1
|
Yan B, Caton SJ, Buckland NJ. Exploring factors influencing late evening eating and barriers and enablers to changing to earlier eating patterns in adults with overweight and obesity. Appetite 2024; 202:107646. [PMID: 39179110 DOI: 10.1016/j.appet.2024.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Late evening eating is a potential risk factor for overconsumption and weight gain. However, there is limited qualitative research investigating the complex factors that influence late evening eating in adults living with obesity. Identifying the factors that influence late evening eating can inform interventions to reduce late evening eating and associated health risks. Therefore, this study aimed to: i) explore factors that contribute to eating late, and ii) apply the Capability, Opportunity, and Motivation Behaviour (COM-B) model to understand the barriers and enablers to changing to earlier food intake timings in UK adults who report eating late. Semi-structured interviews with seventeen participants [32.47 ± 6.65 years; 34.68 ± 7.10 kg/m2; 71% female (n = 12); 41% White (n = 7)] investigated reasons for late evening eating and the potential barriers and enablers to changing to earlier eating patterns. Thematic analysis identified four main contributors to late evening eating: 1) internal signals (e.g., feeling hungry in the evening); 2) external and situational factors (e.g., work schedules and the food-rich environment); 3) social factors (e.g., interactions with family) and 4) behavioural and emotional factors (e.g., personal preferences and negative feelings in the evening). Time constraints and work schedules were identified as main barriers to changing to earlier eating patterns. Whereas, having high motivation (e.g., contentment with eating earlier in the evening) and interpersonal support were identified as main enablers to eating earlier. This study provides in-depth insights into the psychological, social, and environmental factors contributing to late evening eating. The findings highlight potential targets for future interventions to facilitate earlier eating times in individuals at risk of overweight and obesity.
Collapse
Affiliation(s)
- Bixuan Yan
- Department of Psychology, University of Sheffield, ICOSS Building, S1 4DP, United Kingdom.
| | - Samantha J Caton
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, 30 Regent St, Sheffield S1 4DA, United Kingdom
| | - Nicola J Buckland
- Department of Psychology, University of Sheffield, ICOSS Building, S1 4DP, United Kingdom
| |
Collapse
|
2
|
Ferrazzini L, Schmidt M, Zhang Z, Khatami R, Dauvilliers Y, Barateau L, Mayer G, Pizza F, Plazzi G, Gool JK, Fronczek R, Lammers GJ, Del Rio-Villegas R, Peraita-Adrados R, Partinen M, Overeem S, Sonka K, Santamaria J, Heinzer R, Canellas F, da Silva AM, Högl B, Veauthier C, Wierzbicka A, Feketeova E, Buskova J, Lecendreux M, Miano S, Kallweit U, Heidbreder A, Bassetti CLA, van der Meer J. Daytime sleepiness and BMI exhibit gender and age differences in patients with central disorders of hypersomnolence. J Sleep Res 2024:e14365. [PMID: 39428908 DOI: 10.1111/jsr.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
The aim of the present study was to examine gender and age-specific effects on subjective daytime sleepiness (as measured by the Epworth Sleepiness Scale), body weight and eating behaviour in patients with central disorders of hypersomnolence. Based on the European Narcolepsy Network database, we compared 1035 patients with narcolepsy type I and 505 patients with other central disorders of hypersomnolence ("narcoleptic borderland"), including narcolepsy type II (N = 308) and idiopathic hypersomnia (N = 174), using logistic regression and general linear models. In the entire study population, the Epworth Sleepiness Scale was higher in women (N = 735, mean age = 30 years, mean Epworth Sleepiness Scale = 16.6 ± SD 3.9) than in men (N = 805, mean age = 32 years, mean Epworth Sleepiness Scale = 15.8 ± SD 4.4). In women with narcolepsy type I (N = 475), both Epworth Sleepiness Scale and body mass index increased in parallel with age. In women of the narcoleptic borderland (N = 260), the Epworth Sleepiness Scale markedly peaked in their early 30s, while body mass index only started to rise at that age. This rise in body mass index following the Epworth Sleepiness Scale peak cannot be explained by sleepiness-induced uncontrolled eating, as self-reported uncontrolled eating was negatively associated with the Epworth Sleepiness Scale in this group. We propose that the narcoleptic borderland harbours a unique cluster of women in their fertile years with an unexplored aetiology requiring further investigation towards tailored interventions.
Collapse
Affiliation(s)
- Laura Ferrazzini
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Schmidt
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Ohio Sleep Medicine Institute, Dublin, Ohio, USA
| | - Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Klinik Barmelweid AG, Barmelweid, Switzerland
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for Sleep Medicine, Sleep Research and Epileptology, Klinik Barmelweid AG, Barmelweid, Switzerland
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac University Hospital, Montpellier, France
- National Reference Centre for Narcolepsy and Rare Hypersomnias, Montpellier, France
- Institute of Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac University Hospital, Montpellier, France
- National Reference Centre for Narcolepsy and Rare Hypersomnias, Montpellier, France
- Institute of Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Geert Mayer
- Neurology Department, Hephata Klinik, Schwalmstadt, Germany
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Blogna, Bologna, Italy
- RCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Blogna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederlands (SEIN), Sleep-wake Center, Heemstede, the Netherlands
- Leiden University Medical Center, Department of Neurology, Leiden, the Netherlands
- Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederlands (SEIN), Sleep-wake Center, Heemstede, the Netherlands
- Leiden University Medical Center, Department of Neurology, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederlands (SEIN), Sleep-wake Center, Heemstede, the Netherlands
| | - Rafael Del Rio-Villegas
- Neurophysiology and Sleep Disorders Unit, Hospital Universitario Vithas Madrid Arturo Soria, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - Rosa Peraita-Adrados
- Sleep and Epilepsy Unit - Clinical Neurophysiology Service, University General Hospital Gregorio Marañón, Research Institute Gregorio Marañón, University Complutense of Madrid, Madrid, Spain
| | - Markku Partinen
- Department of Clinical Neurosciences, Clinicum, University of Helsinki, and Helsinki Sleep Clinic, Terveystalo Healthcare, Helsinki, Finland
| | | | - Karel Sonka
- Neurology Department and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Joan Santamaria
- Neurology Service, Institut de Neurociències Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Raphael Heinzer
- Center for Investigation and Research in Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Canellas
- Psychiatry Department, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Mallorca, Spain
| | - Antonio Martins da Silva
- Serviço de Neurofisiologia, Centro Hospitalar Universitário de Santo António - Porto and UMIB/Instituto Ciências Biomédicas Abel Salazar and ITR, Universidade do Porto, Porto, Portugal
| | - Birgit Högl
- Neurology Department, Sleep Disorders Clinic, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Veauthier
- Charité - Medical University Berlin, Interdisciplinary Center for Sleep Medicine, Berlin, Germany
| | - Aleksandra Wierzbicka
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Eva Feketeova
- Neurology Department, Medical Faculty of P. J. Safarik University, University Hospital of L. Pasteur Kosice, Kosice, Slovak Republic
| | - Jitka Buskova
- Department of Sleep Medicine, National Institute of Mental Health, Klecany and 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Silvia Miano
- Neurocenter of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Sleep Medicine Unit, EOC, Lugano, Switzerland
| | - Ulf Kallweit
- Center for Narcolepsy and Hypersomnias, Professorship for Narcolepsy and Hypersomnolence Research, Department of Medicine, University Witten/Herdecke, Witten, Germany
| | - Anna Heidbreder
- Department of Sleep Medicine and Neuromuscular Disorders (A.H.), University of Münster, Münster, Germany
| | - Claudio L A Bassetti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julia van der Meer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Parker MN, Bloomer BF, Stout JD, Byrne ME, Schvey NA, Brady SM, Chen KY, Nugent AC, Turner SA, Yang SB, Stojek MM, Waters AJ, Tanofsky-Kraff M, Yanovski JA. A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity. Nutrients 2024; 16:3456. [PMID: 39458453 PMCID: PMC11510407 DOI: 10.3390/nu16203456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Attention bias (AB) toward food is associated with obesity, but it is unclear if programs designed to reduce AB can impact adolescents' eating behavior. We investigated whether a two-week, smartphone-delivered attention retraining (AR) program (vs a control program) altered food AB in adolescent girls with overweight. METHODS Participants completed three food-cue visual-probe trainings/day. The AR and control programs directed attention away from food stimuli during 100% and 50% of trainings, respectively. Before and after completion of the programs, girls completed a food-cue visual-probe task while undergoing magnetoencephalography (MEG), and then a laboratory test meal. RESULTS Sixty-eight adolescents were randomized; 58 completed post-program visits. There was minimal effect of condition on AB scores (β [95%CI] = -1.9 [-20.8, 16.9]; d = -0.06). There was a small effect of condition on energy intake (EMMcontrol = 1017 kcal, EMMAR = 1088 kcal, d = 0.29). Within the AR group, there was slightly blunted initial engagement in brain areas associated with reward response and subsequent increased goal-directed attention and action control. CONCLUSIONS We found preliminary support for efficacy of an intensive smartphone-delivered AR program to alter neural correlates of attention processing in adolescent girls with overweight or obesity. Studies with larger sample sizes are needed to elucidate if AR trainings disrupt the link between food AB and eating behavior.
Collapse
Affiliation(s)
- Megan N. Parker
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA;
| | - Bess F. Bloomer
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
| | - Jeffrey D. Stout
- MEG Core Facility, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA; (J.D.S.); (A.C.N.)
| | - Meghan E. Byrne
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA;
| | - Natasha A. Schvey
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA;
| | - Sheila M. Brady
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
| | - Kong Y. Chen
- Diabetes, Endocrinology, and Obesity Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA;
| | - Allison C. Nugent
- MEG Core Facility, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA; (J.D.S.); (A.C.N.)
| | - Sara A. Turner
- Nutrition Department, Clinical Center, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Bethesda, MD 20892, USA; (S.A.T.); (S.B.Y.)
| | - Shanna B. Yang
- Nutrition Department, Clinical Center, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Bethesda, MD 20892, USA; (S.A.T.); (S.B.Y.)
| | - Monika M. Stojek
- Institute of Psychology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrew J. Waters
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA;
| | - Marian Tanofsky-Kraff
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA;
| | - Jack A. Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), 10 Center Drive, Room 1-3330, Bethesda, MD 20892, USA; (M.N.P.); (B.F.B.); (N.A.S.); (S.M.B.)
| |
Collapse
|
4
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie JP, Girault JA. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D 2 Neurons and Reveals a Modulatory Role of Ncdn. Biol Psychiatry 2024; 95:926-937. [PMID: 37579933 PMCID: PMC11059129 DOI: 10.1016/j.biopsych.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
Affiliation(s)
- Enrica Montalban
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Albert Giralt
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Lieng Taing
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Assunta Pelosi
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Mallory Brown
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Benoit de Pins
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Miquel Martin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain; Instituto de investigaciones médicas Hospital del Mar, Barcelona, Spain
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
5
|
Chao AM, Wadden TA, Cao W, Zhou Y, Maldonado D, Cardel MI, Foster GD, Loughead J. Randomized Controlled Trial of Effects of Behavioral Weight Loss Treatment on Food Cue Reactivity. Nurs Res 2024; 73:91-100. [PMID: 37916843 PMCID: PMC10922238 DOI: 10.1097/nnr.0000000000000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
BACKGROUND It is not known whether behavioral weight loss can attenuate blood oxygen level-dependent responses to food stimuli. OBJECTIVES This randomized controlled trial assessed the effects of a commercially available behavioral weight loss program (WW, WeightWatchers) compared to a wait-list control on blood oxygen level-dependent response to food cues. METHODS Females with obesity ( N = 61) were randomized to behavioral weight loss or wait-list control. At baseline and follow-up, participants completed assessments that included functional magnetic resonance imaging scans to assess response to images of high-calorie foods (HCF) or low-calorie foods (LCF), and neutral objects. RESULTS There were no significant between-group differences in change from baseline to follow-up in any regions of the brain in response to viewing HCF or LCF. From baseline to follow-up, participants in behavioral weight loss, compared with wait-list control, reported significantly greater increases in desire for LCF. Changes in liking and palatability of LCF and liking, palatability, and desire for HCF did not differ between groups. DISCUSSION Behavioral weight loss was associated with increased desire for LCF without changes in neural reactivity to food cues. These results suggest that alteration of neurological processes underlying responsiveness to food is difficult to achieve through behavioral weight management alone.
Collapse
|
6
|
Anguah KOB, Christ SE. Exposure to written content eliciting weight stigmatization: Neural responses in appetitive and food reward regions. Obesity (Silver Spring) 2024; 32:80-90. [PMID: 37861062 DOI: 10.1002/oby.23917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Neural activity in food reward- and appetite-related regions was examined in response to high-calorie (HC), low-calorie, and non-food pictures after exposure to written weight stigma (WS) content. Relationships with eating behavior (by Three-Factor Eating Questionnaire [TFEQ]), blood glucose, and subjective appetite were also explored. METHODS Adults with overweight and obesity were randomized to read either a WS (n = 20) or control (n = 20) article and subsequently underwent brain scans while they rated pleasantness of food pictures. Fasting glucose, TFEQ, stigma experiences, and appetite were measured before reading the article, appetite after reading, and glucose and appetite again after the scan. RESULTS A priori region of interest analyses revealed significant group differences in activation to HC > low-calorie food cues in the caudate and thalamus whereas exploratory whole-brain analyses suggested significant differences in regions including left insula, left thalamus, left inferior temporal gyrus, right lingual gyrus, and bilateral middle occipital gyrus and superior parietal lobule (p < 0.005 uncorrected, k ≥ 200 m3 ). No significant relationships were observed between the pattern of activation and TFEQ, glucose, or subjective appetite in the WS group. CONCLUSIONS Exposure to WS was associated with increased responsiveness to HC food content in the dorsal striatum and thalamus in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Katherene O B Anguah
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Baboumian S, Puma L, Swencionis C, Astbury NM, Ho J, Pantazatos SP, Geliebter A. Binge Eating (BE) and Obesity: Brain Activity and Psychological Measures before and after Roux-En-Y Gastric Bypass (RYGB). Nutrients 2023; 15:3808. [PMID: 37686840 PMCID: PMC10490010 DOI: 10.3390/nu15173808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Brain activity in response to food cues following Roux-En-Y Gastric Bypass (RYGB) in binge eating (BE) or non-binge eating (NB) individuals is understudied. Here, 15 RYGB (8 BE; 7 NB) and 13 no treatment (NT) (7 BE; 6 NB) women with obesity underwent fMRI imaging while viewing high and low energy density food (HEF and LEF, respectively) and non-food (NF) visual cues. A region of interest (ROI) analysis compared BE participants to NB participants in those undergoing RYGB surgery pre-surgery and 4 months post. Results were corrected for multiple comparisons using liberal (p < 0.006 uncorrected) and stringent (p < 0.05 FDR corrected) thresholds. Four months following RYGB (vs. no treatment (NT) control), both BE and NB participants showed greater reductions in blood oxygen level-dependent (BOLD) signals (a proxy of local brain activity) in the dorsomedial prefrontal cortex in response to HEF (vs. LEF) cues (p < 0.006). BE (vs. NB) participants showed greater increases in the precuneus (p < 0.006) and thalamic regions (p < 0.05 corrected) to food (vs. NF). For RYGB (vs. NT) participants, BE participants, but not NB participants, showed lower BOLD signal in the middle occipital gyrus (p < 0.006), whilst NB participants, but not BE participants, showed lower signal in inferior frontal gyrus (p < 0.006) in response to HEF (vs. LEF). Results suggest distinct neural mechanisms of RGYB in BE and may help lead to improved clinical treatments.
Collapse
Affiliation(s)
- Shaunte Baboumian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Lauren Puma
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Charles Swencionis
- Ferkauf Graduate School of Psychology, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA
| | - Nerys M. Astbury
- Nuffield Department of Primary Care Health Sciences, Medical Sciences Division, University of Oxford, Oxford OX2 6GG, UK
| | - Jennifer Ho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Spiro P. Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Dr, New York, NY 10032, USA
| | - Allan Geliebter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside, 1111 Amsterdam Ave, New York, NY 10025, USA
| |
Collapse
|
9
|
Stancil SL, Yeh HW, Brucks MG, Bruce AS, Voss M, Abdel-Rahman S, Brooks WM, Martin LE. Potential biomarker of brain response to opioid antagonism in adolescents with eating disorders: a pilot study. Front Psychiatry 2023; 14:1161032. [PMID: 37492067 PMCID: PMC10363723 DOI: 10.3389/fpsyt.2023.1161032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 07/27/2023] Open
Abstract
Background Eating Disorders (ED) affect up to 5% of youth and are associated with reward system alterations and compulsive behaviors. Naltrexone, an opioid antagonist, is used to treat ED behaviors such as binge eating and/or purging. The presumed mechanism of action is blockade of reward activation; however, not all patients respond, and the optimal dose is unknown. Developing a tool to detect objective drug response in the brain will facilitate drug development and therapeutic optimization. This pilot study evaluated neuroimaging as a pharmacodynamic biomarker of opioid antagonism in adolescents with ED. Methods Youth aged 13-21 with binge/purge ED completed functional magnetic resonance imaging (fMRI) pre- and post-oral naltrexone. fMRI detected blood oxygenation-level dependent (BOLD) signal at rest and during two reward probes (monetary incentive delay, MID, and passive food view, PFV) in predefined regions of interest associated with reward and inhibitory control. Effect sizes for Δ%BOLD (post-naltrexone vs. baseline) were estimated using linear mixed effects modeling. Results In 12 youth (16-21 years, 92% female), BOLD signal changes were detected following naltrexone in the nucleus accumbens during PFV (Δ%BOLD -0.08 ± 0.03; Cohen's d -1.06, p = 0.048) and anterior cingulate cortex during MID (Δ%BOLD 0.06 ± 0.03; Cohen's d 1.25, p = 0.086). Conclusion fMRI detected acute reward pathway modulation in this small sample of adolescents with binge/purge ED. If validated in future, larger trials, task-based Δ%BOLD detected by fMRI may serve as a pharmacodynamic biomarker of opioid antagonism to facilitate the development of novel therapeutics targeting the reward pathway, enable quantitative pharmacology trials, and inform drug dosing. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT04935931, NCT#04935931.
Collapse
Affiliation(s)
- Stephani L. Stancil
- Divisions of Adolescent Medicine and Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, United States
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Department of Pediatrics, University of Kansas Medical Center School of Medicine, Kansas City, KS, United States
| | - Hung-Wen Yeh
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Division of Health Services and Outcomes Research, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Morgan G. Brucks
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amanda S. Bruce
- Department of Pediatrics, University of Kansas Medical Center School of Medicine, Kansas City, KS, United States
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO, United States
| | - Michaela Voss
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Susan Abdel-Rahman
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - William M. Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Laura E. Martin
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, United States
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Yokum S, Stice E. Relation of Overweight/Obesity to Reward Region Response to Food Reward and the Moderating Effects of Parental History of Eating Pathology in Adolescent Females. Nutrients 2023; 15:nu15112558. [PMID: 37299520 DOI: 10.3390/nu15112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE To test whether overweight/obesity is associated with an elevated reward region response to milkshake cues and a low reward region response to milkshake receipt. To test whether the risk for eating pathology moderates the effects of weight status on the neural response to milkshake cues and milkshake receipt. METHOD The current study used functional magnetic resonance imaging (fMRI) to examine the neuronal responses of female adolescents (n = 80; M age = 14.6 ± 0.9; M BMI = 21.9 ± 3.6; 41% with a biological parental history of eating pathology) during a food receipt paradigm. RESULTS Females with overweight/obesity showed a greater ventromedial prefrontal cortex (vmPFC), and ventral anterior cingulate (ACC) response to milkshake cues and a greater ventral striatum, subgenual ACC, and dorsomedial prefrontal cortex response to milkshake receipt than those with a healthy weight. Females with overweight/obesity plus a parental history of eating pathology showed a greater vmPFC/medial orbitofrontal cortex response to milkshake cues than those without a parental history of eating pathology and those with a healthy weight. Females with overweight/obesity and without a parental history of eating pathology showed a greater thalamus and striatum response to milkshake receipt. CONCLUSIONS Overweight/obesity is associated with an elevated reward region response to palatable food cues and food receipt. A risk for eating pathology enhances the reward region response to food cues in those with excess weight.
Collapse
Affiliation(s)
- Sonja Yokum
- Oregon Research Institute, Springfield, OR 97477, USA
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Richer LP, Tan Q, Butler MG, Avedzi HM, DeLorey DS, Peng Y, Tun HM, Sharma AM, Ainsley S, Orsso CE, Triador L, Freemark M, Haqq AM. Evaluation of Autonomic Nervous System Dysfunction in Childhood Obesity and Prader-Willi Syndrome. Int J Mol Sci 2023; 24:ijms24098013. [PMID: 37175718 PMCID: PMC10179129 DOI: 10.3390/ijms24098013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The autonomic nervous system (ANS) may play a role in the distribution of body fat and the development of obesity and its complications. Features of individuals with Prader-Willi syndrome (PWS) impacted by PWS molecular genetic classes suggest alterations in ANS function; however, these have been rarely studied and presented with conflicting results. The aim of this study was to investigate if the ANS function is altered in PWS. In this case-control study, we assessed ANS function in 20 subjects with PWS (6 males/14 females; median age 10.5 years) and 27 body mass index (BMI) z-score-matched controls (19 males/8 females; median age 12.8 years). Standardized non-invasive measures of cardiac baroreflex function, heart rate, blood pressure, heart rate variability, quantitative sudomotor axon reflex tests, and a symptom questionnaire were completed. The increase in heart rate in response to head-up tilt testing was blunted (p < 0.01) in PWS compared to controls. Besides a lower heart rate ratio with Valsalva in PWS (p < 0.01), no significant differences were observed in other measures of cardiac function or sweat production. Findings suggest possible altered sympathetic function in PWS.
Collapse
Affiliation(s)
- Lawrence P Richer
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Hayford M Avedzi
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ye Peng
- JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hein M Tun
- JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Arya M Sharma
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Steven Ainsley
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Camila E Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lucila Triador
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27705, USA
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
12
|
Saraswat AA, Longyear LG, Kawa AB, Ferrario CR. Cocaine-induced plasticity, motivation, and cue responsivity do not differ in obesity-prone vs obesity-resistant rats; implications for food addiction. Psychopharmacology (Berl) 2023; 240:853-870. [PMID: 36806961 PMCID: PMC10006066 DOI: 10.1007/s00213-023-06327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
RATIONALE Compared to obesity-resistant rats, obesity-prone rats consume more food, work harder to obtain food, show greater motivational responses to food-cues, and show greater striatal plasticity in response to eating sugary/fatty foods. Therefore, it is possible that obesity-prone rats may also be more sensitive to the motivational properties of cocaine and cocaine-paired cues, and to plasticity induced by cocaine. OBJECTIVE To examine baseline differences in motivation for cocaine and effects of intermittent access (IntA) cocaine self-administration on cocaine motivation, neurobehavioral responsivity to cocaine-paired cues, and locomotor sensitization in male obesity-prone vs obesity-resistant rats. METHODS Intravenous cocaine self-administration was used to examine drug-taking and drug-seeking in males. Motivation for cocaine was measured using a within session threshold procedure. Cue-induced c-Fos expression in mesocorticolimbic regions was measured. RESULTS Drug-taking and drug-seeking, cue-induced c-Fos, locomotor sensitization, and preferred level of cocaine consumption (Q0) were similar between obesity-prone and obesity-resistant groups. Maximal responding during demand testing (Rmax) was lower in obesity-prone rats. IntA experience enhanced motivation for cocaine (Pmax) in obesity-prone rats. CONCLUSIONS The results do not support robust inherent differences in motivation for cocaine, cue-induced cocaine seeking, or neurobehavioral plasticity induced by IntA in obesity-prone vs obesity-resistant rats. This contrasts with previously established differences seen for food and food cues in these populations and shows that inherent enhancements in motivation for food and food-paired cues do not necessarily transfer to drugs and drug-paired cues.
Collapse
Affiliation(s)
- Anish A Saraswat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lauren G Longyear
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex B Kawa
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Herv D, Gambardella N, Roussarie JP, Girault JA. Operant training for highly palatable food alters translating mRNA in nucleus accumbens D2 neurons and reveals a modulatory role of Neurochondrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531496. [PMID: 36945487 PMCID: PMC10028890 DOI: 10.1101/2023.03.07.531496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
|
14
|
Kochs S, Franssen S, Pimpini L, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. IT IS A MATTER OF PERSPECTIVE: ATTENTIONAL FOCUS RATHER THAN DIETARY RESTRAINT DRIVES BRAIN RESPONSES TO FOOD STIMULI. Neuroimage 2023; 273:120076. [PMID: 37004828 DOI: 10.1016/j.neuroimage.2023.120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Brain responses to food are thought to reflect food's rewarding value and to fluctuate with dietary restraint. We propose that brain responses to food are dynamic and depend on attentional focus. Food pictures (high-caloric/low-caloric, palatable/unpalatable) were presented during fMRI-scanning, while attentional focus (hedonic/health/neutral) was induced in 52 female participants varying in dietary restraint. The level of brain activity was hardly different between palatable versus unpalatable foods or high-caloric versus low-caloric foods. Activity in several brain regions was higher in hedonic than in health or neutral attentional focus (p < 0.05, FWE-corrected). Palatability and calorie content could be decoded from multi-voxel activity patterns (p < 0.05, FDR-corrected). Dietary restraint did not significantly influence brain responses to food. So, level of brain activity in response to food stimuli depends on attentional focus, and may reflect salience, not reward value. Palatability and calorie content are reflected in patterns of brain activity.
Collapse
|
15
|
Poghosyan V, Ioannou S, Al-Amri KM, Al-Mashhadi SA, Al-Mohammed F, Al-Otaibi T, Al-Saeed W. Spatiotemporal profile of altered neural reactivity to food images in obesity: Reward system is altered automatically and predicts efficacy of weight loss intervention. Front Neurosci 2023; 17:948063. [PMID: 36845430 PMCID: PMC9944082 DOI: 10.3389/fnins.2023.948063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Obesity presents a significant public health problem. Brain plays a central role in etiology and maintenance of obesity. Prior neuroimaging studies have found that individuals with obesity exhibit altered neural responses to images of food within the brain reward system and related brain networks. However, little is known about the dynamics of these neural responses or their relationship to later weight change. In particular, it is unknown if in obesity, the altered reward response to food images emerges early and automatically, or later, in the controlled stage of processing. It also remains unclear if the pretreatment reward system reactivity to food images is predictive of subsequent weight loss intervention outcome. Methods In this study, we presented high-calorie and low-calorie food, and nonfood images to individuals with obesity, who were then prescribed lifestyle changes, and matched normal-weight controls, and examined neural reactivity using magnetoencephalography (MEG). We performed whole-brain analysis to explore and characterize large-scale dynamics of brain systems affected in obesity, and tested two specific hypotheses: (1) in obese individuals, the altered reward system reactivity to food images occurs early and automatically, and (2) pretreatment reward system reactivity predicts the outcome of lifestyle weight loss intervention, with reduced activity associated with successful weight loss. Results We identified a distributed set of brain regions and their precise temporal dynamics that showed altered response patterns in obesity. Specifically, we found reduced neural reactivity to food images in brain networks of reward and cognitive control, and elevated reactivity in regions of attentional control and visual processing. The hypoactivity in reward system emerged early, in the automatic stage of processing (< 150 ms post-stimulus). Reduced reward and attention responsivity, and elevated neural cognitive control were predictive of weight loss after six months in treatment. Discussion In summary, we have identified, for the first time with high temporal resolution, the large-scale dynamics of brain reactivity to food images in obese versus normal-weight individuals, and have confirmed both our hypotheses. These findings have important implications for our understanding of neurocognition and eating behavior in obesity, and can facilitate development of novel integrated treatment strategies, including tailored cognitive-behavioral and pharmacological therapies.
Collapse
Affiliation(s)
- Vahe Poghosyan
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia,*Correspondence: Vahe Poghosyan,
| | - Stephanos Ioannou
- Department of Physiological Sciences, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalid M. Al-Amri
- Obesity, Endocrinology and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sufana A. Al-Mashhadi
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fedaa Al-Mohammed
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tahani Al-Otaibi
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wjoud Al-Saeed
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Pimpini L, Kochs S, Franssen S, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. More complex than you might think: Neural representations of food reward value in obesity. Appetite 2022; 178:106164. [PMID: 35863505 DOI: 10.1016/j.appet.2022.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Obesity reached pandemic proportions and weight-loss treatments are mostly ineffective. The level of brain activity in the reward circuitry is proposed to be proportionate to the reward value of food stimuli, and stronger in people with obesity. However, empirical evidence is inconsistent. This may be due to the double-sided nature of high caloric palatable foods: at once highly palatable and high in calories (unhealthy). This study hypothesizes that, viewing high caloric palatable foods, a hedonic attentional focus compared to a health and a neutral attentional focus elicits more activity in reward-related brain regions, mostly in people with obesity. Moreover, caloric content and food palatability can be decoded from multivoxel patterns of activity most accurately in people with obesity and in the corresponding attentional focus. During one fMRI-session, attentional focus (hedonic, health, neutral) was manipulated using a one-back task with individually tailored food stimuli in 32 healthy-weight people and 29 people with obesity. Univariate analyses (p < 0.05, FWE-corrected) showed that brain activity was not different for palatable vs. unpalatable foods, nor for high vs. low caloric foods. Instead, this was higher in the hedonic compared to the health and neutral attentional focus. Multivariate analyses (MVPA) (p < 0.05, FDR-corrected) showed that palatability and caloric content could be decoded above chance level, independently of either BMI or attentional focus. Thus, brain activity to visual food stimuli is neither proportionate to the reward value (palatability and/or caloric content), nor significantly moderated by BMI. Instead, it depends on people's attentional focus, and may reflect motivational salience. Furthermore, food palatability and caloric content are represented as patterns of brain activity, independently of BMI and attentional focus. So, food reward value is reflected in patterns, not levels, of brain activity.
Collapse
Affiliation(s)
- Leonardo Pimpini
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sarah Kochs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Job van den Hurk
- Scannexus, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
Wronski ML, Plessow F, Kerem L, Asanza E, O'Donoghue ML, Stanford FC, Bredella MA, Torriani M, Soukas AA, Kheterpal A, Eddy KT, Holmes TM, Deckersbach T, Vangel M, Holsen LM, Lawson EA. A randomized, double-blind, placebo-controlled clinical trial of 8-week intranasal oxytocin administration in adults with obesity: Rationale, study design, and methods. Contemp Clin Trials 2022; 122:106909. [PMID: 36087842 PMCID: PMC10329413 DOI: 10.1016/j.cct.2022.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Obesity affects more than one-third of adults in the U.S., and effective treatment options are urgently needed. Oxytocin administration induces weight loss in animal models of obesity via effects on caloric intake, energy expenditure, and fat metabolism. We study intranasal oxytocin, an investigational drug shown to reduce caloric intake in humans, as a potential novel treatment for obesity. METHODS We report the rationale, design, methods, and biostatistical analysis plan of a randomized, double-blind, placebo-controlled clinical trial of intranasal oxytocin for weight loss (primary endpoint) in adults with obesity. Participants (aged 18-45 years) were randomly allocated (1:1) to oxytocin (four times daily over eight weeks) versus placebo. Randomization was stratified by biological sex and BMI (30 to <35, 35 to <40, ≥40 kg/m2). We investigate the efficacy, safety, and mechanisms of oxytocin administration in reducing body weight. Secondary endpoints include changes in resting energy expenditure, body composition, caloric intake, metabolic profile, and brain activation via functional magnetic resonance imaging in response to food images and during an impulse control task. Safety and tolerability (e.g., review of adverse events, vital signs, electrocardiogram, comprehensive metabolic panel) are assessed throughout the study and six weeks after treatment completion. RESULTS Sixty-one male and female participants aged 18-45 years were randomized (mean age 34 years, mean BMI 37 kg/m2). The study sample is diverse with 38% identifying as non-White and 20% Hispanic. CONCLUSION Investigating intranasal oxytocin's efficacy, safety, and mechanisms as an anti-obesity medication will advance the search for optimal treatment strategies for obesity and its associated severe sequelae.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liya Kerem
- Division of Pediatric Endocrinology, Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elisa Asanza
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fatima C Stanford
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander A Soukas
- Center for Genomic Medicine, Diabetes Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Arvin Kheterpal
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tara M Holmes
- Translational and Clinical Research Centers, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thilo Deckersbach
- Diploma Hochschule/University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Mark Vangel
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura M Holsen
- Division of Women's Health, Department of Medicine and Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Zapparoli L, Devoto F, Giannini G, Zonca S, Gallo F, Paulesu E. Neural structural abnormalities behind altered brain activation in obesity: Evidence from meta-analyses of brain activation and morphometric data. Neuroimage Clin 2022; 36:103179. [PMID: 36088842 PMCID: PMC9474923 DOI: 10.1016/j.nicl.2022.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Obesity represents a risk factor for disability with a major bearing on life expectancy. Neuroimaging techniques are contributing to clarify its neurobiological underpinnings. Here, we explored whether structural brain abnormalities might accompany altered brain activations in obesity. We combined and compared data from brain activation studies for food stimuli and the data reported in structural voxel-based morphometry studies. We found that obese individuals have reduced grey matter density and functional activations in the thalamus and midbrain. A functional connectivity analysis based on these two clusters and its quantitative decoding showed that these regions are part of the reward system functional brain network. Moreover, we found specific grey matter hypo-densities in prefrontal cortex for the obese subjects, regions involved in controlled behaviour. These results support theories of obesity that point to reduced bottom-up reward processes (i.e., the Reward Deficit Theory), but also top-down theories postulating a deficit in cognitive control (i.e., the Inhibitory Control Deficit Theory). The same results also warrant a more systematic exploration of obesity whereby the reward of food and the intentional control over consummatory behaviour is manipulated.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy,Corresponding authors.
| | - Francantonio Devoto
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Gianluigi Giannini
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Sara Zonca
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Gallo
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
19
|
Koenis MMG, Ng J, Anderson B, Stevens MC, Tishler DS, Papasavas PK, Stone A, McLaughlin T, Verhaak A, Domakonda MJ, Pearlson GD. Food cue reactivity in successful laparoscopic gastric banding: A sham-deflation-controlled pilot study. Front Hum Neurosci 2022; 16:902192. [PMID: 36092648 PMCID: PMC9454014 DOI: 10.3389/fnhum.2022.902192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Laparoscopic adjustable gastric banding (LAGB) offers a unique opportunity to examine the underlying neuronal mechanisms of surgically assisted weight loss due to its instant, non-invasive, adjustable nature. Six participants with stable excess weight loss (%EWL ≥ 45) completed 2 days of fMRI scanning 1.5-5 years after LAGB surgery. In a within-subject randomized sham-controlled design, participants underwent (sham) removal of ∼ 50% of the band's fluid. Compared to sham-deflation (i.e., normal band constriction) of the band, in the deflation condition (i.e., decreasing restriction) participants showed significantly lower activation in the anterior (para)cingulate, angular gyrus, lateral occipital cortex, and frontal cortex in response to food images (p < 0.05, whole brain TFCE-based FWE corrected). Higher activation in the deflation condition was seen in the fusiform gyrus, inferior temporal gyrus, lingual gyrus, lateral occipital cortex. The findings of this within-subject randomized controlled pilot study suggest that constriction of the stomach through LAGB may indirectly alter brain activation in response to food cues. These neuronal changes may underlie changes in food craving and food preference that support sustained post-surgical weight-loss. Despite the small sample size, this is in agreement with and adds to the growing literature of post-bariatric surgery changes in behavior and control regions.
Collapse
Affiliation(s)
- Marinka M. G. Koenis
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Janet Ng
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Beth Anderson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Darren S. Tishler
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Pavlos K. Papasavas
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Andrea Stone
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Tara McLaughlin
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Allison Verhaak
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Mirjana J. Domakonda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Abstract
The modern obesogenic environment contains an abundance of food cues (e.g., sight, smell of food) as well cues that are associated with food through learning and memory processes. Food cue exposure can lead to food seeking and excessive consumption in otherwise food-sated individuals, and a high level of food cue responsivity is a risk factor for overweight and obesity. Similar food cue responses are observed in experimental rodent models, and these models are therefore useful for mechanistically identifying the neural circuits mediating food cue responsivity. This review draws from both experimental rodent models and human data to characterize the behavioral and biological processes through which food-associated stimuli contribute to overeating and weight gain. Two rodent models are emphasized - cue-potentiated feeding and Pavlovian-instrumental transfer - that provide insight in the neural circuits and peptide systems underlying food cue responsivity. Data from humans are highlighted that reveal physiological, psychological, and neural mechanisms that connect food cue responsivity with overeating and weight gain. The collective literature identifies connections between heightened food cue responsivity and obesity in both rodents and humans, and identifies underlying brain regions (nucleus accumbens, amygdala, orbitofrontal cortex, hippocampus) and endocrine systems (ghrelin) that regulate food cue responsivity in both species. These species similarities are encouraging for the possibility of mechanistic rodent model research and further human research leading to novel treatments for excessive food cue responsivity in humans.
Collapse
Affiliation(s)
- Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Kerri N Boutelle
- Department of Pediatrics, Herbert Wertheim School of Public Health and Human Longevity Science, and Psychiatry, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
21
|
Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational approaches to predicting treatment response to obesity using neuroimaging. Rev Endocr Metab Disord 2022; 23:773-805. [PMID: 34951003 PMCID: PMC9307532 DOI: 10.1007/s11154-021-09701-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.
Collapse
Affiliation(s)
- Leonard Kozarzewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Lukas Maurer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Anja Mähler
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
22
|
Leng X, Huang Y, Zhao S, Jiang X, Shi P, Chen H. Altered neural correlates of episodic memory for food and non-food cues in females with overweight/obesity. Appetite 2022; 175:106074. [PMID: 35525333 DOI: 10.1016/j.appet.2022.106074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Episodic memory formation is fundamental to cognition and plays a key role in eating behaviors, indirectly promoting the maintenance and acceleration of weight gain. Impaired episodic memory function is a hallmark of people with overweight/obesity, nevertheless, little research has been conducted to explore the effects of overweight/obesity on neural networks associated with episodic memory. The current study aimed to unravel the behavioral responses and neurocognitive mechanisms underlying the episodic memory for food and non-food cues in females with overweight/obesity. To explore this issue, a group of females with overweight/obesity (n = 26) and a group of age-matched females with healthy weight (n = 28) participated in a functional magnetic resonance imaging (fMRI) event-related episodic memory paradigm, during which pictures of palatable food and pictures of neutral daily necessities were presented. Whole-brain analyses revealed differential engagement in several neural regions between the groups during an episodic memory task. Specifically, compared to the healthy weight controls, females with overweight/obesity exhibited reduced brain activity in the temporal, parietal, and frontal regions during episodic memory encoding and successful retrieval of both food and non-food cues. Additionally, activation patterns in the left hippocampus and right olfactory cortex of females with and without overweight/obesity suggested that item memory changed according to the type of stimuli presented during item memory. Specifically, females with overweight/obesity showed greater engagement of the left hippocampus and right olfactory cortex when processing food cues, but less activation of the left hippocampus and right olfactory cortex when presented with non-food cues. Consistent with the obesity and suboptimal food-related decision theoretical model, these findings provide evidence of dissociation of the neural underpinnings of episodic memory in females with overweight/obesity and underline important effects of overweight/obesity on brain functions related to episodic memory.
Collapse
Affiliation(s)
- Xuechen Leng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yufei Huang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Song Zhao
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xintong Jiang
- School of Psychology, Northeast Normal University, Changchun, 130024, China
| | - Pan Shi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China; Research Center of Psychology and Social Development, Chongqing, 400715, China.
| |
Collapse
|
23
|
Roth CL, Melhorn SJ, De Leon MRB, Rowland MG, Elfers CT, Huang A, Saelens BE, Schur EA. Impaired Brain Satiety Responses After Weight Loss in Children With Obesity. J Clin Endocrinol Metab 2022; 107:2254-2266. [PMID: 35544121 PMCID: PMC9282278 DOI: 10.1210/clinem/dgac299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity interventions often result in increased motivation to eat. OBJECTIVE We investigated relationships between obesity outcomes and changes in brain activation by visual food cues and hormone levels in response to obesity intervention by family-based behavioral treatment (FBT). METHODS Neuroimaging and hormone assessments were conducted before and after 24-week FBT intervention in children with obesity (OB, n = 28), or children of healthy weight without intervention (HW, n = 17), all 9- to 11-year-old boys and girls. We evaluated meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions and gut hormones. RESULTS Among children with OB who underwent FBT, greater declines of BMI z-score were associated with lesser reductions after the FBT intervention in meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions (P < 0.05), and the slope of relationship was significantly different compared with children of HW. In children with OB, less reduction in brain responses to a meal from before to after FBT was associated with greater meal-induced reduction in ghrelin and increased meal-induced stimulation in peptide YY and glucagon-like peptide-1 (all P < 0.05). CONCLUSION In response to FBT, adaptations of central satiety responses and peripheral satiety-regulating hormones were noted. After weight loss, changes of peripheral hormone secretion support weight loss, but there was a weaker central satiety response. The findings suggest that even when peripheral satiety responses by gut hormones are intact, the central regulation of satiety is disturbed in children with OB who significantly improve their weight status during FBT, which could favor future weight regain.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maya G Rowland
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brian E Saelens
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Zheng L, Miao M, Gan Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci Biobehav Rev 2022; 138:104721. [PMID: 35667634 DOI: 10.1016/j.neubiorev.2022.104721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In the context of current-day online shopping, people select foods based on pictures and using their visual systems. Although there are some reviews of previous neuroimaging studies on appetitive behaviors, the findings on neural activation in response to pictures of high- and low-calorie foods seem inconsistent. This study aims to systematically review, integrate, and meta-analyze neuroimaging evidence of viewing high- and low-calorie foods. There were 25 samples from 24 studies, totalizing 489 normal-weight participants (311 female, 160 male, and 18 of unknown sex). We conducted a systematic review and Activation Likelihood Estimation (ALE) meta-analysis on viewing high-calorie foods (versus non-foods), low-calorie foods (versus non-foods), and high- versus low-calorie foods. In systematic review, several brain regions were shown to be activated when viewing high- or low-calorie foods (versus non-foods) and viewing high- versus low-calorie foods, including the prefrontal cortex, orbitofrontal cortex, amygdala, insula, ventral striatum, hippocampus, superior parietal lobe, and fusiform gyrus. However, the ALE meta-analysis showed that the left orbitofrontal cortex, left amygdala, insula, superior parietal lobe, and fusiform gyrus were activated when viewing high-calorie foods (versus non-foods); the left fusiform gyrus was activated when viewing low-calorie foods (versus non-foods); and no cluster was activated when viewing high- versus low-calorie foods. Our research suggests an appetitive brain network that includes visual perception and attentional processing, sensory input integration, subjective reward value encoding, decision-making, and top-down cognitive control. Future studies should control for the effects of methodological and physiological variables when examining the neural correlates of viewing high- and low-calorie foods.
Collapse
Affiliation(s)
- Lei Zheng
- School of Economics and Management, Fuzhou University, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Miao Miao
- Department of Medical Psychology, School of Health Humanities, Peking University, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
25
|
Franssen S, Jansen A, van den Hurk J, Adam T, Geyskens K, Roebroeck A, Roefs A. Effects of mindset on hormonal responding, neural representations, subjective experience and intake. Physiol Behav 2022; 249:113746. [PMID: 35182553 DOI: 10.1016/j.physbeh.2022.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
A person can alternate between food-related mindsets, which in turn may depend on one's emotional state or situation. Being in a certain mindset can influence food-related thoughts, but interestingly it might also affect eating-related physiological responses. The current study investigates the influence of an induced 'loss of control' mindset as compared to an 'in control' mindset on hormonal, neural and behavioural responses to chocolate stimuli. Mindsets were induced by having female chocolate lovers view a short movie during two sessions in a within-subjects design. Neural responses to visual chocolate stimuli were measured using an ultra-high field (7T) scanner. Momentary ghrelin and glucagon-like peptide 1 (GLP-1) levels were determined on five moments and were simultaneously assessed with self-reports on perceptions of chocolate craving, hunger and feelings of control. Furthermore, chocolate intake was measured using a bogus chocolate taste test. It was hypothesized that the loss of control mindset would lead to hormonal, neural and behavioural responses that prepare for ongoing food intake, even after eating, while the control mindset would lead to responses reflecting satiety. Results show that neural activity in the mesocorticolimbic system was stronger for chocolate stimuli than for neutral stimuli and that ghrelin and GLP-1 levels responded to food intake, irrespective of mindset. Self-reported craving and actual chocolate intake were affected by mindset, in that cravings and intake were higher with a loss of control mindset than with a control mindset. Interestingly, these findings suggest that physiology on the one hand (hormonal and neural responses) and behavior and subjective experience (food intake and craving) on the other hand are not in sync, are not equally affected by mindset.
Collapse
Affiliation(s)
- Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Tanja Adam
- Department of school of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht UMC+, Maastricht University, Maastricht, The Netherlands
| | - Kelly Geyskens
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Turan S, Sarioglu FC, Erbas IM, Cavusoglu B, Karagöz E, Şişman AR, Güney SA, Güleryüz H, Abaci A, Ozturk Y, Akay AP. Altered regional grey matter volume and appetite-related hormone levels in adolescent obesity with or without binge-eating disorder. Eat Weight Disord 2021; 26:2555-2562. [PMID: 33548051 DOI: 10.1007/s40519-021-01117-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Binge eating disorder (BED) is characterized by frequent and persistent overeating episodes of binge eating without compensatory behaviors. The aim was to evaluate regional gray matter volume (GMV) abnormalities and appetite-regulating hormone levels (NPY and Leptin) in obese subjects either with or without BED compared to healthy controls (HC). METHODS Twenty-six obese patients with BED, 25 obese patients without BED and 27 healthy subjects as an age-matched control group with neuroimaging and appetite-regulating hormone levels were found eligible for regional GMV abnormalities. A structural magnetic resonance scan and timely blood samples were drawn to assess the appetite-regulating hormone levels. RESULTS The BED obese patients had a greater GMVs of the right medial orbitofrontal cortex (OFC) and the left medial OFC compared to the non-BED obese patients. BED patients were characterized by greater GMV of the left medial OFC than HCs. Relative to the HCs, higher serum NPY levels were found in BED obese and non-BED obese groups. Serum leptin levels (pg/mL) had positively correlations with GMV in right medial OFC, left medial OFC, right lateral OFC, and left anterior cingulate cortex. CONCLUSION Among the reward processing network, which is largely associated with feeding behaviours in individuals with obesity and binge eating disorder, the OFC volumes was correlated with serum leptin concentrations. The results of our study may provide a rationale for exploring the link between regional grey matter volumes and appetite-related hormone levels in people with BED. LEVEL OF EVIDENCE Level III, case-control analytic study.
Collapse
Affiliation(s)
- Serkan Turan
- Department of Child and Adolescent Psychiatry, Tekirdağ State Hospital, Tekirdağ, Turkey.
| | - Fatma Ceren Sarioglu
- Department of Radiology, Division of Pediatric Radiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ibrahim Mert Erbas
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Berrin Cavusoglu
- Health Sciences Institutes, Department of Medical Physics, Institute of HealthSciences, Dokuz Eylül University, Izmir, Turkey
| | - Ezgi Karagöz
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ali Riza Şişman
- Department of Medical Microbiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Sevay Alsen Güney
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Handan Güleryüz
- Department of Radiology, Division of Pediatric Radiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ayhan Abaci
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Yesim Ozturk
- Department of Pediatric Gastroenterology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Aynur Pekcanlar Akay
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| |
Collapse
|
27
|
Christensen EL, Harding IH, Voigt K, Chong TTJ, Verdejo-Garcia A. Neural underpinnings of food choice and consumption in obesity. Int J Obes (Lond) 2021; 46:194-201. [PMID: 34611286 DOI: 10.1038/s41366-021-00974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with unhealthy food choices. Food selection is driven by the subjective valuation of available options, and the perceived and actual rewards accompanying consumption. These cognitive operations are mediated by brain regions including the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), and ventral striatum (vStr). This study investigated the relationship between body mass index (BMI) and functional activations in the vmPFC, dACC, and vStr during food selection and consumption. SUBJECTS/METHODS After overnight fasting, 26 individuals (BMI: 18-40 kg/m2) performed a food choice task while being scanned with functional magnetic resonance imaging (fMRI). Each trial involved selecting one beverage from a pair of presented options, followed by delivery of a 3 mL aliquot of the selected option using an MR-compatible gustometer. We also tracked subjective preference for each beverage throughout the experiment. RESULTS During food choice, individuals with greater BMI had less activation in the dorsolateral prefrontal cortex when selecting a high-value option and less vmPFC activation upon its consumption. Independent of BMI, during food choice the dACC and anterior insula elicited higher activation when a less preferred beverage was selected. Activation of the dACC and a broader frontoparietal network was also observed when deciding between options more similar in value. During consumption, receipt of a more preferred beverage was associated with greater vmPFC response, and attenuation of the dACC. CONCLUSIONS An individual's preference for a food option modulates the brain activity associated with choosing and consuming it. The relationship between food preference and underlying brain activity is altered in obesity, with reduced engagement of cognition-related regions when presented with a highly valued option, but a blunted response in reward-related regions upon consumption.
Collapse
Affiliation(s)
- Erynn L Christensen
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Katharina Voigt
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Antonio Verdejo-Garcia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Dong D, Wang Y, Long Z, Jackson T, Chang X, Zhou F, Chen H. The Association between Body Mass Index and Intra-Cortical Myelin: Findings from the Human Connectome Project. Nutrients 2021; 13:3221. [PMID: 34579106 PMCID: PMC8469469 DOI: 10.3390/nu13093221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-cortical myelin is a myelinated part of the cerebral cortex that is responsible for the spread and synchronization of neuronal activity in the cortex. Recent animal studies have established a link between obesity and impaired oligodendrocyte maturation vis-à-vis cells that produce and maintain myelin; however, the association between obesity and intra-cortical myelination remains to be established. To investigate the effects of obesity on intra-cortical myelin in living humans, we employed a large, demographically well-characterized sample of healthy young adults drawn from the Human Connectome Project (n = 1066). Intra-cortical myelin was assessed using a novel T1-w/T2-w ratio method. Linear regression analysis was used to investigate the association between body mass index (BMI), an indicator of obesity, and intra-cortical myelination, adjusting for covariates of no interest. We observed BMI was related to lower intra-cortical myelination in regions previously identified to be involved in reward processing (i.e., medial orbitofrontal cortex, rostral anterior cingulate cortex), attention (i.e., visual cortex, inferior/middle temporal gyrus), and salience detection (i.e., insula, supramarginal gyrus) in response to viewing food cues (corrected p < 0.05). In addition, higher BMIs were associated with more intra-cortical myelination in regions associated with somatosensory processing (i.e., the somatosensory network) and inhibitory control (i.e., lateral inferior frontal gyrus, frontal pole). These findings were also replicated after controlling for key potential confounding factors including total intracranial volume, substance use, and fluid intelligence. Findings suggested that altered intra-cortical myelination may represent a novel microstructure-level substrate underlying prior abnormal obesity-related brain neural activity, and lays a foundation for future investigations designed to evaluate how living habits, such as dietary habit and physical activity, affect intra-cortical myelination.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa 999078, China;
| | - Xuebin Chang
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Feng Zhou
- Center for Information in Medicine, MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
29
|
Yunker AG, Alves JM, Luo S, Angelo B, DeFendis A, Pickering TA, Monterosso JR, Page KA. Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA Netw Open 2021; 4:e2126313. [PMID: 34581796 PMCID: PMC8479585 DOI: 10.1001/jamanetworkopen.2021.26313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Nonnutritive sweeteners (NNSs) are used as an alternative to nutritive sweeteners to quench desire for sweets while reducing caloric intake. However, studies have shown mixed results concerning the effects of NNSs on appetite, and the associations between sex and obesity with reward and appetitive responses to NNS compared with nutritive sugar are unknown. OBJECTIVE To examine neural reactivity to different types of high-calorie food cues (ie, sweet and savory), metabolic responses, and eating behavior following consumption of sucralose (NNS) vs sucrose (nutritive sugar) among healthy young adults. DESIGN, SETTING, AND PARTICIPANTS In a randomized, within-participant, crossover trial including 3 separate visits, participants underwent a functional magnetic resonance imaging task measuring blood oxygen level-dependent signal in response to visual cues. For each study visit, participants arrived at the Dornsife Cognitive Neuroimaging Center of University of Southern California at approximately 8:00 am after a 12-hour overnight fast. Blood was sampled at baseline and 10, 35, and 120 minutes after participants received a drink containing sucrose, sucralose, or water to measure plasma glucose, insulin, glucagon-like peptide(7-36), acyl-ghrelin, total peptide YY, and leptin. Participants were then presented with an ad libitum meal. Participants were right-handed, nonsmokers, weight-stable for at least 3 months before the study visits, nondieters, not taking medication, and with no history of eating disorders, illicit drug use, or medical diagnoses. Data analysis was performed from March 2020 to March 2021. INTERVENTIONS Participants ingested 300-mL drinks containing either sucrose (75 g), sucralose (individually sweetness matched), or water (as a control). MAIN OUTCOMES AND MEASURES Primary outcomes of interest were the effects of body mass index (BMI) status and sex on blood oxygen level-dependent signal to high-calorie food cues, endocrine, and feeding responses following sucralose vs sucrose consumption. Secondary outcomes included neural, endocrine, and feeding responses following sucrose vs water and sucralose vs water (control) consumption, and cue-induced appetite ratings following sucralose vs sucrose (and vs water). RESULTS A total of 76 participants were randomized, but 2 dropped out, leaving 74 adults (43 women [58%]; mean [SD] age, 23.40 [3.96] years; BMI range, 19.18-40.27) who completed the study. In this crossover design, 73 participants each received water (drink 1) and sucrose (drink 2), and 72 participants received water (drink 1), sucrose (drink 2), and sucralose (drink 3). Sucrose vs sucralose was associated with greater production of circulating glucose, insulin, and glucagon-like peptide-1 and suppression of acyl-ghrelin, but no differences were found for peptide YY or leptin. BMI status by drink interactions were observed in the medial frontal cortex (MFC; P for interaction < .001) and orbitofrontal cortex (OFC; P for interaction = .002). Individuals with obesity (MFC, β, 0.60; 95% CI, 0.38 to 0.83; P < .001; OFC, β, 0.27; 95% CI, 0.11 to 0.43; P = .002), but not those with overweight (MFC, β, 0.02; 95% CI, -0.19 to 0.23; P = .87; OFC, β, -0.06; 95% CI, -0.21 to 0.09; P = .41) or healthy weight (MFC, β, -0.13; 95% CI, -0.34 to 0.07; P = .21; OFC, β, -0.08; 95% CI, -0.23 to 0.06; P = .16), exhibited greater responsivity in the MFC and OFC to savory food cues after sucralose vs sucrose. Sex by drink interactions were observed in the MFC (P for interaction = .03) and OFC (P for interaction = .03) after consumption of sucralose vs sucrose. Female participants had greater MFC and OFC responses to food cues (MFC high-calorie vs low-calorie cues, β, 0.21; 95% CI, 0.05 to 0.37; P = .01; MFC sweet vs nonfood cues, β, 0.22; 95% CI, 0.02 to 0.42; P = .03; OFC food vs nonfood cues, β, 0.12; 95% CI, 0.02 to 0.22; P = .03; and OFC sweet vs nonfood cues, β, 0.15; 95% CI, 0.03 to 0.27; P = .01), but male participants' responses did not differ (MFC high-calorie vs low-calorie cues, β, 0.01; 95% CI, -0.19 to 0.21; P = .90; MFC sweet vs nonfood cues, β, -0.04; 95% CI, -0.26 to 0.18; P = .69; OFC food vs nonfood cues, β, -0.08; 95% CI, -0.24 to 0.08; P = .32; OFC sweet vs nonfood cues, β, -0.11; 95% CI, -0.31 to 0.09; P = .31). A sex by drink interaction on total calories consumed during the buffet meal was observed (P for interaction = .03). Female participants consumed greater total calories (β, 1.73; 95% CI, 0.38 to 3.08; P = .01), whereas caloric intake did not differ in male participants (β, 0.68; 95% CI, -0.99 to 2.35; P = .42) after sucralose vs sucrose ingestion. CONCLUSIONS AND RELEVANCE These findings suggest that female individuals and those with obesity may be particularly sensitive to disparate neural responsivity elicited by sucralose compared with sucrose consumption. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02945475.
Collapse
Affiliation(s)
- Alexandra G. Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jasmin M. Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
- Department of Psychology, University of Southern California, Los Angeles
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Trevor A. Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - John R. Monterosso
- Department of Psychology, University of Southern California, Los Angeles
| | - Kathleen A. Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
30
|
Thoughts of social distancing experiences affect food intake and hypothetical binge eating: Implications for people in home quarantine during COVID-19. Soc Sci Med 2021; 284:114218. [PMID: 34265658 DOI: 10.1016/j.socscimed.2021.114218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
BACKGROND AND RATIONALE Social distance regulations have been suggested as one of the best ways to control and prevent the spread of COVID-19. Social connection and food are intertwined because both have played critical evolutionary roles in human survival. We tested whether the substitutability hypothesis in human motivation applies here in that cues signaling scarcity in one domain (e.g., social connection) might enhance the desire to acquire resources in another domain (e.g., food). METHODS We recruited 140 adults from Kaohsiung City (the largest city in southern Taiwan) to participate in a laboratory experiment. Participants were randomly assigned to receive either social distancing or neutral primes via an emotional-event recollection technique. The amount of ice cream eaten during a taste test and the self-reported likelihood of binge eating served as the dependent measures. RESULTS We found that, compared with controls, participants primed with social distancing consumed more ice cream in a taste test and reported a greater likelihood that they would engage in binge eating if they were placed in home quarantine. CONCLUSIONS We may be the first to provide experimental evidence that social distancing can enhance the desire for food. The link between social distancing and the desire for food is pertinent to understanding how strongly social distance regulations may influence weight gain. Our findings have far-reaching implications for weight control under social distance regulations for prevention and control of COVID-19.
Collapse
|
31
|
Wever MCM, van Meer F, Charbonnier L, Crabtree DR, Buosi W, Giannopoulou A, Androutsos O, Johnstone AM, Manios Y, Meek CL, Holst JJ, Smeets PAM. Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. Neuroimage 2021; 240:118374. [PMID: 34245869 DOI: 10.1016/j.neuroimage.2021.118374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Food cue exposure can trigger eating. Food cue reactivity (FCR) is a conditioned response to food cues and includes physiological responses and activation of reward-related brain areas. FCR can be affected by hunger and weight status. The appetite-regulating hormones ghrelin and leptin play a pivotal role in homeostatic as well as hedonic eating. We examined the association between ghrelin and leptin levels and neural FCR in the fasted and sated state and the association between meal-induced changes in ghrelin and neural FCR, and in how far these associations are related to BMI and HOMA-IR. Data from 109 participants from three European centers (age 50±18 y, BMI 27±5 kg/m2) who performed a food viewing task during fMRI after an overnight fast and after a standardized meal were analyzed. Blood samples were drawn prior to the viewing task in which high-caloric, low-caloric and non-food images were shown. Fasting ghrelin was positively associated with neural FCR in the inferior and superior occipital gyrus in the fasted state. This was partly attributable to BMI and HOMA-IR. These brain regions are involved in visual attention, suggesting that individuals with higher fasting ghrelin have heightened attention to food cues. Leptin was positively associated with high calorie FCR in the medial prefrontal cortex (PFC) in the fasted state and to neural FCR in the left supramarginal gyrus in the fasted versus sated state, when correcting for BMI and HOMA-IR, respectively. This PFC region is involved in assessing anticipated reward value, suggesting that for individuals with higher leptin levels high-caloric foods are more salient than low-caloric foods, but foods in general are not more salient than non-foods. There were no associations between ghrelin and leptin and neural FCR in the sated state, nor between meal-induced changes in ghrelin and neural FCR. In conclusion, we show modest associations between ghrelin and leptin and neural FCR in a relatively large sample of European adults with a broad age and BMI range. Our findings indicate that people with higher leptin levels for their weight status and people with higher ghrelin levels may be more attracted to high caloric foods when hungry. The results of the present study form a foundation for future studies to test whether food intake and (changes in) weight status can be predicted by the association between (mainly fasting) ghrelin and leptin levels and neural FCR.
Collapse
Affiliation(s)
- Mirjam C M Wever
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lisette Charbonnier
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Daniel R Crabtree
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland; Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness IV2 3JH, United Kingdom
| | - William Buosi
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland
| | - Angeliki Giannopoulou
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Odysseas Androutsos
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece; Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala 42132, Greece
| | | | - Yannis Manios
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Claire L Meek
- Department of Clinical Biochemistry, Cambridge University Hospitals, Cambridge, United Kingdom; Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Research Section, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul A M Smeets
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | | |
Collapse
|
32
|
Han P, Roitzsch C, Horstmann A, Pössel M, Hummel T. Increased Brain Reward Responsivity to Food-Related Odors in Obesity. Obesity (Silver Spring) 2021; 29:1138-1145. [PMID: 33913254 DOI: 10.1002/oby.23170] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Food odors serve as powerful stimuli signaling the food quality and energy density and direct food-specific appetite and consumption. This study explored obesity-related brain activation in response to odors related to high- or low-energy-dense foods. METHODS Seventeen participants with obesity (BMI > 30 kg/m2 ; 4 males and 13 females) and twenty-one with normal weight (BMI < 25 kg/m2 ; 9 males and 12 females) underwent a functional magnetic resonance imaging scan in which they received chocolate (high-energy-dense food) and cucumber (low-energy-dense food) odor stimuli. Participants' olfactory and gustatory functions were assessed by the "Sniffin' Sticks" and "Taste Strips" tests, respectively. RESULTS Compared with normal-weight controls, participants with obesity had lower odor sensitivity (phenylethyl alcohol) and decreased odor discrimination ability. However, participants with obesity demonstrated greater brain activation in response to chocolate compared with cucumber odors in the bilateral inferior frontal operculum and cerebellar vermis, right ventral anterior insula extending to putamen, right middle temporal gyrus, and right supramarginal areas. CONCLUSIONS The present study provides preliminary evidence that obesity is associated with heightened brain activation of the reward and flavor processing areas in response to chocolate versus cucumber odors, possibly because of the higher energy density and reinforcing value of chocolate compared with cucumber.
Collapse
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
- The Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Clemens Roitzsch
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
| | - Annette Horstmann
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University Medical Center, CRC 1052A5 'Obesity Mechanisms', Leipzig, Germany
| | - Maria Pössel
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas Hummel
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
33
|
Sewaybricker LE, Melhorn SJ, Rosenbaum JL, Askren MK, Tyagi V, Webb MF, De Leon MRB, Grabowski TJ, Schur EA. Reassessing relationships between appetite and adiposity in people at risk of obesity: A twin study using fMRI. Physiol Behav 2021; 239:113504. [PMID: 34147511 DOI: 10.1016/j.physbeh.2021.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroimaging studies suggest that appetitive drive is enhanced in obesity. OBJECTIVE To test if appetitive drive varies in direct proportion to the level of body adiposity after accounting for genetic factors that contribute to both brain response and obesity risk. SUBJECTS/METHODS Participants were adult monozygotic (n = 54) and dizygotic (n = 30) twins with at least one member of the pair with obesity. Body composition was assessed by dual-energy X-ray absorptiometry. Hormonal and appetite measures were obtained in response to a standardized meal that provided 20% of estimated daily caloric needs and to an ad libitum buffet meal. Pre- and post-meal functional magnetic resonance imaging (fMRI) assessed brain response to visual food cues in a set of a priori appetite-regulating regions. Exploratory voxelwise analyses outside a priori regions were performed with correction for multiple comparisons. RESULTS In a group of 84 adults, the majority with obesity (75%), body fat mass was not associated with hormonal responses to a meal (glucose, insulin, glucagon-like peptide-1 and ghrelin, all P>0.40), subjective feelings of hunger (β=-0.01 mm [95% CI -0.35, 0.34] P = 0.97) and fullness (β=0.15 mm [-0.15, 0.44] P = 0.33), or buffet meal intake in relation to estimated daily caloric needs (β=0.28% [-0.05, 0.60] P = 0.10). Body fat mass was also not associated with brain response to high-calorie food cues in appetite-regulating regions (Pre-meal β=-0.12 [-0.32, 0.09] P = 0.26; Post-meal β=0.18 [-0.02, 0.37] P = 0.09; Change by a meal β=0.29 [-0.02, 0.61] P = 0.07). Conversely, lower fat mass was associated with being weight reduced (β=-0.05% [-0.07, -0.03] P<0.001) and greater pre-meal activation to high-calorie food cues in the dorsolateral prefrontal cortex (Z = 3.63 P = 0.017). CONCLUSIONS In a large study of adult twins, the majority with overweight or obesity, the level of adiposity was not associated with excess appetitive drive as assessed by behavioral, hormonal, or fMRI measures.
Collapse
Affiliation(s)
- Leticia E Sewaybricker
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Jennifer L Rosenbaum
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary K Askren
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Vidhi Tyagi
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary F Webb
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Thomas J Grabowski
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA.
| |
Collapse
|
34
|
Inter-individual body mass variations relate to fractionated functional brain hierarchies. Commun Biol 2021; 4:735. [PMID: 34127795 PMCID: PMC8203627 DOI: 10.1038/s42003-021-02268-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Variations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet connectome-level substrates of BMI and their neurobiological underpinnings remain unclear. Studying 325 healthy young adults, we examined associations between functional connectivity and inter-individual BMI variations. We utilized non-linear connectome manifold learning techniques to represent macroscale functional organization along continuous hierarchical axes that dissociate low level and higher order brain systems. We observed an increased differentiation between unimodal and heteromodal association networks in individuals with higher BMI, indicative of a disrupted modular architecture and hierarchy of the brain. Transcriptomic decoding and gene enrichment analyses identified genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and cerebellar cell types. These findings illustrate functional connectome substrates of BMI variations in healthy young adults and point to potential molecular associations.
Collapse
|
35
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|
37
|
What Do You Want to Eat? Influence of Menu Description and Design on Consumer's Mind: An fMRI Study. Foods 2021; 10:foods10050919. [PMID: 33922036 PMCID: PMC8170898 DOI: 10.3390/foods10050919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
The main objective of this research was to analyse the active regions when processing dishes with a pleasant (vs. unpleasant) design and the effect of the previously read rational (vs. emotional) description when visualising the dish. The functional magnetic resonance image technique was used for the study. The results showed that participants who visualised pleasant vs. unpleasant dishes became active in several domains (e.g., attention, cognition and reward). On the other side, visualisation of unpleasant dishes activated stronger regions linked to inhibition, rejection, and related ambiguity. We found that subjects who read rational descriptions when visualising pleasant dishes activated regions related to congruence integration, while subjects who visualised emotional descriptions showed an increased neuronal response to pleasant dishes in the regions related to memory, emotion and congruence.
Collapse
|
38
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2020; 200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Drugs of abuse and highly palatable foods (e.g. high fat or sweet foods) have powerful reinforcing effects, which can lead to compulsive and addictive drives to ingest these substances to the point of psychopathology and self-harm--specifically the development of Substance Use Disorder (SUD) and obesity. Both SUD and binge-like overeating can be defined as disorders in which the salience of the reward (food or drug) becomes exaggerated relative to, and at the expense of, other rewards that promote well-being. A major roadblock in the treatment of these disorders is high rates of relapse after periods of abstinence. It is common, although not universal, for cue-induced craving to increase over time with abstinence, often triggered by cues previously paired with the reinforcing substance. Accumulating evidence suggests that similar neural circuits and cellular mechanisms contribute to abstinence-induced and cue-triggered seeking of drugs and palatable food. Although much research has focused on the important role of corticolimbic circuitry in drug-seeking, our goal is to expand focus to the more recently explored hypothalamic-thalamic-striatal circuitry. Specifically, we review how connections, and neurotransmitters therein, among the lateral hypothalamus, paraventricular nucleus of the thalamus, and the nucleus accumbens contribute to abstinence-induced opioid- and (high fat or sweet) food-seeking. Given that biological sex and gonadal hormones have been implicated in addictive behavior across species, another layer to this review is to compare behaviors and neural circuit-based mechanisms of abstinence-induced opioid- or food-seeking between males and females when such data is available.
Collapse
Affiliation(s)
| | - Suman K Guha
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
40
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
41
|
Ferrario CR. Why did I eat that? Contributions of individual differences in incentive motivation and nucleus accumbens plasticity to obesity. Physiol Behav 2020; 227:113114. [DOI: 10.1016/j.physbeh.2020.113114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023]
|
42
|
Gallucci A, Del Mauro L, Pisoni A, Lauro LJR, Mattavelli G. A Systematic Review Of Implicit Attitudes And Their Neural Correlates In Eating Behaviour. Soc Cogn Affect Neurosci 2020; 18:nsaa156. [PMID: 33219691 PMCID: PMC10074774 DOI: 10.1093/scan/nsaa156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies suggests that implicit attitudes toward food and body shape predict eating behaviour and characterize patients with eating disorders (EDs). However, literature has not been previously analysed, thus differences between patients with EDs and healthy controls and the level of automaticity of the processes involved in implicit attitudes are still matters of debate. The present systematic review aimed to synthetize current evidence from papers investigating implicit attitudes towards food and body in healthy and EDs populations. PubMed, EMBASE (Ovid), PsycINFO, Web of Science and Scopus were systematically screened and 183 studies using different indirect paradigms were included in the qualitative analysis. The majority of studies reported negative attitudes towards overweight/obese body images in healthy and EDs samples and weight bias as a diffuse stereotypical evaluation. Implicit food attitudes are consistently reported as valid predictors of eating behaviour. Few studies on the neurobiological correlates showed neurostimulation effects on implicit attitudes, but the automaticity at brain level of implicit evaluations remains an open area of research. In conclusion, implicit attitudes are relevant measures of eating behaviour in healthy and clinical settings, although evidence about their neural correlates is limited.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48--20900, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
| | - Alberto Pisoni
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1--20126, Milan, Italy
| | - Giulia Mattavelli
- NETS, School of Advanced Studies, IUSS, Piazza della Vittoria n.15, 27100, Pavia, Italy
| |
Collapse
|
43
|
Gobbi S, Weber S, Graf G, Hinz D, Asarian L, Geary N, Leeners B, Hare T, Tobler P. Reduced Neural Satiety Responses in Women Affected by Obesity. Neuroscience 2020; 447:94-112. [DOI: 10.1016/j.neuroscience.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
|
44
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Kahleova H, Tintera J, Thieme L, Veleba J, Klementova M, Kudlackova M, Malinska H, Oliyarnyk O, Markova I, Haluzik M, Pavlovicova R, Hill M, Tura A, Pelikanova T. A plant-based meal affects thalamus perfusion differently than an energy- and macronutrient-matched conventional meal in men with type 2 diabetes, overweight/obese, and healthy men: A three-group randomized crossover study. Clin Nutr 2020; 40:1822-1833. [PMID: 33081982 DOI: 10.1016/j.clnu.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND & AIMS Reward circuitry in the brain plays a key role in weight regulation. We tested the effects of a plant-based meal on these brain regions. METHODS A randomized crossover design was used to test the effects of two energy- and macronutrient-matched meals: a vegan (V-meal) and a conventional meat (M-meal) on brain activity, gastrointestinal hormones, and satiety in participants with type 2 diabetes (T2D; n = 20), overweight/obese participants (O; n = 20), and healthy controls (H; n = 20). Brain perfusion was measured, using arterial spin labeling functional brain imaging; satiety was assessed using a visual analogue scale; and plasma concentrations of gut hormones were determined at 0 and 180 min. Repeated-measures ANOVA was used for statistical analysis. Bonferroni correction for multiple comparisons was applied. The Hedge's g statistic was used to measure the effect size for means of paired difference between the times (180-0 min) and meal types (M-V meal) for each group. RESULTS Thalamus perfusion was the highest in patients with T2D and the lowest in overweight/obese individuals (p = 0.001). Thalamus perfusion decreased significantly after ingestion of the M-meal in men with T2D (p = 0.04) and overweight/obese men (p = 0.004), and it decreased significantly after ingestion of the V-meal in healthy controls (p < 0.001; Group x Meal x Time: F = 3.4; p = 0.035). The effect size was -0.41 (95% CI, -1.14 to 0.31; p = 0.26) for men with diabetes; -0.72 (95% CI, -1.48 to 0.01; p = 0.05) for overweight/obese men; and 0.82 (95% CI, 0.09 to 1.59; p = 0.03) for healthy men. Postprandial secretion of active GLP-1 increased after the V-meal compared with the M-meal by 42% (95% CI 25-62%; p = 0.003) in men with T2D and by 41% (95% CI 24-61%; p = 0.002) in healthy controls. Changes in thalamus perfusion after ingestion of both test meals correlated with changes in satiety (r = +0.68; p < 0.01), fasting plasma insulin (r = +0.40; p < 0.01), C-peptide (r = +0.48; p < 0.01) and amylin (r = +0.55; p < 0.01), and insulin secretion at 5 mmol/l (r = +0.77; p < 0.05). CONCLUSIONS The higher postprandial GLP-1 secretion after the V-meal in men with T2D, with concomitant greater satiety and changes in thalamus perfusion, suggest a potential use of plant-based meals in addressing the key pathophysiologic mechanisms of food intake regulation. Trial registration ClinicalTrials.gov number, NCT02474147.
Collapse
Affiliation(s)
- Hana Kahleova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Physicians Committee for Responsible Medicine, Washington, DC, USA.
| | - Jaroslav Tintera
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Thieme
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiri Veleba
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marta Klementova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Hana Malinska
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Markova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzik
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Renata Pavlovicova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Prague, Czech Republic
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padua, Italy
| | - Terezie Pelikanova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
46
|
Park BY, Byeon K, Lee MJ, Chung CS, Kim SH, Morys F, Bernhardt B, Dagher A, Park H. Whole-brain functional connectivity correlates of obesity phenotypes. Hum Brain Mapp 2020; 41:4912-4924. [PMID: 32804441 PMCID: PMC7643372 DOI: 10.1002/hbm.25167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated neural mechanisms in reward and somatosensory circuits result in an increased appetitive drive for and reduced inhibitory control of eating, which in turn causes obesity. Despite many studies investigating the brain mechanisms of obesity, the role of macroscale whole‐brain functional connectivity remains poorly understood. Here, we identified a neuroimaging‐based functional connectivity pattern associated with obesity phenotypes by using functional connectivity analysis combined with machine learning in a large‐scale (n ~ 2,400) dataset spanning four independent cohorts. We found that brain regions containing the reward circuit positively associated with obesity phenotypes, while brain regions for sensory processing showed negative associations. Our study introduces a novel perspective for understanding how the whole‐brain functional connectivity correlates with obesity phenotypes. Furthermore, we demonstrated the generalizability of our findings by correlating the functional connectivity pattern with obesity phenotypes in three independent datasets containing subjects of multiple ages and ethnicities. Our findings suggest that obesity phenotypes can be understood in terms of macroscale whole‐brain functional connectivity and have important implications for the obesity neuroimaging community.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Kyoungseob Byeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, Catholic University College of Medicine, Suwon, South Korea
| | - Filip Morys
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
47
|
Kling SMR, Pearce AL, Reynolds ML, Garavan H, Geier CF, Rolls BJ, Rose EJ, Wilson SJ, Keller KL. Development and Pilot Testing of Standardized Food Images for Studying Eating Behaviors in Children. Front Psychol 2020; 11:1729. [PMID: 32793062 PMCID: PMC7385190 DOI: 10.3389/fpsyg.2020.01729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Food images are routinely used to investigate the cognitive and neurobiological mechanisms of eating behaviors, but there is a lack of standardized image sets for use in children, which limits cross-study comparisons. To address this gap, we developed a set of age-appropriate images that included 30 high-energy-dense (ED) foods (>2.00 kcal/g), 30 low-ED foods (<1.75 kcal/g), and 30 office supplies photographed in two amounts (i.e., "larger" and "smaller"). Preliminary testing was conducted with children (6-10 years) to assess recognition, emotional valence (1 = very sad, 5 = very happy), and excitability (1 = very bored, 5 = very excited). After the initial testing, 10 images with low recognition were replaced; thus, differences between Image Set 1 and Image Set 2 were analyzed. Thirty (n = 30, mean age 8.3 ± 1.2 years) children rated Set 1, and a different cohort of 29 children (mean age 8.1 ± 1.1 years) rated Set 2. Changes made between image sets improved recognition of low-ED foods (Set 1 = 88.3 ± 10.5% vs. Set 2 = 95.6 ± 10.6%; p < 0.0001) and office supplies (83.7 ± 10.5 vs. 93.0 ± 10.6%; p < 0.0001). For the revised image set, children recognized more high-ED foods (98.4 ± 10.6%) than low-ED foods (95.6 ± 10.6%; p < 0.05) and office supplies (93.0 ± 10.6%; p < 0.0001). Recognition also improved with age (p < 0.001). Excitability and emotional valence scores were greater for high-ED foods compared with both low-ED foods and office supplies (p < 0.0001 for both). However, child fullness ratings influenced the relationship between excitability/emotional valence and category of item (p < 0.002). At the lowest fullness level, high-ED foods were rated the highest in both excitability and emotional valence, followed by low-ED foods and then office supplies. At the highest fullness level, high-ED foods remained the highest in excitability and emotional valence, but ratings for low-ED foods and office supplies were not different. This suggests that low-ED foods were more exciting and emotionally salient (relative to office supplies) when children were hungry. Ratings of recognition, excitability, and emotional valence did not differ by image amount. This new, freely available, image set showed high recognition and expected differences between image category for emotional valence and excitability. When investigating children's responsiveness to food cues, specifically energy density, it is essential for investigators to account for potential influences of child age and satiety level.
Collapse
Affiliation(s)
- Samantha M R Kling
- Metabolic Kitchen and Children's Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States.,Evaluation Sciences Unit, Division of Primary Care and Population Health, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alaina L Pearce
- Metabolic Kitchen and Children's Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Marissa L Reynolds
- Metabolic Kitchen and Children's Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Medical School, Burlington, VT, United States.,Department of Psychological Sciences, University of Vermont Medical School, Burlington, VT, United States
| | - Charles F Geier
- Laboratory, Department of Human Development and Family Studies, The Pennsylvania State University, State College, PA, United States
| | - Barbara J Rolls
- Laboratory for the Study of Human Ingestive Behavior, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Emma J Rose
- Laboratory, Prevention Research Center, The Pennsylvania State University, State College, PA, United States
| | - Stephen J Wilson
- Addiction Smoking and Health Laboratory, Department of Psychology, The Pennsylvania State University, State College, PA, United States
| | - Kathleen L Keller
- Metabolic Kitchen and Children's Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States.,Metabolic Kitchen and Children's Eating Behavior Laboratory, Department of Food Sciences, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
48
|
Lee H, Park BY, Byeon K, Won JH, Kim M, Kim SH, Park H. Multivariate association between brain function and eating disorders using sparse canonical correlation analysis. PLoS One 2020; 15:e0237511. [PMID: 32785278 PMCID: PMC7423138 DOI: 10.1371/journal.pone.0237511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
Eating disorder is highly associated with obesity and it is related to brain dysfunction as well. Still, the functional substrates of the brain associated with behavioral traits of eating disorder are underexplored. Existing neuroimaging studies have explored the association between eating disorder and brain function without using all the information provided by the eating disorder related questionnaire but by adopting summary factors. Here, we aimed to investigate the multivariate association between brain function and eating disorder at fine-grained question-level information. Our study is a retrospective secondary analysis that re-analyzed resting-state functional magnetic resonance imaging of 284 participants from the enhanced Nathan Kline Institute-Rockland Sample database. Leveraging sparse canonical correlation analysis, we associated the functional connectivity of all brain regions and all questions in the eating disorder questionnaires. We found that executive- and inhibitory control-related frontoparietal networks showed positive associations with questions of restraint eating, while brain regions involved in the reward system showed negative associations. Notably, inhibitory control-related brain regions showed a positive association with the degree of obesity. Findings were well replicated in the independent validation dataset (n = 34). The results of this study might contribute to a better understanding of brain function with respect to eating disorder.
Collapse
Affiliation(s)
- Hyebin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Kyoungseob Byeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Ji Hye Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Mansu Kim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
- * E-mail:
| |
Collapse
|
49
|
Morys F, García-García I, Dagher A. Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis. Soc Cogn Affect Neurosci 2020; 18:nsaa113. [PMID: 32785578 PMCID: PMC9997070 DOI: 10.1093/scan/nsaa113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Theoretical work suggests that obesity is related to enhanced incentive salience of food cues. However, evidence from both behavioral and neuroimaging studies on the topic is mixed. In this work we review the literature on cue reactivity in obesity and perform a preregistered meta-analysis of studies investigating effects of obesity on brain responses to passive food pictures viewing. Further, we examine whether age influences brain responses to food cues in obesity. In the meta-analysis we included 13 studies of children and adults that investigated group differences (obese vs. lean) in responses to food vs. non-food pictures viewing. While we found no significant differences in the overall meta-analysis, we show that age significantly influences brain response differences to food cues in the left insula and the left fusiform gyrus. In the left insula, obese vs. lean brain differences in response to food cues decreased with age, while in the left fusiform gyrus the pattern was opposite. Our results suggest that there is little evidence for obesity-related differences in responses to food cues and that such differences might be mediated by additional factors that are often not considered.
Collapse
Affiliation(s)
- Filip Morys
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Isabel García-García
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Schur EA, Melhorn SJ, Scholz K, De Leon MRB, Elfers CT, Rowland MG, Saelens BE, Roth CL. Child neurobiology impacts success in family-based behavioral treatment for children with obesity. Int J Obes (Lond) 2020; 44:2011-2022. [PMID: 32713944 PMCID: PMC7530004 DOI: 10.1038/s41366-020-0644-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Background and Objectives: Family-based behavioral treatment (FBT) is the recommended treatment for children with common obesity. However, there is a large variability in short- and long-term treatment response and mechanisms for unsuccessful treatment outcomes are not fully understood. In this study, we tested if brain response to visual food cues among children with obesity before treatment predicted weight or behavioral outcomes during a 6-mo. behavioral weight management program and/or long-term relative weight maintenance over a 1-year follow-up period. Subjects and Methods: Thirty-seven children with obesity (age 9–11y, 62% male) who entered active FBT (attended 2 or more sessions) and had outcome data. Brain activation was assessed at pre-treatment by functional magnetic resonance imaging across an a priori set of appetite-processing brain regions that included the ventral and dorsal striatum, medial orbitofrontal cortex, amygdala, substantia nigra/ventral tegmental area and insula in response to viewing food images before and after a standardized meal. Results: Children with more robust reductions in brain activation to high-calorie food cue images following a meal had greater declines in BMI z-score during FBT (r= 0.42; 95% CI: 0.09, 0.66; P=0.02) and greater improvements in Healthy Eating Index scores (r= −0.41; 95% CI: −0.67, −0.06; P=0.02). In whole-brain analyses, greater activation in the ventromedial prefrontal cortex, specifically by high-calorie food cues, was predictive of better treatment outcomes (whole-brain cluster corrected P=0.02). There were no significant predictors of relative weight maintenance and initial behavioral or hormonal measures did not predict FBT outcomes. Conclusions: Children’s brain responses to a meal prior to obesity treatment were related to treatment-based weight outcomes, suggesting that neurophysiologic factors and appetitive drive, more so than initial hormone status or behavioral characteristics, limit intervention success.
Collapse
Affiliation(s)
- Ellen A Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA.
| | - Susan J Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Kelley Scholz
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Mary Rosalynn B De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Maya G Rowland
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Brian E Saelens
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|