1
|
Zhong C, Li N, Wang S, Li D, Yang Z, Du L, Huang G, Li H, Yeung WS, He S, Ma S, Wang Z, Jiang H, Zhang H, Li Z, Wen X, Xue S, Tao X, Li H, Xie D, Zhang Y, Chen Z, Wang J, Yan J, Liang Z, Zhang Z, Zhong Z, Wu Z, Wan C, Liang C, Wang L, Yu S, Ma Y, Yu Y, Li F, Chen Y, Zhang B, Lyu A, Ren F, Zhou H, Liu J, Zhang G. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat Commun 2024; 15:8588. [PMID: 39362888 PMCID: PMC11449908 DOI: 10.1038/s41467-024-52965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Excessive glucocorticoid (GC) action is linked to various metabolic disorders. Recent findings suggest that disrupting skeletal GC signaling prevents bone loss and alleviates metabolic disorders in high-fat diet (HFD)-fed obese mice, underpinning the neglected contribution of skeletal GC action to obesity and related bone loss. Here, we show that the elevated expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the enzyme driving local GC activation, and GC signaling in osteoblasts, are associated with bone loss and obesity in HFD-fed male mice. Osteoblast-specific 11β-HSD1 knockout male mice exhibit resistance to HFD-induced bone loss and metabolic disorders. Mechanistically, elevated 11β-HSD1 restrains glucose uptake and osteogenic activity in osteoblast. Pharmacologically inhibiting osteoblastic 11β-HSD1 by using bone-targeted 11β-HSD1 inhibitor markedly promotes bone formation, ameliorates glucose handling and mitigated obesity in HFD-fed male mice. Taken together, our study demonstrates that osteoblastic 11β-HSD1 directly contributes to HFD-induced bone loss, glucose handling impairment and obesity.
Collapse
Affiliation(s)
- Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Gui Lin, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guangxin Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitian Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wing Sze Yeung
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shan He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuting Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhuqian Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoxin Wen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Song Xue
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Junqin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhengming Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Baoting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, China.
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Frick JM, Eller OC, Foright RM, Levasseur BM, Yang X, Wang R, Winter MK, O'Neil MF, Morris EM, Thyfault JP, Christianson JA. High-fat/high-sucrose diet worsens metabolic outcomes and widespread hypersensitivity following early-life stress exposure in female mice. Am J Physiol Regul Integr Comp Physiol 2023; 324:R353-R367. [PMID: 36693166 PMCID: PMC9970659 DOI: 10.1152/ajpregu.00216.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.
Collapse
Affiliation(s)
- Jenna M Frick
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Olivia C Eller
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Rebecca M Foright
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Brittni M Levasseur
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xiaofang Yang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Ruipeng Wang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Association, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas, United States
| | - Julie A Christianson
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
3
|
Kupczyk D, Bilski R, Kozakiewicz M, Studzińska R, Kędziora-Kornatowska K, Kosmalski T, Pedrycz-Wieczorska A, Głowacka M. 11β-HSD as a New Target in Pharmacotherapy of Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23168984. [PMID: 36012251 PMCID: PMC9409048 DOI: 10.3390/ijms23168984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs), which are secreted by the adrenal cortex, are important regulators in the metabolism of carbohydrates, lipids, and proteins. For the proper functioning of the body, strict control of their release is necessary, as increased GCs levels may contribute to the development of obesity, type 2 diabetes mellitus, hypertension, cardiovascular diseases, and other pathological conditions contributing to the development of metabolic syndrome. 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) locally controls the availability of the active glucocorticoid, namely cortisol and corticosterone, for the glucocorticoid receptor. Therefore, the participation of 11β-HSD1 in the development of metabolic diseases makes both this enzyme and its inhibitors attractive targets in the pharmacotherapy of the above-mentioned diseases.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | | | - Mariola Głowacka
- Faculty of Health Sciences, Mazovian State University in Płock, Plac Dąbrowskiego 2, 09-402 Płock, Poland
| |
Collapse
|
4
|
Equisetin is an anti-obesity candidate through targeting 11 β-HSD1. Acta Pharm Sin B 2022; 12:2358-2373. [PMID: 35646525 PMCID: PMC9136616 DOI: 10.1016/j.apsb.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin (EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been reported to display antibacterial and antiviral activities. Here, we revealed that EQST displayed anti-obesity effects acting on adipose tissue through inhibiting adipogenesis in vitro and attenuating HFD-induced obesity in mice, doing so without affecting food intake, blood pressure or heart rate. We demonstrated that EQST inhibited the enzyme activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a therapeutic target of obesity in adipose tissue. Anti-obesity properties of EQST were all offset by applying excessive 11β-HSD1's substrates and 11β-HSD1 inhibition through knockdown in vitro or 11β-HSD1 knockout in vivo. In the 11β-HSD1 bypass model constructed by adding excess 11β-HSD1 products, EQST's anti-obesity effects disappeared. Furthermore, EQST directly bond to 11β-HSD1 protein and presented remarkable better intensity on 11β-HSD1 inhibition and better efficacy on anti-obesity than known 11β-HSD1 inhibitor. Therefore, EQST can be developed into anti-obesity candidate compound, and this study may provide more clues for developing higher effective 11β-HSD1 inhibitors.
Collapse
|
5
|
Takaya J. Calcium-Deficiency during Pregnancy Affects Insulin Resistance in Offspring. Int J Mol Sci 2021; 22:ijms22137008. [PMID: 34209784 PMCID: PMC8268058 DOI: 10.3390/ijms22137008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Prenatal malnutrition is known to affect the phenotype of the offspring through changes in epigenetic regulation. Growing evidence suggests that epigenetics is one of the mechanisms by which nutrients and minerals affect metabolic traits. Although the perinatal period is the time of highest phenotypic plasticity, which contributes largely to developmental programming, there is evidence of nutritional influence on epigenetic regulation during adulthood. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. Cortisol, the most important glucocorticoid, is considered to lead to insulin resistance and metabolic syndrome. 11β-hydroxysteroid dehydrogenase-1 is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. This brief review aims to identify the effects of Ca deficiency during pregnancy and/or lactation on insulin resistance in the offspring. Those findings demonstrate that maternal Ca deficiency during pregnancy may affect the epigenetic regulation of gene expression and thereby induce different metabolic phenotypes. We aim to address the need for Ca during pregnancy and propose the scaling-up of clinical and public health approaches that improved pregnancy outcomes.
Collapse
Affiliation(s)
- Junji Takaya
- Department of Pediatrics, Kawachi General Hospital, 1-31 Yokomakura, Higashi-Osaka 578-0954, Osaka, Japan
| |
Collapse
|
6
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Eller OC, Morris EM, Thyfault JP, Christianson JA. Early life stress reduces voluntary exercise and its prevention of diet-induced obesity and metabolic dysfunction in mice. Physiol Behav 2020; 223:113000. [PMID: 32512033 PMCID: PMC7397992 DOI: 10.1016/j.physbeh.2020.113000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023]
Abstract
The development of obesity-related metabolic syndrome (MetS) involves a complex interaction of genetic and environmental factors. One environmental factor found to be significantly associated with MetS is early life stress (ELS). We have previously reported on our mouse model of ELS, induced by neonatal maternal separation (NMS), that displays altered regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased sensitivity in the urogenital organs, which was attenuated by voluntary wheel running. Here, we are using our NMS model to determine if ELS-induced changes in the HPA axis also influence weight gain and MetS. Naïve (non-stressed) and NMS male mice were given free access to a running wheel and a low-fat control diet at 4-weeks of age. At 16-weeks of age, half of the mice were transitioned to a high fat/sucrose (HFS) diet to investigate if NMS influences the effectiveness of voluntary exercise to prevent diet-induced obesity and MetS. Overall, we observed a greater impact of voluntary exercise on prevention of HFS diet-induced outcomes in naïve mice, compared to NMS mice. Although body weight and fat mass were still significantly higher, exercise attenuated fasting insulin levels and mRNA levels of inflammatory markers in epididymal adipose tissue in HFS diet-fed naïve mice. Only moderate changes were observed in exercised NMS mice on a HFS diet, although this could partially be explained by reduced running distance within this group. Interestingly, sedentary NMS mice on a control diet displayed impaired glucose homeostasis and moderately increased pro-inflammatory mRNA levels in epididymal adipose, suggesting that early life stress alone impairs metabolic function and negatively impacts the therapeutic effect of voluntary exercise.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - E. Matthew Morris
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Gregory S, Hill D, Grey B, Ketelbey W, Miller T, Muniz-Terrera G, Ritchie CW. 11β-hydroxysteroid dehydrogenase type 1 inhibitor use in human disease-a systematic review and narrative synthesis. Metabolism 2020; 108:154246. [PMID: 32333937 DOI: 10.1016/j.metabol.2020.154246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an intracellular enzyme that catalyses conversion of cortisone into cortisol; correspondingly, 11β-HSD1 inhibitors inhibit this conversion. This systematic review focuses on the use of 11β-HSD1 inhibitors in diseases known to be associated with abnormalities in hypothalamic pituitary adrenal (HPA) axis function. METHODS The databases screened for suitable papers were: MedLine, EMBASE, Web of Science, ClinicalTrials.gov, and Cochrane Central. RESULTS 1925 papers were identified, of which 29 were included in the final narrative synthesis. 11β-HSD1 and its inhibitors have been studied in diabetes, obesity, metabolic syndrome (MetS), and Alzheimer's disease (AD). Higher expression of 11β-HSD1 is seen in obesity and MetS, but has not yet been described in obesity or AD. Genetic studies identify 11β-HSD1 SNPs of interest in populations with diabetes, MetS, and AD. One phase II trial successfully reduced HbA1c in a diabetic population, however trials in MetS, obesity, and AD have not met primary endpoints. CONCLUSIONS Translation of this research from preclinical studies has proved challenging so far, however this is a growing area of research and more studies should focus on understanding the complex relationships between 11β-HSD1 and disease pathology, especially given the therapeutic potential of 11β-HSD1 inhibitors in development.
Collapse
Affiliation(s)
- Sarah Gregory
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - David Hill
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ben Grey
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Graciela Muniz-Terrera
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Chailurkit LO, Aekplakorn W, Paiyabhroma N, Ongphiphadhanakul B. Global 11 Beta-Hydroxysteroid Dehydrogenase Activity Assessed by the Circulating Cortisol to Cortisone Ratio is Associated with Features of Metabolic Syndrome. Metab Syndr Relat Disord 2020; 18:291-295. [PMID: 32357081 DOI: 10.1089/met.2020.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: 11 Beta-hydroxysteroid dehydrogenases (11HSDs) are enzymes involved in the interconversion of cortisol and cortisone. There are two isoenzymes of 11HSD, 11HSD1 and 11HSD2. A causative role of 11HSD, particularly 11HSD1, in metabolic syndrome is well established in experimental animals. However, its role in human metabolic syndrome is less clear. We examined the influence of global 11HSD activity on metabolic syndrome in the general population, using the circulating cortisol:cortisone ratio as an index of global 11HSD activity. Methods: A subsample of 269 sera randomly selected from the Thai National Health Examination Survey IV samples was analyzed for serum cortisol and cortisone levels by liquid chromatography-tandem mass spectrometry. Results: There was no association between serum cortisol and age. However, circulating cortisone was negatively correlated with age (r = -0.12, P < 0.001), and the serum cortisol:cortisone ratio was positively associated with age (r = 0.03, P < 0.001). No association was found between serum cortisol:cortisone ratio and body mass index (BMI) or serum lipids. Multivariate analyses showed that the serum cortisol:cortisone ratio was associated with high blood pressure (P < 0.05) independent of age, BMI, and sex. In subjects without hypertension, the serum cortisol to cortisone ratio was associated with mean systolic blood pressure after controlling for age, BMI, and sex. The cortisol:cortisone ratio was not significantly different between subjects with and without diabetes. After excluding the 16 subjects with diabetes, it was found that the serum cortisol:cortisone ratio was positively associated with fasting plasma glucose independent of age, BMI, and sex (P < 0.01). Conclusions: The global index of 11HSD activity, assessed by the circulating cortisol:cortisone ratio, was related to high blood pressure and fasting plasma glucose and may serve as a proxy to global 11HSD activity.
Collapse
Affiliation(s)
- La-Or Chailurkit
- Department of Medicine and Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wichai Aekplakorn
- Department of Community Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nitchawat Paiyabhroma
- Department of Medicine and Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
10
|
González-Dávalos L, Álvarez-Pérez M, Quesada-López T, Cereijo R, Campderrós L, Piña E, Shimada A, Villarroya F, Varela-Echavarria A, Mora O. Glucocorticoid gene regulation of aquaporin-7. VITAMINS AND HORMONES 2020; 112:179-207. [PMID: 32061341 DOI: 10.1016/bs.vh.2019.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AQP7 is the primary glycerol transporter in white (WAT) and brown (BAT) adipose tissues. There are immediate and quantitatively important actions of cortisone over the expression of AQP7 in murine and human adipocytes. Short-term response (minutes) of cortisone treatment result in an mRNA overexpression in white and brown differentiated adipocytes (between 1.5 and 6 folds). Conversely, long-term response (hours or days) result in decreased mRNA expression. The effects observed on AQP7 mRNA expression upon cortisone treatment in brown and white differentiated adipocytes are concordant with those observed for GK and HSD1B11.
Collapse
Affiliation(s)
- Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Mariana Álvarez-Pérez
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Tania Quesada-López
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Laura Campderrós
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Alfredo Varela-Echavarria
- Laboratorio de Diferenciación Neural y Axogénesis, Instituto de Neurobiología, UNAM, Querétaro, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico.
| |
Collapse
|
11
|
Chuanxin Z, Shengzheng W, Lei D, Duoli X, Jin L, Fuzeng R, Aiping L, Ge Z. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development. Eur J Med Chem 2020; 191:112134. [PMID: 32088493 DOI: 10.1016/j.ejmech.2020.112134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key metabolic enzyme that catalyzing the intracellular conversion of inactive glucocorticoids to physiologically active ones. Work over the past decade has demonstrated the aberrant overexpression of 11β-HSD1 contributed to the pathophysiological process of metabolic diseases like obesity, type 2 diabetes mellitus, and metabolic syndromes. The inhibition of 11β-HSD1 represented an attractive therapeutic strategy for the treatment of metabolic diseases. Therefore, great efforts have been devoted to developing 11β-HSD1 inhibitors based on the diverse molecular scaffolds. This review focused on the structural features of the most important 11β-HSD1 inhibitors and categorized them into natural products derivatives and synthetic compounds. We also briefly discussed the optimization process, binding modes, structure-activity relationships (SAR) and biological evaluations of each inhibitor. Moreover, the challenges and directions for 11β-HSD1 inhibitors were discussed, which might provide some useful clues to guide the future discovery of novel 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Zhong Chuanxin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wang Shengzheng
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dang Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xie Duoli
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liu Jin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education (IRACE), Hong Kong Baptist University, Shenzhen, China
| | - Ren Fuzeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Lu Aiping
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhang Ge
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Bulant J, Hill M, Velíková M, Yamamotová A, Martásek P, Papežová H. Changes of BMI, steroid metabolome and psychopathology in patients with anorexia nervosa during hospitalization. Steroids 2020; 153:108523. [PMID: 31622616 DOI: 10.1016/j.steroids.2019.108523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
Abstract
Anorexia nervosa (AN) is associated with various alterations including the dysfunction of the HPA axis and consequently the hypercortisolemia and deficit in sex hormones but the comprehensive evaluation of changes in circulating steroids during the hospitalization of AN patients is lacking. We investigated the effect of realimentation of women with AN during hospitalization on 45 circulating steroids, the relationships between BMI, its change during hospitalization and physical activity, on one side and initial levels and their changes for two adipokines, circulating steroids, anorexia-specific (hunger, appetite and satiety), and anorexia non-specific symptoms (anxiety, depression fatigue, sleep, and body pain) on the other side. We included 33 women with anorexia who were hospitalized for 38(35, 44) days (median with quartiles). The increase of BMI from the initial value 15.2 (13.2, 16.6) kg/m2 was 1.69 (1.37, 2.66) kg/m2. The patients with more severe anorexia showed higher activity in 7β-, and 16α-hydroxylation of androgen precursors, which declined during hospitalization. Otherwise, the 7α-hydroxylation activity is higher in AN patients with less severe malnutrition and the ratio of 5-androstene-3β,7α,17β-triol to 5-androstene-3β,7β,17β-triol increased during the realimentation. Our data allow to speculate that the intensive 7β-, and 16α- and possibly also the 7α-hydroxylation of C19 Δ5 steroids participate in the pathophysiology of anorexia by additional catabolism of substrates available for synthesis of active androgens and estrogens. However, the question remains whether the synthetic analogues of 7α/β- and 16α-hydroxy-steroids prevent the catabolism of the sex steroid precursors, or further activate the "energy wasting" mitochondrial thermogenic metabolism.
Collapse
Affiliation(s)
- Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Institute of Endocrinology, Prague, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Prague, Czech Republic.
| | | | - Anna Yamamotová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Czech Republic.
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
13
|
Dammann C, Stapelfeld C, Maser E. Expression and activity of the cortisol-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 is tissue and species-specific. Chem Biol Interact 2019; 303:57-61. [PMID: 30796905 DOI: 10.1016/j.cbi.2019.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
The microsomal enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts glucocorticoid receptor-inert cortisone (11-dehydrocorticosterone in rodents) to its receptor-active form cortisol (corticosterone in rodents). Thus, 11β-HSD1 amplifies glucocorticoid action at the tissue level. According to the current literature, dysregulation of glucocorticoid signaling may contribute to the pathogenesis of the metabolic syndrome in which regeneration of cortisol by 11β-HSD1 may be an important factor. This is why the enzyme has been very intensely investigated as a potential therapeutic target to treat metabolic complications such as obesity and diabetes type 2. However, due to controversial results from the various animal and human studies as well as from different findings with regard to tissue-specific expression and activity, the varied results unfortunately do not yield a consistent picture. Therefore, the precise role of 11β-HSD1 in the development of complications associated with the metabolic syndrome has still not been deciphered yet. Overall, the prominent role of this enzyme in the pathogenesis of the metabolic syndrome becomes more and more dubious and therefore further studies are necessary to clarify its role finally. This short review gives an overview on the main contradicting findings on the role of 11β-HSD1 in the development of visceral obesity and diabetes type 2.
Collapse
Affiliation(s)
- Christine Dammann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Claudia Stapelfeld
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
14
|
White PC. Alterations of Cortisol Metabolism in Human Disorders. Horm Res Paediatr 2018; 89:320-330. [PMID: 29843121 DOI: 10.1159/000485508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022] Open
Abstract
The interconversion of active and inactive corticosteroids - cortisol and cortisone, respectively, in humans - is modulated by isozymes of 11β-hydroxysteroid dehydrogenase (11-HSD). Studies of this process have provided crucial insights into glucocorticoid effects in a wide variety of tissues. The 11-HSD1 isozyme functions mainly as an oxoreductase (cortisone to cortisol) and is expressed at high levels in the liver and other glucocorticoid target tissues. Because it is required for full physiological effects of cortisol, it has emerged as a drug target for metabolic syndrome and type 2 diabetes. Mutations in the corresponding HSD11B1 gene, or in the H6PD gene encoding hexose-6-phosphate dehydrogenase (which supplies the NADPH required for the oxoreductase activity of 11-HSD1), cause apparent cortisone reductase deficiency, a rare syndrome of adrenocortical hyperactivity and hyperandrogenism. In contrast, the 11-HSD2 isozyme functions as a dehydrogenase (cortisol to cortisone) and is expressed mainly in mineralocorticoid target tissues, where it bars access of cortisol to the mineralocorticoid receptor. Mutations in the HSD11B2 gene encoding 11-HSD2 cause the syndrome of apparent mineralocorticoid excess, a severe form of familial hypertension. The role of this enzyme in the pathogenesis of common forms of low-renin hypertension remains uncertain.
Collapse
|
15
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
16
|
Loerz C, Staab-Weijnitz C, Huebbe P, Giller K, Metges C, Rimbach G, Maser E. Regulation of 11β-hydroxysteroid dehydrogenase type 1 following caloric restriction and re-feeding is species dependent. Chem Biol Interact 2017; 276:95-104. [DOI: 10.1016/j.cbi.2017.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 01/22/2023]
|
17
|
Minichino A, Ando' A, Francesconi M, Salatino A, Delle Chiaie R, Cadenhead K. Investigating the link between drug-naive first episode psychoses (FEPs), weight gain abnormalities and brain structural damages: Relevance and implications for therapy. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:9-22. [PMID: 28363765 DOI: 10.1016/j.pnpbp.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Evidence suggests that obesity and overweight may be associated with severe brain structural abnormalities and poor cognitive and functional outcomes in the general population. Despite these observations and the high prevalence of weight gain abnormalities in patients with psychosis spectrum disorders (PSDs), no studies have investigated the impact that these metabolic disturbances may have on brain structures and development in the earliest stages of PSDs. In the present review we shed light on the association between weight gain and brain structural abnormalities that may affect the course of illness in drug-naïve FEPs. Given the lack of studies directly investigating this issue, we firstly identified and critically evaluated the literature assessing weight gain abnormalities and gray or white matter (GM, WM) volumes (either globally or in specific regions of interest) in otherwise healthy obese/overweight adolescents and young adults. We then compared the results of this systematic review with those of two recent meta-analysis investigating GM and WM abnormalities in drug-naïve FEPs. Weight gain in otherwise healthy subjects was consistently associated with frontal and temporal GM atrophy and with reduced integrity of WM in the corpus callosum. Of relevance, all these brain regions are affected in drug-naïve FEPs, and their integrity is associated with clinical, cognitive and functional outcomes. The underlying mechanisms that may explain the association between weight gain, adiposity, and brain damage in both healthy subjects and drug-naïve FEPs are widely discussed. On the basis of this knowledge, we tried: a) to deduce an integrative model for the development of obesity in psychosis spectrum disorders; b) to identify the key vulnerability factors underlying the association between weight gain and psychosis; c) to provide information on new potential targets of intervention.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States.
| | - Agata Ando'
- Department of Psychology, University of Turin, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States
| | | | | | | |
Collapse
|
18
|
Dunford EC, Riddell MC. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites 2016; 6:metabo6040044. [PMID: 27929385 PMCID: PMC5192450 DOI: 10.3390/metabo6040044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA) axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD). Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.
Collapse
Affiliation(s)
- Emily C Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
19
|
Hamilton BS, Schoelch C, Schuler-Metz A, Krosky P, Lala DS, Claremon DA, McGeehan GM. Influence of sub-chronic selective 11β-hydroxysteroid dehydrogenase 1 inhibition on the hypothalamic-pituitary-adrenal axis in female cynomolgus monkeys. Eur J Pharmacol 2016; 789:68-74. [PMID: 27393460 DOI: 10.1016/j.ejphar.2016.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/27/2022]
Abstract
Inhibition of local cortisol regeneration from circulating cortisone by blocking 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been shown to ameliorate the risk factors associated with the metabolic syndrome. Chronic modulation of glucocorticoid homeostasis may result in hypothalamic-pituitary-adrenal (HPA) axis stimulation. HPA axis over-activation leading androgen excess would be undesirable in a therapeutic intervention designed to treat a chronic condition such as the metabolic syndrome. To address whether 11β-HSD1 inhibition would lead to excess androgens, we treated female cynomolgus monkeys with a selective inhibitor, BI 135558, for 4 weeks. Continual action of the compound over the dosing period was confirmed by constant plasma exposure, and a maintained change in urinary glucocorticoid metabolites consistent with 11β-HSD1 inhibition. No significant changes in adrenal function, as evidenced by an adrenocorticotropic hormone (ATCH) challenge, were observed. An examination of androgenic hormones revealed a slight increase in dehydroepiandrosterone sulfate (DHEA-S), while other hormones such as testosterone remained within reference values. Overall, treatment with BI 135558 in monkeys did not result in obvious over-activation of the HPA axis.
Collapse
Affiliation(s)
- Bradford S Hamilton
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany.
| | - Corinna Schoelch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany
| | - Annette Schuler-Metz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany
| | - Paula Krosky
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, PA 19034, United States
| | - Deepak S Lala
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, PA 19034, United States
| | - David A Claremon
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, PA 19034, United States
| | - Gerard M McGeehan
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, PA 19034, United States
| |
Collapse
|
20
|
Quteineh L, Vandenberghe F, Saigi Morgui N, Delacrétaz A, Choong E, Gholam-Rezaee M, Magistretti P, Bondolfi G, Von Gunten A, Preisig M, Castelao E, Vollenweider P, Waeber G, Bochud M, Kutalik Z, Conus P, Eap CB. Impact of HSD11B1 polymorphisms on BMI and components of the metabolic syndrome in patients receiving psychotropic treatments. Pharmacogenet Genomics 2015; 25:246-58. [PMID: 25751397 DOI: 10.1097/fpc.0000000000000131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) associated with psychiatric disorders and psychotropic treatments represents a major health issue. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme that catalyzes tissue regeneration of active cortisol from cortisone. Elevated enzymatic activity of 11β-HSD1 may lead to the development of MetS. METHODS We investigated the association between seven HSD11B1 gene (encoding 11β-HSD1) polymorphisms and BMI and MetS components in a psychiatric sample treated with potential weight gain-inducing psychotropic drugs (n=478). The polymorphisms that survived Bonferroni correction were analyzed in two independent psychiatric samples (nR1=168, nR2=188) and in several large population-based samples (n1=5338; n2=123 865; n3>100 000). RESULTS HSD11B1 rs846910-A, rs375319-A, and rs4844488-G allele carriers were found to be associated with lower BMI, waist circumference, and diastolic blood pressure compared with the reference genotype (Pcorrected<0.05). These associations were exclusively detected in women (n=257) with more than 3.1 kg/m, 7.5 cm, and 4.2 mmHg lower BMI, waist circumference, and diastolic blood pressure, respectively, in rs846910-A, rs375319-A, and rs4844488-G allele carriers compared with noncarriers (Pcorrected<0.05). Conversely, carriers of the rs846906-T allele had significantly higher waist circumference and triglycerides and lower high-density lipoprotein-cholesterol exclusively in men (Pcorrected=0.028). The rs846906-T allele was also associated with a higher risk of MetS at 3 months of follow-up (odds ratio: 3.31, 95% confidence interval: 1.53-7.17, Pcorrected=0.014). No association was observed between HSD11B1 polymorphisms and BMI and MetS components in the population-based samples. CONCLUSIONS Our results indicate that HSD11B1 polymorphisms may contribute toward the development of MetS in psychiatric patients treated with potential weight gain-inducing psychotropic drugs, but do not play a significant role in the general population.
Collapse
Affiliation(s)
- Lina Quteineh
- aUnit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience bDepartment of Psychiatry, Centre of Psychiatric Epidemiology and Psychopathology cDepartment of Psychiatry, Service of Old Age Psychiatry dDepartment of Psychiatry, Service of General Psychiatry, Lausanne University Hospital, Prilly eLaboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne fDepartment of Medicine gInstitute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital hDepartment of Medical Genetics, University of Lausanne iSwiss Institute of Bioinformatics, Lausanne jDepartment of Mental Health and Psychiatry, University Hospital of Geneva kSchool of Pharmaceutical Sciences, University of Geneve, University of Lausanne, Geneva, Switzerland lFaculty of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boullu-Ciocca S, Tassistro V, Dutour A, Grino M. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine 2015; 50:608-19. [PMID: 26084260 DOI: 10.1007/s12020-015-0657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.
Collapse
Affiliation(s)
- S Boullu-Ciocca
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
| | - V Tassistro
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - A Dutour
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - M Grino
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France.
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France.
- INRA, UMR1260, 13385, Marseille, France.
| |
Collapse
|
22
|
Incollingo Rodriguez AC, Epel ES, White ML, Standen EC, Seckl JR, Tomiyama AJ. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology 2015; 62:301-18. [PMID: 26356039 DOI: 10.1016/j.psyneuen.2015.08.014] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although there is substantial evidence of differential hypothalamic-pituitary-adrenal (HPA) axis activity in both generalized and abdominal obesity, consistent trends in obesity-related HPA axis perturbations have yet to be identified. OBJECTIVES To systematically review the existing literature on HPA activity in obesity, identify possible explanations for inconsistencies in the literature, and suggest methodological improvements for future study. DATA SOURCES Included papers used Pubmed, Google Scholar, and the University of California Library search engines with search terms body mass index (BMI), waist-to-hip ratio (WHR), waist circumference, sagittal diameter, abdominal versus peripheral body fat distribution, body fat percentage, DEXA, abdominal obesity, and cortisol with terms awakening response, slope, total daily output, reactivity, feedback sensitivity, long-term output, and 11β-HSD expression. STUDY ELIGIBILITY CRITERIA Empirical research papers were eligible provided that they included at least one type of obesity (general or abdominal), measured at least one relevant cortisol parameter, and a priori tested for a relationship between obesity and cortisol. RESULTS A general pattern of findings emerged where greater abdominal fat is associated with greater responsivity of the HPA axis, reflected in morning awakening and acute stress reactivity, but some studies did show underresponsiveness. When examined in adipocytes, there is a clear upregulation of cortisol output (due to greater expression of 11β-HSD1), but in hepatic tissue this cortisol is downregulated. Overall obesity (BMI) appears to also be related to a hyperresponsive HPA axis in many but not all studies, such as when acute reactivity is examined. LIMITATIONS The reviewed literature contains numerous inconsistencies and contradictions in research methodologies, sample characteristics, and results, which partially precluded the development of clear and reliable patterns of dysregulation in each investigated cortisol parameter. CONCLUSIONS AND IMPLICATIONS The literature to date is inconclusive, which may well arise from differential effects of generalized obesity vs. abdominal obesity or from modulators such as sex, sex hormones, and chronic stress. While the relationship between obesity and adipocyte cortisol seems to be clear, further research is warranted to understand how adipocyte cortisol metabolism influences circulating cortisol levels and to establish consistent patterns of perturbations in adrenal cortisol activity in both generalized and abdominal obesity.
Collapse
Affiliation(s)
| | - Elissa S Epel
- University of California, San Francisco, CA 94118, USA
| | - Megan L White
- University of California, Los Angeles, CA 90095, USA
| | | | - Jonathan R Seckl
- University of Edinburgh, Edinburgh EH1 1HT, Scotland, United Kingdom
| | | |
Collapse
|
23
|
Li J, Papadopoulos V, Vihma V. Steroid biosynthesis in adipose tissue. Steroids 2015; 103:89-104. [PMID: 25846979 DOI: 10.1016/j.steroids.2015.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.
Collapse
Affiliation(s)
- Jiehan Li
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada.
| | - Veera Vihma
- Folkhälsan Research Center, Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, Helsinki, Finland.
| |
Collapse
|
24
|
HSD11B1 gene polymorphisms in type 2 diabetes and metabolic syndrome—Do we have evidence for the association? Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0438-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Pardina E, Baena-Fustegueras JA, Fort JM, Ferrer R, Rossell J, Esteve M, Peinado-Onsurbe J, Grasa M. Hepatic and visceral adipose tissue 11βHSD1 expressions are markers of body weight loss after bariatric surgery. Obesity (Silver Spring) 2015; 23:1856-63. [PMID: 26239572 DOI: 10.1002/oby.21173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/06/2015] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cortisolemia and 11βHSD1 in liver and adipose tissue are altered in obesity. However, their participation in the development of obesity remains unclear. This study analyzed these parameters in the transition from morbid to type 1 obesity after bariatric surgery. METHODS A group of 34 patients with morbid obesity and 22 nonobese subjects were recruited. Initial hypothalamus-pituitary-adrenal (HPA) basal activity and 11βHSD1 mRNA expression in liver, subcutaneous (SAT), and visceral adipose tissue (VAT) were evaluated. A year after bariatric surgery (weight loss of 48 kg), these parameters were reappraised in plasma, SAT, and liver. RESULTS Body weight loss was accompanied by a downshift in basal HPA activity and 11βHSD1 expression in SAT. In patients with morbid obesity, 11βHSD1 expression correlated positively with BMI in VAT and negatively in liver at 6 and 12 months after surgery. In SAT, a correlation was observed with body weight only when patients showed type 1 obesity. Insulin, glucose, and HOMA correlated positively with all the HPA indicators and 11βHSD1 expression in SAT. CONCLUSIONS Body weight loss after bariatric surgery is accompanied by a downshift in basal HPA activity. Hepatic and VAT 11βHSD1 expressions in morbid obesity are predictors of body weight loss.
Collapse
Affiliation(s)
- Eva Pardina
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | | | - José Manuel Fort
- Endocrinology Surgery Unit, Institut De Recerca Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Roser Ferrer
- Biochemistry Department, Institut De Recerca Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Joana Rossell
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Montserrat Esteve
- Department of Nutrition and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Julia Peinado-Onsurbe
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Mar Grasa
- Department of Nutrition and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Premorbid obesity and metabolic disturbances as promising clinical targets for the prevention and early screening of bipolar disorder. Med Hypotheses 2015; 84:285-93. [DOI: 10.1016/j.mehy.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/11/2015] [Indexed: 12/12/2022]
|
27
|
Tchernof A, Mansour MF, Pelletier M, Boulet MM, Nadeau M, Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J Steroid Biochem Mol Biol 2015; 147:56-69. [PMID: 25448733 DOI: 10.1016/j.jsbmb.2014.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/26/2022]
Abstract
Over the past decade, adipose tissues have been increasingly known for their endocrine properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or systemic effects. In addition, adipose tissues have long been recognized as significant sites for steroid hormone transformation and action. We hereby provide an updated survey of the many steroid-converting enzymes that may be detected in human adipose tissues, their activities and potential roles. In addition to the now well-established role of aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of these enzymes for some aspects of adipose tissue function. For example, down-regulation of AKR1C2 expression in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone on adipogenesis in this model. Many additional studies are warranted to assess the impact of intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions such as obesity, diabetes and cancer.
Collapse
Affiliation(s)
- André Tchernof
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada; Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.
| | - Mohamed Fouad Mansour
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Mélissa Pelletier
- Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie-Michèle Boulet
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada
| | - Mélanie Nadeau
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada
| | - Van Luu-The
- Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
28
|
Pharmacological characterization of the selective 11β-hydroxysteroid dehydrogenase 1 inhibitor, BI 135585, a clinical candidate for the treatment of type 2 diabetes. Eur J Pharmacol 2015; 746:50-5. [DOI: 10.1016/j.ejphar.2014.10.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
|
29
|
do Nascimento FV, Piccoli V, Beer MA, von Frankenberg AD, Crispim D, Gerchman F. Association of HSD11B1 polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: a systematic review. Diabetol Metab Syndr 2015; 7:38. [PMID: 26056536 PMCID: PMC4459686 DOI: 10.1186/s13098-015-0036-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/21/2015] [Indexed: 01/11/2023] Open
Abstract
The HSD11B1 gene is highly expressed in abdominal adipose tissue, and the enzyme it encodes catalyzes the interconversion of inactive cortisone to hormonally active cortisol. Genetic abnormalities of HSD11B1 have been associated with the development of abnormal glucose metabolism and body fat distribution. To systematically review studies evaluating the association of HSD11B1 gene expression in abdominal adipose tissue and HSD11B1 polymorphisms with obesity, the metabolic syndrome (MetS), and type 2 diabetes (T2DM), we conducted a search in MEDLINE, SCOPUS, and Cochrane Library databases in April 2015. The inclusion criteria were observational studies (cross-sectional, cohort, or case-control), conducted in adults, which analyzed the relationship of HSD11B1 polymorphisms and/or HSD11B1 expression in abdominal adipose tissue with obesity, MetS, or T2DM. Of 802 studies retrieved, 32 met the inclusion criteria (23 gene expression and 9 polymorphism studies). Twenty one studies analyzed the relationship between abdominal subcutaneous and/or visceral HSD11B1 expression with central and/or generalized obesity. Most studies reported that abdominal adipose HSD11B1 expression increased with increasing body mass index (15 studies) and abnormalities of glucose metabolism (7 studies), and varied with the presence of MetS (3 studies). Nine studies analyzed the association of 26 different HSD11B1 polymorphic variants with obesity, MetS, and T2DM. Only an Indian study found an association between a polymorphic variant at the HSD11B1 gene with MetS whereas in Pima Indians another polymorphic variant was found to be associated with T2DM. While the literature suggests that HSD11B1 is hyperexpressed in abdominal adipose tissue in subjects with obesity and abnormal glucose metabolism, this seems to be not true for HSD11B1 gene expression and MetS. Although an association of polymorphic variants of HSD11B1 with MetS in Indians and in the T2DM population of Pima Indians were found, most studies did not find a relationship between genetic polymorphic variants of HSD11B1 and obesity, MetS, and T2DM. Their reported conflicting and inconclusive results, suggesting that polymorphic variants of HSD11B1 may have only a small role in the development of metabolic abnormalities of susceptible populations in the development of MetS and T2DM.
Collapse
Affiliation(s)
- Filipe Valvassori do Nascimento
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Vanessa Piccoli
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Mayara Abichequer Beer
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Anize Delfino von Frankenberg
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Daisy Crispim
- />Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4° andar, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Fernando Gerchman
- />Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4° andar, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
- />Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2° andar, PPG Endocrinologia, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| |
Collapse
|
30
|
DiSilvestro D, Petrosino J, Aldoori A, Melgar-Bermudez E, Wells A, Ziouzenkova O. Enzymatic intracrine regulation of white adipose tissue. Horm Mol Biol Clin Investig 2014; 19:39-55. [PMID: 25390015 DOI: 10.1515/hmbci-2014-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid.
Collapse
|
31
|
Crowther NJ, Ferris WF. The impact of insulin resistance, gender, genes, glucocorticoids and ethnicity on body fat distribution. JOURNAL OF ENDOCRINOLOGY, METABOLISM AND DIABETES OF SOUTH AFRICA 2014. [DOI: 10.1080/22201009.2010.10872241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Tirabassi G, Boscaro M, Arnaldi G. Harmful effects of functional hypercortisolism: a working hypothesis. Endocrine 2014; 46:370-86. [PMID: 24282037 DOI: 10.1007/s12020-013-0112-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/31/2013] [Indexed: 01/15/2023]
Abstract
Functional hypercortisolism (FH) is caused by conditions able to chronically activate hypothalamic-pituitary-adrenal axis and usually occurs in cases of major depression, anorexia nervosa, bulimia nervosa, alcoholism, diabetes mellitus, simple obesity, polycystic ovary syndrome, obstructive sleep apnea syndrome, panic disorder, generalized anxiety disorder, shift work, and end-stage renal disease. Most of these states belong to pseudo-Cushing disease, a condition which is difficult to distinguish from Cushing's syndrome and characterized not only by biochemical findings but also by objective ones that can be attributed to hypercortisolism (e.g., striae rubrae, central obesity, skin atrophy, easy bruising, etc.). This hormonal imbalance, although reversible and generally mild, could mediate some systemic complications, mainly but not only of a metabolic/cardiovascular nature, which are present in these states and are largely the same as those present in Cushing's syndrome. In this review we aim to discuss the evidence suggesting the emerging negative role for FH.
Collapse
Affiliation(s)
- Giacomo Tirabassi
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | | | | |
Collapse
|
33
|
Stomby A, Andrew R, Walker BR, Olsson T. Tissue-specific dysregulation of cortisol regeneration by 11βHSD1 in obesity: has it promised too much? Diabetologia 2014; 57:1100-10. [PMID: 24710966 DOI: 10.1007/s00125-014-3228-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 01/24/2023]
Abstract
Cushing's syndrome, caused by increased production of cortisol, leads to metabolic dysfunction including visceral adiposity, hypertension, hyperlipidaemia and type 2 diabetes. The similarities with the metabolic syndrome are striking and major efforts have been made to find obesity-associated changes in the regulation of glucocorticoid action and synthesis, both at a systemic level and tissue level. Obesity is associated with tissue-specific alterations in glucocorticoid metabolism, with increased activity of the glucocorticoid-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue and decreased conversion of cortisone to cortisol, interpreted as decreased 11βHSD1 activity, in the liver. In addition, genetic manipulation of 11βHSD1 activity in rodents can either induce (by overexpression of Hsd11b1, the gene encoding 11βHSD1) or prevent (by knocking out Hsd11b1) obesity and metabolic dysfunction. Taken together with earlier evidence that non-selective inhibitors of 11βHSD1 enhance insulin sensitivity, these results led to the hypothesis that inhibition of 11βHSD1 might be a promising target for treatment of the metabolic syndrome. Several selective 11βHSD1 inhibitors have now been developed and shown to improve metabolic dysfunction in patients with type 2 diabetes, but the small magnitude of the glucose-lowering effect has precluded their further commercial development.This review focuses on the role of 11βHSD1 as a tissue-specific regulator of cortisol exposure in obesity and type 2 diabetes in humans. We consider the potential of inhibition of 11βHSD1 as a therapeutic strategy that might address multiple complications in patients with type 2 diabetes, and provide our thoughts on future directions in this field.
Collapse
Affiliation(s)
- Andreas Stomby
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
34
|
Kovačević S, Nestorov J, Matić G, Elaković I. Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. Eur J Nutr 2014; 53:1409-20. [PMID: 24420787 DOI: 10.1007/s00394-013-0644-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Excessive fructose intake coincides with the growing rate of obesity and metabolic syndrome, with women being more prone to these disorders than men. Findings that detrimental effects of fructose might be mediated by glucocorticoid regeneration in adipose tissue only indirectly implicated glucocorticoid receptor (GR) in the phenomenon. The aim of the present study was to elucidate whether fructose overconsumption induces derangements in GR expression and function that might be associated with fructose-induced adiposity in females. METHODS We examined effects of fructose-enriched diet on GR expression and function in visceral adipose tissue of female rats. Additionally, we analyzed the expression of genes involved in glucocorticoid prereceptor metabolism [11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase], lipolysis (hormone-sensitive lipase) and lipogenesis (sterol regulatory element binding protein 1 and peroxisomal proliferator-activated receptor γ). RESULTS Fructose-fed rats had elevated energy intake that resulted in visceral adiposity, as indicated by increased visceral adipose tissue mass and its share in the whole-body weight. GR hormone binding capacity and affinity, as well as the expression of GR gene at both mRNA and protein levels were reduced in visceral adipose tissue of the rats on fructose diet. The glucocorticoid prereceptor metabolism was stimulated, as evidenced by elevated tissue corticosterone, while the key regulators of lipolysis and lipogenesis remained unaffected by fructose diet. CONCLUSIONS The results suggest that the 11βHSD1-mediated elevation of intracellular corticosterone may induce GR downregulation, which may be associated with failure of GR to stimulate lipolysis in fructose-fed female rats.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd, 11060, Belgrade, Serbia
| | | | | | | |
Collapse
|
35
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
36
|
Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 2013; 34:525-55. [PMID: 23612224 DOI: 10.1210/er.2012-1050] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.
Collapse
Affiliation(s)
- Laura L Gathercole
- School of Clinical and Experimental Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston B15 2TH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee JH, Gao Z, Ye J. Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α. Am J Physiol Endocrinol Metab 2013; 304:E1035-41. [PMID: 23512810 PMCID: PMC3651619 DOI: 10.1152/ajpendo.00029.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is involved in the pathogenesis of type 2 diabetes by generating active glucocorticoids (cortisol and corticosterone) that are strong inhibitors of angiogenesis. However, the mechanism of 11β-HSD1 gene expression and its relationship to adipose angiogenesis are largely unknown. To address this issue, we examined 11β-HSD1 expression in visceral and subcutaneous adipose tissue (AT) of diet-induced obese (DIO) mice during weight gain and investigated the gene regulation by hypoxia in vitro. 11β-HSD1 mRNA was reduced in the adipose tissues during weight gain in DIO mice, and the reduction was associated with an elevated expression of angiogenic factors. In vitro, 11β-HSD1 expression was induced in mRNA and protein by hypoxia. Of the two transcription factors activated by hypoxia, the nuclear factor-κB (NF-κB) enhanced but the hypoxia inducible factor-1α (HIF-1α) reduced 11β-HSD1 expression. 11β-HSD1 expression was elevated by NF-κB in epididymal fat of aP2-p65 mice. The hypoxia-induced 11β-HSD1 expression was attenuated by NF-κB inactivation in p65-deficient cells but enhanced by HIF-1 inactivation in HIF-1α-null cells. These data suggest that 11β-HSD1 expression is upregulated by NF-κB and downregulated by HIF-1α. During AT expansion in DIO mice, the reduction of 11β-HSD1 expression may reflect a dominant HIF-1α activity in the adipose tissue. This study suggests that NF-κB may mediate the inflammatory cytokine signal to upregulate 11β-HSD1 expression.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/biosynthesis
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
- 3T3-L1 Cells
- Animals
- Blotting, Western
- Cell Hypoxia/physiology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Gene Expression Regulation, Enzymologic
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Intra-Abdominal Fat/enzymology
- Intra-Abdominal Fat/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-kappa B/metabolism
- Obesity/enzymology
- Obesity/genetics
- Obesity/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Subcutaneous Fat/enzymology
- Subcutaneous Fat/metabolism
- Weight Gain/physiology
Collapse
Affiliation(s)
- Jong Han Lee
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
38
|
McGregor RA, Kwon EY, Shin SK, Jung UJ, Kim E, Park JHY, Yu R, Yun JW, Choi MS. Time-course microarrays reveal modulation of developmental, lipid metabolism and immune gene networks in intrascapular brown adipose tissue during the development of diet-induced obesity. Int J Obes (Lond) 2013; 37:1524-31. [PMID: 23628853 DOI: 10.1038/ijo.2013.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to establish the time-course of molecular events in intrascapular brown adipose tissue (iBAT) during the development of diet-induced obesity using microarrays and molecular network analysis. DESIGN C57BL/6J male inbred mice were fed a high-fat diet (HFD) or normal diet (ND) and killed at multiple time-points over 24 weeks. METHODS Global transcriptional changes in iBAT were determined by time-course microarrays of pooled RNA (n=6, pools per time-point) at 2, 4, 8, 20 and 24 weeks using Illumina MouseWG-6 v2.0 Beadchips. Molecular networks were constructed using the Ingenuity knowledgebase based on differentially expressed genes at each time-point. RESULTS Body weight and subcutaneous adipose were progressively increased over 24 weeks, whereas iBAT was significantly increased between 6 and 12 weeks in HFD-fed C57BL/6J mice compared with controls. Blood glucose and insulin levels were increased between 16 and 24 weeks. Time-course microarrays, revealed 155 differentially expressed genes at one or more time-points over 24 weeks in the iBAT of HFD-fed mice compared with controls. Time-course network analysis revealed a network of skeletal muscle development genes that was activated between 2 and 4 weeks, subsequently a network of immune trafficking genes was activated at 8 weeks. After 20 and 24 weeks, multiple lipid metabolism and immune response networks were activated. Several target genes identified by time-course microarrays were independently validated using RT-qPCR. Tnnc1 was upregulated early between 2 and 4 weeks, later Cd68 and Col1a1 were upregulated between 20 and 24 weeks, whereas 11β-hydroxysteroid dehydrogenase (Hsd11b1) was consistently downregulated during the development of diet-induced obesity. CONCLUSION Molecular networks in iBAT are modulated in a time-dependent manner in response to a HFD. A broad range of gene targets exists to alter molecular changes within iBAT during the development of diet-induced obesity.
Collapse
Affiliation(s)
- R A McGregor
- 1] Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea [2] Institute for Innovation in Biology, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Excess intra-abdominal adipose tissue accumulation, often termed visceral obesity, is part of a phenotype including dysfunctional subcutaneous adipose tissue expansion and ectopic triglyceride storage closely related to clustering cardiometabolic risk factors. Hypertriglyceridemia; increased free fatty acid availability; adipose tissue release of proinflammatory cytokines; liver insulin resistance and inflammation; increased liver VLDL synthesis and secretion; reduced clearance of triglyceride-rich lipoproteins; presence of small, dense LDL particles; and reduced HDL cholesterol levels are among the many metabolic alterations closely related to this condition. Age, gender, genetics, and ethnicity are broad etiological factors contributing to variation in visceral adipose tissue accumulation. Specific mechanisms responsible for proportionally increased visceral fat storage when facing positive energy balance and weight gain may involve sex hormones, local cortisol production in abdominal adipose tissues, endocannabinoids, growth hormone, and dietary fructose. Physiological characteristics of abdominal adipose tissues such as adipocyte size and number, lipolytic responsiveness, lipid storage capacity, and inflammatory cytokine production are significant correlates and even possible determinants of the increased cardiometabolic risk associated with visceral obesity. Thiazolidinediones, estrogen replacement in postmenopausal women, and testosterone replacement in androgen-deficient men have been shown to favorably modulate body fat distribution and cardiometabolic risk to various degrees. However, some of these therapies must now be considered in the context of their serious side effects. Lifestyle interventions leading to weight loss generally induce preferential mobilization of visceral fat. In clinical practice, measuring waist circumference in addition to the body mass index could be helpful for the identification and management of a subgroup of overweight or obese patients at high cardiometabolic risk.
Collapse
Affiliation(s)
- André Tchernof
- Endocrinology and Genomics Axis, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | |
Collapse
|
40
|
Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:869-81. [PMID: 22321826 DOI: 10.1111/j.1463-1326.2012.01582.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent evidence strongly argues for a pathogenic role of glucocorticoids and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in obesity and the metabolic syndrome, a cluster of risk factors for atherosclerotic cardiovascular disease and type 2 diabetes mellitus (T2DM) that includes insulin resistance (IR), dyslipidaemia, hypertension and visceral obesity. This has been partially prompted not only by the striking clinical resemblances between the metabolic syndrome and Cushing's syndrome (a state characterized by hypercortisolism that associates with metabolic syndrome components) but also from monogenic rodent models for the metabolic syndrome (e.g. the leptin-deficient ob/ob mouse or the leptin-resistant Zucker rat) that display overall increased secretion of glucocorticoids. However, systemic circulating glucocorticoids are not elevated in obese patients and/or patients with metabolic syndrome. The study of the role of 11β-HSD system shed light on this conundrum, showing that local glucocorticoids are finely regulated in a tissue-specific manner at the pre-receptor level. The system comprises two microsomal enzymes that either activate cortisone to cortisol (11β-HSD1) or inactivate cortisol to cortisone (11β-HSD2). Transgenic rodent models, knockout (KO) for HSD11B1 or with HSD11B1 or HSD11B2 overexpression, specifically targeted to the liver or adipose tissue, have been developed and helped unravel the currently undisputable role of the enzymes in metabolic syndrome pathophysiology, in each of its isolated components and in their prevention. In the transgenic HSD11B1 overexpressing models, different features of the metabolic syndrome and obesity are replicated. HSD11B1 gene deficiency or HSD11B2 gene overexpression associates with improvements in the metabolic profile. In face of these demonstrations, research efforts are now being turned both into the inhibition of 11β-HSD1 as a possible pharmacological target and into the role of dietary habits on the establishment or the prevention of the metabolic syndrome, obesity and T2DM through 11β-HSD1 modulation. We intend to review and discuss 11β-HSD1 and obesity, the metabolic syndrome and T2DM and to highlight the potential of its inhibition for therapeutic or prophylactic approaches in those metabolic diseases.
Collapse
Affiliation(s)
- C D Pereira
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Portugal
| | | | | | | |
Collapse
|
41
|
Atalar F, Gormez S, Caynak B, Akan G, Tanriverdi G, Bilgic-Gazioglu S, Gunay D, Duran C, Akpinar B, Ozbek U, Buyukdevrim AS, Yazici Z. The role of mediastinal adipose tissue 11β-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease. Cardiovasc Diabetol 2012; 11:115. [PMID: 23009206 PMCID: PMC3515420 DOI: 10.1186/1475-2840-11-115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/10/2012] [Indexed: 11/12/2022] Open
Abstract
Background Visceral fat deposition and its associated atherogenic complications are mediated by glucocorticoids. Cardiac visceral fat comprises mediastinal adipose tissue (MAT) and epicardial adipose tissue (EAT), and MAT is a potential biomarker of risk for obese patients. Aim Our objective was to evaluate the role of EAT and MAT 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and glucocorticoid receptor (GCR) expression in comparison with subcutaneous adipose tissue (SAT) in the development of coronary atherosclerosis in obese patients with coronary artery disease (CAD), and to assess their correlations with CD68 and fatty acids from these tissues. Methods and results Expression of 11β-HSD-1 and GCR was measured by qRT-PCR in EAT, MAT and SAT of thirty-one obese patients undergoing coronary artery bypass grafting due to CAD (obese CAD group) and sixteen obese patients without CAD undergoing heart valve surgery (controls). 11β-HSD-1 and GCR expression in MAT were found to be significantly increased in the obese CAD group compared with controls (p < 0.05). In the obese CAD group, 11β-HSD-1 and GCR mRNA levels were strongly correlated in MAT. Stearidonic acid was significantly increased in EAT and MAT of the obese CAD group and arachidonic acid was significantly expressed in MAT of the obese male CAD group (p < 0.05). Conclusions We report for the first time the increased expression of 11β-HSD-1 and GCR in MAT compared with EAT and SAT, and also describe the interrelated effects of stearidonic acid, HOMA-IR, plasma cortisol and GCR mRNA levels, explaining 40.2% of the variance in 11β-HSD-1 mRNA levels in MAT of obese CAD patients. These findings support the hypothesis that MAT contributes locally to the development of coronary atherosclerosis via glucocorticoid action.
Collapse
Affiliation(s)
- Fatmahan Atalar
- Department Growth-Development and Pediatric Endocrinology, Child Health Institute, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaidanovich-Beilin O, Cha DS, McIntyre RS. Crosstalk between metabolic and neuropsychiatric disorders. F1000 BIOLOGY REPORTS 2012; 4:14. [PMID: 22802875 PMCID: PMC3388805 DOI: 10.3410/b4-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence supporting the concurrence of metabolic disturbances (e.g. insulin resistance, diabetes and obesity) and neuropsychiatric disorders has been demonstrated in both human and animal studies, suggesting the possibility that they have shared pathophysiological mechanisms. During the past decade, our understanding for the role of insulin in both normal and abnormal central nervous system (CNS) processes has become increasingly refined. Evidence indicates that insulin is a pleiotropic peptide, critical to neurotrophism, neuroplasticity, and neuromodulation. Moreover, the role of insulin underscores its importance in the development of several neuropsychiatric disorders, including, but not limited to, mechanisms involved in the pathogenesis and progression towards diabetes, obesity, and neurodegenerative disorders, such as Alzheimer's disease. This review focuses on the insulin-mediated effects on normal and abnormal brain function and discusses why targeting insulin-related pathways in the brain may emerge as a new approach for refining treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Oksana Kaidanovich-Beilin
- Samuel Lunenfeld Research InstituteMount Sinai Hospital, 600 University Avenue, Room 983, Toronto, Ontario, M5G 1X5Canada
| | - Danielle S. Cha
- Department of Psychiatry, University of Toronto, and the Mood Disorders Psychopharmacology Unit, University Health Network399 Bathurst Street, MP 9-325, Toronto, Ontario, M5T 2S8Canada
| | - Roger S. McIntyre
- Department of Psychiatry, University of Toronto, and the Mood Disorders Psychopharmacology Unit, University Health Network399 Bathurst Street, MP 9-325, Toronto, Ontario, M5T 2S8Canada
| |
Collapse
|
43
|
Silaghi A, Silaghi H, Scridon T, Pais R, Achard V. Glucocorticoid receptors in human epicardial adipose tissue: role of coronary status. J Endocrinol Invest 2012; 35:649-54. [PMID: 21971518 DOI: 10.3275/7969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) is in close contact with coronary vessels and therefore could alter coronary homeostasis. Glucocorticoids are pathophysiological mediators of visceral fat deposition and its associated atherogenic complications. AIM We investigated in EAT the expression of the glucocorticoid receptor (GR) and its various (A, B, C) promoters. MATERIALS AND METHODS Paired subcutaneous adipose tissue (SAT) and EAT biopsies were obtained from 15 patients with coronary artery disease (CAD) and 12 patients without CAD (NCAD). GR and 11β-hydroxysteroid dehydrogenase type 1 protein (11β-HSD-1, the enzyme which converts inactive cortisone into active cortisol) were studied by immunohistochemistry and GR and its various promoters were studied by mRNA quantitative RT-PCR. RESULTS GR and 11β-HSD-1 protein were expressed in adipocytes, stromal areas, isolated stromal cells close to adipocytes, and blood vessels. Total GR mRNA levels did not differ in SAT obtained from NCAD or CAD patients and were decreased in EAT, irrespectively of the coronary status, with parallel changes in promoter B- and C-, but not promoter A-associated transcripts. Total GR mRNA and adipocyte surface in EAT obtained from CAD patients were correlated negatively (p<0.035, r=0.39). CONCLUSIONS Our findings demonstrate that in EAT, GR gene promoters could play a role in tissue- specific GR expression levels. EAT may be less sensitive to glucocorticoids than SAT, preventing the EAT mass development in CAD patients and suggesting a protective role on coronary homeostasis.
Collapse
Affiliation(s)
- A Silaghi
- County Emergency Hospital, Department of Endocrinology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
44
|
Rao KR, Padmavathi IJN, Raghunath M. Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev Endocr Metab Disord 2012; 13:103-8. [PMID: 22430228 DOI: 10.1007/s11154-012-9211-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fetal growth is a complex process which depends both on the genetic makeup and intrauterine environment. Maternal nutrition during pregnancy is an important determinant of fetal growth. Adequate nutrient supply is required during pregnancy and lactation for the support of fetal/infant growth and development. Macro- and micronutrients are both important to sustain pregnancy and for appropriate growth of the fetus. While macronutrients provide energy and proteins for fetal growth, micronutrients play a major role in the metabolism of macronutrients, structural and cellular metabolism of the fetus. Discrepancies in maternal diet at different stages of foetal growth / offspring development can have pronounced influences on the health and well-being of the offspring. Indeed intrauterine growth restriction induced by nutrient insult can irreversibly modulate the endocrine/metabolic status of the fetus that leads to the development of adiposity and insulin resistance in its later life. Understanding the role of micronutrients during the development of fetus will provide insights into the probable underlying / associated mechanisms in the metabolic pathways of endocrine related complications. Keeping in view the modernized lifestyle and food habits that lead to the development of adiposity and world burden of obesity, this review focuses mainly on the role of maternal micronutrients in the foetal origins of adiposity.
Collapse
Affiliation(s)
- K Rajender Rao
- Division of Endocrinology and Metabolism, National Institute of Nutrition, Jamai Osmania P O, Hyderabad 500 007, India.
| | | | | |
Collapse
|
45
|
Liver upregulation of genes involved in cortisol production and action is associated with metabolic syndrome in morbidly obese patients. Obes Surg 2012; 22:478-86. [PMID: 21964795 DOI: 10.1007/s11695-011-0524-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which converts cortisone (inactive) to cortisol, is downregulated in obesity. However, this compensation fails in obese with metabolic abnormalities, such as diabetes. To further characterize the tissue-specific cortisol regeneration in obesity, we have investigated the mRNA expression of genes related to local cortisol production, i.e., 11β-HSD1, hexose-6-phosphate dehydrogenase (H6PDH) and cortisol action, glucocorticoid receptor (GR) and a cortisol target gene, phosphoenolpyruvate carboxykinase (PEPCK) in the liver, and visceral (VAT) and subcutaneous (SAT) adipose tissues from morbidly obese patients with and without metabolic syndrome (MS). METHODS Fifty morbidly obese patients undergoing bariatric surgery, 14 men (mean age, 41.3 ± 3.5 years; BMI, 48.0 ± 3.6 kg/m(2)) and 36 women (mean age, 44.6 ± 1.9 years; BMI, 44.9 ± 1.2 kg/m(2)), were classified as having MS (MS+, n = 20) or not (MS-, n = 30). Tissue mRNA levels were measured by real-time polymerase chain reaction. RESULTS Hepatic mRNA levels of these genes were higher in obese patients with MS (11β-HSD1, P = 0.002; H6PDH, P = 0.043; GR, P = 0.033; PEPCK, P = 0.032) and positively correlated with the number of clinical characteristics that define the MS. The expression of the four genes positively correlated among them. In contrast to the liver, these genes were not differently expressed in VAT or SAT, when MS+ and MS- obese patients were compared. CONCLUSIONS Coordinated liver-specific upregulation of genes involved in local cortisol regeneration and action support the concept that local hepatic hypercortisolism contributes to development of MS in morbidly obese patients.
Collapse
|
46
|
Janković D, Wolf P, Anderwald CH, Winhofer Y, Promintzer-Schifferl M, Hofer A, Langer F, Prager G, Ludvik B, Gessl A, Luger A, Krebs M. Prevalence of endocrine disorders in morbidly obese patients and the effects of bariatric surgery on endocrine and metabolic parameters. Obes Surg 2012; 22:62-9. [PMID: 22052199 DOI: 10.1007/s11695-011-0545-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several endocrine abnormalities, including hypothyroidism and Cushing's syndrome (CS), are considered as causative factors of obesity. The aim of this study was to evaluate the prevalence of endocrine disorders and obesity-associated co-morbidities, as well as the impact of substantial weight loss. METHODS Screening was performed in 433 consecutive morbidly obese patients (age 41 ± 12 years; BMI 47 ± 6.9 kg/m(2); women 76%). A 1-mg dexamethasone suppression test (1-mg DST) was conducted to exclude CS, and thyrotropin (TSH) was measured to exclude hypothyroidism. Insulin sensitivity was estimated from oral glucose tolerance tests employing the Clamp-like index. Examinations were carried out at baseline, as well as at 6 and 12 months postoperatively. RESULTS The prevalence of CS was below 0.6%. Before surgery, TSH was elevated compared to an age- and sex-matched normal weight control group (2.4 ± 1.2 vs. 1.5 ± 0.7 μU/ml; p < 0.001). The NCEP criteria of metabolic syndrome (MetS) were fulfilled by 39.5% of the patients. Impaired glucose tolerance and diabetes mellitus were observed in 23.5% and 22.6%, respectively. Seventy-two percent were insulin resistant. During follow-up, weight (BMI 47 ± 6.9 vs. 36 ± 6.4 vs. 32 ± 6.6 kg/m(2); p < 0.001) and TSH decreased significantly (2.4 ± 1.2 vs. 1.8 ± 1.0 vs. 1.8 ± 1.0 μU/ml; p < 0.001). Serum cortisol was higher in the MetS(+)-group compared to the MetS(-)-group (15.0 ± 6.3 vs. 13.5 ± 6.3 μg/dl; p = 0.003). CONCLUSIONS CS appears to be a rare cause of morbid obesity. Normalization of slightly elevated thyrotropin after weight loss suggests that obesity causes TSH elevation rather than the reverse.
Collapse
Affiliation(s)
- Draženka Janković
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koehler E, Swain J, Sanderson S, Krishnan A, Watt K, Charlton M. Growth hormone, dehydroepiandrosterone and adiponectin levels in non-alcoholic steatohepatitis: an endocrine signature for advanced fibrosis in obese patients. Liver Int 2012; 32:279-86. [PMID: 22098614 DOI: 10.1111/j.1478-3231.2011.02637.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/02/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Liver-related clinical consequences of non-alcoholic fatty liver disease (NAFLD) are seen only in the minority of patients with advanced fibrosis. The aim of our study was to generate insight into a potential endocrine basis of steatohepatitis with advanced fibrosis in NAFLD. METHODS Biopsy and blood samples were prospectively collected from patients with medically complicated obesity. Patients were categorized, according to liver histology, into: (i) normal, (ii) simple steatosis (SS), (iii) non-alcoholic steatohepatitis (NASH) with fibrosis stage (FS) 0-1 and (iv) NASH with FS ≥ 2. A broad panel of potential biomarkers included DHEA-S, growth hormone (GH), homeostasis model assessment-insulin resistance (HOMA-IR), leptin, resistin, adiponectin and cytokeratin 18 (CK-18) fragments. RESULTS We studied 160 patients (mean BMI 46.8 ± 8.2 kg/m(2) ). Liver biopsies demonstrated normal histology in 10%, SS in 45%, NASH with FS 0-1 in 37.5% and NASH with FS ≥ 2 in 7.5%. C-reactive protein, IL-6, GH, CK-18, adiponectin, HOMA-IR and quantitative insulin sensitivity check index (QUICKI) were significantly associated with NASH in univariate analysis, but overall predictivity of these parameters was low (AUC ROC = 0.62-0.68). In contrast, all patients with NASH with FS ≥ 2 had insulin resistance, as measured by QUICKI, and GH levels <0.45 ng/ml and all but one patient with NASH FS 2-3 had low DHEA levels (<123 μg/dl). CONCLUSIONS Low serum levels of GH and DHEA are very common in patients with NASH with more advanced fibrosis. Other biomarkers, including CK-18 fragment levels, have predictivity characteristics that would be of low clinical utility for distinguishing patients with normal histology or SS from those with NASH. These findings demonstrate an endocrine profile associated with advanced fibrosis.
Collapse
Affiliation(s)
- Edith Koehler
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Leyvraz C, Verdumo C, Suter M, Paroz A, Calmes JM, Marques-Vidal PM, Giusti V. Changes in gene expression profile in human subcutaneous adipose tissue during significant weight loss. Obes Facts 2012; 5:440-51. [PMID: 22797372 DOI: 10.1159/000341137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/20/2011] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To analyze the expression of peroxisome proliferator-activated receptor-γ1 and 2 (PPARγ1 and 2), 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1), and leptin in adipose tissue (AT) of obese women during weight loss following Roux-en-Y gastric bypass (RYGB) and to compare these levels with those obtained in AT of nonobese subjects. METHODS Gene expression was determined by real-time RT-PCR prior to surgery and at 3, 6, and 12 months after RYGB. RESULTS All obese patients lost weight, reaching a mean BMI of 29.3 ± 1.0 kg/m(2) at 1 year after surgery (-33.9 ± 1.5% of their initial body weight). In obese subjects leptin and 11βHSD1 were over-expressed, whereas PPARγ1 was expressed at lower levels compared to controls. After surgery, leptin and 11βHSD1 gene expression decreased, whereas PPARγ1 expression increased. At 12 months after RYGB, these 3 genes had reached levels similar to the controls. In contrast, PPARγ2 gene expression was not different between groups and types of tissue and remained unchanged during weight loss. We found a positive correlation between BMI and levels of gene expression of leptin and 11βHSD1. CONCLUSION Gene expression of leptin, PPARγ1, and 11βHSD1 in AT is modified in human obesity. This default is completely corrected by RYGB.
Collapse
Affiliation(s)
- Céline Leyvraz
- Service of Endocrinology, Diabetes and Metabolism, University Hospital CHUV, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Atalar F, Vural B, Ciftci C, Demirkan A, Akan G, Susleyici-Duman B, Gunay D, Akpinar B, Sagbas E, Ozbek U, Buyukdevrim A. 11β-hydroxysteroid dehydrogenase type 1 gene expression is increased in ascending aorta tissue of metabolic syndrome patients with coronary artery disease. GENETICS AND MOLECULAR RESEARCH 2012; 11:3122-32. [DOI: 10.4238/2012.august.31.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Michalaki M, Kyriazopoulou V, Antonacopoulou A, Koika V, Nikolaou M, Tsoukas A, Kalfarentzos F, Vagenakis AG, Voukelatou G, Papavassiliou AG. The expression of omental 11β-HSD1 is not increased in severely obese women with metabolic syndrome. Obes Facts 2012; 5:104-11. [PMID: 22433622 DOI: 10.1159/000336755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Plasma cortisol in obese subjects does not differ from that in normoweight subjects. Extra-adrenal cortisol production by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) can result in local hypercortisolemia. The aim of the present study was to examine the role of visceral hypercortisolemia in the development of metabolic syndrome in severe obesity. METHODS Eight lean women during hysterectomy (controls) and 19 severely obese women during bariatric surgery were studied, 8 without metabolic syndrome (OM- group) and 11 with it (OM+ group). Biopsies of omental and subcutaneous fat were performed in the severely obese women during surgery, but only omental biopsies in the controls. Expression of 11β-HSD1, glucocorticoid receptor α (GRα) and glucocorticoid receptor β (GRβ) was evaluated using real-time PCR. RESULTS Omental 11β-HSD1 expression was different between groups (one-way ANOVA, p < 0.01). Post-hoc analysis revealed that mean omental 11β-HSD1 mRNA levels were higher in the OM- group compared to controls, whereas they were similar when comparing the OM+ group with lean controls. Expression of 11β-HSD1 in subcutaneous fat was not different between OM+ and OM- groups. GRα expression in omental fat did not differ among groups or between omental and subcutaneous fat in severely obese patients. An expression of GRβ was not detected. CONCLUSION Contrary to our original hypothesis, omental 11β-HSD1 expression is not increased in the OM+ group.
Collapse
Affiliation(s)
- Marina Michalaki
- Endocrine Division, Department of Internal Medicine, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|