1
|
Shephard AM, Lagon SR, Ledón-Rettig CC. Early life nutrient restriction affects hypothalamic-pituitary-interrenal axis gene expression in a diet type-specific manner. Gen Comp Endocrinol 2024; 352:114490. [PMID: 38460737 DOI: 10.1016/j.ygcen.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Stressful experiences in early life can alter phenotypic expression later in life. For instance, in vertebrates, early life nutrient restriction can modify later life activity of the hypothalamic-pituitary-adrenal/interrenal axis (the HPI in amphibians), including the up- and downstream regulatory components of glucocorticoid signaling. Early life nutrient restriction can also influence later life behavior and metabolism (e.g., fat accumulation). Yet, less is known about whether nutrient stress-induced carryover effects on HPA/HPI axis regulation can vary across environmental contexts, such as the type of diet on which nutrient restriction occurs. Here, we experimentally address this question using the plains spadefoot toad (Spea bombifrons), whose larvae develop in ephemeral habitats that impose intense competition over access to two qualitatively distinct diet types: detritus and live shrimp prey. Consistent with diet type-specific carryover effects of early life nutrient restriction on later life HPI axis regulation, we found that temporary nutrient restriction at the larval stage reduced juvenile (i.e., post-metamorphic) brain gene expression of an upstream glucocorticoid regulator (corticotropin-releasing hormone) and two downstream regulators (glucocorticoid and mineralocorticoid receptors) only on the shrimp diet. These patterns are consistent with known diet type-specific effects of larval nutrient restriction on juvenile corticosterone and behavior. Additionally, larval nutrient restriction increased juvenile body fat levels. Our study indicates that HPA/HPI axis regulatory responses to nutrient restriction can vary remarkably across diet types. Such diet type-specific regulation of the HPA/HPI axis might provide a basis for developmental or evolutionary decoupling of stress-induced carryover effects.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Biology, Indiana University at Bloomington, Bloomington, IN, USA; Department of Biology, Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall, Bloomington, IN 47405, USA.
| | - Sarah R Lagon
- Department of Biology, Indiana University at Bloomington, Bloomington, IN, USA
| | | |
Collapse
|
2
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Roeder NM, Penman SL, Richardson BJ, Wang J, Freeman-Striegel L, Khan A, Pareek O, Weiss M, Mohr P, Eiden RD, Chakraborty S, Thanos PK. Vaporized Δ9-THC in utero results in reduced birthweight, increased locomotion, and altered wake-cycle activity dependent on dose, sex, and diet in the offspring. Life Sci 2024; 340:122447. [PMID: 38246518 DOI: 10.1016/j.lfs.2024.122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS Preclinical studies have found that chronic ∆9-tetrahydrocannabinol (THC) treatment is directly associated with weight gain when introduced during adolescence and adulthood, but the effect of prenatal THC is unclear. Clinical studies have demonstrated prenatal exposure to THC is a prospective predictor of increased health risks associated with obesity. Our study aims to examine prenatal THC impact on obesity risks in males and females throughout adolescence using a clinically relevant inhalation model. METHODS Pregnant rats were exposed to one of the following from gestational day 2 through birth: 10 mg THC, 40 mg THC, or air. Daily 10-min inhalations were conducted in each animal from 0900 to 1200. Offspring from each treatment group were given either a high-fat diet (HFD) or a normal diet (ND). Food and bodyweights were collected daily, while circadian activity, locomotion, and exercise were measured periodically (PND 21-60). Pregnancy weight gain and birth weight were collected to determine early-life developmental effects. RESULTS Rats prenatally treated with low-dose THC (LDTHC) generally had lower dark-cycle activity compared with control counterparts, but this altered activity was not observed at the higher dose of THC (HDTHC). In terms of open-field activity, THC doses displayed a general increase in locomotion. In addition, the LDTHC male rats in the ND showed significantly greater exploratory behavior. Prenatal THC had dose-dependent effects on maternal weight gain and birth weight. CONCLUSIONS Overall, our findings indicate there are some activity-related and developmental effects of prenatal THC, which may be related to obesity risks later in life.
Collapse
Affiliation(s)
- Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Anas Khan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ojas Pareek
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maia Weiss
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rina D Eiden
- Department of Psychology and Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Saptarshi Chakraborty
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Doshani A, Konje JC. Placental dysfunction in obese women and antenatal surveillance. Best Pract Res Clin Obstet Gynaecol 2023; 91:102407. [PMID: 37738759 DOI: 10.1016/j.bpobgyn.2023.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 09/24/2023]
Abstract
Obesity is a significant health concern worldwide and is associated with numerous health complications, including placental dysfunction during pregnancy. Placental dysfunction can lead to adverse outcomes for both the mother and the foetus, such as preeclampsia, gestational diabetes, preterm birth, and foetal growth restriction. Studies have shown that maternal obesity can lead to placental dysfunction through various mechanisms, including chronic inflammation, oxidative stress, and dysregulation of metabolic pathways. These factors can contribute to changes in the placenta's structure and function, impairing nutrient and oxygen exchange between the mother and foetus. Recent research has also suggested that alteration of gene expression in the placenta due to epigenetic changes, such as DNA methylation, may play a role in placental dysfunction associated with maternal obesity. These changes can affect altering foetal growth and development. Prevention and management of maternal obesity are crucial in reducing the risk of placental dysfunction and associated adverse outcomes during pregnancy. This can be achieved through lifestyle modifications, such as diet and exercise, and early detection and management of underlying health conditions. In conclusion, maternal obesity is a significant risk factor for placental dysfunction during pregnancy, which can lead to adverse outcomes for both the mother and the foetus. Further research is needed to understand the relationship and mechanisms to develop effective interventions to prevent and manage placental dysfunction in obese pregnant women.
Collapse
Affiliation(s)
- Anjum Doshani
- University Hospital of Leicester NHS Trust, Leicester, United Kingdom.
| | - Justin C Konje
- Feto Maternal Center Doha, Qatar; Obstetrics and Gynecology, Weil Cornell Medicine, Qatar; Obstetrics & Gynaecology, University of Leicester, United Kingdom
| |
Collapse
|
5
|
Andreotti S, Komino ACM, de Fatima Silva F, Ramos APA, Gil NL, Azevedo GA, Sertié RAL, Lima FB, Landgraf RG, Landgraf MA. Intrauterine food restriction impairs the lipogenesis process in the mesenteric adipocytes from low-birth-weight rats into adulthood. Front Endocrinol (Lausanne) 2023; 14:1259854. [PMID: 38027196 PMCID: PMC10651082 DOI: 10.3389/fendo.2023.1259854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intrauterine food restriction (IFR) during pregnancy is associated with low birth weight (LBW) and obesity in adulthood. It is known that white adipose tissue (WAT) plays critical metabolic and endocrine functions; however, this tissue's behavior before weight gain and obesity into adulthood is poorly studied. Thus, we evaluated the repercussions of IFR on the lipogenesis and lipolysis processes in the offspring and described the effects on WAT inflammatory cytokine production and secretion. Methods We induced IFR by providing gestating rats with 50% of the necessary chow daily amount during all gestational periods. After birth, we monitored the offspring for 12 weeks. The capacity of isolated fat cells from mesenteric white adipose tissue (meWAT) to perform lipogenesis (14C-labeled glucose incorporation into lipids) and lipolysis (with or without isoproterenol) was assessed. The expression levels of genes linked to these processes were measured by real-time PCR. In parallel, Multiplex assays were conducted to analyze pro-inflammatory markers, such as IL-1, IL-6, and TNF-α, in the meWAT. Results Twelve-week-old LBW rats presented elevated serum triacylglycerol (TAG) content and attenuated lipogenesis and lipolysis compared to control animals. Inflammatory cytokine levels were increased in the meWAT of LBW rats, evidenced by augmented secretion by adipocytes and upregulated gene and protein expression by the tissue. However, there were no significant alterations in the serum cytokines content from the LBW group. Additionally, liver weight, TAG content in the hepatocytes and serum glucocorticoid levels were increased in the LBW group. Conclusion The results demonstrate that IFR throughout pregnancy yields LBW offspring characterized by inhibited lipogenesis and lipolysis and reduced meWAT lipid storage at 12 weeks. The increased serum TAG content may contribute to the augmented synthesis and secretion of pro-inflammatory markers detected in the LBW group.
Collapse
Affiliation(s)
- Sandra Andreotti
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ayumi Cristina Medeiros Komino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Almeida Ramos
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Noemi Lourenço Gil
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gabriela Araujo Azevedo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rogerio Antonio Laurato Sertié
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Richardt Gama Landgraf
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Desai M, Torsoni AS, Torsoni MA, Eisaghalian A, Ferrini M, Ross MG. Thermoneutrality effects on developmental programming of obesity. J Dev Orig Health Dis 2023; 14:223-230. [PMID: 36097652 PMCID: PMC9998331 DOI: 10.1017/s2040174422000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Developmental programming studies using mouse models have housed the animals at human thermoneutral temperatures (22°C) which imposes constant cold stress. As this impacts energy homeostasis, we investigated the effects of two housing temperatures (22°C and 30°C) on obesity development in male and female offspring of Control and FR dams. Pregnant mice were housed at 22°C (cold-exposed, CE) or 30°C (thermoneutrality, TN) room temperature. At gestational age e10, mice were fed either an ad libitum diet (Control) or were 30% food-restricted (FR) to produce low birth weight newborns. Following delivery, all dams were fed an ad libitum diet and maternal mice continued to nurse their own pups. At 3 weeks of age, offspring were weaned to an ad libitum diet and housed at similar temperatures as their mothers. Body weights and food intake were monitored. At 6 months of age, body composition and glucose tolerance test were determined, after which, brain and adipose tissue were collected for analysis. FR/CE and FR/TN offspring exhibited hyperphagia and were significantly heavier with increased adiposity as compared to their respective Controls. There was sex-specific effects of temperature in both groups. Male offspring at TN were heavier with increased body fat, though the food intake was decreased as compared to CE males. This was reflected by hypertrophic adipocytes and increased arcuate nucleus satiety/appetite ratio. In contrast, female offspring were not impacted by housing temperature. Thus, unlike female offspring, there was a significant interaction of diet and temperature evident in the male offspring with accentuated adverse effects evident in FR/TN males.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, The Lundquist Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Adrianna S. Torsoni
- Laboratory of Metabolic Disorders (Labdime), Faculty of Applied Sciences (FCA) of the University of Campinas (UNICAMP), Limeira/SP, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime), Faculty of Applied Sciences (FCA) of the University of Campinas (UNICAMP), Limeira/SP, Brazil
| | | | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA
| | - Michael G. Ross
- Perinatal Research Laboratory, The Lundquist Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA
| |
Collapse
|
7
|
Cheshmeh S, Moradi S, Nachvak SM, Mohammadi A, Najafi N, Erfanifar A, Bajelani A. Birth weight concerning obesity and diabetes gene expression in healthy infants; a case-control study. BMC Pregnancy Childbirth 2023; 23:218. [PMID: 36997916 PMCID: PMC10061768 DOI: 10.1186/s12884-023-05538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Since obesity and diabetes are prevalent worldwide, identifying the factors affecting these two conditions can effectively alter them. We decided to investigate the expression of obesity and diabetes genes in infants with birth weights lower than 2500 g in comparison with infants with normal birth weights.
Methods
215 healthy infants between the ages of 5–6 months were used in the current case-control research, which was conducted at health and treatment facilities in Kermanshah. Infants who were healthy were chosen for the research after their weight and height were measured and compared to the WHO diagram to ensure that they were well-grown and in good health. There were 137 infants in the control group and 78 infants in the case group. All newborns had 5 cc of blood drawn intravenously. To assess the expression of the genes MC4R, MTNR1B, PTEN, ACACB, PPAR-γ, PPAR-α, NRXN3, NTRK2, PCSK1, A2BP1, TMEM18, LXR, BDNF, TCF7L2, FTO and CPT1A, blood samples were gathered in EDTA-coated vials. Chi-square, Mann-Whitney U, and Spearman analyses were used to examine the data.
Results
A significant inverse correlation between birth weight and obesity and diabetes genes, including MTNR1B, NTRK2, PCSK1, and PTEN genes (r= -0.221, -0.235, -0.246, and − 0.418, respectively). In addition, the LBW infant’s expression level was significantly up-regulated than the normal-weight infants (P = 0.001, 0.007, 0.001, and < 0.001, respectively). The expression level of the PPAR-a gene had a significantly positive correlation with birth weight (r = 0.19, P = 0.005). The expression level of the PPAR-a gene in the normal-weight infants was significantly up-regulated than the LBW infants (P = 0.049).
Conclusion
The expression levels of MTNR1B, NTRK2, PCSK1, and PTEN genes were up-regulated in the LBW infants; however, the expression level of PPAR-a gene was significantly down-regulated in the LBW infants compared to the infants with normal birth weight.
Collapse
|
8
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
9
|
Dos Reis Araujo T, Lubaczeuski C, Carneiro EM. Effects of double burden malnutrition on energetic metabolism and glycemic homeostasis: A narrative review. Life Sci 2022; 307:120883. [PMID: 35970240 DOI: 10.1016/j.lfs.2022.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
Abstract
Rapid changes in the food process led to greater consumption of ultra-processed foods which, associated with reduced physical activity, increased the number of overweight and obese individuals worldwide. However, in low and middle-income countries (LMICS) the growth of the obesity epidemic took place despite the high prevalence of undernutrition in children. This generated the coexistence of these two nutritional patterns, currently defined as double burden malnutrition (DBM). Several reports have already described the social, political, and economic aspects related to the causes and possible solutions for the control of DBM. Here, we highlight the metabolic alterations, related to fat deposition and glycemic homeostasis, described in experimental models of DBM and the differential effects of therapeutic strategies already tested. Therefore, this work aims to help the scientific community to understand how the DBM can lead to the development of obesity and type 2 diabetes through different mechanisms from traditional models of obesity and highlights the need to study these mechanisms and new therapeutic strategies to improve damages caused by DBM.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Camila Lubaczeuski
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Folic acid supplementation during pregnancy modulates hepatic methyl metabolism and genes expression profile of neonatal lambs of different litter sizes. Br J Nutr 2022; 128:1-12. [PMID: 34325757 DOI: 10.1017/s0007114521002841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maternal folic acid (FA) plays an important role in the fetus development, but it is unknown the response of hepatic metabolism in the offspring from different litter sizes to maternal FA supplementation. In the present study, this was done by feeding the ewes with 0, 16 and 32 mg/(kg·DM) FA supplemented diet during pregnancy and analysing the hepatic one-carbon metabolism-related indices and gene expression in the neonatal lambs of different litter sizes (twins, TW; triplets, TR). Regardless of litter sizes, the concentrations of folate, methionine, S-adenosylmethionine and DNA methyltransferase increased significantly, but homocysteine and S-adenosylhomocysteine decreased in the liver of newborn lambs from ewes whose diet was supplemented with FA. In TW, maternal FA status has little effect on hepatic genes expression profile of newborn lambs, and no significant enriched pathway was found. However, DEG involved in cell proliferation such as CCNA2, CCNB2, CCNE2, CDK1 and BUB1 were significantly enriched when the ewes were supplemented with FA in TR groups. In addition, nucleotide synthesis-related genes such as POLD1, POLD2, MCM4 and MCM5 were enriched markedly in DNA replication and pyrimidine metabolism pathways in triplets when a higher FA ingestion [32 mg/(kg·DM)] was implemented in ewes. This finding demonstrated that the hepatic methyl metabolism in TW and TR newborn lambs was regulated by maternal FA status. The hepatic cell proliferation and nucleotide metabolism related genes in TR were more susceptible to maternal dietary FA supplementation during pregnancy.
Collapse
|
11
|
Andrieux C, Biasutti S, Barrieu J, Morganx P, Morisson M, Coustham V, Panserat S, Houssier M. Identification of different critical embryonic periods to modify egg incubation temperature in mule ducks. Animal 2021; 16:100416. [PMID: 34954551 DOI: 10.1016/j.animal.2021.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Egg incubation of mule ducks, mainly used for fatty liver production, is one of the critical phases in this sector. Based on hatching rate, the best incubation parameters have already been well described for poultry, but the literature on ducks is lacking. In this study, we tested different incubation conditions by varying two important factors, temperature and relative humidity, in mule ducks. These variations were applied at different periods during embryogenesis in order to measure the impact of environmental disturbances on different zootechnical performances. The temperature was increased by 1.5 °C (16 h/24) and the relative humidity was set up to 65%, during 10 days. Six 10-day developmental windows were tested, from embryonic day 9 to embryonic day 14. Our results are in line with previous reports showing that increasing incubation temperature, even when relative humidity is adjusted, can have a negative impact on duck embryonic mortality up to 24.5% for the condition E10-E20 (P < 10-5). However, the hatchability can be maintained at the level of the control groups when these modifications are applied on the latest windows (from the 11th embryonic day). Sex ratio, hatching BW, and internal temperature are also sensitive to these incubation changes, and their modification could have a major impact on later zootechnical performance. These results should contribute to the development or embryonic temperature programming approaches, especially for the fatty liver production industry.
Collapse
Affiliation(s)
- C Andrieux
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, 40000 Mont de Marsan, France
| | - J Barrieu
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - P Morganx
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - M Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - V Coustham
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Panserat
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - M Houssier
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France.
| |
Collapse
|
12
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Dos Santos C, Rafacho A, Ferreira SM, Vettorazzi JF, Dos Reis Araújo T, Mateus Gonçalves L, Ruhrmann S, Bacos K, Ling C, Boschero AC, Jorge Dos Santos G. Excess of glucocorticoids during late gestation impairs the recovery of offspring's β-cell function after a postnatal injury. FASEB J 2021; 35:e21828. [PMID: 34325494 DOI: 10.1096/fj.202100841r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Since prenatal glucocorticoids (GC) excess increases the risk of metabolic dysfunctions in the offspring and its effect on β-cell recovery capacity remains unknown we investigated these aspects in offspring from mice treated with dexamethasone (DEX) in the late pregnancy. Half of the pups were treated with streptozotocin (STZ) on the sixth postnatal day (PN). Functional and molecular analyses were performed in male offspring on PN25 and PN225. Prenatal DEX treatment resulted in low birth weight. At PN25, both the STZ-treated offspring developed hyperglycemia and had lower β-cell mass, in parallel with higher α-cell mass and glucose intolerance, with no impact of prenatal DEX on such parameters. At PN225, the β-cell mass was partially recovered in the STZ-treated mice, but they remained glucose-intolerant, irrespective of being insulin sensitive. Prenatal exposition to DEX predisposed adult offspring to sustained hyperglycemia and perturbed islet function (lower insulin and higher glucagon response to glucose) in parallel with exacerbated glucose intolerance. β-cell-specific knockdown of the Hnf4α in mice from the DS group resulted in exacerbated glucose intolerance. We conclude that high GC exposure during the prenatal period exacerbates the metabolic dysfunctions in adult life of mice exposed to STZ early in life, resulting in a lesser ability to recover the islets' function over time. This study alerts to the importance of proper management of exogenous GCs during pregnancy and a healthy postnatal lifestyle since the combination of adverse factors during the prenatal and postnatal period accentuates the predisposition to metabolic disorders in adult life.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Sandra Mara Ferreira
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Jean Franciesco Vettorazzi
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Thiago Dos Reis Araújo
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Luciana Mateus Gonçalves
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Center, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Center, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Center, Scania University Hospital, Malmö, Sweden
| | - Antônio Carlos Boschero
- Laboratory of Endocrine Pancreas and Metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, Campinas State University - UNICAMP, Campinas, Brazil
| | - Gustavo Jorge Dos Santos
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
14
|
Lin D, Chen D, Huang J, Li Y, Wen X, Wang L, Shi H. Pre-Birth and Early-Life Factors Associated With the Timing of Adiposity Peak and Rebound: A Large Population-Based Longitudinal Study. Front Pediatr 2021; 9:742551. [PMID: 35004537 PMCID: PMC8727998 DOI: 10.3389/fped.2021.742551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The late occurrence of adiposity peak (AP) and the early occurrence of adiposity rebound (AR) are considered the earliest indicators for obesity and its related health conditions later in life. However, there is still limited information for their upstream factors. Therefore, in this study, we aimed to identify the parental and child factors associated with the timing of AP and AR in the early stage of life. Methods: This is a population-based longitudinal study conducted in Shanghai, China. The BMI data of children born between September 2010 and October 2013 were followed from birth to 80 months. Subject-specific body mass index trajectories were fitted by non-linear mixed-effect models with natural cubic spline functions, and the individual's age at AP and AR was estimated. The generalized linear regression models were applied to identify the upstream factors of late occurrence of AP and early occurrence AR. Results: For 7,292 children with estimated AP, boys were less likely to have a late AP [adjusted risk ratio (RR) = 0.83, 95% confidence interval (CI): 0.77-0.90, p < 0.001], but preterm born children had a higher risk of a late AP (adjusted RR = 1.25, 95% CI: 1.07-1.47, p < 0.01). For 10,985 children with estimated AR, children with breastfeeding longer than 4 months were less likely to have an early AR (adjusted RR = 0.80, 95% CI: 0.73-0.87, p < 0.001), but children who were born to advanced-age mothers and who were born small for gestational age had a higher risk of having an early AR (adjusted RR = 1.21, 95% CI: 1.07-1.36, p < 0.01; adjusted RR = 1.20, 95% CI: 1.04-1.39, p = 0.01). Conclusions: Modifiable pre-birth or early-life factors associated with the timing of AP or AR were found. Our findings may help develop prevention and intervention strategies at the earliest stage of life to control later obesity and the health conditions and diseases linked to it.
Collapse
Affiliation(s)
- Dan Lin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Didi Chen
- Department of School Health, Minhang District Center of Disease Control and Prevention, Shanghai, China.,Minhang Branch, School of Public Health, Fudan University, Shanghai, China
| | - Jun Huang
- Department of Child Care, Minhang Maternal and Child Health Center, Shanghai, China
| | - Yun Li
- Department of Child Care, Minhang Maternal and Child Health Center, Shanghai, China
| | - Xiaosa Wen
- Department of School Health, Minhang District Center of Disease Control and Prevention, Shanghai, China.,Minhang Branch, School of Public Health, Fudan University, Shanghai, China
| | - Ling Wang
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Huijing Shi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of Early Nutrition, Physical Activity and Sleep on the Fetal Programming of Disease in the Pregnancy: A Narrative Review. Nutrients 2020; 12:nu12123900. [PMID: 33419354 PMCID: PMC7766505 DOI: 10.3390/nu12123900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Early programming is the adaptation process by which nutrition and environmental factors alter development pathways during prenatal growth, inducing changes in postnatal metabolism and diseases. The aim of this narrative review, is evaluating the current knowledge in the scientific literature on the effects of nutrition, environmental factors, physical activity and sleep on development pathways. If in utero adaptations were incorrect, this would cause a mismatch between prenatal programming and adulthood. Adequate caloric intake, protein, mineral, vitamin, and long-chain fatty acids, have been noted for their relevance in the offspring brain functions and behavior. Fetus undernutrition/malnutrition causes a delay in growth and have detrimental effects on the development and subsequent functioning of the organs. Pregnancy is a particularly vulnerable period for the development of food preferences and for modifications in the emotional response. Maternal obesity increases the risk of developing perinatal complications and delivery by cesarean section and has long-term implications in the development of metabolic diseases. Physical exercise during pregnancy contributes to overall improved health post-partum. It is also interesting to highlight the relevance of sleep problems during pregnancy, which influence adequate growth and fetal development. Taking into account these considerations, we conclude that nutrition and metabolic factors during early life play a key role of health promotion and public health nutrition programs worldwide to improve the health of the offspring and the health costs of hospitalization.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20317)
| | - Magdalena Lopez-Frias
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
16
|
Wu Y, Yin G, Wang P, Huang Z, Lin S. Effects of different diet-induced postnatal catch-up growth on glycolipid metabolism in intrauterine growth retardation male rats. Exp Ther Med 2020; 20:134. [PMID: 33082866 PMCID: PMC7560533 DOI: 10.3892/etm.2020.9263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
A number of studies have reported the occurrence of long-term metabolic disorders in mammals following intrauterine growth retardation (IUGR). However, the effects of dietary patterns during IUGR have not been fully elucidated. The present study aimed to evaluate the effects of different dietary patterns during critical growth windows on metabolic outcomes in the offspring of rats with IUGR. Male offspring rats from mothers fed either a normal or low-protein diet were randomly assigned to one of the following groups: Normal diet throughout pregnancy, lactation and after weaning (CON); normal diet throughout pregnancy and high-fat diet throughout lactation and after weaning (N + H + H); low-protein diet throughout pregnancy and high-fat diet throughout lactation and after weaning (IUGR + H + H); low-protein diet throughout pregnancy and lactation and high-fat diet after weaning (IUGR + L + H); and low-protein diet throughout pregnancy and normal diet throughout lactation and after weaning. During lactation, the male offspring in the N + H + H group exhibited the fastest growth rate, whereas the slowest rate was in the IUGR + L + H group. Following weaning, all IUGR groups demonstrated significant catch-up growth. Abnormal insulin tolerance were observed in the N + H + H, IUGR + H + H and IUGR + L + H groups and insulin sensitivity was decreased in IUGR + L + H group. The triglycerides/high-density lipoprotein ratio in the IUGR + L + H group was significantly higher compared with in the other groups. The abdominal circumference, Lee's index and adipocyte diameter of IUGR groups were significantly increased compared with the CON group. High levels of leptin and interleukin-6 in adipose tissues, and low adiponectin were observed in the IUGR + L + H group. Different dietary patterns during specific growth windows showed numerous impacts on glycolipid metabolism in IUGR offspring. The present study elucidated the mechanisms and potential options for IUGR treatment and prevention.
Collapse
Affiliation(s)
- Yixi Wu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Guoshu Yin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Ping Wang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Zhihua Huang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Shaoda Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr Shaoda Lin, Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515000, P.R. China
| |
Collapse
|
17
|
Rocha MLM, Fernandes PP, Tenório F, Manhães AC, Barradas PC. Malnourishment during early lactation disrupts the ontogenetic distribution of the CART and α-MSH anorexigenic molecules in the arcuate/paraventricular pathway and lateral hypothalamus in male rats. Brain Res 2020; 1743:146906. [PMID: 32473258 DOI: 10.1016/j.brainres.2020.146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022]
Abstract
Developmental malnourishment impacts the energetic metabolism control throughout life. In rat offspring, a 0% protein diet during the first 10 days of lactation results in leptin resistance and in alterations in: feeding behavior, serum leptin and neuropeptide Y (NPY) levels in the hypothalamic arcuate nucleus (ARC)/paraventricular (PVN) pathway. Here, the distributions of alpha-melanocyte stimulating hormone (α-MSH) and cocaine and amphetamine regulated transcript (CART), anorexigenic molecules, were immunohistochemically assessed in the ARC, PVN and lateral hypothalamus (LH) nuclei. Rat dams were subjected to one of the following diet protocols from postnatal day (P) 1-10: 1) Protein-free (PFG, 0% protein chow); 2) Pair-fed (UFG, normoprotein chow); 3) Control group (CG, normoprotein chow). PFG, UFG and CG male offspring were analyzed at different time points, from P5 to P180. In the ARC, PFG α-MSH and CART were increased from P10 to P45 when compared to CG and UFG. In the PVN, α-MSH and CART peaks in PFG animals were delayed from P20 to P30 when compared to CG. In the LH, CART was more intense in PFG animals than in UFG and CG ones by P20, and, by P30, UFG immunostaining became less intense than in CG. In conclusion, aproteic diet altered the ontogenetic distribution of both anorexigenic molecules. In the PVN, the peak was delayed to P30, which coincides with the leptin peak and follows the previously described NPY (orexigenic) peak in this model. The permanent LH CART and α-MSH increase may be associated with the previously observed PFG hypophagia.
Collapse
Affiliation(s)
- Michael L M Rocha
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla P Fernandes
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenório
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C Barradas
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ, Luo J. Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats†. Biol Reprod 2020; 100:1193-1203. [PMID: 30596890 DOI: 10.1093/biolre/ioy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is linked to cardiovascular diseases in postnatal life. The current study tested the hypothesis that maternal HFD causes myocardial changes through angiotensin II receptor (AGTR) expression modulation in fetal and neonatal rat hearts. The control group of pregnant rats was fed a normal diet and the treatment group of pregnant rats was on a HFD (60% kcal fat). Hearts were isolated from embryonic day 21 fetuses (E21) and postnatal day 7 pups (PD7). Maternal HFD decreased the body weight of the offspring in both E21 and PD7. The ratio of heart weight to body weight was increased in E21, but not PD7, when compared to the control group. Transmission electron microscopy revealed disorganized myofibrils and effacement of mitochondria cristae in the treatment group. Maternal HFD decreased S-phase and increased G1-phase of the cellular cycle for fetal and neonatal cardiac cells. Molecular markers of cardiac hypertrophy, such as Nppa and Myh7, were found to be increased in the treatment group. There was an associated increase in Agtr2 mRNA and protein, whereas Agtr1a mRNA and AGTR1 protein were decreased in HFD fetal and neonatal hearts. Furthermore, maternal HFD decreased glucocorticoid receptors (GRs) binding to glucocorticoid response elements at the Agtr1a and Agtr2 promoter, which correlated with downregulation of GR in fetal and neonatal hearts. These findings suggest that maternal HFD may promote premature termination of fetal and neonatal cardiomyocyte proliferation and compensatory hypertrophy through intrauterine modulation of AGTR1 and AGTR2 expression via GR dependent mechanism.
Collapse
Affiliation(s)
- Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fangyuan Chen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haichuan Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Pinxian Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Andrew J Patterson
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Jiandong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| |
Collapse
|
19
|
Weeks O, Bossé GD, Oderberg IM, Akle S, Houvras Y, Wrighton PJ, LaBella K, Iversen I, Tavakoli S, Adatto I, Schwartz A, Kloosterman D, Tsomides A, Charness ME, Peterson RT, Steinhauser ML, Fazeli PK, Goessling W. Fetal alcohol spectrum disorder predisposes to metabolic abnormalities in adulthood. J Clin Invest 2020; 130:2252-2269. [PMID: 32202514 PMCID: PMC7190939 DOI: 10.1172/jci132139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel D. Bossé
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Akle
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yariv Houvras
- Department of Surgery and
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul J. Wrighton
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle LaBella
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle Iversen
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Arkadi Schwartz
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daan Kloosterman
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Tsomides
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Matthew L. Steinhauser
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Pouneh K. Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Barra R, Morgan C, Sáez-Briones P, Reyes-Parada M, Burgos H, Morales B, Hernández A. Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutr Rev 2020; 77:65-80. [PMID: 30445479 DOI: 10.1093/nutrit/nuy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.
Collapse
Affiliation(s)
- Rafael Barra
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Carlos Morgan
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Sáez-Briones
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Miguel Reyes-Parada
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud Universidad Autónoma de Chile, Talca, Chile
| | - Héctor Burgos
- Núcleo Disciplinar Psicología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Center of Innovation on Information Technologies for Social Applications (CITIAPS), University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernández
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
21
|
Khanal P, Pandey D, Binti Ahmad S, Safayi S, Kadarmideen HN, Olaf Nielsen M. Differential impacts of late gestational over-and undernutrition on adipose tissue traits and associated visceral obesity risk upon exposure to a postnatal high-fat diet in adolescent sheep. Physiol Rep 2020; 8:e14359. [PMID: 32026612 PMCID: PMC7002533 DOI: 10.14814/phy2.14359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that late gestation malnutrition differentially affects expandability of adipose tissues to predispose for early postnatal visceral adiposity. Twin-lambs born to dams fed HIGH (150%/110% of required energy/protein, respectively), NORM (100% of requirements) or LOW (50% of NORM) diets during the last trimester were used. Postnatally, lambs were raised on moderate (CONV) or high-carbohydrate-high-fat (HCHF) diets. Adipose tissues were sampled at autopsy at 6 months of age (~puberty) to characterize cellularity, adipocyte cross-sectional area and gene expression patterns. HIGH and LOW compared to NORM lambs had reduced intrinsic (under CONV diet) cellularity in subcutaneous and mesenteric (particularly LOW), and reduced obesity-induced (under HCHF diet) hyperplasia in subcutaneous, mesenteric and perirenal (particularly HIGH) adipose tissues. This corresponded with more pronounced HCHF diet-induced hypertrophy in mesenteric (particularly LOW), perirenal (particularly HIGH) and subcutaneous (particularly HIGH) adipose tissues, and tissue-specific reductions in mRNA expressions for lipid metabolism, angiogenesis and adipose development. Gene expression for inflammation and lipid metabolism markers were increased and decreased, respectively, in HCHF lambs (HCHF lambs became obese) in all tissues. Both prenatal over- and undernutrition predisposed for abdominal adiposity and extreme perirenal hypertrophy due to reduced intrinsic (observed under CONV diet) cellularity and impaired ability of subcutaneous, mesenteric and perirenal adipose tissues to expand by hyperplasia rather than hypertrophy on an obesogenic (HCHF) diet.
Collapse
Affiliation(s)
- Prabhat Khanal
- Animal Science, Production and Welfare DivisionFaculty of Biosciences and AquacultureNord UniversitySteinkjer CampusNorway
| | - Deepak Pandey
- Animal Science, Production and Welfare DivisionFaculty of Biosciences and AquacultureNord UniversitySteinkjer CampusNorway
| | - Sharmila Binti Ahmad
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of Copenhagen, DenmarkFrederiksbergDenmark
| | | | - Haja N. Kadarmideen
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | | |
Collapse
|
22
|
Δ9-tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta. Sci Rep 2020; 10:544. [PMID: 31953475 PMCID: PMC6969028 DOI: 10.1038/s41598-019-57318-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9-tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor (GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.
Collapse
|
23
|
Oke SL, Sohi G, Hardy DB. Perinatal protein restriction with postnatal catch-up growth leads to elevated p66Shc and mitochondrial dysfunction in the adult rat liver. Reproduction 2020; 159:27-39. [PMID: 31689235 PMCID: PMC6933810 DOI: 10.1530/rep-19-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase PIN1. This was further associated with aberrant markers of oxidative stress (i.e. elevated 4-HNE, SOD1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function.
Collapse
Affiliation(s)
- Shelby L Oke
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Gurjeev Sohi
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Daniel B Hardy
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
- Correspondence should be addressed to D B Hardy;
| |
Collapse
|
24
|
Epigenetic Dysregulation of Dopaminergic System by Maternal Cafeteria Diet During Early Postnatal Development. Neuroscience 2020; 424:12-23. [DOI: 10.1016/j.neuroscience.2019.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
|
25
|
Genomic evaluation of genotype by prenatal nutritional environment interaction for maternal traits in a composite beef cattle breed. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev 2019; 76:875-892. [PMID: 30285146 DOI: 10.1093/nutrit/nuy046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin ingested as a component of breast milk is increasingly recognized to play a role in the postnatal programming of a healthy phenotype in adulthood. Besides its primary function in controlling body weight, leptin may be an essential nutrient required during lactation to ensure that the system controlling fat accumulation and body composition is well organized from the early stages of development. This review delves into the following topics: (1) the imprinted protective function of adequate leptin intake during lactation in future metabolic health; (2) the consequences of a lack of leptin intake or of alterations in leptin levels; and (3) the mechanisms described for the effects of leptin on postnatal programming. Furthermore, it highlights the importance of breastfeeding and the need to establish optimal or reference intake values for leptin during lactation to design patterns of personalized nutrition from early childhood.
Collapse
Affiliation(s)
- Mariona Palou
- Alimentómica SL, Palma de Mallorca, Spain.,Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Picó
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Andreu Palou
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Li C, Jenkins S, Huber HF, Nathanielsz PW. Effect of maternal baboon (Papio sp.) dietary mismatch in pregnancy and lactation on post-natal offspring early life phenotype. J Med Primatol 2019; 48:226-235. [PMID: 31025367 PMCID: PMC6610582 DOI: 10.1111/jmp.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-human primate models of developmental programing by maternal mismatch between pregnancy and lactation diets are needed for translation to human programing outcomes. We present baboon offspring morphometry from birth to 3 years, and blood cortisol and adrenocorticotropin (ACTH) from 2 to 24 months. METHODS Control mothers ate chow; mismatch mothers ate 30% less than controls during pregnancy and high-fat high-energy diet through lactation. RESULTS Mismatch mothers lost weight during pregnancy. At birth, there were trends toward lower weight in mismatch offspring of both sexes (P = 0.06). From 0-3 years, catch-up growth occurred. Mismatch offspring male and female body weight increased faster than controls (P < 0.001). Mismatch female offspring showed greater increase in BMI (P < 0.001) and abdominal circumference (P = 0.008) vs controls. ACTH and cortisol slopes from 2 to 24 months of age were similar between groups in both sexes. Cortisol and ACTH increased after weaning in all groups. CONCLUSIONS Mismatch produces sexually dimorphic post-natal growth phenotypes.
Collapse
Affiliation(s)
- Cun Li
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan Jenkins
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Hillary F. Huber
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
28
|
Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth. Pediatr Res 2019; 86:195-201. [PMID: 31091532 DOI: 10.1038/s41390-019-0428-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although prenatal and postnatal programming of metabolic diseases in adulthood is well established, the mechanisms underpinning metabolic programming are not. Dlk1, a key regulator of fetal development, inhibits adipocyte differentiation and restricts fetal growth. METHODS Assess DLk1 expression in a Wistar rat model of catch-up growth following intrauterine restriction. Dams fed ad libitum delivered control pups (C) and dams on a 50% calorie-restricted diet delivered pups with low birth weight (R). Restricted offspring fed a standard rat chow showed catch-up growth (R/C) but those kept on a calorie-restricted diet did not (R/R). RESULTS Decreased Dlk1 expression was observed in adipose tissue and skeletal muscle of R/C pups along with excessive visceral fat accumulation, decreased circulating adiponectin, increased triglycerides and HOMA-IR (from p < 0.05 to p < 0.0001). Moreover, in R/C pups the reduced Dlk1 expression in adipose tissue and skeletal muscle correlated with visceral fat (r = -0.820, p < 00001) and HOMA-IR (r = -0.745, p = 0.002). CONCLUSIONS Decreased Dlk1 expression relates to visceral fat expansion and insulin resistance in a rat model of catch-up growth following prenatal growth restriction. Modulation of Dlk1 expression could be among the targets for the early prevention of fetal programming of adult metabolic disorders.
Collapse
|
29
|
Durst M, Könczöl K, Balázsa T, Eyre MD, Tóth ZE. Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes (Lond) 2019; 43:917-927. [PMID: 29907842 PMCID: PMC6484714 DOI: 10.1038/s41366-018-0133-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/06/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES Dysfunction in reward-related aspects of feeding, and consequent overeating in humans, is a major contributor to obesity. Intrauterine undernutrition and overnutrition are among the predisposing factors, but the exact mechanism of how overeating develops is still unclear. Consummatory behavior is regulated by the medial shell (mSh) of the accumbens nucleus (Nac) through direct connections with the rostral part of the lateral hypothalamic area (LHA). Our aim was to investigate whether an altered Nac-LHA circuit may underlie hyperphagic behavior. SUBJECTS/METHODS Intrauterine protein-restricted (PR) male Wistar rats were used as models for hyperphagia. The experiments were performed using young adult control (normally nourished) and PR animals. Sweet condensed milk (SCM) served as a reward to test consumption and subsequent activation (Fos+) of Nac and LHA neurons. Expression levels of type 1 and 2 dopamine receptors (D1R, D2R) in the Nac, as well as tyrosine hydroxylase (TH) levels in the ventral tegmental area, were determined. The D1R agonist SKF82958 was injected into the mSh-Nac of control rats to test the effect of D1R signaling on SCM intake and neuronal cell activation in the LHA. RESULTS A group of food reward-representing D1R+ neurons was identified in the mSh-Nac. Activation (Fos+) of these neurons was highly proportional to the consumed palatable food. D1R agonist treatment attenuated SCM intake and diminished the number of SCM-activated cells in the LHA. Hyperphagic PR rats showed increased intake of SCM, reduced D1R expression, and an impaired response to SCM-evoked neuronal activation in the mSh-Nac, accompanied by an elevated number of Fos+ neurons in the LHA compared to controls. CONCLUSIONS Sensitivity of food reward-representing neurons in the mSh-Nac determines the level of satisfaction that governs cessation of consumption, probably through connections with the LHA. D1R signaling is a key element in this function, and is impaired in obesity-prone rats.
Collapse
Affiliation(s)
- Máté Durst
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Tamás Balázsa
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Mark D Eyre
- Department of Physiology I, University of Freiburg, Hermann-Herder-Str. 7, Freiburg, 79104, Germany
| | - Zsuzsanna E Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary.
| |
Collapse
|
30
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
31
|
Iwasa T, Matsuzaki T, Yano K, Mayila Y, Yanagihara R, Yamamoto Y, Kuwahara A, Irahara M. Prenatal undernutrition affects the phenotypes of PCOS model rats. J Endocrinol 2018; 239:137-151. [PMID: 30089683 DOI: 10.1530/joe-18-0335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022]
Abstract
Although polycystic ovary syndrome (PCOS) is among the most common endocrine disorders in women of reproductive age, its etiology remains poorly understood. From the perspective of developmental origins of health and disease, some studies have investigated the relationship between low birth weight and the prevalence of PCOS and/or PCOS phenotypes in humans; however, the results of these studies were inconclusive. Here, we evaluated the effects of prenatal undernutrition on the metabolic and reproductive phenotypes of dihydrotestosterone-induced PCOS model rats. The PCOS model rats showed increased body weight, food intake, fat weight, adipocyte size and upregulation of inflammatory cytokines in adipose tissue; prenatal undernutrition exacerbated these metabolic changes. Prenatal undernutrition also increased the gene expression of hypothalamic orexigenic factor and decreased the gene expression of anorexigenic factor in the PCOS model rats. In addition, the PCOS model rats exhibited irregular cyclicity, polycystic ovaries and disrupted gene expression of ovarian steroidogenic enzymes. Interestingly, prenatal undernutrition attenuated these reproductive changes in the PCOS model rats. Our results suggest that in dihydrotestosterone-induced PCOS model rats, prenatal undernutrition exacerbates the metabolic phenotypes, whereas it improves the reproductive phenotypes and that such phenotypic changes may be induced by the alteration of some peripheral and central factors.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
32
|
Gridneva Z, Kugananthan S, Rea A, Lai CT, Ward LC, Murray K, Hartmann PE, Geddes DT. Human Milk Adiponectin and Leptin and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018; 10:nu10081125. [PMID: 30127292 PMCID: PMC6115716 DOI: 10.3390/nu10081125] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022] Open
Abstract
Human milk (HM) adipokines may influence infant feeding patterns, appetite regulation, and body composition (BC). The associations between concentrations/calculated daily intakes (CDI) of HM adipokines in the first 12 months postpartum and maternal/term infant BC, and infant breastfeeding parameters were investigated. BC of breastfeeding dyads (n = 20) was measured at 2, 5, 9, and/or 12 months postpartum with ultrasound skinfolds (infants) and bioimpedance spectroscopy (infants/mothers). 24-h milk intake and feeding frequency were measured along with whole milk adiponectin and skim and whole milk leptin (SML and WML) and CDI were calculated. Statistical analysis used linear regression/mixed effects models; results were adjusted for multiple comparisons. Adipokine concentrations did not associate with infant BC. Higher CDI of adiponectin were associated with lower infant fat-free mass (FFM; p = 0.005) and FFM index (FFMI; p = 0.009) and higher fat mass (FM; p < 0.001), FM index (FMI; p < 0.001), and %FM (p < 0.001). Higher CDI of SML were associated with higher infant FM (p < 0.001), FMI (p < 0.001), and %FM (p = 0.002). At 12 months, higher CDI of WML were associated with larger increases in infant adiposity (2–12 month: FM, p = 0.0006; %FM, p = 0.0004); higher CDI of SML were associated with a larger decrease in FFMI (5–12 months: p = 0.0004). Intakes of HM adipokines differentially influence development of infant BC in the first year of life, which is a critical window of infant programming and may potentially influence risk of later disease via modulation of BC.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences, M310, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Sambavi Kugananthan
- School of Molecular Sciences, M310, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Ching Tat Lai
- School of Molecular Sciences, M310, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Kevin Murray
- School of Population and Global Health, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Peter E Hartmann
- School of Molecular Sciences, M310, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Donna T Geddes
- School of Molecular Sciences, M310, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| |
Collapse
|
33
|
Murphy MO, Herald JB, Leachman J, Villasante Tezanos A, Cohn DM, Loria AS. A model of neglect during postnatal life heightens obesity-induced hypertension and is linked to a greater metabolic compromise in female mice. Int J Obes (Lond) 2018; 42:1354-1365. [PMID: 29535450 PMCID: PMC6054818 DOI: 10.1038/s41366-018-0035-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
.: Exposure to early life stress (ELS) is associated with behavioral-related alterations, increases in body mass index and higher systolic blood pressure in humans. Postnatal maternal separation and early weaning (MSEW) is a mouse model of neglect characterized by a long-term dysregulation of the neuroendocrine system. OBJECTIVES Given the contribution of adrenal-derived hormones to the development of obesity, we hypothesized that exposure to MSEW could contribute to the worsening of cardiometabolic function in response to chronic high-fat diet (HF) feeding by promoting adipose tissue expansion and insulin resistance. SUBJECTS MSEW was performed in C57BL/6 mice from postnatal days 2-16 and weaned at postnatal day 17. Undisturbed litters weaned at postnatal day 21 served as the control (C) group. At the weaning day, mice were placed on a low-fat diet (LF) or HF for 16 weeks. RESULTS When fed a LF, male and female mice exposed to MSEW display similar body weight but increased fat mass compared to controls. However, when fed a HF, only female MSEW mice display increased body weight, fat mass, and adipocyte hypertrophy compared with controls. Also, female MSEW mice display evidence of an early onset of cardiometabolic risk factors, including hyperinsulinemia, glucose intolerance, and hypercholesterolemia. Yet, both male and female MSEW mice fed a HF show increased blood pressure compared with controls. CONCLUSIONS This study shows that MSEW promotes a sex-specific dysregulation of the adipose tissue expansion and glucose homeostasis that precedes the development of obesity-induced hypertension.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Joseph B Herald
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jacqueline Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Dianne M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
34
|
Intrauterine growth restriction combined with a maternal high-fat diet increased adiposity and serum corticosterone levels in adult rat offspring. J Dev Orig Health Dis 2018; 9:315-328. [DOI: 10.1017/s2040174418000016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractIntrauterine growth restriction (IUGR) and fetal exposure to a maternal high-fat diet (HFD) independently increase the risk of developing obesity in adulthood. Excess glucocorticoids increase obesity. We hypothesized that surgically induced IUGR combined with an HFD would increase adiposity and glucocorticoids more than in non-IUGR offspring combined with the same HFD, findings that would persist despite weaning to a regular diet. Non-IUGR (N) and IUGR (I) rat offspring from dams fed either regular rat chow (R) or an HFD (H) were weaned to either a regular rat chow or an HFD. For non-IUGR and IUGR rats, this study design resulted in three diet groups: offspring from dams fed a regular diet and weaned to a regular diet (NRR and IRR), offspring rats from dams fed an HFD and weaned to a regular diet (NHR and IHR) and offspring from dams fed an HFD and weaned to an HFD (NHH and IHH). Magnetic resonance imaging or fasting visceral and subcutaneous adipose tissue collection occurred at postnatal day 60. IHH male rats had greater adiposity than NHH males, findings that were only partly normalized by weaning to a regular chow. IHH male rats had a 10-fold increase in serum corticosterone levels. IHH female rats had increased adiposity and serum triglycerides. We conclude that IUGR combined with an HFD throughout life increased adiposity, glucocorticoids and triglycerides in a sex-specific manner. Our data suggest that one mechanism through which the perinatal environment programs increased adiposity in IHH male rats may be via increased systemic glucocorticoids.
Collapse
|
35
|
Harrath AH, Alrezaki A, Mansour L, Alwasel SH, Palomba S. Food restriction during pregnancy and female offspring fertility: adverse effects of reprogrammed reproductive lifespan. J Ovarian Res 2017; 10:77. [PMID: 29282125 PMCID: PMC5745764 DOI: 10.1186/s13048-017-0372-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Food restriction during pregnancy can influence the health of the offspring during the adulthood. The aim of the present study was to examine the effect of maternal food restriction (MFR) on the reproductive performance in female rat offspring from the first (FR1) and second (FR2) generations. METHODS Adult virgin Wistar female rats were given free access to tap water and were fed ad libitum on standard rodent chow, were mated with virgin adult males, and then were randomly divided into two groups: controls (that was fed ad libitum ) and food-restricted group (FR, that was given only 50% of ad libitum food throughout gestation). Their first (FR1) and the second (FR2) generation of offspring were fed ad libitum and sacrificed before puberty and at adulthood. Their ovaries were removed and their histology evaluated by estimating the number of follicles (total and at various stages of folliculogenesis), and the presence of multi-nuclei oocytes and multi-oocyte follicles. RESULTS Total number of ovarian follicles was lower in FR1 females at week 4 in comparison with controls, while it was not different in FR2 females vs. CONTROLS The number of the primordial follicle was lower in FR1 and FR2 females vs. controls at both week 4 and at week 8. When compared to the controls, the follicles containing multi-nuclei oocytes were more frequent in ovaries from FR1 and FR2 females at week 4, and higher and lower respectively in ovaries form FR1 and FR2 females at week 8. CONCLUSION MFR affects ovarian histology by inducing the development of abnormal follicles in the ovaries in first and second generation offspring. This finding could influence the ovarian function resulting in an early pubertal onset and an early decline in reproductive lifespan.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Unit of Reproductive and Developmental Biology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Abdulkarem Alrezaki
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefano Palomba
- Unit of Gynecology and Obstetrics, Grande Ospedale Metropolitano "Bianchi - Melacrino - Morelli", Reggio Calabria, Italy
| |
Collapse
|
36
|
Smith BL, Reyes TM. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders. Front Neuroendocrinol 2017; 47:109-122. [PMID: 28736323 PMCID: PMC8600507 DOI: 10.1016/j.yfrne.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions.
Collapse
Affiliation(s)
- B L Smith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA
| | - T M Reyes
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA.
| |
Collapse
|
37
|
Van Eetvelde M, Opsomer G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod Domest Anim 2017; 52 Suppl 3:30-36. [DOI: 10.1111/rda.13019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
38
|
Xiao D, Kou H, Zhang L, Guo Y, Wang H. Prenatal Food Restriction with Postweaning High-fat Diet Alters Glucose Metabolic Function in Adult Rat Offspring. Arch Med Res 2017; 48:35-45. [PMID: 28577868 DOI: 10.1016/j.arcmed.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The present study was designed to investigate the effects of prenatal food restriction (PFR) with postweaning high-fat diet (HFD) on glucose metabolic function in adult offspring. METHODS Pregnant Wistar rats were given PFR treatment from gestational day 11 to spontaneous delivery. All pups were fed by HFD after weaning. Oral glucose tolerance test (OGTT) was conducted at postnatal week (PW) 20. Rats were decapitated in PW24 to collect liver and pancreas, and expression of hepatic insulin signaling genes were then quantified. RESULTS Body weight from PW4 to PW24 in PFR males was lower than those in control males, whereas there was no distinct difference between females. However, body weight gain rates were higher from PW16 to PW24 in PFR males and females. Fasting serum glucose presented no changes, whereas fasting serum insulin decreased in PW20 in PFR pups. Moreover, glucose intolerance only appeared in PFR males, whereas no changes were shown in PFR females in relative values. Serum insulin increased in both PFR groups after OGTT. Remarkable pathological changes were also found in islets from PFR rats. There was an increase in the hepatic mRNA expression of IR in PFR females and of Glut2 in PFR males. CONCLUSION PFR with postweaning HFD induced a catch-up growth in body weight, especially in PFR females. Serum insulin decreased in both PFR groups in fasting status. Insulin resistance after OGTT only existed in PFR males, whereas PFR females showed no obvious changes in glucose metabolism.
Collapse
Affiliation(s)
- Di Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Hao Kou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| |
Collapse
|
39
|
Influence of catch up growth on spatial learning and memory in a mouse model of intrauterine growth restriction. PLoS One 2017; 12:e0177468. [PMID: 28542302 PMCID: PMC5443512 DOI: 10.1371/journal.pone.0177468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) and rapid postnatal weight gain or catch up growth (CUG) increase the susceptibility to metabolic syndrome during adult life. Longitudinal studies have also revealed a high incidence of learning difficulties in children with IUGR. The aim of the present study was to investigate the effect of nutrition and CUG on learning memory in an IUGR animal model. We hypothesized that synaptic protein expression and transcription, an essential mechanism for memory consolidation, might be affected by intrauterine undernutrition. Methods IUGR was induced by 50% maternal caloric undernutrition throughout late gestation. During the suckling period, dams were either fed ad libitum or food restricted. The pups were divided into: Normal prenatal diet-Normal postnatal diet (NN), Restricted prenatal diet- Normal postnatal diet + catch up growth (RN+), Normal prenatal diet-Restricted postnatal diet (NR) and Restricted prenatal diet-Restricted postnatal diet (RR). At 4 weeks of age, memory was assessed via a water maze test. To evaluate synaptic function, 2 specific synaptic proteins (postsynaptic density-95 [PSD95], synaptophysin) as well as insulin receptors (IR) were tested by Western Blot and quantitative polymerase chain reaction (qPCR). Brain-derived neurotrophic factor and serum insulin levels were also studied. Results and conclusions The RN+ group presented a learning curve similar to the NN animals. The RR animals without CUG showed learning disabilities. PSD95 was lower in the RR group than in the NN and RN+ mice. In contrast, synaptophysin was similar in all groups. IR showed an inverse expression pattern to that of the PSD95. In conclusion, perinatal nutrition plays an important role in learning. CUG after a period of prenatal malnutrition seems to improve learning skills. The functional alterations observed might be related to lower PSD95 activity and a possible dysfunction in the hormone regulation of synaptic plasticity.
Collapse
|
40
|
Purtell L, Qi Y, Campbell L, Sainsbury A, Herzog H. Adult-onset deletion of the Prader-Willi syndrome susceptibility gene Snord116 in mice results in reduced feeding and increased fat mass. Transl Pediatr 2017; 6:88-97. [PMID: 28503414 PMCID: PMC5413475 DOI: 10.21037/tp.2017.03.06] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The imprinted small nucleolar RNA (snoRNA) Snord116 is implicated in the aetiology of Prader-Willi syndrome (PWS), a disease associated with hyperphagia and obesity. Germline deletion of Snord116 in mice has been found to lead to increased food intake but not to the development of obesity. To determine the role of Snord116 independent of potential compensatory developmental factors, we investigated the effects of conditional adult-onset deletion of Snord116 in mice. METHODS Deletion of Snord116 was induced at 8 weeks of age by oral administration of tamoxifen to male Snordlox/lox; ROSAcre/+ mice, with vehicle-treated mice used as controls. Body weight (BW) was monitored weekly and body composition was measured by dual-energy X-ray absorptiometry and tissue dissection. Non-fasted and fasting-induced food intake was determined, and glucose and insulin tolerance tests were performed. Twenty-four-hour energy expenditure and physical activity were assessed by indirect calorimetry. RESULTS Adult-onset deletion of Snord116 led to reduced food intake and increased adiposity, albeit with no concomitant change in BW or lean mass compared to controls. Adult onset Snord116 deletion was also associated with worsened glucose tolerance and insulin sensitivity. CONCLUSIONS This study identified a key role for Snord116 in feeding behaviour and growth. Further, it is likely that the effects of this gene are modulated by developmental stage, as mice with adult-onset deletion showed an opposite phenotype, with respect to food intake and body composition, to previously published data on mice with germline deletion.
Collapse
Affiliation(s)
- Louise Purtell
- Diabetes & Metabolism Department, Garvan Institute of Medical Research, NSW, Australia
| | - Yue Qi
- Neuroscience Research Department, Garvan Institute of Medical Research, NSW, Australia
| | - Lesley Campbell
- Diabetes & Metabolism Department, Garvan Institute of Medical Research, NSW, Australia.,Department of Endocrinology, St Vincent's Hospital, NSW, Australia
| | - Amanda Sainsbury
- Neuroscience Research Department, Garvan Institute of Medical Research, NSW, Australia.,The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Herbert Herzog
- Neuroscience Research Department, Garvan Institute of Medical Research, NSW, Australia
| |
Collapse
|
41
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
42
|
Kugananthan S, Gridneva Z, Lai CT, Hepworth AR, Mark PJ, Kakulas F, Geddes DT. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017; 9:E252. [PMID: 28282925 PMCID: PMC5372915 DOI: 10.3390/nu9030252] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/18/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Human milk (HM) appetite hormones and macronutrients may mediate satiety in breastfed infants. This study investigated associations between maternal adiposity and concentrations of HM leptin, adiponectin, protein and lactose, and whether these concentrations and the relationship between body mass index and percentage fat mass (%FM) in a breastfeeding population change over the first year of lactation. Lactating women (n = 59) provided milk samples (n = 283) at the 2nd, 5th, 9th and/or 12th month of lactation. Concentrations of leptin, adiponectin, total protein and lactose were measured. Maternal %FM was measured using bioimpedance spectroscopy. Higher maternal %FM was associated with higher leptin concentrations in both whole (0.006 ± 0.002 ng/mL, p = 0.008) and skim HM (0.005 ± 0.002 ng/mL, p = 0.007), and protein (0.16 ± 0.07 g/L, p = 0.028) concentrations. Adiponectin and lactose concentrations were not associated with %FM (0.01 ± 0.06 ng/mL, p = 0.81; 0.08 ± 0.11 g/L, p = 0.48, respectively). Whole milk concentrations of adiponectin and leptin did not differ significantly over the first year of lactation. These findings suggest that the level of maternal adiposity during lactation may influence the early appetite programming of breastfed infants by modulating concentrations of HM components.
Collapse
Affiliation(s)
- Sambavi Kugananthan
- School of Human Sciences, The University of Western Australia, Crawley WA 6009, Australia.
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Ching T Lai
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Anna R Hepworth
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Peter J Mark
- School of Human Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Foteini Kakulas
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley WA 6009, Australia.
| |
Collapse
|
43
|
Vaiserman AM. Early-Life Nutritional Programming of Type 2 Diabetes: Experimental and Quasi-Experimental Evidence. Nutrients 2017; 9:nu9030236. [PMID: 28273874 PMCID: PMC5372899 DOI: 10.3390/nu9030236] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Consistent evidence from both experimental and human studies suggest that inadequate nutrition in early life can contribute to risk of developing metabolic disorders including type 2 diabetes (T2D) in adult life. In human populations, most findings supporting a causative relationship between early-life malnutrition and subsequent risk of T2D were obtained from quasi-experimental studies (‘natural experiments’). Prenatal and/or early postnatal exposures to famine were demonstrated to be associated with higher risk of T2D in many cohorts around the world. Recent studies have highlighted the importance of epigenetic regulation of gene expression as a possible major contributor to the link between the early-life famine exposure and T2D in adulthood. Findings from these studies suggest that prenatal exposure to the famine may result in induction of persistent epigenetic changes that have adaptive significance in postnatal development but can predispose to metabolic disorders including T2D at the late stages of life. In this review, quasi-experimental data on the developmental programming of T2D are summarized and recent research findings on changes in DNA methylation that mediate these effects are discussed.
Collapse
|
44
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
45
|
Lee S, You YA, Kwon EJ, Jung SC, Jo I, Kim YJ. Maternal Food Restriction during Pregnancy and Lactation Adversely Affect Hepatic Growth and Lipid Metabolism in Three-Week-Old Rat Offspring. Int J Mol Sci 2016; 17:ijms17122115. [PMID: 27983688 PMCID: PMC5187915 DOI: 10.3390/ijms17122115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation. We performed analyses of covariance (adjusting for the liver weight/body weight ratio) to compare hepatic growth and lipid metabolism among the offspring. Maternal FR during gestation triggered the development of wide spaces between hepatic cells and increased the expression of mammalian target of rapamycin (mTOR) in three-week-old male offspring compared with controls (both p < 0.05). Offspring nursed by FR dams exhibited wider spaces between hepatic cells and a lower liver weight/body weight ratio than control offspring, and increased mTOR expression (p < 0.05). Interestingly, the significant decrease in expression of lipogenic-related genes was dependent on carbohydrate-responsive element-binding protein, despite the increased expression of sterol regulatory element-binding protein 1 (SREBP1) (p < 0.05). This study demonstrated increased expression of key metabolic regulators (mTOR and SREBP1), alterations in lipid metabolism, and deficits in hepatic growth in the offspring of FR-treated dams.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
- Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| |
Collapse
|
46
|
Qasem RJ, Li J, Tang HM, Pontiggia L, D'mello AP. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring. Clin Exp Pharmacol Physiol 2016; 43:494-502. [PMID: 26763577 DOI: 10.1111/1440-1681.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure.
Collapse
Affiliation(s)
- Rani J Qasem
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hee Man Tang
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Brown LD, Hay WW. Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol 2016; 435:69-77. [PMID: 26994511 PMCID: PMC5014698 DOI: 10.1016/j.mce.2016.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| |
Collapse
|
48
|
Ni SQ, Lou Y, Wang XM, Shen Z, Wang J, Zhao ZY, Zeng S. A high-fat high-energy diet influences hepatic CYP3A expression and activity in low-birth-weight developing female rats. World J Pediatr 2016; 12:489-497. [PMID: 27363986 DOI: 10.1007/s12519-016-0019-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/22/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND The objective of this study was to investigate the effects of a high-fat, high-energy (HFHE) diet on the hepatic expression of CYP3A in low-birthweight developing female rats. METHODS Pregnant rats were divided into nourished and undernourished groups. The offspring of the nourished rats were defined as the normal-birth-weight (NBW) group, and those of undernourished rats were defined as the low-birth-weight (LBW) group. According to their birth weights and diets, the rats were subdivided into the following four groups: NBW-normal diet (NN) group; NBW-HFHE (NH) group; LBW-normal diet (LN) group; and LBW-HFHE (LH) group. Liver samples were isolated on days 3, 7, 14, 21, 28, 56 and 84 after birth. RESULTS The CYP3A1 mRNA levels in the LH group on days 3, 56 and 84 were significantly higher than those of the NN group (P<0.05). CYP3A1 expression was significantly higher in the LH group than that in the NH group on days 21, 28 and 84 (P<0.05). CYP3A1 mRNA expression was higher in the LH group than that in the LN group on days 3 and 21 (P<0.05). No zonal CYP3A1 expression pattern was observed in the LH developmental group. The LH group had significantly higher mean activity than the LN group on days 7, 14, 28 and 56. CONCLUSION Our results indicated that an HFHE diet can result in alterations of CYP3A expression in a developmental LBW rat model.
Collapse
Affiliation(s)
- Shao-Qing Ni
- The National Clinical Trial Institute (Ni SQ), Pharmacy Department, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Yin Lou
- The National Clinical Trial Institute (Ni SQ), Pharmacy Department, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Xiu-Min Wang
- Department of Endocrinology, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Zheng Shen
- Lab Center, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Jue Wang
- The National Clinical Trial Institute (Ni SQ), Pharmacy Department, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Zheng-Yan Zhao
- Department of Children's Health and Care Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, No. 388 Yu Hang Tang Road, 310058, Hangzhou, China.
| |
Collapse
|
49
|
Matthiesen CF, Tauson AH. Fetal life malnutrition was not reflected in the relative abundances of adiponectin and leptin mRNAs in adipose tissue in male mink kits at 9.5 weeks of age. Acta Vet Scand 2016; 58:67. [PMID: 27766976 PMCID: PMC5073855 DOI: 10.1186/s13028-016-0250-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Malnutrition in fetal life and during suckling have in some animal studies resulted in adaptive changes related to the fat and glucose metabolism, which in the long term might predispose the offspring for metabolic disorders such as obesity later in life. The objective was to study the effect of fetal life malnutrition in male mink on the gene expression of leptin and adiponectin in different adipose tissue sites. Results Thirty-two male mink, strict carnivore species, exposed to low (FL) or adequate (FA) protein provision the last 16.3 ± 1.8 days of fetal life and randomly assigned to a low (LP) or adequate (AP) protein diet from 7 to 9.5 weeks of age were used. Adipose tissues (subcutaneous, perirenal and mesenteric) were analyzed using qPCR. Fetal life or post-weaning protein provision did not affect the relative abundances of leptin and adiponectin mRNAs in adipose tissue at 9.5 weeks of age. Relative abundances of leptin and adiponectin mRNAs were different between adipose tissue sites and were significantly higher in subcutaneous than in perirenal and mesenteric tissues. Conclusion Fetal life protein malnutrition in male mink, did not result in adaptive changes in the gene expression of leptin and adiponectin mRNAs in adipose tissue at 9.5 weeks of age as found in rodents. However, both leptin and adiponectin mRNAs were significantly differently expressed between tissue sites.
Collapse
|
50
|
Wang J, Tang H, Wang X, Zhang X, Zhang C, Zhang M, Zhao Y, Zhao L, Shen J. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Sci Rep 2016; 6:27780. [PMID: 27277748 PMCID: PMC4899793 DOI: 10.1038/srep27780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome.
Collapse
Affiliation(s)
- Jingjing Wang
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huang Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaoxin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yufeng Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liping Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jian Shen
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|