post-surgery AD values of SLF, SFOF, ILF, ALIC, EC, CST, and MCP (p = 0.001, p = 0.022, p = 0.001, p = 0.011, p = 0.001, p = 0.000, p = 0.000, respectively). Following the BS, AD values of the SLF, SFOF, ILF, ALIC, EC, CST, and MCP are decreased. RD values measured from GCC are significantly lower in the post-BS period compared to pre-BS period (p = 0.008). CONCLUSION Our study supported the hypothesis of the BS-induced reversibility of the low-grade inflammation in WM tracts in the morbidly obese group following BS. Our DTI results may represent the subacute period findings of the reversal of low-grade inflammation after BS.
Collapse
Affiliation(s)
- Bahar Atasoy
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ismail Yurtsever
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ahmet Akcay
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Naz Atila
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Dilek Hacer Cesme
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Bioistatistics, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| |
Collapse
|
43
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
44
|
Tinney EM, Loui P, Raine LB, Hiscox LV, Delgorio PL, Kramer MK, Schwarb H, Martens CR, Kramer AF, Hillman CH, Johnson CL. Influence of mild cognitive impairment and body mass index on white matter integrity assessed by diffusion tensor imaging. Psychophysiology 2023; 60:e14306. [PMID: 37038273 PMCID: PMC10524314 DOI: 10.1111/psyp.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Mild cognitive impairment (MCI), a prodromal stage of Alzheimer's disease, is characterized by decreased memory and cognition, which are linked to degenerative changes in the brain. To assess whether white matter (WM) integrity is compromised in MCI, we collected diffusion-weighted images from 60 healthy older adults (OA) (69.16 ± 0.7) and 20 older adults with amnestic MCI (72.45 ± 1.9). WM integrity differences were examined using Tract-Based Spatial Statistics (TBSS). We hypothesized that those with MCI would have diminished WM integrity relative to OA. In a whole-brain comparison, those with MCI showed higher axial diffusivity in the splenium (SCC) and body of the corpus callosum (BCC), superior corona radiata (SCR), and the retrolenticular part of the internal capsule (RLIC) (p's < .05 TFCE-corrected). Additionally, significant between-group connectivity differences were observed using probabilistic tractography between the SCC, chosen from the TBSS results, and forceps major and minor (p-value's < .05). To further relate a physical health indicator to WM alterations, linear regression showed significant interactions between cognitive status and body mass index (BMI) on diffusivity outcome measures from probabilistic tractography (p-value-'s < .05). Additionally, we examined the association between relational memory, BMI, and WM integrity. WM integrity was positively associated with relational memory performance. These findings suggest that these regions may be more sensitive to early markers of neurodegenerative disease and health behaviors, suggesting that modifiable lifestyle factors may affect white matter integrity.
Collapse
Affiliation(s)
- Emma M. Tinney
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
| | - Psyche Loui
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
| | - Lauren B. Raine
- Northeastern University, Center for Cognitive and Brain Health
- Northeastern University, Department of Physical Therapy Movement Rehabilitation Sciences
- Northeastern University, Department of Medicinal Sciences
| | - Lucy V. Hiscox
- University of Delaware, Department of Biomedical Engineering
| | | | - Mary K. Kramer
- University of Delaware, Department of Biomedical Engineering
| | - Hillary Schwarb
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology
| | | | - Arthur F. Kramer
- Northeastern University, Department of Psychology
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology
| | - Charles H. Hillman
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
- Northeastern University, Department of Physical Therapy Movement Rehabilitation Sciences
| | | |
Collapse
|
45
|
Bruckmaier F, Allert RD, Neuling NR, Amrein P, Littin S, Briegel KD, Schätzle P, Knittel P, Zaitsev M, Bucher DB. Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR. SCIENCE ADVANCES 2023; 9:eadh3484. [PMID: 37595048 PMCID: PMC10438442 DOI: 10.1126/sciadv.adh3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, medicine, or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center-based nuclear MR (NMR) spectroscopy as a powerful tool to probe diffusion within microscopic sample volumes. We have developed an experimental scheme that combines pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, allowing local quantification of molecular diffusion and flow. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within an individual model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.
Collapse
Affiliation(s)
- Fleming Bruckmaier
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Robin D. Allert
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Nick R. Neuling
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Philipp Amrein
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Littin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl D. Briegel
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Philip Schätzle
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany
| | - Peter Knittel
- Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik B. Bucher
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
46
|
Wu D, Turnbill V, Lee HH, Wang X, Ba R, Walczak P, Martin LJ, Fieremans E, Novikov DS, Northington FJ, Zhang J. In vivo Mapping of Cellular Resolution Neuropathology in Brain Ischemia by Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552374. [PMID: 37609182 PMCID: PMC10441332 DOI: 10.1101/2023.08.08.552374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.
Collapse
|
47
|
Zhu D, Shao Y, Yang Z, Cheng A, Xi Q, Liang X, Chu S. Magnetic resonance imaging characteristics of brain metastases in small cell lung cancer. Cancer Med 2023; 12:15199-15206. [PMID: 37288842 PMCID: PMC10417172 DOI: 10.1002/cam4.6206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Lung is the most common primary site of brain metastases (BMs). For different pathological types of BMs have some similar characteristics, it is still a challenge to confirm the origin based on their characteristics directly. BMs of small cell lung cancer (SCLC) have favorable therapeutic expectations due to their high sensitivity to radiotherapy. This study sought to identify unique characteristics of BMs in SCLC, aiming to assist in clinical decision-making. METHODS Patients diagnosed with BMs of lung cancer who received radiotherapy from January 2017 to January 2022 were reviewed (N = 284). Definitive diagnosis of BMs of SCLC was reached for 36 patients. All patients underwent head examination using magnetic resonance imaging. The number, size, location, and signal characteristics of lesions were analyzed. RESULTS There were 7 and 29 patients with single focus and non-single focus, respectively. Ten patients had diffuse lesions, and the remaining 26 patients had a total of 90 lesions. These lesions were divided into three groups according to size: <1, 1-3, and >3 cm (43.33%, 53.34%, and 3.33%, respectively). Sixty-six lesions were located in the supratentorial area, primarily including cortical and subcortical lesions (55.56%) and deep brain lesions (20%). Moreover, 22 lesions were located in the infratentorial area. According to diffusion-weighted imaging and T1-weighted contrast enhancement, the imaging characteristics were classified into six patterns. Hyperintensity in diffusion-weighted imaging and homogeneous enhancement was the most common pattern of BMs in SCLC (46.67%), while partial lesions showed hyperintensity in diffusion-weighted imaging without enhancement (7.78%). CONCLUSIONS The manifestations of BMs in SCLC were multiple lesions (diameter: 1-3 cm), hyperintensity in diffusion-weighted imaging, and homogeneous enhancement. Interestingly, hyperintensity in diffusion-weighted imaging without enhancement was also one of the characteristics.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yongjia Shao
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zhangwei Yang
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ailan Cheng
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qian Xi
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiaohua Liang
- Department of Oncology, Shanghai Huashan HospitalFudan University School of MedicineShanghaiChina
| | - Shuguang Chu
- Department of Radiology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
48
|
Ulbl J, Rakusa M. The Importance of Subjective Cognitive Decline Recognition and the Potential of Molecular and Neurophysiological Biomarkers-A Systematic Review. Int J Mol Sci 2023; 24:10158. [PMID: 37373304 DOI: 10.3390/ijms241210158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are early stages of Alzheimer's disease (AD). Neurophysiological markers such as electroencephalography (EEG) and event-related potential (ERP) are emerging as alternatives to traditional molecular and imaging markers. This paper aimed to review the literature on EEG and ERP markers in individuals with SCD. We analysed 30 studies that met our criteria, with 17 focusing on resting-state or cognitive task EEG, 11 on ERPs, and two on both EEG and ERP parameters. Typical spectral changes were indicative of EEG rhythm slowing and were associated with faster clinical progression, lower education levels, and abnormal cerebrospinal fluid biomarkers profiles. Some studies found no difference in ERP components between SCD subjects, controls, or MCI, while others reported lower amplitudes in the SCD group compared to controls. Further research is needed to explore the prognostic value of EEG and ERP in relation to molecular markers in individuals with SCD.
Collapse
Affiliation(s)
- Janina Ulbl
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
49
|
Niu X, Guo Y, Chang Z, Li T, Chen Y, Zhang X, Ni H. The correlation between changes in gray matter microstructure and cerebral blood flow in Alzheimer's disease. Front Aging Neurosci 2023; 15:1205838. [PMID: 37333456 PMCID: PMC10272452 DOI: 10.3389/fnagi.2023.1205838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To investigate the relationship between changes in cerebral blood flow (CBF) and gray matter (GM) microstructure in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods A recruited cohort of 23 AD patients, 40 MCI patients, and 37 normal controls (NCs) underwent diffusional kurtosis imaging (DKI) for microstructure evaluation and pseudo-continuous arterial spin labeling (pCASL) for CBF assessment. We investigated the differences in diffusion- and perfusion-related parameters across the three groups, including CBF, mean diffusivity (MD), mean kurtosis (MK), and fractional anisotropy (FA). These quantitative parameters were compared using volume-based analyses for the deep GM and surface-based analyses for the cortical GM. The correlation between CBF, diffusion parameters, and cognitive scores was assessed using Spearman coefficients, respectively. The diagnostic performance of different parameters was investigated with k-nearest neighbor (KNN) analysis, using fivefold cross-validation to generate the mean accuracy (mAcc), mean precision (mPre), and mean area under the curve (mAuc). Results In the cortical GM, CBF reduction primarily occurred in the parietal and temporal lobes. Microstructural abnormalities were predominantly noted in the parietal, temporal, and frontal lobes. In the deep GM, more regions showed DKI and CBF parametric changes at the MCI stage. MD showed most of the significant abnormalities among all the DKI metrics. The MD, FA, MK, and CBF values of many GM regions were significantly correlated with cognitive scores. In the whole sample, the MD, FA, and MK were associated with CBF in most evaluated regions, with lower CBF values associated with higher MD, lower FA, or lower MK values in the left occipital lobe, left frontal lobe, and right parietal lobe. CBF values performed best (mAuc = 0.876) for distinguishing the MCI from the NC group. Last, MD values performed best (mAuc = 0.939) for distinguishing the AD from the NC group. Conclusion Gray matter microstructure and CBF are closely related in AD. Increased MD, decreased FA, and MK are accompanied by decreased blood perfusion throughout the AD course. Furthermore, CBF values are valuable for the predictive diagnosis of MCI and AD. GM microstructural changes are promising as novel neuroimaging biomarkers of AD.
Collapse
Affiliation(s)
- Xiaoxi Niu
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ying Guo
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tongtong Li
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuanyuan Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | | | - Hongyan Ni
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
50
|
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun 2023; 14:3184. [PMID: 37268628 DOI: 10.1038/s41467-023-38910-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | | | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Marcus Meinzer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|