1
|
Hernandes VV, Warth B. Modular, Scalable, and Customizable LC-HRMS for Exposomics. Methods Mol Biol 2025; 2855:41-66. [PMID: 39354300 DOI: 10.1007/978-1-0716-4116-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this chapter, we describe a multi-purpose, reversed-phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflow for acquiring high-quality, non-targeted exposomics data utilizing data-dependent acquisition (DDA) combined with the use of toxicant inclusion lists for semi-targeted analysis. In addition, we describe expected retention times for >160 highly diverse xenobiotics in human plasma and serum samples. The method described is intended to serve as a generic LC-HRMS exposomics workflow for research and educational purposes. Moreover, it may be employed as a primer, allowing for further adaptations according to specialized research needs, e.g., by including reference and/or internal standards, by expanding to data-independent acquisition (DIA), or by modifying the list of compounds prioritized in fragmentation experiments (MS2).
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
2
|
Hupatz H, Rahu I, Wang WC, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem 2025; 417:473-493. [PMID: 39138659 DOI: 10.1007/s00216-024-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Non-targeted screening with liquid chromatography coupled to high-resolution mass spectrometry (LC/HRMS) is increasingly leveraging in silico methods, including machine learning, to obtain candidate structures for structural annotation of LC/HRMS features and their further prioritization. Candidate structures are commonly retrieved based on the tandem mass spectral information either from spectral or structural databases; however, the vast majority of the detected LC/HRMS features remain unannotated, constituting what we refer to as a part of the unknown chemical space. Recently, the exploration of this chemical space has become accessible through generative models. Furthermore, the evaluation of the candidate structures benefits from the complementary empirical analytical information such as retention time, collision cross section values, and ionization type. In this critical review, we provide an overview of the current approaches for retrieving and prioritizing candidate structures. These approaches come with their own set of advantages and limitations, as we showcase in the example of structural annotation of ten known and ten unknown LC/HRMS features. We emphasize that these limitations stem from both experimental and computational considerations. Finally, we highlight three key considerations for the future development of in silico methods.
Collapse
Affiliation(s)
- Henrik Hupatz
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
| | - Ida Rahu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
| | - Wei-Chieh Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
| | - Pilleriin Peets
- Institute of Biodiversity, Faculty of Biological Science, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Emma H Palm
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden.
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 114 18, Stockholm, Sweden.
| |
Collapse
|
3
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Manz KE. Considerations for Measurements of Aggregate PFAS Exposure in Precision Environmental Health. ACS MEASUREMENT SCIENCE AU 2024; 4:620-628. [PMID: 39713038 PMCID: PMC11659993 DOI: 10.1021/acsmeasuresciau.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a major focus of research due to their widespread environmental presence and adverse health effects associated with human exposure. PFAS include legacy and emerging structures and are characterized by a range of functional groups and carbon-fluorine chains that vary in length (from fewer than 3 carbons to more than 7 carbons). Research has linked PFAS exposure to an array of health concerns, ranging from developmental and reproductive disorders to immune system impairments and an increased risk of certain cancers. In this new era of personalized health, measuring markers of PFAS exposure in human biospecimens is an important part of environmental public health surveillance. PFAS are typically measured in human blood and tissues using targeted approaches, which quantify individual PFAS structures using specific instrumentation. The diversity and complexity of PFAS, the limitations of the targeted approaches due to the sheer number of structures, and the absence of publicly available analytical standards pose significant challenges for measurement methodologies. This perspective aims to describe aggregate PFAS exposure measurements and their potential for use in precision medicine applications including a discussion of the limitations and potential benefits of these aggregate measurements. As public health organizations, healthcare professionals, and the public look for guidance regarding the safe use of and exposure to PFAS, in a pragmatic cost-effective manner, the dynamic field of measurement science is poised to respond with innovative technological solutions to an important public health need.
Collapse
Affiliation(s)
- Katherine E. Manz
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Rich SL, Helbling DE. Broad Microbial Community Functions in a Conventional Activated Sludge System Exhibit Temporal Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22368-22378. [PMID: 39628310 DOI: 10.1021/acs.est.4c09535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Wastewater microbial communities within conventional activated sludge (CAS) systems can perform hundreds of biotransformations whose relative importance, frequency, and temporal stability remain largely unexplored. To improve our understanding of biotransformations in CAS systems, we collected 24 h composite samples from the influent and effluent of a CAS system over 14 days, analyzed samples using high-resolution mass spectrometry (HRMS), and conducted a nontarget analysis of our HRMS acquisitions. We found that over 50% of the chemical features in the influent were completely removed, and the daily number of detected features exhibited low variability with a coefficient of variation of 0.07. Additionally, we found 352 Core chemical features present in every sample at both locations. We used chemical features to search for evidence of 19 potential biotransformations and detected 9 of these biotransformations at a frequency of over 80 times per day, where evidence for dehydrogenations, hydroxylations, and acetylations was most frequently detected. The daily number of detections for the 9 biotransformations exhibited coefficients of variation ranging from 0.13-0.20, revealing the broad temporal stability for these wastewater microbial community functions. This stability contrasts with the previously observed temporal variability for micropollutant biotransformations, suggesting that micropollutant biotransformations are linked to specialized microbial community functions.
Collapse
Affiliation(s)
- Stephanie L Rich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
6
|
Bajagain R, Kim PG, Kwon JH, Hong Y. The release of volatile and semi-volatile organic compounds from polyvinyl chloride consumer products under simulated solar light: Implications for indoor air quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136846. [PMID: 39700945 DOI: 10.1016/j.jhazmat.2024.136846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
This study investigated the effect of light on emission of various volatile and semi-volatile organic compounds (VOCs and SVOCs), from polyvinyl chloride (PVC) products using xenon lamp as a solar light simulator. The emission flux generally decreased over time, with the light-induced targeted ∑VOC flux being about 1.6-times higher than heat-induced flux during the initial 1-h exposure. The emission is less affected by air flow rate; however, it is increased with light intensity. In general, the ∑SVOC levels are 3-34 times higher than ∑VOC levels. Results indicate that the chemicals released from PVC might decompose into degradation products upon xenon-light irradiation, resulting in intermediate or low-molecular weight compounds. Furthermore, total daily intakes of targeted compounds for different age groups ranged 0.80-29.1 µg/kg/day, while total hazard quotient and cancer risks posed by targeted VOCs ranged 0.020.26; and 4.5 × 10⁻⁶-5.3 × 10⁻⁵, respectively, suggesting the probable risk. Besides, more than 700 peaks are recorded and characterized as non-targeted chemicals. Also, 65-80 % of total number of chemical peaks emitted from PVC are attributed to VOCs, while that for SVOCs is 20-35 %. The fraction of emitted VOC peaks to total peaks under heat and light exposure are found to be 65 and 80 %, respectively. Therefore, indoor air quality can be deteriorated by the presence of PVC-related plastic products.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Pil-Gon Kim
- Department of Environmental Education, Mokpo National University, 1666 Yeongsan-ro, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong 30019, Republic of Korea.
| |
Collapse
|
7
|
MacKeown H, Magi E, Di Carro M, Benedetti B. Removal of perfluoroalkyl and polyfluoroalkyl substances from tap water by means of point-of-use treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176764. [PMID: 39393709 DOI: 10.1016/j.scitotenv.2024.176764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals known for their environmental persistence and adverse health effects. For this reason, they have come under increasing scrutiny in drinking water, with several groundbreaking drinking water regulations adopted recently in the US and the EU. Nevertheless, conventional treatment processes often fail to remove PFAS effectively, raising concerns about drinking water quality and consumer health. More advanced treatment processes can remove PFAS with varying success from drinking water treatment plants. Using similar technology to that used in centralized PFAS treatment, many types of point-of-use/point-of-entry (POU/POE) water treatment devices are also commercially available. Herein, an overview of the literature regarding POU/POE efficacy in the removal of PFAS from tap water was compiled and critically discussed. Generally, they employ treatment technologies like granular activated carbon, ion exchange, and reverse osmosis to remove PFAS contamination. Despite their laboratory testing and often certification for removal of perfluorooctanoic and perfluorooctanesulfonic acid and other PFAS in tap water, in most cases their efficacy in actual use has yet to be well characterized. In particular, inconsistent testing and insufficient real-life studies complicate assessments of their long-term performance, especially against short-chain PFAS. Furthermore, improperly maintained activated carbon systems might even raise PFAS levels in purified water. Only a few peer-reviewed studies have measured PFAS levels at the tap after POU/POE treatment, with just five assessing removal efficiency in real-life scenarios. Limited to the findings described, not all filters were demonstrated to be effective, especially against short-chain PFAS. Additionally, inconsistent testing methods that do not follow standard guidelines make it hard to compare filter results, and the long-term performance of these systems remains uncertain. More occurrence studies are essential to verify performance over time and understand exposure to these contaminants through water treated by household systems.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
8
|
Nino-Suastegui S, Painter E, Sprankle JW, Morrison JJ, Faust JA, Gray R. Non-targeted analysis and suspect screening of organic contaminants in temperate snowfall using liquid chromatography high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2024; 266:120494. [PMID: 39622354 DOI: 10.1016/j.envres.2024.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Contaminants released into the atmosphere that undergo regional and long-range transport can deposit back to Earth through snowfall. When snow melts, these contaminants re-enter the environment, sometimes far from their original emission sources. Here we present the first comprehensive characterization of organic contaminants in snow from North America. Fresh snowfall samples were collected in the central United States over a three-year period and measured by liquid chromatography high-resolution mass spectrometry for suspect screening and non-targeted analysis. The resulting data set was screened against experimental MS/MS libraries and underwent supplemental in silico MS/MS analysis. In total, 91 possible compounds were tentatively identified in snow, and 17 were successfully confirmed and semi-quantified with reference standards. These contaminants were mostly anthropogenic in origin and included six herbicides, three insect repellants, one insecticide metabolite, and one fungicide. The most prominent compounds present in all samples were N-cyclohexylformamide (known contaminant in tire leachate), DEET (insect repellent), and dimethyl phthalate (plasticizer), with median deposition fluxes of 4032, 284, and 262 ng m-2, respectively. Three additional compounds were detected in 100% of samples: coumarin (phytochemical and fragrance additive), 5-methylbenzotriazole (antifreeze component), and quinoline (heterocyclic aromatic). The Peto-Peto test revealed statistically significant differences in deposition fluxes for these six contaminants (p < 0.05), with weak but statistically significant positive associations between coumarin and DEET and between coumarin and quinoline according to a Kendall's tau correlation analysis. These findings demonstrate the utility of in silico analysis to complement MS/MS matching with experimental databases. Even so, thousands of unidentified features remained in the data set, highlighting the limitations of current strategies in non-targeted analysis of environmental samples.
Collapse
Affiliation(s)
| | - Eve Painter
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Jameson W Sprankle
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; The College of Wooster, Department of Earth Sciences, 944 College Mall, Wooster, OH, 44691, USA
| | - Jillian J Morrison
- The Ohio State University, Department of Statistics, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Jennifer A Faust
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Rebekah Gray
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; Goucher College, Department of Chemistry, 1021 Dulaney Valley Rd, Baltimore, MD, 21204, USA.
| |
Collapse
|
9
|
Tsikas D. Perspectives of Quantitative GC-MS, LC-MS, and ICP-MS in the Clinical Medicine Science-The Role of Analytical Chemistry. J Clin Med 2024; 13:7276. [PMID: 39685736 DOI: 10.3390/jcm13237276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Mass spectrometry (MS) is the only instrumental analytical technology that utilizes unique properties of matter, that is, its mass (m) and electrical charge (z). In the magnetic and/or electric fields of mass spectrometers, electrically charged native or chemically modified (millions) endogenous and (thousands) exogenous substances, the analytes, are separated according to their characteristic mass-to-charge ratio (m/z) values. Mass spectrometers coupled to gas chromatographs (GC) or liquid chromatographs (LC), the so-called hyphenated techniques, i.e., GC-MS and LC-MS, respectively, enable reliable determination of the concentration of analytes in complex biological samples such as plasma, serum, and urine. A particular technology is represented by inductively coupled plasma-mass spectrometry (ICP-MS), which is mainly used for the analysis of metal ions. The highest analytical accuracy is reached by using mass spectrometers with high mass resolution (HR) or by tandem mass spectrometers, as it can be realized with quadrupole-type instruments, such as GC-MS/MS and LC-MS/MS, in combination with stable-isotope labeled analytes that serve as internal standards, like a standard weight in scales. GC-MS belongs to the oldest and most advanced instrumental analytical technology. From the very beginning, GC-MS found broad application in basic and applied research sciences. GC-MS has played important roles in discovering biochemical pathways, exploring underlying mechanisms of disease, and establishing new evidence-based pharmacological therapy. In this article, we make an inventory of the use of instrumental mass spectrometry in the life sciences and attempt to provide a perspective study on the future of analytical mass spectrometry in clinical science, mainly focusing on GC-MS and LC-MS. We used information freely available in the scientific database PubMed (retrieved in August-November 2024). Specific search terms such as GC-MS (103,000 articles), LC-MS (113,000 articles), and ICP-MS (14,000 articles) were used in the Title/Abstract in the "PubMed Advanced Search Builder" including filters such as search period (1970-2024). In total, around 103,000 articles on GC-MS, 113,000 articles on LC-MS (113,000), and 14,000 articles on ICP-MS were found. In the period 1995-2023, the yearly publication rate accounted for 3042 for GC-MS articles and 3908 for LC-MS articles (LC-MS/GC-MS ratio, 1.3:1). Our study reveals that GC-MS/MS, LC-MS/MS, and their high-resolution variants are indispensable instrumentations in clinical science including clinical pharmacology, internal and forensic medicine, and doping control. Long-tradition manufacturers of analytical instruments continue to provide increasingly customer-friendly GC-MS and LC-MS apparatus, enabling fulfillment of current requirements and needs in the life sciences. Quantitative GC-MS and GC-MS/MS methods are expected to be used worldwide hand in hand with LC-MS/MS, with ICP-MS closing the gap left for metal ions. The significance of analytical chemistry in clinical science in academia and industry is essential.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
10
|
Ji X, Lakuleswaran M, Cowell W, Kahn LG, Sirota M, Abrahamsson D. Insights into the Chemical Exposome during Pregnancy: A Non-Targeted Analysis of Preterm and Term Births. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20883-20893. [PMID: 39526929 PMCID: PMC11603774 DOI: 10.1021/acs.est.4c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Human-made chemicals are ubiquitous, leading to chronic exposure to complex mixtures of potentially harmful substances. We investigated chemical exposures in pregnant women in New York City by applying a non-targeted analysis (NTA) workflow to 95 paired prenatal urine and serum samples (35 pairs of preterm birth) collected as part of the New York University Children's Health and Environment Study. We analyzed all samples using liquid chromatography coupled with Orbitrap high-resolution mass spectrometry in both positive and negative electrospray ionization modes, employing full scan and data-dependent MS/MS fragmentation scans. We detected a total of 1524 chemical features for annotation, with 12 chemicals confirmed by authentic standards. Two confirmed chemicals dodecyltrimethylammonium and N,N-dimethyldecylamine N-oxide appear to not have been previously reported in human blood samples. We observed a statistically significant differential enrichment between urine and serum samples, as well as between preterm and term birth (p < 0.0001) in serum samples. When comparing between preterm and term births, an exogenous contaminant, 1,4-cyclohexanedicarboxylic acid (tentative), showed a statistical significance difference (p = 0.003) with more abundance in preterm birth in serum. An example of chemical associations (12 associations in total) observed was between surfactants (tertiary amines) and endogenous metabolites (fatty acid amides).
Collapse
Affiliation(s)
- Xiaowen Ji
- Division
of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York 10016, United States
| | - Mathusa Lakuleswaran
- Division
of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York 10016, United States
| | - Whitney Cowell
- Division
of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York 10016, United States
| | - Linda G. Kahn
- Division
of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York 10016, United States
| | - Marina Sirota
- Bakar
Computational Health Sciences Institute, UCSF, San Francisco, California 94158, United States
- Department
of Pediatrics, University of California,
San Francisco, San Francisco, California 94158, United States
| | - Dimitri Abrahamsson
- Division
of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York 10016, United States
- Department
of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Renai L, Del Bubba M, Gargano AFG, Samanipour S. Consolidating two-dimensional liquid chromatography-high-resolution tandem mass spectrometry (LC×LC-HRMS/MS) technique for the non-targeted analysis of poly- and perfluorinated substances: A trial on aqueous film-forming foams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175908. [PMID: 39218084 DOI: 10.1016/j.scitotenv.2024.175908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
To date, poly- and perfluoroalkyl substances (PFAS) represent a real threat for their environmental persistence, wide physicochemical variability, and their potential toxicity. Thus far a large portion of these chemicals remain structurally unknown. These chemicals, therefore, require the implementation of complex non-targeted analysis workflows using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) for their comprehensive detection and monitoring. This approach, even though comprehensive, does not always provide the much-needed analytical resolution for the analysis of complex PFAS mixtures such as fire-fighting aqueous film-forming foams (AFFFs). This study consolidates the advantages of the LC×LC technique hyphenated with high-resolution tandem mass spectrometry (HRMS/MS) for the identification of PFAS in AFFF mixtures. A total of 57 PFAS homolog series (HS) were identified in 3M and Orchidee AFFF mixtures thanks to the (i) high chromatographic peak capacity (n'2D,c ~ 300) and the (i) increased mass domain resolution provided by the "remainder of Kendrick Mass" (RKM) analysis on the HRMS data. Then, we attempted to annotate the PFAS of each HS by exploiting the available reference standards and the FluoroMatch workflow in combination with the RKM defect by different fluorine repeating units, such as CF2, CF2O, and C2F4O. This approach resulted in 12 identified PFAS HS, including compounds belonging to the HS of perfluoroalkyl carboxylic acids (PFACAs), perfluoroalkyl sulfonic acids (PFASAs), (N-pentafluoro(5)sulfide)-perfluoroalkane sulfonates (SF5-PFASAs), N-sulfopropyldimethylammoniopropyl perfluoroalkane sulfonamides (N-SPAmP-FASA), and N-carboxymethyldimethylammoniopropyl perfluoroalkane sulfonamide (N-CMAmP-FASA). The annotated categories of perfluoroalkyl aldehydes and chlorinated PFASAs represent the first record of PFAS HS in the investigated AFFF samples.
Collapse
Affiliation(s)
- Lapo Renai
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Department of Chemistry, University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Massimo Del Bubba
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea F G Gargano
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Saer Samanipour
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Amsterdam, the Netherlands; UvA Data Science Centre, University of Amsterdam, Amsterdam, the Netherlands; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia.
| |
Collapse
|
12
|
Pilz F, Burkhardt T, Scherer G, Scherer M, Pluym N. Identification of Specific Hemoglobin Adduct Patterns in Users of Different Tobacco/nicotine Products by Nontargeted GC-MS/MS Analysis. Chem Res Toxicol 2024; 37:1884-1902. [PMID: 39405427 DOI: 10.1021/acs.chemrestox.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Tobacco smoke contains several electrophilic constituents which are capable of forming adducts with nucleophilic sites in DNA and proteins like hemoglobin (Hb) and albumin. New nicotine and tobacco products are discussed as less harmful forms of tobacco use compared to smoking combustible cigarettes (CC) due to reduced exposure to harmful constituents. Hence, the adduct profile in users of various tobacco/nicotine products is expected to differ characteristically. In this article, we present a novel nontargeted screening strategy using GC-MS/MS for Hb adducts based on the analysis of the respective derivatized N-terminal valine adducts after modified Edman degradation. We analyzed blood samples from a clinical study with habitual users of CCs, electronic cigarettes, heated tobacco products (HTPs), oral tobacco, nicotine replacement therapy products and nonusers of any tobacco/nicotine products. Our nontargeted approach revealed significant differences in the Hb adduct profiles of the investigated tobacco/nicotine product user groups. Adduct identification was performed by means of an internal database, retention time estimations based on the theoretical boiling points, as well as in-house synthesized reference compounds. Several chemicals that form adducts with Hb could be identified: methylating and ethylating agents, ethylene oxide, acrylonitrile, acrylamide, glycidamide and 4-hydroxybenzaldehyde. Levels were elevated in smokers compared to all other groups for Hb adducts from methylating agents, ethylene oxide, acrylonitrile, acrylamide and glycidamide. Our approach revealed higher concentrations of Hb adducts formed by ethylation, acrylamide and glycidamide in users of HTPs compared to nonusers. However, concentrations for the latter two were still lower than in smokers. Due to their long half-lives, Hb adducts related to acrylonitrile, acrylamide (glycidamide), and ethylene oxide exposure may be useful for the biochemical verification of subjects̀ compliance in longitudinal and cross-sectional studies with respect to smoking and HTP use/abstinence.
Collapse
Affiliation(s)
- Fabian Pilz
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg 82152, Germany
| | - Therese Burkhardt
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg 82152, Germany
| | - Gerhard Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg 82152, Germany
| | - Max Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg 82152, Germany
| | - Nikola Pluym
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg 82152, Germany
| |
Collapse
|
13
|
Liu SH, Weber ES, Manz KE, McCarthy KJ, Chen Y, Schüffler PJ, Zhu CW, Tracy M. Assessing the Impact and Cost-Effectiveness of Exposome Interventions on Alzheimer's Disease: A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference. Genes (Basel) 2024; 15:1457. [PMID: 39596657 PMCID: PMC11593565 DOI: 10.3390/genes15111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. Methods: We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. Results: We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. Conclusions: This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.
Collapse
Affiliation(s)
- Shelley H. Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ellerie S. Weber
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine E. Manz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Katharine J. McCarthy
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yitong Chen
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J. Schüffler
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
- Munich Data Science Institute, 85748 Garching, Germany
| | - Carolyn W. Zhu
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa Tracy
- Department of Epidemiology and Biostatistics, State University of New York at Albany, Albany, NY 12222, USA;
| |
Collapse
|
14
|
Wiesinger H, Shalin A, Huang X, Siegrist A, Plinke N, Hellweg S, Wang Z. LitChemPlast: An Open Database of Chemicals Measured in Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1147-1160. [PMID: 39554603 PMCID: PMC11562724 DOI: 10.1021/acs.estlett.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 11/19/2024]
Abstract
Plastics contain various chemical substances, which can impact human and ecosystem health and the transition to a circular economy. Meanwhile, information on the presence of individual substances in plastics is generally not made publicly available, but relies on extensive analytical efforts. Here, we review measurement studies of chemicals in plastics and compile them into a new LitChemPlast database. Over 3500 substances, stemming from all plastic life-cycle stages, have been detected in different plastics in 372 studies. Approximately 75% of them have only been detected in nontargeted workflows, while targeted analyses have focused on limited well-known substances, particularly metal(loid)s, brominated flame retardants, and ortho-phthalates. Some product categories have rarely been studied despite economic importance, e.g., consumer and industrial packaging (other than food packaging), building and construction, and automotive plastics. Likewise, limited studies have investigated recycled plastics, while existing measurements of recycled plastics show higher detection frequencies and median concentrations of regulated brominated flame retardants across many product categories. The LitChemPlast database may be further developed or utilized, e.g., for exposure assessment or substance flow analysis. Nonetheless, the plethora of relevant substances and products underscores the necessity for additional measures to enable the transition to a safe circular plastics economy.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna Shalin
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Xinmei Huang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Armin Siegrist
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
of Sustainable Food Processing, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Nils Plinke
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa
- Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
15
|
Le DD, Jang YS, Truong V, Dinh T, Dang T, Yu S, Lee M. Anti-Inflammatory Effects and Metabolomic Analysis of Ilex Rotunda Extracted by Supercritical Fluid Extraction. Int J Mol Sci 2024; 25:11965. [PMID: 39596036 PMCID: PMC11593382 DOI: 10.3390/ijms252211965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and their fractions were evaluated for their anti-inflammatory potential. In cytokine assays, the extract, n-hexane (H), methylene chloride (MC), and EtOAc (E) fractions of the twigs of I. rotunda significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α production in RAW264.7 macrophages. Furthermore, the extract, H, and MC fractions of the leaves of I. rotunda modulated cytokine expression by downregulating LPS-induced NO, IL-6, and TNF-α production in RAW264.7 macrophages. Western blotting analysis revealed that the extracts and fractions of the leaves and twigs of I. rotunda inhibited inflammatory cytokines by inactivating nuclear factor kappa B (NFκB) action by reducing the phosphorylation of transcript factor (p65) and nuclear factor-kappa B inhibitor alpha (IκBα) degradation, or by inactivating mitogen-activated protein kinase (MAPK) through the p38 or ERK signaling pathways via the active ingredients of the leaves and twigs of I. rotunda. Ultra-high-resolution liquid chromatography-Orbitrap mass analysis (UHPLC-ESI-Orbitrap-MS/MS)-based molecular networking, in cooperation with social open platform-guided isolation and dereplication, led to the identification of metabolites in this plant. Our findings indicate that the leaves and twigs of I. rotunda could be promising candidates for developing therapeutic strategies to treat anti-inflammatory diseases.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Young Su Jang
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Vinhquang Truong
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thientam Dinh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
16
|
Kang D, Jang H, Mok S, Kim JY, Choi Y, Lee SH, Han S, Park TJ, Moon HB, Jeon J. Nationwide profiling and source identification of organophosphate esters in Korean surface waters using target, suspect, and non-target HRMS analysis. CHEMOSPHERE 2024; 367:143579. [PMID: 39428021 DOI: 10.1016/j.chemosphere.2024.143579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Organophosphate esters (OPEs) are emerging contaminants that serve as alternatives to regulated substances in aquatic environments. A nationwide large-scale assessment for OPEs, including point sources, remains insufficient. To address this issue, we aimed to investigate OPEs occurrence and novel OPEs via comprehensive target, suspect and non-target analysis. Among the 11 target OPEs, 10 were detected at sampling sites distributed evenly nationwide. The highest mean concentrations were measured for tris-(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP). The multivariate statistical analysis revealed that TBOEP and TCIPP are essential components for assessing total OPEs pollution. The systematic risk assessment results evaluated the overall risk contribution of TBOEP and the significant risk impact of 2-ethylhexyl diphenyl phosphate. Promising suspect and non-target analysis enabled frequent detection and identification of 6 antioxidant transformation products (TPs), as well as the tentative identification of 14 OPEs and TPs, including 3 di-OPEs. Based on sampling site classification, we confirmed that major OPEs are significantly discharged near point sources. We believe that this is the first attempt to assess the nationwide risk and potential sources of OPEs in Korean surface waters, providing insights that could support further prioritization and regulation efforts.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Heewon Jang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jun Yub Kim
- Graduate School of AI Policy and Strategy, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju, 61005, Republic of Korea
| | - Younghun Choi
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sun-Hong Lee
- Water Environmental Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Sojeong Han
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Tae Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea.
| |
Collapse
|
17
|
Megson D, Niepsch D, Spencer J, Santos CD, Florance H, MacLeod CL, Ross I. Non-targeted analysis reveals hundreds of per- and polyfluoroalkyl substances (PFAS) in UK freshwater in the vicinity of a fluorochemical plant. CHEMOSPHERE 2024; 367:143645. [PMID: 39476983 DOI: 10.1016/j.chemosphere.2024.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
There are now over 7 million recognised per- and polyfluoroalkyl substances (PFAS), however the majority of routine monitoring programmes and policy decisions are based on just a handful of these. There is need for a shift towards gaining a better understanding of the total PFAS present in a sample rather than relying on targeted analysis alone. Total PFAS methods help us to understand if targeted methods are missing a mass of PFAS, but they do not identify which PFAS are missing. Non-targeted methods fill this knowledge gap by using high resolution mass spectrometry to identify the PFAS present in a sample. In this manuscript we use complimentary targeted and non-targeted analysis (NTA) to detect hundreds of PFAS in five freshwater samples obtained from the Northwest of the UK. Targeted analysis revealed PFOA at a maximum concentration of 12,100 ng L-1, over three orders of magnitude greater than the proposed environmental quality standard (EQS) of 100 ng L-1. A conservative assessment calculated an average total PFAS concentration of approximately 40 μg L-1 across all samples. A suspect screening approach identified between 1175 (least conservative) to 89 (most conservative) PFAS at confidence level 4. Exploratory data analysis was used to identify 33 PFAS at confidence level 3 and 10 PFAS at a confidence level of 2. Only 8 of these 43 PFAS (representing 17% of the total PFAS peak area) are regularly monitored in the UK as part of the UK DWI 47 PFAS. Our results suggested the presence of a novel group of unsaturated perfluoroalkyl ether carboxylic acids (U-PFECAs) related to EEA-NH4, a perfluoroalkyl ether carboxylic acid (PFECA), providing an example of the benefits of non-targeted screening. This study highlights the merits of non-targeted methods and demonstrates that future monitoring programmes and regulations would benefit from incorporating a non-targeted element.
Collapse
Affiliation(s)
- David Megson
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; Chemistry Matters, Alberta, Canada.
| | - Daniel Niepsch
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan Spencer
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Claudio Dos Santos
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Hannah Florance
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Cecilia L MacLeod
- School of Engineering, University of Greenwich, Chatham, Maritime, Kent, UK; Microbio Ltd, Morecambe, Lancashire, UK
| | - Ian Ross
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; CDM Smith Monterey, CA, USA
| |
Collapse
|
18
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Chappel JR, Kirkwood-Donelson KI, Dodds JN, Fleming J, Reif DM, Baker ES. Streamlining Phenotype Classification and Highlighting Feature Candidates: A Screening Method for Non-Targeted Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Data. Anal Chem 2024; 96:15970-15979. [PMID: 39292613 PMCID: PMC11480931 DOI: 10.1021/acs.analchem.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Nontargeted analysis (NTA) is increasingly utilized for its ability to identify key molecular features beyond known targets in complex samples. NTA is particularly advantageous in exploratory studies aimed at identifying phenotype-associated features or molecules able to classify various sample types. However, implementing NTA involves extensive data analyses and labor-intensive annotations. To address these limitations, we developed a rapid data screening capability compatible with NTA data collected on a liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) platform that allows for sample classification while highlighting potential features of interest. Specifically, this method aggregates the thousands of IMS-MS spectra collected across the LC space for each sample and collapses the LC dimension, resulting in a single summed IMS-MS spectrum for screening. The summed IMS-MS spectra are then analyzed with a bootstrapped Lasso technique to identify key regions or coordinates for phenotype classification via support vector machines. Molecular annotations are then performed by examining the features present in the selected coordinates, highlighting potential molecular candidates. To demonstrate this summed IMS-MS screening approach, we applied it to clinical plasma lipidomic NTA data and exposomic NTA data from water sites with varying contaminant levels. Distinguishing coordinates were observed in both studies, enabling the evaluation of phenotypic molecular annotations and resulting in screening models capable of classifying samples with up to a 25% increase in accuracy compared to models using annotated data.
Collapse
Affiliation(s)
- Jessie R Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jonathon Fleming
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
20
|
Xie H, Sdougkou K, Bonnefille B, Papazian S, Bergdahl IA, Rantakokko P, Martin JW. Chemical Exposomics in Human Plasma by Lipid Removal and Large-Volume Injection Gas Chromatography-High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17592-17605. [PMID: 39376097 PMCID: PMC11465644 DOI: 10.1021/acs.est.4c05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
For comprehensive chemical exposomics in blood, analytical workflows are evolving through advances in sample preparation and instrumental methods. We hypothesized that gas chromatography-high-resolution mass spectrometry (GC-HRMS) workflows could be enhanced by minimizing lipid coextractives, thereby enabling larger injection volumes and lower matrix interference for improved target sensitivity and nontarget molecular discovery. A simple protocol was developed for small plasma volumes (100-200 μL) by using isohexane (H) to extract supernatants of acetonitrile-plasma (A-P). The HA-P method was quantitative for a wide range of hydrophobic multiclass target analytes (i.e., log Kow > 3.0), and the extracts were free of major lipids, thereby enabling robust large-volume injections (LVIs; 25 μL) in long sequences (60-70 h, 70-80 injections) to a GC-Orbitrap HRMS. Without lipid removal, LVI was counterproductive because method sensitivity suffered from the abundant matrix signal, resulting in low ion injection times to the Orbitrap. The median method quantification limit was 0.09 ng/mL (range 0.005-4.83 ng/mL), and good accuracy was shown for a certified reference serum. Applying the method to plasma from a Swedish cohort (n = 32; 100 μL), 51 of 103 target analytes were detected. Simultaneous nontarget analysis resulted in 112 structural annotations (12.8% annotation rate), and Level 1 identification was achieved for 7 of 8 substances in follow-up confirmations. The HA-P method is potentially scalable for application in cohort studies and is also compatible with many liquid-chromatography-based exposomics workflows.
Collapse
Affiliation(s)
- Hongyu Xie
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Kalliroi Sdougkou
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Bénilde Bonnefille
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Stefano Papazian
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Ingvar A. Bergdahl
- Department
of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, 901 87 Umeå, Sweden
| | - Panu Rantakokko
- Department
of Public Health, Lifestyles and Living Environments Unit, National Institute for Health and Welfare, Neulaniementie 4, 702 10 Kuopio, Finland
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
21
|
Niu S, Dong Z, Li L, Ng C. Identifying long-term health risks associated with environmental chemical incidents. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135432. [PMID: 39116740 DOI: 10.1016/j.jhazmat.2024.135432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
In recent years, there has been a notable surge in environmental incidents, including wildfires and chemical releases. Responses to such events have primarily focused on addressing acute and immediate impacts. However, potential long-term health risks have been overlooked. Our proposed framework first advocates for the holistic identification of contaminants, prioritizing persistent organic contaminants determined through both knowledge-based and non-targeted and targeted analysis. We suggest integrating environmental monitoring and modeling approaches to assess the extent and composition of contamination caused by these chemicals. To facilitate swift assessments, we advocate the development of streamlined chemical analysis techniques and dedicated technologies for in situ monitoring of persistent organic chemicals. In addition, we provide an overview of both traditional and state-of-the-art approaches to risk assessment and introduce a three-tier risk assessment framework for evaluating the long-term health risks associated with environmental incidents. We emphasize the importance of in situ soil remediation and coordinated recovery efforts, including effective communication, evacuation, and cleaning plans for affected spaces, which are pivotal for facilitating recovery from environmental incidents. This comprehensive approach fortifies preparedness and recovery strategies, providing a robust framework for managing future environmental crises.
Collapse
Affiliation(s)
- Shan Niu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China.
| | - Zhaomin Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV, 89557, USA
| | - Carla Ng
- Departments of Civil & Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
23
|
Li M, Hu J, Cao X, Chen H, Lyu Y, Sun W. Nontarget Analysis Combined with TOP Assay Reveals a Significant Portion of Unknown PFAS Precursors in Firefighting Foams Currently Used in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250774 DOI: 10.1021/acs.est.4c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Firefighting foam is a significant source of per- and polyfluoroalkyl substances (PFAS) pollution, yet the PFAS profiles in foam formulations, particularly in China, remain unclear. Here, using target and nontarget analyses, we investigated 50 target PFAS in firefighting foams currently utilized in China, identified novel PFAS, and discovered new end products through a total oxidizable precursor (TOP) assay. We identified a total of 54 PFAS compounds (spanning 34 classes and containing seven novel PFAS) with total PFAS concentrations of 0.03-21.21 mM. Among seven novel PFAS, four PFAS met persistence, bioaccumulation, and toxicity criteria, and another PFAS had the highest ToxPi score among the identified 54 PFAS. Moreover, the predominant PFAS varied significantly in the studied foams and differed markedly from those used in other countries. After the TOP assay, nontarget analysis uncovered 1.1-55.5% more PFAS precursors and 8.25-55.5% more fluorine equivalents compared to traditional target analysis combined with TOP assay. Specifically, three double-bond perfluorinated alcohols were identified for the first time as end products of the TOP assay. This study provides crucial information for pollution control and risk assessment associated with PFAS in firefighting foam applications and emphasizes the importance of combining nontarget analysis with TOP assay in uncovering unknown PFAS precursors.
Collapse
Affiliation(s)
- Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
24
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Gordon J Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jessica L Levasseur
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
25
|
Bhattacharjee S, Chacon-Teran MA, Findlater M, Louie SM, Bailoo JD, Deonarine A. Suspect screening-data independent analysis workflow for the identification of arsenolipids in marine standard reference materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610588. [PMID: 39282420 PMCID: PMC11398336 DOI: 10.1101/2024.08.31.610588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
There has been limited research into arsenolipid toxicological risks and health-related outcomes due to challenges with their separation, identification, and quantification within complex biological matrices (e.g., fish, seaweed). Analytical approaches for arsenolipid identification such as suspect screening have not been well documented and there are no certified standard reference materials, leading to issues with reproducibility and uncertainty regarding the accuracy of results. In this study, a detailed workflow for the identification of arsenolipids utilizing suspect screening coupled with data independent analysis is presented and applied to three commercially available standard reference materials (Hijiki seaweed, dogfish liver, and tuna). Hexane and dichloromethane/methanol extraction, followed by reversed-phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Using the workflow developed, mass fragmentation matching, mass error calculations, and retention time matching were performed to identify suspect arsenolipids. Arseno-fatty acids (AsFAs), arsenohydrocarbons (AsHCs), and arsenosugar phospholipids (AsSugPLs) were identified with high confidence; AsHC332, AsHC360, and AsSugPL720 in seaweed, AsHC332 in tuna, and AsFA474 and AsFA502 in the dogfish liver. AsHC332, AsHC360, and AsFA502 were identified as promising candidates for further work on synthesis, quantification using MS/MS, and toxicity testing.
Collapse
|
26
|
Gruson D, Fux E, Kemaloğlu Öz T, Gouget B, Lee W, Shah S, Liu Y, Ebert S, Greaves R, Bernardini S, Yang HS, Figueroa Montes L. Contribution of laboratory medicine and emerging technologies to cardiovascular risk reduction via exposome analysis: an opinion of the IFCC Division on Emerging Technologies. Clin Chem Lab Med 2024:cclm-2024-0788. [PMID: 39238286 DOI: 10.1515/cclm-2024-0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
This opinion article highlights the critical role of laboratory medicine and emerging technologies in cardiovascular risk reduction through exposome analysis. The exposome encompasses all external and internal exposures an individual faces throughout their life, influencing the onset and progression of cardiovascular diseases (CVD). Integrating exposome data with genetic information allows for a comprehensive understanding of the multifactorial causes of CVD, facilitating targeted preventive interventions. Laboratory medicine, enhanced by advanced technologies such as metabolomics and artificial intelligence (AI), plays a pivotal role in identifying and mitigating these exposures. Metabolomics provides detailed insights into metabolic changes triggered by environmental factors, while AI efficiently processes complex datasets to uncover patterns and associations. This integration fosters a proactive approach in public health and personalized medicine, enabling earlier detection and intervention. The article calls for global implementation of exposome technologies to improve population health, emphasizing the need for robust technological platforms and policy-driven initiatives to seamlessly integrate environmental data with clinical diagnostics. By harnessing these innovative technologies, laboratory medicine can significantly contribute to reducing the global burden of cardiovascular diseases through precise and personalized risk mitigation strategies.
Collapse
Affiliation(s)
- Damien Gruson
- Department of Laboratory Medicine, Cliniques Universitaires St-Lux, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
- 70492 Pôle de recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc and Université Catholique de Louvain , Brussels, Belgium
- IFCC Division on Emerging Technologies, Milan, Italy
| | - Elie Fux
- IFCC Division on Emerging Technologies, Milan, Italy
- R&D Instrumental Analytics Roche Diagnostics GmbH Penzberg, Penzberg, Germany
| | - Tuğba Kemaloğlu Öz
- Alice Springs Hospital, Alice Springs, Australia
- School of Medicine, Flinder University, Adelaide, SA, Australia
| | - Bernard Gouget
- IFCC Division on Emerging Technologies, Milan, Italy
- National Committee for the Selection of Reference Laboratories, Ministry of Health, Paris, France
| | - Woochang Lee
- IFCC Division on Emerging Technologies, Milan, Italy
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Swarup Shah
- IFCC Division on Emerging Technologies, Milan, Italy
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Yan Liu
- IFCC Division on Emerging Technologies, Milan, Italy
- Medical and Scientific Affairs Mindray Bio-Medical Electronics, Shenzhen, China
| | - Sven Ebert
- IFCC Division on Emerging Technologies, Milan, Italy
- Core Workflow Research and Early Development, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Ronda Greaves
- IFCC Division on Emerging Technologies, Milan, Italy
- Victorian Clinical Genetics Services Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Sergio Bernardini
- IFCC Division on Emerging Technologies, Milan, Italy
- Department of Experimental Medicine, University Tor Vergata, Rome, Italy
| | - He Sarina Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luis Figueroa Montes
- Suarez Angamos Hospital III, EsSalud, Peruvian Medical Association of Clinical Pathology, Peruvian Medical College, Lima, Peru
| |
Collapse
|
27
|
Meneghetti P, Gonçalves MO, Marin GV, Di Iorio JF, Negreiros NGS, Torrecilhas AC. Extracellular vesicles: Methods for purification and characterization. CURRENT TOPICS IN MEMBRANES 2024; 94:33-48. [PMID: 39370212 DOI: 10.1016/bs.ctm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play a significant role in intercellular communication. They can be obtained from a variety of sources, including conditioned culture medium, blood and urine. In this chapter we detail the methods for EV isolation and characterization. Isolating and characterizing EVs is essential for understanding their functions in physiological and pathological processes. Advances in isolation and characterization techniques provide opportunities for deeper research into EV biology and its potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariana Ottaiano Gonçalves
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gabriela Villa Marin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Fortes Di Iorio
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Náthani Gabrielly Silva Negreiros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
28
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Hutchins PD, Saez Cabezas CA, Enokida JS, Hu Y, Lai Y, Mazure V, Martin M, Setula K, Stutzman JR, Wade JH. Monitoring Epoxidized Soybean Oil Degradation Using Liquid Chromatography-Mass Spectrometry and In Silico Spectral Libraries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1940-1949. [PMID: 39043119 DOI: 10.1021/jasms.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Epoxidized soybean oil (ESO) is routinely used as a bioderived plasticizer and stabilizer in polyvinyl chloride (PVC), as it prolongs material integrity during dehydrochlorination. During this process, the epoxide moieties of ESO are progressively converted to chlorohydrins, which amplify ESO's inherent structural complexity. Past characterization efforts utilized separation-mass spectrometry (MS) analysis of the hydrolyzed acyl chains to simplify the complexity. However, this approach significantly increases the complexity of sample preparation and cannot directly monitor the chlorination of individual ESO species during aging. Here, we present a comprehensive LC-MS/MS data acquisition and in silico spectral library identification workflow optimized for intact ESO byproduct analysis. Detailed MS/MS fragmentation rules derived from synthesized standards were coupled with improved fragment ion intensity modeling capabilities to generate a high-fidelity spectral library for rapid ESO byproduct identification. Identification confidence was further bolstered by using retention time modeling to filter spurious MS/MS matches. Finally, we paired this informatic approach with an optimized extraction procedure and reversed-phase separation to generate a detailed timeline of more than 400 ESO species and byproducts during PVC thermal aging. These developments significantly improve our ability to detect, characterize, and understand ESO degradation in complex PVC formulations with new levels of molecular resolution.
Collapse
Affiliation(s)
- Paul D Hutchins
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Camila A Saez Cabezas
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Joshua S Enokida
- Packaging & Specialty Plastics, The Dow Chemical Company, 230 Abner Jackson Pkwy, Lake Jackson, Texas 77566, United States
| | - Yushan Hu
- Packaging & Specialty Plastics, The Dow Chemical Company, 230 Abner Jackson Pkwy, Lake Jackson, Texas 77566, United States
| | - Yuming Lai
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Victoria Mazure
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Marie Martin
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Kelly Setula
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - John R Stutzman
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - James H Wade
- Analytical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| |
Collapse
|
30
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
31
|
Samanipour S, Barron LP, van Herwerden D, Praetorius A, Thomas KV, O’Brien JW. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS AU 2024; 4:2412-2425. [PMID: 39055136 PMCID: PMC11267556 DOI: 10.1021/jacsau.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Around two-thirds of chronic human disease can not be explained by genetics alone. The Lancet Commission on Pollution and Health estimates that 16% of global premature deaths are linked to pollution. Additionally, it is now thought that humankind has surpassed the safe planetary operating space for introducing human-made chemicals into the Earth System. Direct and indirect exposure to a myriad of chemicals, known and unknown, poses a significant threat to biodiversity and human health, from vaccine efficacy to the rise of antimicrobial resistance as well as autoimmune diseases and mental health disorders. The exposome chemical space remains largely uncharted due to the sheer number of possible chemical structures, estimated at over 1060 unique forms. Conventional methods have cataloged only a fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the integration of data-driven approaches might be able to bridge the identified gaps.
Collapse
Affiliation(s)
- Saer Samanipour
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- UvA
Data Science Center, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Leon Patrick Barron
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- MRC
Centre for Environment and Health, Environmental Research Group, School
of Public Health, Faculty of Medicine, Imperial
College London, London W12 0BZ, United Kingdom
| | - Denice van Herwerden
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O’Brien
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
32
|
Stroski KM, Sapozhnikova Y, Taylor RB, Harron A. Non-targeted analysis of per- and polyfluorinated substances in consumer food packaging. CHEMOSPHERE 2024; 360:142436. [PMID: 38797214 DOI: 10.1016/j.chemosphere.2024.142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study sought to develop a non-targeted workflow using high-resolution mass spectrometry (HRMS) to investigate previously unknown PFAS in consumer food packaging samples. Samples composed of various materials for different food types were subjected to methanolic extraction, controlled migration with food simulants and total oxidizable precursor (TOP) assay. The developed HRMS workflow utilized many signatures unique to PFAS compounds: negative mass defect, diagnostic breakdown structures, as well as retention time prediction. Potential PFAS features were identified in all packaging studied, regardless of food and material types. Five tentatively identified compounds were confirmed with analytical standards: 6:2 fluorotelomer phosphate diester (6:2 diPAP) and one of its intermediate breakdown products 2H-perfluoro-2-octenoic acid (6:2 FTUCA), perfluoropentadecanoic acid (PFPeDA), perfluorohexadecanoic acid (PFHxDA) and perfluorooctadecanoic acid (PFOcDA). Longer perfluorocarboxylic acids including C17 and C19 to C24 were also found present within a foil sample. Concentrations of 6:2 FTUCA ranged from 0.78 to 127 ng g-1 in methanolic extracts and up to 6 ng g-1 in food simulant after 240 h migration test. These results demonstrate the prevalence of both emerging and legacy PFAS in food packaging samples and highlight the usefulness of non-targeted tools to identify PFAS not included in targeted methods.
Collapse
Affiliation(s)
- Kevin M Stroski
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA; Baylor University, Waco, TX, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Andrew Harron
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
33
|
Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75001. [PMID: 38968090 PMCID: PMC11225971 DOI: 10.1289/ehp14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The National Institute of Environmental Health Sciences (NIEHS) continues to prioritize research to better understand the health effects resulting from exposure to mixtures of chemical and nonchemical stressors. Mixtures research activities over the last decade were informed by expert input during the development and deliberations of the 2011 NIEHS Workshop "Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects." NIEHS mixtures research efforts since then have focused on key themes including a) prioritizing mixtures for study, b) translating mixtures data from in vitro and in vivo studies, c) developing cross-disciplinary collaborations, d) informing component-based and whole-mixture assessment approaches, e) developing sufficient similarity methods to compare across complex mixtures, f) using systems-based approaches to evaluate mixtures, and g) focusing on management and integration of mixtures-related data. OBJECTIVES We aimed to describe NIEHS driven research on mixtures and combined exposures over the last decade and present areas for future attention. RESULTS Intramural and extramural mixtures research projects have incorporated a diverse array of chemicals (e.g., polycyclic aromatic hydrocarbons, botanicals, personal care products, wildfire emissions) and nonchemical stressors (e.g., socioeconomic factors, social adversity) and have focused on many diseases (e.g., breast cancer, atherosclerosis, immune disruption). We have made significant progress in certain areas, such as developing statistical methods for evaluating multiple chemical associations in epidemiology and building translational mixtures projects that include both in vitro and in vivo models. DISCUSSION Moving forward, additional work is needed to improve mixtures data integration, elucidate interactions between chemical and nonchemical stressors, and resolve the geospatial and temporal nature of mixture exposures. Continued mixtures research will be critical to informing cumulative impact assessments and addressing complex challenges, such as environmental justice and climate change. https://doi.org/10.1289/EHP14340.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
34
|
Wu C, Goodrow S, Chen H, Li M. Distinctive biotransformation and biodefluorination of 6:2 versus 5:3 fluorotelomer carboxylic acids by municipal activated sludge. WATER RESEARCH 2024; 254:121431. [PMID: 38471201 DOI: 10.1016/j.watres.2024.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Fluorotelomer carboxylic acids (FTCAs) represent an important group of per- and polyfluoroalkyl substances (PFAS) given their high toxicity, bioaccumulation potential, and frequent detection in landfill leachates and PFAS-impacted sites. In this study, we assessed the biodegradability of 6:2 FTCA and 5:3 FTCA by activated sludges from four municipal wastewater treatment plants (WWTPs) in the New York Metropolitan area. Coupling with 6:2 FTCA removal, significant fluoride release (0.56∼1.83 F-/molecule) was evident in sludge treatments during 7 days of incubation. Less-fluorinated transformation products (TPs) were formed, including 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorobutanoic acid (PFBA). In contrast, little fluoride (0.01∼0.09 F-/molecule) was detected in 5:3 FTCA-dosed microcosms, though 25∼68% of initially dosed 5:3 FTCA was biologically removed. This implies the dominance of "non-fluoride-releasing pathways" that may contribute to the formation of CoA adducts or other conjugates over 5:3 FTCA biotransformation. The discovery of defluorinated 5:3 FTUCA revealed the possibility of microbial attacks of the C-F bond at the γ carbon to initiate the transformation. Microbial community analysis revealed the possible involvement of 9 genera, such as Hyphomicrobium and Dechloromonas, in aerobic FTCA biotransformation. This study unraveled that biotransformation pathways of 6:2 and 5:3 FTCAs can be divergent, resulting in biodefluorination at distinctive degrees. Further research is underscored to uncover the nontarget TPs and investigate the involved biotransformation and biodefluorination mechanisms and molecular basis.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Sandra Goodrow
- Division of Science and Research, New Jersey Department of Environmental Protection, Trenton, NJ, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
35
|
Jenke D, Christiaens P, Heise T. Identification and quantification of medical device extractables and leachables via non-target analysis (NTA); Analytical uncertainty. J Pharm Biomed Anal 2024; 241:115985. [PMID: 38301578 DOI: 10.1016/j.jpba.2024.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Leachables are substances that are leached from a medical device during its clinical use and are important due to the patient health-related effects they may have. Thus, medical devices are profiled for leachables (and/or extractables as probable leachables) to assess their potential impact on patient health and safety. This profiling is accomplished by screening extracts or leachates of the medical device for released organic substances via non-targeted analysis (NTA) employing chromatographic methods coupled with mass spectrometric detection. Chromatographic mass spectral response factors (RFs) for extractables and leachables vary significantly from compound to compound, complicating the quantitation of these compounds and the application of assessment strategies such as the Analytical Evaluation Threshold (AET). The analytical uncertainty resulting from response factor variation can be expressed in terms of an uncertainty factor (UF), which estimates the magnitude of response factor variation. This manuscript discusses the concept and impact of analytical uncertainty and provides best practice recommendations for the calculation and use of the uncertainty factor, UF.
Collapse
Affiliation(s)
- Dennis Jenke
- Triad Scientific Solutions, LLC, 181 Peregrine Lane, Hawthorn Woods, IL 60047, USA.
| | | | - Ted Heise
- Medical Engineering & Development Institute Incorporated, USA
| |
Collapse
|
36
|
Sharin T, Leinen LJ, Schreiber D, Swenson VA, Emsley SA, Trammell EJ, Videau P, Crump D, Gaylor MO. Description of Solvent-Extractable Chemicals in Thermal Receipts and Toxicological Assessment of Bisphenol S and Diphenyl Sulfone. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:63. [PMID: 38615298 DOI: 10.1007/s00128-024-03871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.
Collapse
Affiliation(s)
- Tasnia Sharin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - David Schreiber
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - E Jamie Trammell
- Environmental Science and Policy Program, Southern Oregon University, Ashland, OR, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA.
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA.
- Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
37
|
Vosough M, Schmidt TC, Renner G. Non-target screening in water analysis: recent trends of data evaluation, quality assurance, and their future perspectives. Anal Bioanal Chem 2024; 416:2125-2136. [PMID: 38300263 PMCID: PMC10951028 DOI: 10.1007/s00216-024-05153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment, focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis, with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS's role in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS, including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine various data sources to understand ecosystem health and protection comprehensively.
Collapse
Affiliation(s)
- Maryam Vosough
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany
- IWW Water Centre, Moritzstr. 26, Mülheim an der Ruhr, 45476, North Rhine-Westphalia, Germany
| | - Gerrit Renner
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
| |
Collapse
|
38
|
Huang Z, Peng C, Rong Z, Jiang L, Li Y, Feng Y, Chen S, Xie C, Jiang C. Longitudinal Mapping of Personal Biotic and Abiotic Exposomes and Transcriptome in Underwater Confined Space Using Wearable Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5229-5243. [PMID: 38466915 DOI: 10.1021/acs.est.3c09379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.
Collapse
Affiliation(s)
- Zinuo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zixin Rong
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yueer Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yue Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | | | | | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
39
|
Unnikrishan A, Khalid NK, Rayaroth MP, Thomas S, Nazim A, Aravindakumar CT, Aravind UK. Occurrence and distribution of steroid hormones (estrogen) and other contaminants of emerging concern in a south indian water body. CHEMOSPHERE 2024; 351:141124. [PMID: 38211796 DOI: 10.1016/j.chemosphere.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Steroid hormones (SHs) are among the important classes of Contaminants of Emerging Concern (CECs) whose detection in aquatic environments is vital due to their potential adverse health impacts. Their detection is challenging because of their lower stability in natural conditions and low concentrations. This study reports the presence of steroid hormones in a major river system, the Periyar River, in Kerala (India). Water samples were collected from thirty different river locations in the case of SHs and five locations within these in the case of other CECs. These were subjected to LC-MS/MS and LC-Q-ToF/MS analyses. Five SHs, estriol, estrone, 17 β estradiol, progesterone, and hydroxy progesterone, were separated and targeted using MS techniques. The studies of the water samples confirmed the presence of the first three estrogens in different sampling sites, with estrone present in all the sampling sites. The concentration of estrone was detected in the range from 2 to 15 ng/L. Estriol and estradiol concentrations ranged from 1.0 to 5 ng/L and 1-6 ng/L, respectively. The hormones at some selected sites were continuously monitored for seven months. The chosen areas include the feed water sites for the drinking water treatment plants across the river. The monthly data revealed that estrone is the only SHs detected in all the samples in the selected months. The highest concentration of SH was found in August. Twelve CECs belonging to pharmaceuticals and personal care products were identified and quantified. In addition, 31 other CECs were also identified using non-target analysis. A detailed study of the hormone mapping reported here is the first from any South Indian River.
Collapse
Affiliation(s)
- Amitha Unnikrishan
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - Nejumal K Khalid
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Shiny Thomas
- Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Akhil Nazim
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India.
| |
Collapse
|
40
|
Brunelle LD, Batt AL, Chao A, Glassmeyer ST, Quinete N, Alvarez DA, Kolpin DW, Furlong ET, Mills MA, Aga DS. De facto Water Reuse: Investigating the Fate and Transport of Chemicals of Emerging Concern from Wastewater Discharge through Drinking Water Treatment Using Non-targeted Analysis and Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2468-2478. [PMID: 38252456 DOI: 10.1021/acs.est.3c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.
Collapse
Affiliation(s)
- Laura D Brunelle
- Oak Ridge Institute for Science and Education (ORISE) Participant at the U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, Ohio 45268, United States
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Angela L Batt
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina 27709, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Natalia Quinete
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, North Miami, Florida 33181, United States
| | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, United States
| | - Edward T Furlong
- U.S. Geological Survey, Strategic Laboratory Services Branch, Laboratory Analytical Services Division, Denver, Colorado 80225, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio 45268, United States
| | - Diana S Aga
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- University at Buffalo Research and Education in Energy, Environment and Water (RENEW) Institute, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
41
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
42
|
Troxell K, Ceccopieri M, Gardinali P. Unraveling the chemical fingerprint of the Miami River sources: Insights from high-resolution mass spectrometry and nontarget analysis. CHEMOSPHERE 2024; 349:140863. [PMID: 38052314 DOI: 10.1016/j.chemosphere.2023.140863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the chemical composition of waters in the heavily urbanized and historically polluted Miami River, Florida. The goal was to assess the different water sources and anthropogenic influence in this managed area using nontarget analysis (NTA) combined with high-resolution mass spectrometry (HRMS). Surface water samples were collected from 10 sites during five sampling events in the wet season of 2021 and 2022. The HRMS data was processed using Compound Discoverer™ version 3.3, and the results were analyzed using techniques including Principal Component Analysis and Kendrick Mass Defect plots. Results showed a gradient change in the chemical composition from the Everglades to Biscayne Bay endmembers. The Seybold Canal, an adjacent canal, was consistently identified as a unique source of contaminants, contributing its own specific set of tracers. Increased presence and intensity of organic contaminants along the waterway was observed, indicating significant anthropogenic influence in the area. The NTA and post-processing were evaluated for reproducibility, demonstrating robustness with a 71.2% average reproducibility for compounds detected in 3 out of 5 sampling trips. A detection frequency of 80% (4 out of 5) was the set criterion for detected compounds suggested as tracers. To prioritize samples, hierarchical cluster analysis was employed, and potential tracers for each water source were determined. Tracers included natural products and agricultural herbicides and insecticides for the Everglades, anthropogenic contaminants for the Seybold Canal, and a lack of unique tracers for Biscayne Bay. Additionally, urban-influenced contaminants such as flame retardants, insect repellents, pharmaceuticals, and non-agricultural herbicides were identified along the river. This study highlights the impact of human activities on the Miami River and demonstrates the effectiveness of NTA in differentiating and tracking water sources. The results emphasize the importance of reproducibility in NTA and provide guidance on implementing monitoring strategies by prioritizing samples based on chemical compositions.
Collapse
Affiliation(s)
- Kassidy Troxell
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 300 NE 151th Street, Marine Science Building 230/232, Biscayne Bay Campus, North Miami, FL 33181, USA; Environmental Analysis Research Laboratory, Florida International University, 300 NE 151th Street, Marine Science Building 232, Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Milena Ceccopieri
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 300 NE 151th Street, Marine Science Building 230/232, Biscayne Bay Campus, North Miami, FL 33181, USA; Environmental Analysis Research Laboratory, Florida International University, 300 NE 151th Street, Marine Science Building 232, Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Piero Gardinali
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 300 NE 151th Street, Marine Science Building 230/232, Biscayne Bay Campus, North Miami, FL 33181, USA; Environmental Analysis Research Laboratory, Florida International University, 300 NE 151th Street, Marine Science Building 232, Biscayne Bay Campus, North Miami, FL 33181, USA.
| |
Collapse
|
43
|
Hall AM, Fleury E, Papandonatos GD, Buckley JP, Cecil KM, Chen A, Lanphear BP, Yolton K, Walker DI, Pennell KD, Braun JM, Manz KE. Associations of a Prenatal Serum Per- and Polyfluoroalkyl Substance Mixture with the Cord Serum Metabolome in the HOME Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21627-21636. [PMID: 38091497 PMCID: PMC11185318 DOI: 10.1021/acs.est.3c07515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent chemicals associated with multiple adverse health outcomes; however, the biological pathways affected by these chemicals are unknown. To address this knowledge gap, we used data from 264 mother-infant dyads in the Health Outcomes and Measures of the Environment (HOME) Study and employed quantile-based g-computation to estimate covariate-adjusted associations between a prenatal (∼16 weeks' gestation) serum PFAS mixture [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] and 14,402 features measured in cord serum. The PFAS mixture was associated with four features: PFOS, PFHxS, a putatively identified metabolite (3-monoiodo-l-thyronine 4-O-sulfate), and an unidentified feature (590.0020 m/z and 441.4 s retention time; false discovery rate <0.20). Using pathway enrichment analysis coupled with quantile-based g-computation, the PFAS mixture was associated with 49 metabolic pathways, most notably amino acid, carbohydrate, lipid and cofactor and vitamin metabolism, as well as glycan biosynthesis and metabolism (P(Gamma) <0.05). Future studies should assess if these pathways mediate associations of prenatal PFAS exposure with infant or child health outcomes, such as birthweight or vaccine response.
Collapse
Affiliation(s)
- Amber M Hall
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - Elvira Fleury
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - George D Papandonatos
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|