1
|
Xu DW, Li WY, Shi TS, Wang CN, Zhou SY, Liu W, Chen WJ, Zhu BL, Fei H, Cheng DD, Cui ZM, Jiang B. MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis. Neuropharmacology 2024; 260:110129. [PMID: 39179173 DOI: 10.1016/j.neuropharm.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.
Collapse
Affiliation(s)
- Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Si-Yi Zhou
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Fei
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Zhi-Ming Cui
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Wang Q, Xu Y, Zhu S, Jiang L, Yao L, Yu X, Zhang Y, Jia S, Hong M, Zheng J. Mesenchymal stem cells improve depressive disorder via inhibiting the inflammatory polarization of microglia. J Psychiatr Res 2024; 179:105-116. [PMID: 39270422 DOI: 10.1016/j.jpsychires.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Depressive disorder (DD) ranks among the most prevalent, burdensome, and costly psychiatric conditions globally. It manifests through a range of emotional, cognitive, somatic, and behavioral symptoms. Mesenchymal Stem Cells (MSCs) have garnered significant attention due to their therapeutic potential via immunomodulation in neurological disorders. Our research indicates that MSCs treatment demonstrates a notable effect on a Chronic Unpredictable Mild Stress (CUMS)-induced DD model in mice, surpassing even Fluoxetine in its antidepressant efficacy. MSCs mitigate DD by inhibiting central nervous system inflammation and facilitating the conversion of microglial cells into an Arg1high anti-inflammatory state. The MSCs-derived TGF-β1 is crucial for this Arg1high microglial cell transformation in DD treatment.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sijie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Longwei Jiang
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China; Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Lu Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shaochang Jia
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
4
|
Mandal G, Kirkpatrick M, Alboni S, Mariani N, Pariante CM, Borsini A. Ketamine Prevents Inflammation-Induced Reduction of Human Hippocampal Neurogenesis via Inhibiting the Production of Neurotoxic Metabolites of the Kynurenine Pathway. Int J Neuropsychopharmacol 2024; 27:pyae041. [PMID: 39297528 PMCID: PMC11450635 DOI: 10.1093/ijnp/pyae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Understanding the precise mechanisms of ketamine is crucial for replicating its rapid antidepressant effects without inducing psychomimetic changes. Here, we explore whether the antidepressant-like effects of ketamine enantiomers are underscored by protection against cytokine-induced reductions in hippocampal neurogenesis and activation of the neurotoxic kynurenine pathway in our well-established in vitro model of depression in a dish. METHODS We used the fetal hippocampal progenitor cell line (HPC0A07/03C) to investigate ketamine's impact on cytokine-induced reductions in neurogenesis in vitro. Cells were treated with interleukin- 1beta (IL-1b) (10 ng/mL) or IL-6 (50 pg/mL), alone or in combination with ketamine enantiomers arketamine (R-ketamine, 400 nM) or esketamine (S-ketamine, 400 nM) or antidepressants sertraline (1 mM) or venlafaxine (1 mM). RESULTS Resembling the effect of antidepressants, both ketamine enantiomers prevented IL-1b- and IL-6-induced reduction in neurogenesis and increase in apoptosis. This was mediated by inhibition of IL-1b-induced production of IL-2 and IL-13 by R-ketamine and of IL-1b-induced tumor necrosis factor-alpha by S-ketamine. Likewise, R-ketamine inhibited IL-6-induced production of IL-13, whereas S-ketamine inhibited IL-6-induced IL-1b and IL-8. Moreover, both R- and S-ketamine prevented IL-1b-induced increases in indoleamine 2,3-dioxygenase expression as well as kynurenine production, which in turn was shown to mediate the detrimental effects of IL-1b on neurogenesis and apoptosis. In contrast, neither R- nor S-ketamine prevented IL-6-induced kynurenine pathway activation. CONCLUSIONS Results suggest that R- and S-ketamine have pro-neurogenic and anti-inflammatory properties; however, this is mediated by inhibition of the kynurenine pathway only in the context of IL-1b. Overall, this study enhances our understanding of the mechanisms underlying ketamine's antidepressant effects in the context of different inflammatory phenotypes, ultimately leading to the development of more effective, personalized therapeutic approaches for patients suffering from depression.
Collapse
Affiliation(s)
- Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Madeline Kirkpatrick
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| |
Collapse
|
5
|
Vellucci L, De Simone G, Morley-Fletcher S, Buonaguro EF, Avagliano C, Barone A, Maccari S, Iasevoli F, de Bartolomeis A. Perinatal stress modulates glutamatergic functional connectivity: A post-synaptic density immediate early gene-based network analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111032. [PMID: 38762163 DOI: 10.1016/j.pnpbp.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Early life stress may induce synaptic changes within brain regions associated with behavioral disorders. Here, we investigated glutamatergic functional connectivity by a postsynaptic density immediate-early gene-based network analysis. Pregnant female Sprague-Dawley rats were randomly divided into two experimental groups: one exposed to stress sessions and the other serving as a stress-free control group. Homer1 expression was evaluated by in situ hybridization technique in eighty-eight brain regions of interest of male rat offspring. Differences between the perinatal stress exposed group (PRS) (n = 5) and the control group (CTR) (n = 5) were assessed by performing the Student's t-test via SPSS 28.0.1.0 with Bonferroni correction. Additionally, all possible pairwise Spearman's correlations were computed as well as correlation matrices and networks for each experimental group were generated via RStudio and Cytoscape. Perinatal stress exposure was associated with Homer1a reduction in several cortical, thalamic, and striatal regions. Furthermore, it was found to affect functional connectivity between: the lateral septal nucleus, the central medial thalamic nucleus, the anterior part of the paraventricular thalamic nucleus, and both retrosplenial granular b cortex and hippocampal regions; the orbitofrontal cortex, amygdaloid nuclei, and hippocampal regions; and lastly, among regions involved in limbic system. Finally, the PRS networks showed a significant reduction in multiple connections for the ventrolateral part of the anteroventral thalamic nucleus after perinatal stress exposure, as well as a decrease in the centrality of ventral anterior thalamic and amygdaloid nuclei suggestive of putative reduced cortical control over these regions. Within the present preclinical setting, perinatal stress exposure is a modifier of glutamatergic early gene-based functional connectivity in neuronal circuits involved in behaviors relevant to model neurodevelopmental disorders.
Collapse
Affiliation(s)
- Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Sara Morley-Fletcher
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France
| | - Elisabetta Filomena Buonaguro
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Stefania Maccari
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France; Department of Science and Medical-Surgical Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Zhao F, Qiu Y, Liu W, Zhang Y, Liu J, Bian L, Shao L. Biomimetic Hydrogels as the Inductive Endochondral Ossification Template for Promoting Bone Regeneration. Adv Healthc Mater 2024; 13:e2303532. [PMID: 38108565 DOI: 10.1002/adhm.202303532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Repairing critical size bone defects (CSBD) is a major clinical challenge and requires effective intervention by biomaterial scaffolds. Inspired by the fact that the cartilaginous template-based endochondral ossification (ECO) process is crucial to bone healing and development, developing biomimetic biomaterials to promote ECO is recognized as a promising approach for repairing CSBD. With the unique highly hydrated 3D polymeric network, hydrogels can be designed to closely emulate the physiochemical properties of cartilage matrix to facilitate ECO. In this review, the various preparation methods of hydrogels possessing the specific physiochemical properties required for promoting ECO are introduced. The materiobiological impacts of the physicochemical properties of hydrogels, such as mechanical properties, topographical structures and chemical compositions on ECO, and the associated molecular mechanisms related to the BMP, Wnt, TGF-β, HIF-1α, FGF, and RhoA signaling pathways are further summarized. This review provides a detailed coverage on the materiobiological insights required for the design and preparation of hydrogel-based biomaterials to facilitate bone regeneration.
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, P. R. China
| |
Collapse
|
7
|
Zonca V, Marizzoni M, Saleri S, Zajkowska Z, Manfro PH, Souza L, Viduani A, Sforzini L, Swartz JR, Fisher HL, Kohrt BA, Kieling C, Riva MA, Cattaneo A, Mondelli V. Inflammation and immune system pathways as biological signatures of adolescent depression-the IDEA-RiSCo study. Transl Psychiatry 2024; 14:230. [PMID: 38824135 PMCID: PMC11144232 DOI: 10.1038/s41398-024-02959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The biological mechanisms underlying the onset of major depressive disorder (MDD) have predominantly been studied in adult populations from high-income countries, despite the onset of depression typically occurring in adolescence and the majority of the world's adolescents living in low- and middle-income countries (LMIC). Taking advantage of a unique adolescent sample in an LMIC (Brazil), this study aimed to identify biological pathways characterizing the presence and increased risk of depression in adolescence, and sex-specific differences in such biological signatures. We collected blood samples from a risk-stratified cohort of 150 Brazilian adolescents (aged 14-16 years old) comprising 50 adolescents with MDD, 50 adolescents at high risk of developing MDD but without current MDD, and 50 adolescents at low risk of developing MDD and without MDD (25 females and 25 males in each group). We conducted RNA-Seq and pathway analysis on whole blood. Inflammatory-related biological pathways, such as role of hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza (z-score = 3.464, p < 0.001), interferon signaling (z-score = 2.464, p < 0.001), interferon alpha/beta signaling (z-score = 3.873, p < 0.001), and complement signaling (z-score = 2, p = 0.002) were upregulated in adolescents with MDD compared with adolescents without MDD independently from their level of risk. The up-regulation of such inflammation-related pathways was observed in females but not in males. Inflammatory-related pathways involved in the production of cytokines and in interferon and complement signaling were identified as key indicators of adolescent depression, and this effect was present only in females.
Collapse
Affiliation(s)
- Valentina Zonca
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Samantha Saleri
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Zuzanna Zajkowska
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Pedro H Manfro
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Laila Souza
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Anna Viduani
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Luca Sforzini
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Helen L Fisher
- King's College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Brandon A Kohrt
- Center for Global Mental Health Equity, Department of Psychiatry and Behavioral Health, School of Medicine and Health Sciences, The George Washington University, 2120 L St NW, Ste 600, Washington, DC, 20037D, USA
| | - Christian Kieling
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Valeria Mondelli
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
8
|
Tovo-Rodrigues L, Camerini L, Martins-Silva T, Carpena MX, Bonilla C, Oliveira IO, de Paula CS, Murray J, Barros AJD, Santos IS, Rohde LA, Hutz MH, Genro JP, Matijasevich A. Gene - maltreatment interplay in adult ADHD symptoms: main role of a gene-environment correlation effect in a Brazilian population longitudinal study. Mol Psychiatry 2024:10.1038/s41380-024-02589-3. [PMID: 38744991 DOI: 10.1038/s41380-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Childhood maltreatment correlates with attention-deficit/hyperactivity disorder (ADHD) in previous research. The interaction between ADHD genetic predisposition and maltreatment's impact on ADHD symptom risk remains unclear. We aimed to elucidate this relationship by examining the interplay between a polygenic score for ADHD (ADHD-PGS) and childhood maltreatment in predicting ADHD symptoms during young adulthood. Using data from the 2004 Pelotas (Brazil) birth cohort comprising 4231 participants, we analyzed gene-environment interaction (GxE) and correlation (rGE). We further explored rGE mechanisms through mediation models. ADHD symptoms were assessed at age 18 via self-report (Adult Self Report Scale - ASRS) and mother-reports (Strength and Difficulties Questionnaire - SDQ). The ADHD-PGS was derived from published ADHD GWAS meta-analysis. Physical and psychological child maltreatment was gauged using the Parent-Child Conflict Tactics Scale (CTSPC) at ages 6 and 11, with a mean score utilized as a variable. The ADHD-PGS exhibited associations with ADHD symptoms on both ASRS (β = 0.53; 95% CI: 0.03; 1.03, p = 0.036), and SDQ (β = 0.20; 95% CI: 0.08; 0.32, p = 0.001) scales. The total mean maltreatment score was associated with ADHD symptoms using both scales [(βASRS = 0.51; 95% CI: 0.26;0.77) and (βSDQ = 0.24; 95% CI: 0.18;0.29)]. The ADHD-PGS was associated with total mean maltreatment scores (β = 0.09; 95% CI: 0.01; 0.17; p = 0.030). Approximately 47% of the total effect of ADHD-PGS on maltreatment was mediated by ADHD symptoms at age 6. No evidence supported gene-environment interaction in predicting ADHD symptoms. Our findings underscore the significant roles of genetics and childhood maltreatment as predictors for ADHD symptoms in adulthood, while also indicating a potential evocative mechanism through gene-environment correlation.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil.
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
- Human Development and Violence Research Centre (DOVE), Federal University of Pelotas, Pelotas, Brazil.
| | - Laísa Camerini
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Martins-Silva
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Human Development and Violence Research Centre (DOVE), Federal University of Pelotas, Pelotas, Brazil
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Human Development and Violence Research Centre (DOVE), Federal University of Pelotas, Pelotas, Brazil
| | - Carolina Bonilla
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brasil
| | - Isabel Oliveira Oliveira
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Joseph Murray
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- Human Development and Violence Research Centre (DOVE), Federal University of Pelotas, Pelotas, Brazil
| | - Aluísio J D Barros
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Iná S Santos
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents & National Center for Research and Innovation in Child Mental Health, Sao Paulo, Brazil
- Medical School Council, UniEduK, São Paulo, Brazil
| | - Mara Helena Hutz
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Pasqualini Genro
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Bioscience, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alicia Matijasevich
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
9
|
Cattane N, Di Benedetto MG, D'Aprile I, Riva MA, Cattaneo A. Dissecting the Long-Term Effect of Stress Early in Life on FKBP5: The Role of miR-20b-5p and miR-29c-3p. Biomolecules 2024; 14:371. [PMID: 38540789 PMCID: PMC10967956 DOI: 10.3390/biom14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Exposure to early-life stress (ELS) has been related to an increased susceptibility to psychiatric disorders later in life. Although the molecular mechanisms underlying this association are still under investigation, glucocorticoid signaling has been proposed to be a key mediator. Here, we used two preclinical models, the prenatal stress (PNS) animal model and an in vitro model of hippocampal progenitor cells, to assess the long-term effect of ELS on FKBP5, NR3C1, NR3C2, and FoxO1, four stress-responsive genes involved in the effects of glucocorticoids. In the hippocampus of male PNS rats sacrificed at different time points during neurodevelopment (PND 21, 40, 62), we found a statistically significant up-regulation of FKBP5 at PND 40 and PND 62 and a significant increase in FoxO1 at PND 62. Interestingly, all four genes were significantly up-regulated in differentiated cells treated with cortisol during cell proliferation. As FKBP5 was consistently modulated by PNS at adolescence (PND 40) and adulthood (PND 62) and by cortisol treatment after cell differentiation, we measured a panel of miRNAs targeting FKBP5 in the same samples where FKBP5 expression levels were available. Interestingly, both miR-20b-5p and miR-29c-3p were significantly reduced in PNS-exposed animals (both at PND40 and 62) and also in the in vitro model after cortisol exposure. Our results highlight the key role of miR-20b-5p and miR-29c-3p in sustaining the long-term effects of ELS on the stress response system, representing a mechanistic link possibly contributing to the enhanced stress-related vulnerability to mental disorders.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
10
|
Zhang H, Luo P, Jiang X. Comprehensive bioinformatics analysis of co-expressed genes of post-traumatic stress disorder and major depressive disorder. J Affect Disord 2024; 349:541-551. [PMID: 38218255 DOI: 10.1016/j.jad.2024.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is one of the most serious sequelae of trauma with serious impact worldwide. Studies have suggested an association between PTSD and major depressive disorder (MDD), but the underlying common mechanisms remain unclear. This study aimed to further explore the molecular mechanism between PTSD and MDD via comprehensive bioinformatics analysis. METHODS The microarray data of PTSD and MDD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify the co-expressed genes associated with PTSD and MDD. Gene Set Enrichment Analysis (GSEA), enrichment analyses based on Disease Ontology (DO), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed using R software. Then, R software was used for single-sample gene set enrichment analysis (ssGSEA) and immune infiltration analysis on the co-expressed genes in the two datasets., Therefore, a logistic regression model was constructed to predict PTSD and MDD using the R language. Ultimately, this study employed PTSD and MDD models to assess alterations in the expression of target genes within the mouse hippocampus. RESULTS Four core genes (GNAQ, DPEP3, ICAM2, PACSIN2) were obtained through different analyses, and these genes had predictive validity for PTSD and MDD, playing an important role in the common mechanism of PTSD and MDD. The study findings reveal decreased expression levels of DPEP3, GNAQ, and PACDIN2 in PTSD samples, accompanied by an increased expression of ICAM2. In MDD samples, the expression of DPEP3 and ICAM2 is reduced, whereas GNAQ and PACDIN2 show an increase in expression. CONCLUSIONS This study provides a new perspective on the common molecular mechanisms of PTSD and MDD. These common pathways and core genes may provide promising clues for further experimental studies.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Reemst K, Lopizzo N, Abbink MR, Engelenburg HJ, Cattaneo A, Korosi A. Molecular underpinnings of programming by early-life stress and the protective effects of early dietary ω6/ω3 ratio, basally and in response to LPS: Integrated mRNA-miRNAs approach. Brain Behav Immun 2024; 117:283-297. [PMID: 38242369 DOI: 10.1016/j.bbi.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Early-life stress (ELS) exposure increases the risk for mental disorders, including cognitive impairments later in life. We have previously demonstrated that an early diet with low ω6/ω3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Several studies have implicated the neuroimmune system in the ELS and diet mediated effects, but currently the molecular pathways via which ELS and early diet exert their long-term impact are not yet fully understood. Here we study the effects of ELS and dietary PUFA ratio on hippocampal mRNA and miRNA expression in adulthood, both under basal as well as inflammatory conditions. Male mice were exposed to chronic ELS by the limiting bedding and nesting material paradigm from postnatal day(P)2 to P9, and provided with a diet containing a standard (high (15:1.1)) or protective (low (1.1:1)) ω6 linoleic acid to ω3 alpha-linolenic acid ratio from P2 to P42. At P120, memory was assessed using the object location task. Subsequently, a single lipopolysaccharide (LPS) injection was given and 24 h later hippocampal genome-wide mRNA and microRNA (miRNA) expression was measured using microarray. Spatial learning deficits induced by ELS in mice fed the standard (high ω6/ω3) diet were reversed by the early-life protective (low ω6/ω3) diet. An integrated miRNA - mRNA analysis revealed that ELS and early diet induced miRNA driven mRNA expression changes into adulthood. Under basal conditions both ELS and the diet affected molecular pathways related to hippocampal plasticity, with the protective (low ω6/ω3 ratio) diet leading to activation of molecular pathways associated with improved hippocampal plasticity and learning and memory in mice previously exposed to ELS (e.g., CREB signaling and endocannabinoid neuronal synapse pathway). LPS induced miRNA and mRNA expression was strongly dependent on both ELS and early diet. In mice fed the standard (high ω6/ω3) diet, LPS increased miRNA expression leading to activation of inflammatory pathways. In contrast, in mice fed the protective diet, LPS reduced miRNA expression and altered target mRNA expression inhibiting inflammatory signaling pathways and pathways associated with hippocampal plasticity, which was especially apparent in mice previously exposed to ELS. This data provides molecular insights into how the protective (low ω6/ω3) diet during development could exert its long-lasting beneficial effects on hippocampal plasticity and learning and memory especially in a vulnerable population exposed to stress early in life, providing the basis for the development of intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Hendrik J Engelenburg
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands.
| |
Collapse
|
12
|
Creutzberg KC, Begni V, Orso R, Lumertz FS, Wearick-Silva LE, Tractenberg SG, Marizzoni M, Cattaneo A, Grassi-Oliveira R, Riva MA. Vulnerability and resilience to prenatal stress exposure: behavioral and molecular characterization in adolescent rats. Transl Psychiatry 2023; 13:358. [PMID: 37993429 PMCID: PMC10665384 DOI: 10.1038/s41398-023-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Exposure to stress can lead to long lasting behavioral and neurobiological consequences, which may enhance the susceptibility for the onset of mental disorders. However, there are significant individual differences in the outcome of stress exposure since only a percentage of exposed individuals may show pathological consequences, whereas others appear to be resilient. In this study, we aimed to characterize the effects of prenatal stress (PNS) exposure in rats at adolescence and to identify subgroup of animals with a differential response to the gestational manipulation. PNS adolescent offspring (regardless of sex) showed impaired emotionality in different pathological domains, such as anhedonia, anxiety, and sociability. However, using cluster analysis of the behavioral data we could identify 70% of PNS-exposed animals as vulnerable (PNS-vul), whereas the remaining 30% were considered resilient (PNS-res). At the molecular level, we found that PNS-res males show a reduced basal activation of the ventral hippocampus whereas other regions, such as amygdala and dorsal hippocampus, show significant PNS-induced changes regardless from vulnerability or resilience. Taken together, our results provide evidence of the variability in the behavioral and neurobiological effects of PNS-exposed offspring at adolescence. While these data may advance our understanding of the association between exposure to stress during gestation and the risk for psychopathology, the investigation of the mechanisms associated to stress vulnerability or resilience may be instrumental to develop novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Saulo Gantes Tractenberg
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia, 25125, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
13
|
Lin J, Li JT, Kong L, Liu Q, Lv X, Wang G, Wei J, Zhu G, Chen Q, Tian H, Zhang K, Wang X, Zhang N, Yu X, Si T, Su YA. Proinflammatory phenotype in major depressive disorder with adulthood adversity: In line with social signal transduction theory of depression. J Affect Disord 2023; 341:275-282. [PMID: 37657624 DOI: 10.1016/j.jad.2023.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The social signal transduction theory of depression proposes that life stress can be transformed into inflammatory signals, and ultimately lead to the development of major depressive disorder (MDD). The hypotheses of this study were: (1) The pro-inflammatory effect of life stress was only seen in patients with MDD, but not in healthy controls (HCs); (2) Inflammation can mediate the relationship between life stress and depressive symptoms. METHODS This study included 170 MDD patients and 196 HCs, and 13 immune-inflammatory biomarkers closely related to MDD were measured, principal component analysis (PCA) was adopted to extract the inflammatory index. Life stress was assessed by Life Event Scale (LES), a total score of >32 points on the LES was considered as adulthood adversity (AA). Path analyses were used to explore the relationship among adulthood stress, inflammatory index, and severity of depression. RESULTS Among MDD patients, α2M, CXCL-1, IL-1β, and TLR-1 levels were higher in patients with AA than non-AA group (all FDR-adjusted P values <0.05), meanwhile, the levels of CCL-2 and IL-18 were lower. Path analyses suggested that pro- and anti-inflammatory index could mediate the association between AA and severity of depression in MDD patients. CONCLUSION This study found that inflammatory signals can mediate the relationship between adulthood adversity and depression, however, the causal relationship need to be further confirmed. These findings shed light on further understanding the theory of social signal transduction in MDD and provide clues for stress management and controlling inflammation strategies in depression. CLINICAL TRIALS NCT02023567.
Collapse
Affiliation(s)
- Jingyu Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linghua Kong
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, China
| | - Qi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaozhen Lv
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gang Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wei
- Peking Union Medical College (PUMC), Beijing, China
| | - Gang Zhu
- The first hospital of China medical University, Shenyang, China
| | | | | | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueyi Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
14
|
Li Y, Wang H, Zhou J, Wang C. Research progress on the correlation between transforming growth factor- β level and symptoms of depression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:646-652. [PMID: 37916311 PMCID: PMC10630060 DOI: 10.3724/zdxbyxb-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/19/2023] [Indexed: 10/08/2023]
Abstract
Transforming growth factor (TGF)-β is a group of cytokines with anti-inflammatory effects in the TGF family, which participates in the development of stress and depression-related mechanisms, and plays roles in the regulation of inflammatory response in depression and the recovery of various cytokine imbalances. The core symptoms of depression is associated with TGF-β level, and the psychological symptoms of depression are related to TGF-β gene polymorphism. Various antidepressants may up-regulate TGF-β level through the complex interaction between neurotransmitters and inflammatory factors, inhibiting inflammatory response and regulating cytokine imbalance to improve depressive symptoms. Studies have shown that recombinant TGF-β1 protein has beneficial effects in mouse depression models, indicating TGF-β1 might be a potential therapeutic target for depression and nasal sprays having the advantage of being fast acting delivery method. This article reviews the research progress on dynamic changes of TGF-β level before and after depression treatment and the application of TGF-β level as an indicator for the improvement of depressive symptoms. We provide ideas for the development of new antidepressants and for the evaluation of the treatment efficacy in depression.
Collapse
Affiliation(s)
- Yanran Li
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China.
| | - Huiying Wang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China
| | - Jiansong Zhou
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, National Clinical Medical Research Center for Ment, Changsha 410011, China.
| | - Changhong Wang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China.
| |
Collapse
|
15
|
Fitzgerald E, Arcego DM, Shen MJ, O'Toole N, Wen X, Nagy C, Mostafavi S, Craig K, Silveira PP, Rayan NA, Diorio J, Meaney MJ, Zhang TY. Sex and cell-specific gene expression in corticolimbic brain regions associated with psychiatric disorders revealed by bulk and single-nuclei RNA sequencing. EBioMedicine 2023; 95:104749. [PMID: 37549631 PMCID: PMC10432187 DOI: 10.1016/j.ebiom.2023.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING This work was supported by funding from the Hope for Depression Research Foundation (MJM).
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Mo Jun Shen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas O'Toole
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Xianglan Wen
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Corina Nagy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA 9819, USA
| | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Patricia Pelufo Silveira
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nirmala Arul Rayan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tie-Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada.
| |
Collapse
|
16
|
Sforzini L, Cattaneo A, Ferrari C, Turner L, Mariani N, Enache D, Hastings C, Lombardo G, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Kose M, Cattane N, Lopizzo N, Mazzelli M, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Jones D, Drevets WC, Mondelli V, Bullmore ET, Pariante CM. Higher immune-related gene expression in major depression is independent of CRP levels: results from the BIODEP study. Transl Psychiatry 2023; 13:185. [PMID: 37264010 PMCID: PMC10235092 DOI: 10.1038/s41398-023-02438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Sforzini
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK.
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Service, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, 25124, Italy
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Giulia Lombardo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Maria A Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Nadia Cattane
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, Scotland
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre, London, W1G 0BG, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
18
|
Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int J Mol Sci 2022; 24:578. [PMID: 36614020 PMCID: PMC9820159 DOI: 10.3390/ijms24010578] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Depression is one of the leading mental illnesses worldwide and lowers the quality of life of many. According to WHO, about 5% of the worldwide population suffers from depression. Newer studies report a staggering global prevalence of 27.6%, and it is rising. Professionally, depression belonging to affective disorders is a psychiatric illness, and the category of major depressive disorder (MDD) comprises various diagnoses related to persistent and disruptive mood disorders. Due to this fact, it is imperative to find a way to assess depression quantitatively using a specific biomarker or a panel of biomarkers that would be able to reflect the patients' state and the effects of therapy. Cytokines, hormones, oxidative stress markers, and neuropeptides are studied in association with depression. The latest research into inflammatory cytokines shows that their relationship with the etiology of depression is causative. There are stronger cytokine reactions to pathogens and stressors in depression. If combined with other predisposing factors, responses lead to prolonged inflammatory processes, prolonged dysregulation of various axes, stress, pain, mood changes, anxiety, and depression. This review focuses on the most recent data on cytokines as markers of depression concerning their roles in its pathogenesis, their possible use in diagnosis and management, their different levels in bodily fluids, and their similarities in animal studies. However, cytokines are not isolated from the pathophysiologic mechanisms of depression or other psychiatric disorders. Their effects are only a part of the whole pathway.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
19
|
Fidilio A, Grasso M, Caruso G, Musso N, Begni V, Privitera A, Torrisi SA, Campolongo P, Schiavone S, Tascedda F, Leggio GM, Drago F, Riva MA, Caraci F. Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway. Front Pharmacol 2022; 13:1075746. [DOI: 10.3389/fphar.2022.1075746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND > 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats.
Collapse
|
20
|
Amasi-Hartoonian N, Pariante CM, Cattaneo A, Sforzini L. Understanding treatment-resistant depression using "omics" techniques: A systematic review. J Affect Disord 2022; 318:423-455. [PMID: 36103934 DOI: 10.1016/j.jad.2022.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treatment-resistant depression (TRD) results in huge healthcare costs and poor patient clinical outcomes. Most studies have adopted a "candidate mechanism" approach to investigate TRD pathogenesis, however this is made more challenging due to the complex and heterogeneous nature of this condition. High-throughput "omics" technologies can provide a more holistic view and further insight into the underlying mechanisms involved in TRD development, expanding knowledge beyond already-identified mechanisms. This systematic review assessed the information from studies that examined TRD using hypothesis-free omics techniques. METHODS PubMed, MEDLINE, Embase, APA PsycInfo, Scopus and Web of Science databases were searched on July 2022. 37 human studies met the eligibility criteria, totalling 17,518 TRD patients, 571,402 healthy controls and 62,279 non-TRD depressed patients (including antidepressant responders and untreated MDD patients). RESULTS Significant findings were reported that implicate the role in TRD of various molecules, including polymorphisms, genes, mRNAs and microRNAs. The pathways most commonly reported by the identified studies were involved in immune system and inflammation, neuroplasticity, calcium signalling and neurotransmitters. LIMITATIONS Small sample sizes, variability in defining TRD, and heterogeneity in study design and methodology. CONCLUSIONS These findings provide insight into TRD pathophysiology, proposing future research directions for novel drug targets and potential biomarkers for clinical staging and response to antidepressants (citalopram/escitalopram in particular) and electroconvulsive therapy (ECT). Further validation is warranted in large prospective studies using standardised TRD criteria. A multi-omics and systems biology strategy with a collaborative effort will likely deliver robust findings for translation into the clinic.
Collapse
Affiliation(s)
- Nare Amasi-Hartoonian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK.
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK; National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| |
Collapse
|
21
|
Ziani PR, Feiten JG, Goularte JF, Colombo R, Antqueviezc B, Géa LP, Rosa AR. Potential Candidates for Biomarkers in Bipolar Disorder: A Proteomic Approach through Systems Biology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:211-227. [PMID: 35466093 PMCID: PMC9048014 DOI: 10.9758/cpn.2022.20.2.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | - Jacson Gabriel Feiten
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rafael Colombo
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- University of Caxias do Sul, Caxias do Sul, Brasil
| | - Bárbara Antqueviezc
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
| | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane Ribeiro Rosa
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
22
|
Ehichioya DE, Tahajjul Taufique SK, Anigbogu CN, Jaja SI. Effect of rapid eye movement sleep deprivation during pregnancy on glucocorticoid receptor regulation of HPA axis function in female offspring. Brain Res 2022; 1781:147823. [PMID: 35151654 DOI: 10.1016/j.brainres.2022.147823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
Poor maternal sleep quality during the different phases of pregnancy acts as a prenatal stress and is critical for fetal development. Despite the potential adverse effects of maternal stress on the behavior and physiology of the offspring, the mechanisms remain poorly understood. The present study investigates the effects of maternal sleep deprivation (SD) at different stages of pregnancy on the hypothalamic-pituitary-adrenal (HPA) axis in female offspring. The pregnant rats were subjected to sleep deprivation of 12 h per day at different stages; early (ESD), mid (MSD), and late (LSD) stages, on pregnancy days 1-7, 8-14, and 14-20, respectively. At postnatal day 60, levels of corticosterone (CORT), hypothalamic corticotropin-releasing factor receptor 1 (CRF-R1), and hippocampal glucocorticoid receptors (GR) were evaluated in the offspring. Although the hypothalamic CRF-R1 level was increased in the offspring of SD dams, immunohistochemical staining showed reduced immunoreactivity of GR in ESD and LSD offspring hippocampal area. Altogether, the data suggests that a critical period for adverse effects of SD on the HPA axis in female offspring of Wistar rats may be during early and late pregnancy.
Collapse
Affiliation(s)
- David E Ehichioya
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.
| | - S K Tahajjul Taufique
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikodi N Anigbogu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Smith I Jaja
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
23
|
Hakamata Y, Suzuki Y, Kobashikawa H, Hori H. Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front Neuroendocrinol 2022; 65:100994. [PMID: 35331780 DOI: 10.1016/j.yfrne.2022.100994] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
Adverse childhood experiences (ACEs) may leave long-lasting neurobiological scars, increasing the risk of developing mental disorders in later life. However, no review has comprehensively integrated existing evidence across the fields: hypothalamic-pituitary-adrenal axis, immune/inflammatory system, neuroimaging, and genetics/epigenetics. We thus systematically reviewed previous meta-analyses towards an integrative account of ACE-related neurobiological alterations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, a total of 27 meta-analyses until October 2021 were identified. This review found that individuals with ACEs possess blunted cortisol response to psychosocial stressors, low-grade inflammation evinced by increased C-reactive protein levels, exaggerated amygdalar response to emotionally negative information, and diminished hippocampal gray matter volume. Importantly, these alterations were consistently observed in those with and without psychiatric diagnosis. These findings were integrated and discussed in a schematic model of ACE-related neurobiological alterations. Future longitudinal research based on multidisciplinary approach is imperative for ACE-related mental disorders' prevention and treatment.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan.
| | - Yuhki Suzuki
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hajime Kobashikawa
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
24
|
Piras IS, Huentelman MJ, Pinna F, Paribello P, Solmi M, Murru A, Carpiniello B, Manchia M, Zai CC. A review and meta-analysis of gene expression profiles in suicide. Eur Neuropsychopharmacol 2022; 56:39-49. [PMID: 34923210 DOI: 10.1016/j.euroneuro.2021.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Suicide claims over 800,000 deaths worldwide, making it a serious public health problem. The etiopathophysiology of suicide remains unclear and is highly complex, and postmortem gene expression studies can offer insights into the molecular biological mechanism underlying suicide. In the current study, we conducted a meta-analysis of postmortem brain gene expression in relation to suicide. We identified five gene expression datasets for postmortem orbitofrontal, prefrontal, or dorsolateral prefrontal cortical brain regions from the Gene Expression Omnibus repository. After quality control, the total sample size was 380 (141 suicide deaths and 239 deaths from other causes). We performed the analyses using two meta-analytic approaches. We further performed pathway and cell-set enrichment analyses. We found reduced expression of the KCNJ2 (Potassium Inwardly Rectifying Channel Subfamily J Member 2), A2M (Alpha-2-Macroglobulin), AGT (Angiotensinogen), PMP2 (Peripheral Myelin Protein 2), and VEZF1 (Vascular Endothelial Zinc Finger 1) genes (FDR p<0.05). Our findings support the involvement of astrocytes, stress response, immune system, and microglia in suicide. These findings will require further validation in additional large datasets.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa Ottawa Ontario; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom
| | - Andrea Murru
- Bipolar and Depression Disorders Unit, Institute of Neuroscience, Hospital Clinic, IDIBAPS CIBERSAM, University of Barcelona, Barcelona, Catalonia, Spain
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Clement C Zai
- Neurogenetics Section, Molecular Brain Science, Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Institute of Medical Science, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, United States
| |
Collapse
|
25
|
Zhu Y, Geng X, Stone C, Guo S, Syed S, Ding Y. Forkhead Box 1(FoxO1) mediates psychological stress-induced neuroinflammation. Neurol Res 2022; 44:483-495. [PMID: 34983317 DOI: 10.1080/01616412.2021.2022913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Neuroinflammation plays a key role in cerebrovascular disease (CVD). Neuropsychiatric disorders appear to share an epidemiological association with inflammation, but the mechanisms are unclear. Forkhead box 1 (FoxO1) regulates inflammatory signaling in diabetes and cardiovascular diseases, but its role in psychological stress-induced neuroinflammation remains unknown. Therefore, we investigated the potential involvement of FoxO1 in repeated social defeat stress (RSDS)-induced neuroinflammation. METHODS 6-week-old male C57BL/6 J mice were randomly divided into RSDS or control groups. In the RSDS group, mice (18-22 g) were individually subjected to social defeat by an 8-week-old CD-1 mouse (28-32 g) for 10 min daily for 10 consecutive days. At 24 h after this 10-day process, corticosterone (CORT), epinephrine (EPI), hydrogen peroxide, and inflammatory factors (TNF-α, IL-6, IL-1β, and VCAM-1) from serum and brain tissues were assayed using ELISA, real-time PCR, and Western blot. Iba-1 was determined by immunofluorescence (IF), and FoxO1 siRNA was transfected into BV2 cells to further analyze the expression of inflammatory factors. RESULTS RSDS significantly increased the levels of TNF-α, IL-6, IL-1β, and VCAM-1 in the serum; it also increased both mRNA and protein expression of these in the brain. FoxO1 was significantly increased after stress, while its knockdown significantly suppressed stress-induced inflammation. Immunofluorescence demonstrated the activation of microglia in the setting of RSDS. CONCLUSION RSDS induced a measurable inflammatory response in the blood and brain, and FoxO1 was demonstrated in vitro to aggravate stress-induced inflammation.
Collapse
Affiliation(s)
- Yuequan Zhu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| |
Collapse
|
26
|
Osborne S, Biaggi A, Hazelgrove K, Preez AD, Nikkheslat N, Sethna V, Zunszain PA, Conroy S, Pawlby S, Pariante CM. Increased maternal inflammation and poorer infant neurobehavioural competencies in women with a history of major depressive disorder from the psychiatry research and motherhood - Depression (PRAM-D) study. Brain Behav Immun 2022; 99:223-230. [PMID: 34644586 DOI: 10.1016/j.bbi.2021.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Stress in pregnancy is associated with adverse outcomes in offspring, and developmental programming is a potential mechanism. We have previously shown that depression in pregnancy is a valid and clearly defined stress paradigm, and both maternal antenatal and offspring stress-related biology is affected. This study aims to clarify whether maternal biology in pregnancy and offspring outcomes can also be influenced by a history of a prior depression, in the absence of depression in pregnancy. Our primary hypothesis is that, similarly to women with depression in pregnancy, women with a history of depression but who are not depressed in pregnancy will have increased cortisol secretion and markers of immune system function, and that their offspring will have poorer neuro-developmental competencies and increased cortisol stress response. METHODS A prospective longitudinal design was used in 59 healthy controls and 25 women with a past history of depression who were not depressed in pregnancy, named as 'history-only', and their offspring. Maternal antenatal stress-related biology (cortisol and markers of immune system function) and offspring outcomes (gestational age at birth, neonatal neurobehaviour (Neonatal Behavioural Assessment Scale, NBAS), cortisol stress response and basal cortisol at 2 and 12 months) and cognitive, language and motor development (Bayley Scales of Infant and Toddler Development (BSID)) were measured. RESULTS Compared with healthy pregnant women, those with a history of depression who remain free of depression in pregnancy exhibit increased markers of immune system function in pregnancy: IL-8 (d = 0.63, p = 0.030), VEGF (d = 0.40, p = 0.008) and MCP-1 (d = 0.61, p = 0.002) and have neonates with lower neurobehavioural scores in most areas, reaching statistical significance in thesocial-interactive (d = 1.26, p = 0.015) cluster. However, there were no differences in maternal or offspring HPA axis function or in infant development at 12 months. CONCLUSION Our study indicates that pregnant women with a history of depression have increased markers of immune system function, and their offspring show behavioural alterations that may be the effects of in utero programming, epigenetic factors or genetic predisposition.
Collapse
Affiliation(s)
- Sarah Osborne
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Alessandra Biaggi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Katie Hazelgrove
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Andrea Du Preez
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RX, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Vaheshta Sethna
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Susan Conroy
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Susan Pawlby
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London SE5 9RT, UK.
| |
Collapse
|
27
|
Mondelli V, Cattaneo A, Nikkheslat N, Souza L, Walsh A, Zajkowska Z, Zonca V, Marizzoni M, Fisher HL, Kohrt BA, Kieling C, Di Meglio P. Exploring the role of immune pathways in the risk and development of depression in adolescence: Research protocol of the IDEA-FLAME study. Brain Behav Immun Health 2021; 18:100396. [PMID: 34927102 PMCID: PMC8648954 DOI: 10.1016/j.bbih.2021.100396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 10/29/2022] Open
Abstract
Extensive research suggests a role for the innate immune system in the pathogenesis of depression, but most of the studies are conducted in adult populations, in high-income countries and mainly focus on the study of inflammatory proteins alone, which provides only a limited understanding of the immune pathways involved in the development of depression. The IDEA-FLAME study aims to identify immune phenotypes underlying increased risk of developing depression in adolescence in a middle-income country. To this end, we will perform deep-immunophenotyping of peripheral blood mononuclear cells and RNA genome-wide gene expression analyses in a longitudinal cohort of Brazilian adolescents stratified for depression risk. The project will involve the 3-year follow-up of an already recruited cohort of 150 Brazilian adolescents selected for risk/presence of depression on the basis of a composite risk score we developed using sociodemographic characteristics (50 adolescents with low-risk and 50 with high-risk of developing depression, and 50 adolescents with a current major depressive disorder). We will 1) test whether the risk group classification at baseline is associated with differences in immune cell frequency, phenotype and functional status, 2) test whether baseline immune markers (cytokines and immune cell markers) are associated with severity of depression at 3-year follow-up, and 3) identify changes in gene expression of immune pathways over the 3-year follow-up in adolescents with increased risk and presence of depression. Because of the exploratory nature of the study, the findings would need to be replicated in a separate and larger sample. Ultimately, this research will contribute to elucidating key immune therapeutic targets and inform the development of interventions to prevent onset of depression among adolescents.
Collapse
Affiliation(s)
- Valeria Mondelli
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Naghmeh Nikkheslat
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology, London, UK
| | - Laila Souza
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Annabel Walsh
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology, London, UK
| | - Zuzanna Zajkowska
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology, London, UK
| | - Valentina Zonca
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology, London, UK.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Helen L Fisher
- King's College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK.,ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Brandon A Kohrt
- Division of Global Mental Health, Department of Psychiatry, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Christian Kieling
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Paola Di Meglio
- St John's Institute of Dermatology, King's College London, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
28
|
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci 2021; 11:1633. [PMID: 34942936 PMCID: PMC8699555 DOI: 10.3390/brainsci11121633] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is one of the leading causes of disability, and, if left unmanaged, it can increase the risk for suicide. The evidence base on the determinants of depression is fragmented, which makes the interpretation of the results across studies difficult. The objective of this study is to conduct a thorough synthesis of the literature assessing the biological, psychological, and social determinants of depression in order to piece together the puzzle of the key factors that are related to this condition. Titles and abstracts published between 2017 and 2020 were identified in PubMed, as well as Medline, Scopus, and PsycInfo. Key words relating to biological, social, and psychological determinants as well as depression were applied to the databases, and the screening and data charting of the documents took place. We included 470 documents in this literature review. The findings showed that there are a plethora of risk and protective factors (relating to biological, psychological, and social determinants) that are related to depression; these determinants are interlinked and influence depression outcomes through a web of causation. In this paper, we describe and present the vast, fragmented, and complex literature related to this topic. This review may be used to guide practice, public health efforts, policy, and research related to mental health and, specifically, depression.
Collapse
Affiliation(s)
- Olivia Remes
- Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK
| | | | - Peter Templeton
- IfM Engage Limited, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK;
- The William Templeton Foundation for Young People’s Mental Health (YPMH), Cambridge CB2 0AH, UK
| |
Collapse
|
29
|
Zhao MZ, Song XS, Ma JS. Gene × environment interaction in major depressive disorder. World J Clin Cases 2021; 9:9368-9375. [PMID: 34877272 PMCID: PMC8610863 DOI: 10.12998/wjcc.v9.i31.9368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disorder, where multiple susceptibility genes interact with environmental factors, predisposing individuals to the development of the illness. In this article, we reviewed different gene × environment interaction (G×E) studies shifting from a candidate gene to a genome-wide approach. Among environmental factors, childhood adversities and stressful life events have been suggested to exert crucial impacts on MDD. Importantly, the diathesis-stress conceptualization of G×E has been challenged by the differential susceptibility theory. Finally, we summarized several limitations of G×E studies and suggested how future G×E studies might reveal complex interactions between genes and environments in MDD.
Collapse
Affiliation(s)
- Ming-Zhe Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu-Sheng Song
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Jing-Song Ma
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
30
|
Lopizzo N, Marizzoni M, Begni V, Mazzelli M, Provasi S, Borruso L, Riva MA, Cattaneo A. Social isolation in adolescence and long-term changes in the gut microbiota composition and in the hippocampal inflammation: Implications for psychiatric disorders - Dirk Hellhammer Award Paper 2021. Psychoneuroendocrinology 2021; 133:105416. [PMID: 34593267 DOI: 10.1016/j.psyneuen.2021.105416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Exposure to early adverse experiences induces persistent changes in physiological, emotional and behavioural functions predisposing the individual to an enhanced vulnerability to develop different disorders during lifespan. The adverse outcomes depend upon the timing of the stressful experiences, and in this contest, adolescence represents a key sensitive period for brain development. Among the biological systems involved, gut microbiota has recently been proposed to act on the interplay between the stress response, brain functions and immune system, through the gut-brain axis communication. In the current study we aimed to evaluate, in a preclinical model, changes over time in the microbiota community structure in physiological condition and in response to stress during adolescence. We also aimed to correlate the microbiota composition to the inflammatory status in brain. We used the preclinical model of social deprivation in rats during adolescence, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We collected fecal samples at different post-natal days to investigate the short- and long-lasting effects of social isolation on gut microbiota composition and we collected brain areas (dorsal and ventral hippocampus) samples at killing to measure a panel of inflammatory and microglia activation markers. 16 S metataxonomic sequencing analysis revealed that microbial changes were influenced by age in both isolated and controls rats, regardless of sex, whereas social isolation impacted the microbial composition in a sex-dependent manner. A multivariate analysis showed that social isolation induced short-term gut microbiota alterations in females but not in males. We also identified several stress-related genera associated with social isolation condition. In brain areas we found a specific inflammatory pattern, in dorsal and ventral hippocampus, that significantly correlated with gut microbiota composition. Overall, in this study we reported a novel sex-specific association between gut microbiota composition and inflammatory response related to social isolation paradigm during adolescence, suggesting that stressful experiences during this sensitive period could have a long-lasting impact on the development of different biological systems that could in turn influence the vulnerability to develop mental disorders later in life.
Collapse
Affiliation(s)
- Nicola Lopizzo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Stefania Provasi
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, piazza Università 5, 39100 Bolzano, Italy
| | - Marco Andrea Riva
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
31
|
Early life and adult stress promote sex dependent changes in hypothalamic miRNAs and environmental enrichment prevents stress-induced miRNA and gene expression changes in rats. BMC Genomics 2021; 22:701. [PMID: 34583641 PMCID: PMC8480023 DOI: 10.1186/s12864-021-08003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothalamus plays a key role in the stress response. While early life stress (ELS) increases susceptibility to psychiatric disorders including major depressive disorder (MDD), acute stress during adulthood can also precipitate MDD after ELS. AIM Here, we tested the expression of miRNAs following ELS and susceptibility to depression-like behavior and whether sex or acute stress exacerbates this response. We also tested whether environmental enrichment (Enr) promotes early life and adult behavioral stress resilience and its effect on hypothalamic miRNA and gene expression. Following rat maternal separation (MS) as an ELS model, Enr from weaning through adulthood, and restraint (RS) as acute adult stress, we tested both animal behavior and miRNA expression in the hypothalamus. Target genes and their enrichment and ontology were analyzed using bioinformatic tools. Target gene expression changes were tested using qPCR, and miRNA promoter methylation was studied using methylated-DNA immunoprecipitation qPCR. RESULTS MS, Enr, RS, and sex altered hypothalamic miRNAs, including several previously reported in MS literature: miRs-29, - 124, - 132, - 144, - 504. Sex had a significant effect on the greatest number of miRNAs. Also, Enr reversed downregulation of miR-29b-1-5p and -301b-3p in MS. qPCR showed that MAPK6 and MMP19, targets of miR-301b-3p, were upregulated in MS and reversed by Enr. Additionally, miR-219a was hypermethylated in MS coinciding with decreased miR-219a expression. CONCLUSIONS This study found that sex plays a critical role in the hypothalamic miRNA response to both ELS and acute stress, with males expressing greater changes following postnatal stress. Moreover, enrichment significantly altered behavior as well as hypothalamic miRNA expression and their gene targets. Because of its role as the initiator of the autonomic stress response and connection to hedonic and motivational behavior, the hypothalamic miRNA landscape may significantly alter both the short and long-term behavioral response to stress.
Collapse
|
32
|
Snijders GJLJ, Sneeboer MAM, Fernández-Andreu A, Udine E, Boks MP, Ormel PR, van Berlekom AB, van Mierlo HC, Bӧttcher C, Priller J, Raj T, Hol EM, Kahn RS, de Witte LD. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry 2021; 26:3336-3349. [PMID: 33028963 DOI: 10.1038/s41380-020-00896-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Findings from epidemiological studies, biomarker measurements and animal experiments suggest a role for aberrant immune processes in the pathogenesis of major depressive disorder (MDD). Microglia, the resident immune cells of the brain, are likely to play a key role in these processes. Previous post-mortem studies reported conflicting findings regarding microglial activation and an in-depth profiling of those cells in MDD is lacking. The aim of this study was therefore to characterize the phenotype and function of microglia in MDD. We isolated microglia from post-mortem brain tissue of patients with MDD (n = 13-19) and control donors (n = 12-25). Using flow cytometry and quantitative Polymerase Chain Reaction (qPCR), we measured protein and mRNA levels of a panel of microglial markers across four different brain regions (medial frontal gyrus, superior temporal gyrus, thalamus, and subventricular zone). In MDD cases, we found a significant upregulation of CX3CR1 and TMEM119 mRNA expression and a downregulation of CD163 mRNA expression and CD14 protein expression across the four brain regions. Expression levels of microglial activation markers, such as HLA-DRA, IL6, and IL1β, as well as the inflammatory responses to lipopolysaccharide and dexamethasone were unchanged. Our findings suggest that microglia enhance homeostatic functions in MDD but are not immune activated.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Marjolein A M Sneeboer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Alba Fernández-Andreu
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Evan Udine
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Hans C van Mierlo
- Department of Psychiatry, St. Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3430, EM, Nieuwegein, The Netherlands
| | - Chotima Bӧttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.,DZNE and BIH, 10117, Berlin, Germany.,University of Edinburgh and UK DRI, Edinburgh, EH16 4SB, UK
| | - Towfique Raj
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Neuroimmunology, Netherlands Institute for Neuroscience, an institute of the royal academy of arts and sciences, 1105, BA, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Mental Illness Research Education Clinical, Centers of Excellence, VA, Mental Health, Veterans, Bronx, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Mental Illness Research Education Clinical, Centers of Excellence, VA, Mental Health, Veterans, Bronx, NY, USA
| |
Collapse
|
33
|
Childhood maltreatment correlates with higher concentration of transforming growth factor beta (TGF-β) in adult patients with major depressive disorder. Psychiatry Res 2021; 301:113987. [PMID: 34023675 DOI: 10.1016/j.psychres.2021.113987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-β), which has a role as a regulatory cytokine, has not been widely investigated in patients with major depressive disorder (MDD) who experienced childhood trauma. The aim of our study was to investigate the differences in circulating TGF-β levels between the patients with major depressive disorder (MDD) with and without child maltreatment (CM) history, and to compare them to the corresponding control subjects' groups (with or without CM). Blood samples were obtained from 55 patients, fulfilling DSM-IV-R criteria for a current MDD episode without psychotic symptoms, and 45 healthy controls, matched for age and gender. Participants were administered the Childhood Trauma Questionnaire (CTQ). Serum TGF-β concentration was determined by enzyme-linked immunosorbent assay. The concentration of TGF-β was significantly higher in patients with MDD with CM history, compared to MDD patients with no CM, as well as both control groups. Furthermore, we have shown that the combined effect of CM history and MDD affected TGF-β levels in adulthood, which was not observed in the control group with CM. These results indicate that MDD patients with the experience of CM have altered immune-regulatory response, and they may constitute a specific subtype within this heterogenic disorder (ecophenotype).
Collapse
|
34
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
35
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
36
|
Creutzberg KC, Sanson A, Viola TW, Marchisella F, Begni V, Grassi-Oliveira R, Riva MA. Long-lasting effects of prenatal stress on HPA axis and inflammation: A systematic review and multilevel meta-analysis in rodent studies. Neurosci Biobehav Rev 2021; 127:270-283. [PMID: 33951412 DOI: 10.1016/j.neubiorev.2021.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
Exposure to prenatal stress (PNS) can lead to long-lasting neurobiological and behavioral consequences for the offspring, which may enhance the susceptibility for mental disorders. The hypothalamus-pituitary-adrenal (HPA) axis and the immune system are two major factors involved in the stress response. Here, we performed a systematic review and meta-analysis of rodent studies that investigated the effects of PNS exposure on the HPA axis and inflammatory cytokines in adult offspring. Our analysis shows that animals exposed to PNS display a consistent increase in peripheral corticosterone (CORT) levels and central corticotrophin-releasing hormone (CRH), while decreased levels of its receptor 2 (CRHR2). Meta-regression revealed that sex and duration of PNS protocol are covariates that moderate these results. There was no significant effect of PNS in glucocorticoid receptor (GR), CRH receptor 1 (CRHR1), pro- and anti-inflammatory cytokines. Our findings suggest that PNS exposure elicits long-lasting effects on the HPA axis function, providing an important tool to investigate in preclinical settings key pathological aspects related to early-life stress exposure. Furthermore, researchers should be aware of the mixed outcomes of PNS on inflammatory markers in the adult brain.
Collapse
Affiliation(s)
- Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Alice Sanson
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900, Porto Alegre, RS, Brazil.
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900, Porto Alegre, RS, Brazil.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
37
|
Emerging role of microRNAs in major depressive disorder and its implication on diagnosis and therapeutic response. J Affect Disord 2021; 286:80-86. [PMID: 33714174 DOI: 10.1016/j.jad.2021.02.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/01/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a serious and common psychiatric disorder with a high prevalence in the population. Although great advances have been made, its pathogenesis is still unclear and a validated biomarker for diagnosis or therapeutic response remains unidentified. This review aims at summarizing the functional role of miRNAs in MDD pathogenesis and their potential as biomarkers for MDD diagnosis and antidepressant response. METHODS We performed a bibliographic research on the main databases (PubMed, Google Scholar and Web of Science) using the terms "microRNAs", "major depressive disorder", "synaptic plasticity", "biomarker", "antidepressant treatment", in order to find studies that propose the role of microRNAs in MDD pathogenesis and their potential as biomarkers for MDD diagnosis and antidepressant response. RESULTS microRNAs (miRNAs), a class of small noncoding RNAs, act as key regulators of synaptic plasticity in MDD pathogenesis. Growing researches provide the evidence for peripheral miRNAs as potential biomarkers for MDD diagnosis and antidepressant response. These results suggest that targeting miRNAs directly could be therapeutically beneficial for MDD and miRNAs are potential biomarkers of MDD and its treatment. LIMITATIONS The role of miRNAs in MDD pathogenesis needs further investigation. Whether miRNAs in peripheral tissues truly represent brain-derived miRNAs is still unclear at the present time. Moreover, only a few blood miRNAs alterations are consistent across studies. CONCLUSIONS Overall, miRNAs act key regulators of synaptic plasticity in MDD pathogenesis and hold significant promise as biomarkers or therapeutic targets for MDD, but further research is still needed.
Collapse
|
38
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
39
|
Canonical TGF-β signaling regulates the relationship between prenatal maternal depression and amygdala development in early life. Transl Psychiatry 2021; 11:170. [PMID: 33723212 PMCID: PMC7961018 DOI: 10.1038/s41398-021-01292-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
Canonical transforming growth factor-beta (TGF-β) signaling exerts neuroprotection and influences memory formation and synaptic plasticity. It has been considered as a new target for the prevention and treatment of depression. This study aimed to examine its modulatory role in linking prenatal maternal depressive symptoms and the amygdala volumes from birth to 6 years of age. We included mother-child dyads (birth: n = 161; 4.5 years: n = 131; 6 years: n = 162) and acquired structural brain images of children at these three time points. Perinatal maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) questionnaire to mothers at 26 weeks of pregnancy and 3 months postpartum. Our findings showed that the genetic variants of TGF-β type I transmembrane receptor (TGF-βRI) modulated the association between prenatal maternal depressive symptoms and the amygdala volume consistently from birth to 6 years of age despite a trend of significance at 4.5 years of age. Children with a lower gene expression score (GES) of TGF-βRI exhibited larger amygdala volumes in relation to greater prenatal maternal depressive symptoms. Moreover, children with a lower GES of the TGF-β type II transmembrane receptor (TGF-βRII), Smad4, and Smad7 showed larger amygdala volumes at 6 years of age in relation to greater prenatal maternal depressive symptoms. These findings support the involvement of the canonical TGF-β signaling pathway in the brain development of children in the context of in utero maternal environment. Such involvement is age-dependent.
Collapse
|
40
|
Lopizzo N, Mazzelli M, Zonca V, Begni V, D'Aprile I, Cattane N, Pariante CM, Riva MA, Cattaneo A. Alterations in 'inflammatory' pathways in the rat prefrontal cortex as early biological predictors of the long-term negative consequences of exposure to stress early in life. Psychoneuroendocrinology 2021; 124:104794. [PMID: 33429258 DOI: 10.1016/j.psyneuen.2020.104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
Early life stress, especially when experienced during the first period of life, affects the brain developmental trajectories leading to an enhanced vulnerability for stress-related psychiatric disorders later in life. Although both clinical and preclinical studies clearly support this association, the biological pathways deregulated by such exposure, and the effects in shaping the neurodevelopmental trajectories, have so far been poorly investigated. By using the prenatal stress (PNS) model, a well-established rat model of early life stress, we performed transcriptomic analyses in the prefrontal cortex of rats exposed or not to PNS and sacrificed at different postnatal days (PNDs 21, 40, 62). We first investigated the long-lasting mechanisms and pathways affected in the PFC. We have decided to focus on the prefrontal cortex because we have previously shown that this brain region is highly sensitive to PNS exposure. We found that adult animals exposed to PNS show alterations in 389 genes, mainly involved in stress and inflammatory signalling. We then wanted to establish whether PNS exposure could also affect the neurodevelopmental trajectories in order to identify the most critical temporal window. We found that PNS rats show the most significant changes during adolescence (between PND 40 versus PND 21), with alterations of several pathways related to stress, inflammation and metabolism, which were maintained until adulthood.
Collapse
Affiliation(s)
- Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
41
|
Wang Y, Chen ZP, Hu H, Lei J, Zhou Z, Yao B, Chen L, Liang G, Zhan S, Zhu X, Jin F, Ma R, Zhang J, Liang H, Xing M, Chen XR, Zhang CY, Zhu JN, Chen X. Sperm microRNAs confer depression susceptibility to offspring. SCIENCE ADVANCES 2021; 7:7/7/eabd7605. [PMID: 33568480 PMCID: PMC7875527 DOI: 10.1126/sciadv.abd7605] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/22/2020] [Indexed: 05/02/2023]
Abstract
Evidence that offspring traits can be shaped by parental life experiences in an epigenetically inherited manner paves a way for understanding the etiology of depression. Here, we show that F1 offspring born to F0 males of depression-like model are susceptible to depression-like symptoms at the molecular, neuronal, and behavioral levels. Sperm small RNAs, and microRNAs (miRNAs) in particular, exhibit distinct expression profiles in F0 males of depression-like model and recapitulate paternal depressive-like phenotypes in F1 offspring. Neutralization of the abnormal miRNAs in zygotes by antisense strands rescues the acquired depressive-like phenotypes in F1 offspring born to F0 males of depression-like model. Mechanistically, sperm miRNAs reshape early embryonic transcriptional profiles in the core neuronal circuits toward depression-like phenotypes. Overall, the findings reveal a causal role of sperm miRNAs in the inheritance of depression and provide insight into the mechanism underlying susceptibility to depression.
Collapse
Affiliation(s)
- Yanbo Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhang-Peng Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huanhuan Hu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jieqiong Lei
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, 305 Zhongshan East Road, Nanjing 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, 305 Zhongshan East Road, Nanjing 210002, China
| | - Gaoli Liang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shoubin Zhan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiaoju Zhu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Fangfang Jin
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, 305 Zhongshan East Road, Nanjing 210002, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongwei Liang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ming Xing
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Rui Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Jing-Ning Zhu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
42
|
Gu S, Cui F, Yin J, Fang C, Liu L. Altered mRNA expression levels of autophagy- and apoptosis-related genes in the FOXO pathway in schizophrenia patients treated with olanzapine. Neurosci Lett 2021; 746:135669. [PMID: 33485989 DOI: 10.1016/j.neulet.2021.135669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
This study attempted to analyze the alterations in the mRNA expression levels of autophagy- and apoptosis-related genes in the forkhead box transcription factor O (FOXO) pathway in schizophrenia patients before and after olanzapine treatment. For a total of 32 acute schizophrenic inpatients, clinical data with PANSS were obtained before and after four weeks of olanzapine treatment (mean dose 14.24 ± 4.35 mg/d) along with data from 32 healthy volunteers. The mRNA expression levels of the FOXO pathway genes were measured by real-time qPCR after fasting venous blood was collected and analyzed. The mRNA expression levels of FOXO1, FOXO3A, FASLG, and BCL2L11 were observed to be significantly decreased in acute schizophrenia patients. After four weeks of olanzapine treatment, the expression levels of the first three genes were further reduced, but BCL2L11 expression levels were not significantly changed. The pairwise correlations between the mRNA expression level of FASLG and those of the other three genes were not observed in acute schizophrenia patients, while these relationships were observed in healthy controls. After olanzapine treatment, the FASLG mRNA expression level was restored and exhibited a pairwise correlation with the FOXO3A and BCL2L11 mRNA expression levels but not with the FOXO1 mRNA expression level, and FASLG mRNA expression was also correlated with the duration of the disease. The statuses and correlations of the mRNA expression levels of FOXO pathway-related genes were altered in schizophrenia patients and were affected by olanzapine treatment and the duration of the disease.
Collapse
Affiliation(s)
- Shuguang Gu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Fengwei Cui
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Jiajun Yin
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
43
|
Kose M, Pariante CM, Dazzan P, Mondelli V. The Role of Peripheral Inflammation in Clinical Outcome and Brain Imaging Abnormalities in Psychosis: A Systematic Review. Front Psychiatry 2021; 12:612471. [PMID: 33679475 PMCID: PMC7933584 DOI: 10.3389/fpsyt.2021.612471] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Promising research investigating the association between inflammatory biomarkers and response to antipsychotic and/or adjunctive therapy, observed by improvement in psychiatric assessment, is emerging. Increased inflammation has been suggested to contribute to higher severity of symptoms/treatment resistance through the effects that this has on brain structure and function. The present systematic review aims to clarify the potential role of peripheral inflammatory markers as predictors of clinical outcomes and their association with neuroimaging markers in patients with psychosis. Systematic searches of the literature using the databases PsychInfo, OVID Medline, and Embase were conducted to collate studies investigating the association of inflammatory biomarkers with clinical outcome in patients with psychotic disorders and studies examining the relationships between inflammatory biomarkers and neuroimaging data. Seventeen studies on predictors of clinical outcome and 14 on associations between neuroimaging data and inflammatory biomarkers in psychosis were identified, and risk of bias was assessed using the Newcastle-Ottawa Scale (NOS). The main inflammatory markers associated with clinical outcome in psychosis were interleukin (IL)-6, IL-10, and C-reactive protein (CRP). High levels of CRP and IL-6 were associated with worse clinical outcome and deterioration of symptoms over time; in contrast, increased levels of IL-10 were associated with greater symptoms improvement. Smaller hippocampal volume and reduced cortical thickness were the main neuroimaging markers associated with increased peripheral inflammation. The heterogeneity across the studies (i.e., treatments strategies, duration) suggests that potential prediction power of inflammatory biomarkers could partially depend on the methodologies, supported by the overall NOS ratings of the studies. Future studies may need to consider whether a combination of these inflammatory and neuroimaging markers could further improve our ability of predicting clinical outcome in patients with psychosis.
Collapse
Affiliation(s)
- Melisa Kose
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Valeria Mondelli
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
44
|
Spijker S, Koskinen MK, Riga D. Incubation of depression: ECM assembly and parvalbumin interneurons after stress. Neurosci Biobehav Rev 2020; 118:65-79. [DOI: 10.1016/j.neubiorev.2020.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
45
|
Li M, Liu S, D'Arcy C, Gao T, Meng X. Interactions of childhood maltreatment and genetic variations in adult depression: A systematic review. J Affect Disord 2020; 276:119-136. [PMID: 32697690 DOI: 10.1016/j.jad.2020.06.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
Background Childhood maltreatment (CM) significantly increases the risk of adulthood psychopathology. Interplay between susceptible genetic variations and CM contributes to the occurrence of depression. This review aims to systematically synthesize the relationships between genetic variations and depression among those exposed to CM. Methods Electronic databases and gray literature to March 31st, 2020 were searched for literature on the topic of depression and CM limited to English-language. Data extraction and quality assessment of key study characteristics were conducted. Qualitative approaches were used to synthesize the findings. Results The initial search resulted in 9185 articles. A total of 29 articles that met the eligibility criteria were included in this review. High heterogeneity was identified regarding the study sample ages, candidate genes and SNPs, the categorization of CM and depression. The findings of this review include several frequently studied genes (5-HTTLPR, CRHR1, BDNF, CREB1, FKBP5, IL1B, NTRK2, and OXTR). Both consistent and inconsistent findings were identified. Overall, the interplay of CM with CREB1-rs2253206 significantly increased the risk of depression. In contrast, CRHR1-TCA haplotype (rs7209436, rs4792887, rs110402), CRHR1-rs17689882, and CRHR1-rs110402 showed protective effects on depression and depressive symptoms among individuals with a history of maltreatment. Limitations Due to clinical and methodological diversity of the studies a qualitative approach was used. Conclusion This review firstly provides a comprehensive overview of the interplay between CM and genetic variations in adult depression. Future etiological explorations should focus on the above-identified genes for down-stream exploration and address the issues and challenges of gene by environment studies.
Collapse
Affiliation(s)
- Muzi Li
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada
| | - Sibei Liu
- Mitacs Globalink Internship, Canada; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Carl D'Arcy
- School of Public Health, University of Saskatchewan, Saskatoon, SK Canada; Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK Canada
| | - Tingting Gao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiangfei Meng
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada.
| |
Collapse
|
46
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Musaelyan K, Yildizoglu S, Bozeman J, Du Preez A, Egeland M, Zunszain PA, Pariante CM, Fernandes C, Thuret S. Chronic stress induces significant gene expression changes in the prefrontal cortex alongside alterations in adult hippocampal neurogenesis. Brain Commun 2020; 2:fcaa153. [PMID: 33543135 PMCID: PMC7850288 DOI: 10.1093/braincomms/fcaa153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is involved in stress-related disorders such as depression, posttraumatic stress disorders, as well as in the mechanism of antidepressant effects. However, the molecular mechanisms involved in these associations remain to be fully explored. In this study, unpredictable chronic mild stress in mice resulted in a deficit in neuronal dendritic tree development and neuroblast migration in the hippocampal neurogenic niche. To investigate molecular pathways underlying neurogenesis alteration, genome-wide gene expression changes were assessed in the prefrontal cortex, hippocampus and the hypothalamus alongside neurogenesis changes. Cluster analysis showed that the transcriptomic signature of chronic stress is much more prominent in the prefrontal cortex compared to the hippocampus and the hypothalamus. Pathway analyses suggested huntingtin, leptin, myelin regulatory factor, methyl-CpG binding protein and brain-derived neurotrophic factor as the top predicted upstream regulators of transcriptomic changes in the prefrontal cortex. Involvement of the satiety regulating pathways (leptin) was corroborated by behavioural data showing increased food reward motivation in stressed mice. Behavioural and gene expression data also suggested circadian rhythm disruption and activation of circadian clock genes such as Period 2. Interestingly, most of these pathways have been previously shown to be involved in the regulation of adult hippocampal neurogenesis. It is possible that activation of these pathways in the prefrontal cortex by chronic stress indirectly affects neuronal differentiation and migration in the hippocampal neurogenic niche via reciprocal connections between the two brain areas.
Collapse
Affiliation(s)
- Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Selin Yildizoglu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - James Bozeman
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Martin Egeland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| |
Collapse
|
48
|
Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl Psychiatry 2020; 10:310. [PMID: 32917850 PMCID: PMC7486938 DOI: 10.1038/s41398-020-00992-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Stress-induced disturbances of brain homeostasis and neuroinflammation have been implicated in the pathophysiology of mood disorders. In major depressive disorder (MDD), elevated levels of proinflammatory cytokines and chemokines can be found in peripheral blood, but very little is known about the changes that occur directly in the brain. Microglia are the primary immune effector cells of the central nervous system and exquisitely sensitive to changes in the brain microenvironment. Here, we performed the first single-cell analysis of microglia from four different post-mortem brain regions (frontal lobe, temporal lobe, thalamus, and subventricular zone) of medicated individuals with MDD compared to controls. We found no evidence for the induction of inflammation-associated molecules, such as CD11b, CD45, CCL2, IL-1β, IL-6, TNF, MIP-1β (CCL4), IL-10, and even decreased expression of HLA-DR and CD68 in microglia from MDD cases. In contrast, we detected increased levels of the homeostatic proteins P2Y12 receptor, TMEM119 and CCR5 (CD195) in microglia from all brain regions of individuals with MDD. We also identified enrichment of non-inflammatory CD206hi macrophages in the brains of MDD cases. In sum, our results suggest enhanced homeostatic functions of microglia in MDD.
Collapse
|
49
|
Cattaneo A, Cattane N, Scassellati C, D'Aprile I, Riva MA, Pariante CM. Convergent Functional Genomics approach to prioritize molecular targets of risk in early life stress-related psychiatric disorders. Brain Behav Immun Health 2020; 8:100120. [PMID: 34589878 PMCID: PMC8474593 DOI: 10.1016/j.bbih.2020.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
There is an overwhelming evidence proving that mental disorders are not the product of a single risk factor - i.e. genetic variants or environmental factors, including exposure to maternal perinatal mental health problems or childhood adverse events - rather the product of a trajectory of cumulative and multifactorial insults occurring during development, such as exposures during the foetal life to adverse mental condition in the mother, or exposures to adverse traumatic events during childhood or adolescence. In this review, we aim to highlight the potential utility of a Convergent Functional Genomics (CFG) approach to clarify the complex brain-relevant molecular mechanisms and alterations induced by early life stress (ELS). We describe different studies based on CFG in psychiatry and neuroscience, and we show how this 'hypothesis-free' tool can prioritize a stringent number of genes modulated by ELS, that can be tested as potential candidates for Gene x Environment (GxE) interaction studies. We discuss the results obtained by using a CFG approach identifying FoxO1 as a gene where genetic variability can mediate the effect of an adverse environment on the development of depression. Moreover, we also demonstrate that FoxO1 has a functional relevance in stress-induced reduction of neurogenesis, and can be a potential target for the prevention or treatment of stress-related psychiatric disorders. Overall, we suggest that CFG approach could include trans-species and tissues data integration and we also propose the application of CFG to examine in depth and to prioritize top candidate genes that are affected by ELS across lifespan and generations.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Carmine Maria Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| |
Collapse
|
50
|
Cattaneo A, Ferrari C, Turner L, Mariani N, Enache D, Hastings C, Kose M, Lombardo G, McLaughlin AP, Nettis MA, Nikkheslat N, Sforzini L, Worrell C, Zajkowska Z, Cattane N, Lopizzo N, Mazzelli M, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, de Boer P, Jones D, Drevets WC, Mondelli V, Bullmore ET, Pariante CM. Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study. Transl Psychiatry 2020; 10:232. [PMID: 32699209 PMCID: PMC7376244 DOI: 10.1038/s41398-020-00874-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Clarissa Ferrari
- Statistical Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Lorinda Turner
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Daniela Enache
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Caitlin Hastings
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Melisa Kose
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Giulia Lombardo
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Anna P McLaughlin
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Maria A Nettis
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Naghmeh Nikkheslat
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Luca Sforzini
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Courtney Worrell
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Zuzanna Zajkowska
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Nadia Cattane
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Monica Mazzelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Peter de Boer
- Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre, London, W1G 0BG, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Valeria Mondelli
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, London, UK.
| |
Collapse
|