1
|
Libedinsky I, Helwegen K, Boonstra J, Guerrero Simón L, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Polyconnectomic scoring of functional connectivity patterns across eight neuropsychiatric and three neurodegenerative disorders. Biol Psychiatry 2024:S0006-3223(24)01665-2. [PMID: 39424166 DOI: 10.1016/j.biopsych.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Neuropsychiatric and neurodegenerative disorders involve diverse changes in brain functional connectivity. As an alternative to approaches searching for specific mosaic patterns of affected connections and networks, we used polyconnectomic scoring to quantify disorder-related whole-brain connectivity signatures into interpretable, personalized scores. METHODS The polyconnectomic score (PCS) measures the extent to which an individual's functional connectivity (FC) mirrors the whole-brain circuitry characteristics of a trait. We computed PCS for eight neuropsychiatric conditions (attention-deficit/hyperactivity disorder, anxiety-related disorders, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) and three neurodegenerative conditions (Alzheimer's disease, frontotemporal dementia, and Parkinson's disease) across 22 datasets with resting-state functional MRI of 10,667 individuals (5,325 patients, 5,342 controls). We further examined PCS in 26,673 individuals from the population-based UK Biobank cohort. RESULTS PCS was consistently higher in out-of-sample patients across six of the eight neuropsychiatric and across all three investigated neurodegenerative disorders ([min, max]: AUC = [0.55, 0.73], pFDR = [1.8 x 10-16, 4.5 x 10-2]). Individuals with elevated PCS levels for neuropsychiatric conditions exhibited higher neuroticism (pFDR < 9.7 x 10-5), lower cognitive performance (pFDR < 5.3 x 10-5), and lower general wellbeing (pFDR < 9.7 x 10-4). CONCLUSIONS Our findings reveal generalizable whole-brain connectivity alterations in brain disorders. PCS effectively aggregates disorder-related signatures across the entire brain into an interpretable, subject-specific metric. A toolbox is provided for PCS computation.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jackson Boonstra
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Greve AN, Hemager N, Mortensen EL, Gantriis DL, Burton BK, Ellersgaard D, Plessen KJ, Thorup AAE, Jepsen JRM, Nordentoft M, Mors O, Simonsen A. Comparing cognition in parents with schizophrenia or bipolar disorder and their 7-year-old offspring. Psychiatry Res 2024; 340:116112. [PMID: 39121759 DOI: 10.1016/j.psychres.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Individuals with schizophrenia (SZ) or bipolar disorder (BP) display cognitive impairments, while their first-degree relatives perform at an intermediate level between the patient groups and controls. However, the environmental impact of having an ill relative likely varies with the type of kinship and some studies suggest that offspring may be particularly disadvantaged. The present study aimed to investigate the relationship between parent and child cognition in parents with SZ or BD and their 7-year-old offspring. A population-based cohort of 522 children (parental SZ, n = 202; parental BP, n = 120; controls, n = 200) and their parents underwent the same assessment battery covering a wide range of cognitive functions. We used Bayesian statistics to model performance. We found that performance on non-verbal tests was better in offspring than parents with SZ or BP, using the controls as reference. However, for verbal tests, there was little to no evidence for this pattern or even some evidence for the opposite in the BP group: relatively better performance in parents than offspring. The findings suggest that the offspring of parents with SZ or BP may be particularly disadvantaged in verbal abilities. Future studies will show whether this pattern persists throughout development.
Collapse
Affiliation(s)
- Aja Neergaard Greve
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark.
| | - Nicoline Hemager
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Copenhagen Research Center for Mental Health- CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Denmark; Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Denmark
| | - Ditte Lou Gantriis
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| | - Birgitte Klee Burton
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ditte Ellersgaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Copenhagen Research Center for Mental Health- CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Denmark
| | - Kerstin J Plessen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Hospital Lausanne, Switzerland
| | - Anne A E Thorup
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; University of Copenhagen, Institute for Clinical Medicine, Faculty of Health, Denmark
| | - Jens Richardt Møllegaard Jepsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Copenhagen Research Center for Mental Health- CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Denmark; Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Hospital Centre Glostrup, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark; Copenhagen Research Center for Mental Health- CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Denmark; University of Copenhagen, Institute for Clinical Medicine, Faculty of Health, Denmark
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| | - Arndis Simonsen
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Karadag N, Hagen E, Shadrin AA, van der Meer D, O'Connell KS, Rahman Z, Kutrolli G, Parker N, Bahrami S, Fominykh V, Heuser K, Taubøll E, Ueland T, Steen NE, Djurovic S, Dale AM, Frei O, Andreassen OA, Smeland OB. Unraveling the shared genetics of common epilepsies and general cognitive ability. Seizure 2024; 122:105-112. [PMID: 39388989 DOI: 10.1016/j.seizure.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE Cognitive impairment is prevalent among individuals with epilepsy, and increasing evidence indicates that genetic factors can underlie this relationship. However, the extent to which epilepsy subtypes differ in their genetic relationship with cognitive function, and information about the specific genetic variants involved remain largely unknown. METHODS We investigated the genetic relationship between epilepsies and general cognitive ability (COG) using complementary statistical tools, including linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR). We analyzed genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), as well as specific subtypes. We functionally annotated the identified loci using several biological resources and validated the results in independent samples. RESULTS Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for MiXeR analysis. We quantified extensive genetic overlap between COG and epilepsy types, but with varying negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 3.62 × 10-7; 'all epilepsy': p = 2.58 × 10-3). CONCLUSION Our study further dissects the substantial genetic basis shared between epilepsies and COG and identifies novel shared loci. An improved understanding of the genetic relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Naz Karadag
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Espen Hagen
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Dennis van der Meer
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Maastricht University, Maastricht, Netherlands.
| | | | - Zillur Rahman
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Nadine Parker
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Shahram Bahrami
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Vera Fominykh
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway.
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Nils Eiel Steen
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Anders M Dale
- Department of Cognitive Science, University of California, San Diego, United States; Multimodal Imaging Laboratory, University of California, San Diego, United States; Department of Psychiatry, University of California, San Diego, United States; Department of Neurosciences, University of California, San Diego, United States.
| | - Oleksandr Frei
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Ole A Andreassen
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Olav B Smeland
- Centre for Precision Psychiatry, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Guo J, Yang P, Wang JH, Tang SH, Han JZ, Yao S, Yu K, Liu CC, Dong SS, Zhang K, Duan YY, Yang TL, Guo Y. Blood metabolites, neurocognition and psychiatric disorders: a Mendelian randomization analysis to investigate causal pathways. Transl Psychiatry 2024; 14:376. [PMID: 39285197 PMCID: PMC11405529 DOI: 10.1038/s41398-024-03095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites, which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain unclear. METHODS To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using genetic variants associated with 317 human blood metabolites (nmax = 215,551), g-Factor (an integrated index of multiple neurocognitive tests with nmax = 332,050), and 10 different psychiatric disorders (n = 9,725 to 807,553) from the large-scale genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder. RESULTS MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to 0.049; P = 1.15 × 10-6). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval, -0.041 to -0.015; P = 1.31 × 10-5). There was no evidence of associations between genetically proxied g-Factor and metabolites. Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided consistent findings. CONCLUSION Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight into interventions at the metabolic level for risk of neurocognitive and related disorders.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ping Yang
- Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, P. R. China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi-Hao Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ji-Zhou Han
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Cong-Cong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
5
|
Romanovsky E, Choudhary A, Peles D, Abu-Akel A, Stern S. Uncovering convergence and divergence between autism and schizophrenia using genomic tools and patients' neurons. Mol Psychiatry 2024:10.1038/s41380-024-02740-0. [PMID: 39237719 DOI: 10.1038/s41380-024-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eva Romanovsky
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
7
|
Wootton O, Shadrin AA, Bjella T, Smeland OB, van der Meer D, Frei O, O'Connell KS, Ueland T, Andreassen OA, Stein DJ, Dalvie S. Genomic insights into the shared and distinct genetic architecture of cognitive function and schizophrenia. Sci Rep 2024; 14:15356. [PMID: 38961113 PMCID: PMC11222449 DOI: 10.1038/s41598-024-66085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment is a major determinant of functional outcomes in schizophrenia, however, understanding of the biological mechanisms underpinning cognitive dysfunction in the disorder remains incomplete. Here, we apply Genomic Structural Equation Modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank. We identified three broad factors that underly the genetic correlations between the cognitive tests. We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). Global genetic correlations showed a significant moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found substantial polygenic overlap between each cognitive factor and schizophrenia and biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we show that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptoms in the Norwegian Thematically Organized Psychosis cohort. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.
Collapse
Affiliation(s)
- Olivia Wootton
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Blindern, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Shareefa Dalvie
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Jonsson L, Hörbeck E, Primerano A, Song J, Karlsson R, Smedler E, Gordon-Smith K, Jones L, Craddock N, Jones I, Sullivan PF, Pålsson E, Di Florio A, Sparding T, Landén M. Association of Occupational Dysfunction and Hospital Admissions With Different Polygenic Profiles in Bipolar Disorder. Am J Psychiatry 2024; 181:620-629. [PMID: 38859703 DOI: 10.1176/appi.ajp.20230073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Many but not all persons with bipolar disorder require hospital care because of severe mood episodes. Likewise, some but not all patients experience long-term occupational dysfunction that extends beyond acute mood episodes. It is not known whether these dissimilar outcomes of bipolar disorder are driven by different polygenic profiles. Here, polygenic scores (PGSs) for major psychiatric disorders and educational attainment were assessed for associations with occupational functioning and psychiatric hospital admissions in bipolar disorder. METHODS A total of 4,782 patients with bipolar disorder and 2,963 control subjects were genotyped and linked to Swedish national registers. Longitudinal measures from at least 10 years of registry data were used to derive percentage of years without employment, percentage of years with long-term sick leave, and mean number of psychiatric hospital admissions per year. Ordinal regression was used to test associations between outcomes and PGSs for bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder (ADHD), and educational attainment. Replication analyses of hospital admissions were conducted with data from the Bipolar Disorder Research Network cohort (N=4,219). RESULTS Long-term sick leave and unemployment in bipolar disorder were significantly associated with PGSs for schizophrenia, ADHD, major depressive disorder, and educational attainment, but not with the PGS for bipolar disorder. By contrast, the number of hospital admissions per year was associated with higher PGSs for bipolar disorder and schizophrenia, but not with the other PGSs. CONCLUSIONS Bipolar disorder severity (indexed by hospital admissions) was associated with a different polygenic profile than long-term occupational dysfunction. These findings have clinical implications, suggesting that mitigating occupational dysfunction requires interventions other than those deployed to prevent mood episodes.
Collapse
Affiliation(s)
- Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Elin Hörbeck
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Amedeo Primerano
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Jie Song
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Robert Karlsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Erik Smedler
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Katherine Gordon-Smith
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Lisa Jones
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Nicholas Craddock
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Ian Jones
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Patrick F Sullivan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Arianna Di Florio
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Timea Sparding
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Jonsson, Hörbeck, Smedler, Pålsson, Sparding, Landén); National Centre for Mental Health, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, U.K. (Primerano, Craddock, I. Jones, Di Florio); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Song, Karlsson, Sullivan, Landén); Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (Song); Department of Psychological Medicine, University of Worcester, Worcester, U.K. (Gordon-Smith, L. Jones); Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill (Sullivan)
| |
Collapse
|
9
|
Karaglani M, Agorastos A, Panagopoulou M, Parlapani E, Athanasis P, Bitsios P, Tzitzikou K, Theodosiou T, Iliopoulos I, Bozikas VP, Chatzaki E. A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning. Transl Psychiatry 2024; 14:257. [PMID: 38886359 PMCID: PMC11183091 DOI: 10.1038/s41398-024-02946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Schizophrenia (SCZ) is a chronic, severe, and complex psychiatric disorder that affects all aspects of personal functioning. While SCZ has a very strong biological component, there are still no objective diagnostic tests. Lately, special attention has been given to epigenetic biomarkers in SCZ. In this study, we introduce a three-step, automated machine learning (AutoML)-based, data-driven, biomarker discovery pipeline approach, using genome-wide DNA methylation datasets and laboratory validation, to deliver a highly performing, blood-based epigenetic biosignature of diagnostic clinical value in SCZ. Publicly available blood methylomes from SCZ patients and healthy individuals were analyzed via AutoML, to identify SCZ-specific biomarkers. The methylation of the identified genes was then analyzed by targeted qMSP assays in blood gDNA of 30 first-episode drug-naïve SCZ patients and 30 healthy controls (CTRL). Finally, AutoML was used to produce an optimized disease-specific biosignature based on patient methylation data combined with demographics. AutoML identified a SCZ-specific set of novel gene methylation biomarkers including IGF2BP1, CENPI, and PSME4. Functional analysis investigated correlations with SCZ pathology. Methylation levels of IGF2BP1 and PSME4, but not CENPI were found to differ, IGF2BP1 being higher and PSME4 lower in the SCZ group as compared to the CTRL group. Additional AutoML classification analysis of our experimental patient data led to a five-feature biosignature including all three genes, as well as age and sex, that discriminated SCZ patients from healthy individuals [AUC 0.755 (0.636, 0.862) and average precision 0.758 (0.690, 0.825)]. In conclusion, this three-step pipeline enabled the discovery of three novel genes and an epigenetic biosignature bearing potential value as promising SCZ blood-based diagnostics.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Agorastos Agorastos
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Eleni Parlapani
- Ι. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56429, Thessaloniki, Greece
| | - Panagiotis Athanasis
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Panagiotis Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, GR-71500, Heraklion, Greece
| | - Konstantina Tzitzikou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- ABCureD P.C, GR-68131, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, GR-71003, Heraklion, Greece
| | - Vasilios-Panteleimon Bozikas
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece.
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece.
- ABCureD P.C, GR-68131, Alexandroupolis, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece.
| |
Collapse
|
10
|
Chen LG, Tubbs JD, Liu Z, Thach TQ, Sham PC. Mendelian randomization: causal inference leveraging genetic data. Psychol Med 2024; 54:1461-1474. [PMID: 38639006 DOI: 10.1017/s0033291724000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Mendelian randomization (MR) leverages genetic information to examine the causal relationship between phenotypes allowing for the presence of unmeasured confounders. MR has been widely applied to unresolved questions in epidemiology, making use of summary statistics from genome-wide association studies on an increasing number of human traits. However, an understanding of essential concepts is necessary for the appropriate application and interpretation of MR. This review aims to provide a non-technical overview of MR and demonstrate its relevance to psychiatric research. We begin with the origins of MR and the reasons for its recent expansion, followed by an overview of its statistical methodology. We then describe the limitations of MR, and how these are being addressed by recent methodological advances. We showcase the practical use of MR in psychiatry through three illustrative examples - the connection between cannabis use and psychosis, the link between intelligence and schizophrenia, and the search for modifiable risk factors for depression. The review concludes with a discussion of the prospects of MR, focusing on the integration of multi-omics data and its extension to delineating complex causal networks.
Collapse
Affiliation(s)
- Lane G Chen
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Justin D Tubbs
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zipeng Liu
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Thuan-Quoc Thach
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Karadag N, Hagen E, Shadrin AA, van der Meer D, O'Connell KS, Rahman Z, Kutrolli G, Parker N, Bahrami S, Fominykh V, Heuser K, Taubøll E, Steen NE, Djurovic S, Dale AM, Frei O, Andreassen OA, Smeland OB. Dissecting the Shared Genetic Architecture of Common Epilepsies With Cortical Brain Morphology. Neurol Genet 2024; 10:e200143. [PMID: 38817246 PMCID: PMC11139015 DOI: 10.1212/nxg.0000000000200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 06/01/2024]
Abstract
Background and Objectives Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.
Collapse
Affiliation(s)
- Naz Karadag
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Espen Hagen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Alexey A Shadrin
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Dennis van der Meer
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Kevin S O'Connell
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Zillur Rahman
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Gleda Kutrolli
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Nadine Parker
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Shahram Bahrami
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Vera Fominykh
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Kjell Heuser
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Erik Taubøll
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Nils Eiel Steen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Srdjan Djurovic
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Anders M Dale
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Oleksandr Frei
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Ole A Andreassen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Olav B Smeland
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| |
Collapse
|
12
|
Sun T, Chen G, Jiang W, Xu W, You L, Jiang C, Chen S, Wang D, Zheng X, Yuan Y. Distinguishing bipolar depression, bipolar mania, and major depressive disorder by gut microbial characteristics. Bipolar Disord 2024. [PMID: 38647010 DOI: 10.1111/bdi.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
14
|
Karadag N, Hagen E, Shadrin AA, van der Meer D, O’Connell KS, Rahman Z, Kutrolli G, Parker N, Bahrami S, Fominykh V, Heuser K, Taubøll E, Ueland T, Steen NE, Djurovic S, Dale AM, Frei O, Andreassen OA, Smeland OB. Unraveling the shared genetics of common epilepsies and general cognitive ability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304773. [PMID: 38585944 PMCID: PMC10996742 DOI: 10.1101/2024.03.25.24304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Naz Karadag
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Espen Hagen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Maastricht University, Maastricht, Netherlands
| | - Kevin S. O’Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Zillur Rahman
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- Department of Cognitive Science, University of California, San Diego, United States
- Multimodal Imaging Laboratory, University of California, San Diego, United States
- Department of Psychiatry, University of California, San Diego, United States
- Department of Neurosciences, University of California, San Diego, United States
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Wu S, Hu H, Li Y, Ren Y. Exploring hub genes and crucial pathways linked to oxidative stress in bipolar disorder depressive episodes through bioinformatics analysis. Front Psychiatry 2024; 15:1323527. [PMID: 38510807 PMCID: PMC10950934 DOI: 10.3389/fpsyt.2024.1323527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background Bipolar disorder (BD) is a complex and serious psychiatric condition primarily characterized by bipolar depression, with the underlying genetic determinants yet to be elucidated. There is a substantial body of literature linking psychiatric disorders, including BD, to oxidative stress (OS). Consequently, this study aims to assess the relationship between BD and OS by identifying key hub genes implicated in OS pathways. Methods We acquired gene microarray data from GSE5392 through the Gene Expression Omnibus (GEO). Our approach encompassed differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Protein-Protein Interaction (PPI) Network analysis to pinpoint hub genes associated with BD. Subsequently, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to identify hub genes relevant to OS. To evaluate the diagnostic accuracy of these hub genes, we performed receiver operating characteristic curve (ROC) analysis on both GSE5388 and GSE5389 datasets. Furthermore, we conducted a study involving ten BD patients and ten healthy controls (HCs) who met the special criteria, assessing the expression levels of these hub genes in their peripheral blood mononuclear cells (PBMCs). Results We identified 411 down-regulated genes and 69 up-regulated genes for further scrutiny. Through WGCNA, we obtained 22 co-expression modules, with the sienna3 module displaying the strongest association with BD. By integrating differential analysis with genes linked to OS, we identified 44 common genes. Subsequent PPI Network and WGCNA analyses confirmed three hub genes as potential biomarkers for BD. Functional enrichment pathway analysis revealed their involvement in neuronal signal transduction, oxidative phosphorylation, and metabolic obstacle pathways. Using the Cytoscape plugin "ClueGo assay," we determined that a majority of these targets regulate neuronal synaptic plasticity. ROC curve analysis underscored the excellent diagnostic value of these three hub genes. Quantitative reverse transcription-PCR (RT-qPCR) results indicated significant changes in the expression of these hub genes in the PBMCs of BD patients compared to HCs. Conclusion We identified three hub genes (TAC1, MAP2K1, and MAP2K4) in BD associated with OS, potentially influencing the diagnosis and treatment of BD. Based on the GEO database, our study provides novel insights into the relationship between BD and OS, offering promising therapeutic targets.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yilin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Nordengen K, Cappelletti C, Bahrami S, Frei O, Pihlstrøm L, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Andreassen OA, Toft M. Pleiotropy with sex-specific traits reveals genetic aspects of sex differences in Parkinson's disease. Brain 2024; 147:858-870. [PMID: 37671566 PMCID: PMC10907091 DOI: 10.1093/brain/awad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Chiara Cappelletti
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, 0424 Oslo, Norway
| | - Shahram Bahrami
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Oleksandr Frei
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Hanneke Geut
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
17
|
Niarchou M, Sanchez-Roige S, Reddy IA, Reese TJ, Marcovitz D, Davis LK. Medical and genetic correlates of long-term buprenorphine treatment in the electronic health records. Transl Psychiatry 2024; 14:20. [PMID: 38200003 PMCID: PMC10781771 DOI: 10.1038/s41398-023-02713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the benefits associated with longer buprenorphine treatment duration (i.e., >180 days) (BTD) for opioid use disorder (OUD), retention remains poor. Research on the impact of co-occurring psychiatric issues on BTD has yielded mixed results. It is also unknown whether the genetic risk in the form of polygenic scores (PGS) for OUD and other comorbid conditions, including problematic alcohol use (PAU) are associated with BTD. We tested the association between somatic and psychiatric comorbidities and long BTD and determined whether PGS for OUD-related conditions was associated with BTD. The study included 6686 individuals with a buprenorphine prescription that lasted for less than 6 months (short-BTD) and 1282 individuals with a buprenorphine prescription that lasted for at least 6 months (long-BTD). Recorded diagnosis of substance addiction and disorders (Odds Ratio (95% CI) = 22.14 (21.88-22.41), P = 2.8 × 10-116), tobacco use disorder (OR (95% CI) = 23.4 (23.13-23.68), P = 4.5 × 10-111), and bipolar disorder (OR(95% CI) = 9.70 (9.48-9.92), P = 1.3 × 10-91), among others, were associated with longer BTD. The PGS of OUD and several OUD co-morbid conditions were associated with any buprenorphine prescription. A higher PGS for OUD (OR per SD increase in PGS (95%CI) = 1.43(1.16-1.77), P = 0.0009), loneliness (OR(95% CI) = 1.39(1.13-1.72), P = 0.002), problematic alcohol use (OR(95%CI) = 1.47(1.19-1.83), P = 0.0004), and externalizing disorders (OR(95%CI) = 1.52(1.23 to 1.89), P = 0.0001) was significantly associated with long-BTD. Associations between BTD and the PGS of depression, chronic pain, nicotine dependence, cannabis use disorder, and bipolar disorder did not survive correction for multiple testing. Longer BTD is associated with diagnoses of psychiatric and somatic conditions in the EHR, as is the genetic score for OUD, loneliness, problematic alcohol use, and externalizing disorders.
Collapse
Affiliation(s)
- Maria Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - India A Reddy
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Reese
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Marcovitz
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Suokas K, Kurkela O, Nevalainen J, Suvisaari J, Hakulinen C, Kampman O, Pirkola S. Geographical variation in treated psychotic and other mental disorders in Finland by region and urbanicity. Soc Psychiatry Psychiatr Epidemiol 2024; 59:37-49. [PMID: 37308692 PMCID: PMC10799825 DOI: 10.1007/s00127-023-02516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE In Finland, prevalence of schizophrenia is higher in the eastern and northern regions and co-occurs with the distribution of schizophrenia polygenic risk scores. Both genetic and environmental factors have been hypothesized to contribute to this variation. We aimed to examine the prevalence of psychotic and other mental disorders by region and degree of urbanicity, and the impacts of socio-economic adjustments on these associations. METHODS Nationwide population registers from 2011 to 2017 and healthcare registers from 1975 to 2017. We used 19 administrative and three aggregate regions based on the distribution of schizophrenia polygenic risk scores, and a seven-level urban-rural classification. Prevalence ratios (PRs) were calculated by Poisson regression models and adjusted for gender, age, and calendar year (basic adjustments), and Finnish origin, residential history, urbanicity, household income, economic activity, and physical comorbidity (additional adjustments) on an individual level. Average marginal effects were used to visualize interaction effects between region and urbanicity. RESULTS A total of 5,898,180 individuals were observed. All mental disorders were slightly more prevalent (PR 1.03 [95% CI, 1.02-1.03]), and psychotic disorders (1.11 [1.10-1.12]) and schizophrenia (1.19 [1.17-1.21]) considerably more prevalent in eastern and northern than in western coastal regions. After the additional adjustments, however, the PRs were 0.95 (0.95-0.96), 1.00 (0.99-1.01), and 1.03 (1.02-1.04), respectively. Urban residence was associated with increased prevalence of psychotic disorders across all regions (adjusted PR 1.21 [1.20-1.22]). CONCLUSION After adjusting for socioeconomic and sociodemographic factors, the within-country distribution of mental disorders no longer followed the traditional east-west gradient. Urban-rural differences, on the other hand, persisted after the adjustments.
Collapse
Affiliation(s)
- Kimmo Suokas
- Faculty of Social Sciences, Tampere University, Tampere, Finland, Arvo Ylpön katu 34 (Arvo 1), 33014.
| | - Olli Kurkela
- Faculty of Social Sciences, Tampere University, Tampere, Finland, Arvo Ylpön katu 34 (Arvo 1), 33014
- National Institute for Health and Welfare, Helsinki, Finland
- Laurea University of Applied Sciences, Vantaa, Finland
| | - Jaakko Nevalainen
- Faculty of Social Sciences, Tampere University, Tampere, Finland, Arvo Ylpön katu 34 (Arvo 1), 33014
| | - Jaana Suvisaari
- National Institute for Health and Welfare, Helsinki, Finland
| | - Christian Hakulinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Health and Social Care Systems, National Institute for Health and Welfare, Helsinki, Finland
| | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Psychiatry, The Pirkanmaa Wellbeing Services County, Tampere, Finland
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
- Faculty of Medicine, Department of Clinical Medicine (Psychiatry), University of Turku, Turku, Finland
- Department of Psychiatry, The Wellbeing Services County of Ostrobothnia, Seinäjoki, Finland
| | - Sami Pirkola
- Faculty of Social Sciences, Tampere University, Tampere, Finland, Arvo Ylpön katu 34 (Arvo 1), 33014
- Tampere University Hospital, Tampere, Finland
| |
Collapse
|
19
|
Rupert PE, Pogue-Geile M. Familial Risk for Schizophrenia vs Bipolar Disorder and Task-Based Neural Activation: A functional Magnetic Resonance Imaging Meta-Analysis. Schizophr Bull 2024; 50:177-186. [PMID: 37606284 PMCID: PMC10754177 DOI: 10.1093/schbul/sbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Individuals at familial risk for developing schizophrenia (FRSZ) or bipolar disorder (FRBD) have shared and unique genetic risks. Few studies have compared neural activation between these two groups. Therefore, the present meta-analysis investigated functional brain similarities and differences between FRSZ and FRBD individuals. STUDY DESIGN A systematic literature review was conducted of articles that compared FRSZ or FRBD individuals to healthy controls (31 FRSZ and 22 FRBD). Seed-based d mapping was used to conduct the meta-analysis. Analyses included comparisons of FRSZ to controls, FRBD to controls, and both relative groups to each other. STUDY RESULTS Using a highly conservative family-wise error rate correction, there were no significant findings. Using a less conservative threshold, FRSZ compared to controls had lower activation in the left precuneus (Puncorrected = .02) across all studies and in the left middle frontal gyrus (Puncorrected = .03) in nonsocial cognition studies. FRBD compared to controls had lower activation in the left superior parietal gyrus (Puncorrected = .03) and right angular gyrus (Puncorrected = .03) in nonsocial cognition studies, and higher activation in the left superior frontal gyrus (Puncorrected = .01) in social tasks. Differences between FRSZ and FRBD were not significant. CONCLUSIONS There were few robust differences between FRSZ or FRBD compared to controls. This suggests only weak support for neural activation differences between individuals at genetic risk for schizophrenia or bipolar disorder and controls. The tentative findings observed were in different brain regions for FRSZ and FRBD, with no strong evidence for shared effects between schizophrenia and bipolar genetic risk on neural activation.
Collapse
Affiliation(s)
- Petra E Rupert
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Pogue-Geile
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
20
|
Schulze A, Streit F, Zillich L, Awasthi S, Hall ASM, Jungkunz M, Kleindienst N, Frank J, Schwarze CE, Dahmen N, Schott BH, Nöthen M, Mobascher A, Rujescu D, Lieb K, Roepke S, Herpertz SC, Schmahl C, Bohus M, Ripke S, Rietschel M, Lis S, Witt S. Evidence for a shared genetic contribution to loneliness and borderline personality disorder. Transl Psychiatry 2023; 13:398. [PMID: 38105248 PMCID: PMC10725864 DOI: 10.1038/s41398-023-02705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Loneliness, influenced by genetic and environmental factors such as childhood maltreatment, is one aspect of interpersonal dysfunction in Borderline Personality Disorder (BPD). Numerous studies link loneliness and BPD and twin studies indicate a genetic contribution to this association. The aim of our study was to investigate whether genetic predisposition for loneliness and BPD risk overlap and whether genetic risk for loneliness contributes to higher loneliness reported by BPD patients, using genome-wide genotype data. We assessed the genetic correlation of genome-wide association studies (GWAS) of loneliness and BPD using linkage disequilibrium score regression and tested whether a polygenic score for loneliness (loneliness-PGS) was associated with case-control status in two independent genotyped samples of BPD patients and healthy controls (HC; Witt2017-sample: 998 BPD, 1545 HC; KFO-sample: 187 BPD, 261 HC). In the KFO-sample, we examined associations of loneliness-PGS with reported loneliness, and whether the loneliness-PGS influenced the association between childhood maltreatment and loneliness. We found a genetic correlation between the GWAS of loneliness and BPD in the Witt2017-sample (rg = 0.23, p = 0.015), a positive association of loneliness-PGS with BPD case-control status (Witt2017-sample: NkR² = 2.3%, p = 2.7*10-12; KFO-sample: NkR² = 6.6%, p = 4.4*10-6), and a positive association between loneliness-PGS and loneliness across patient and control groups in the KFO-sample (β = 0.186, p = 0.002). The loneliness-PGS did not moderate the association between childhood maltreatment and loneliness in BPD. Our study is the first to use genome-wide genotype data to show that the genetic factors underlying variation in loneliness in the general population and the risk for BPD overlap. The loneliness-PGS was associated with reported loneliness. Further research is needed to investigate which genetic mechanisms and pathways are involved in this association and whether a genetic predisposition for loneliness contributes to BPD risk.
Collapse
Affiliation(s)
- Anna Schulze
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Swapnil Awasthi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Alisha S M Hall
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Martin Jungkunz
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Department of Medical Oncology, Section Translational Medical Ethics, Heidelberg, Germany
| | - Nikolaus Kleindienst
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cornelia E Schwarze
- Department of Psychology, Developmental and Biological Psychology Unit, Heidelberg University, Heidelberg, Germany
| | - Norbert Dahmen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Arian Mobascher
- Department of Psychiatry and Psychotherapy, St. Elisabeth Krankenhaus Lahnstein, Lahnstein, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Stefan Roepke
- Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Clinical Psychology, Ruhr University Bochum, Bochum, Germany
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Haatveit B, Westlye LT, Vaskinn A, Flaaten CB, Mohn C, Bjella T, Sæther LS, Sundet K, Melle I, Andreassen OA, Alnæs D, Ueland T. Intra- and inter-individual cognitive variability in schizophrenia and bipolar spectrum disorder: an investigation across multiple cognitive domains. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:89. [PMID: 38110366 PMCID: PMC10728206 DOI: 10.1038/s41537-023-00414-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
There is substantial cognitive heterogeneity among patients with schizophrenia (SZ) and bipolar disorders (BD). More knowledge about the magnitude and clinical correlates of performance variability could improve our understanding of cognitive impairments. Using double generalized linear models (DGLMs) we investigated cognitive mean and variability differences between patients with SZ (n = 905) and BD spectrum disorders (n = 522), and healthy controls (HC, n = 1170) on twenty-two variables. The analysis revealed significant case-control differences on 90% of the variables. Compared to HC, patients showed larger intra-individual (within subject) variability across tests and larger inter-individual (between subject) variability in measures of fine-motor speed, mental processing speed, and inhibitory control (SZ and BD), and in verbal learning and memory and intellectual functioning (SZ). In SZ, we found that lager intra -and inter (on inhibitory control and speed functions) individual variability, was associated with lower functioning and more negative symptoms. Inter-individual variability on single measures of memory and intellectual function was additionally associated with disorganized and positive symptoms, and use of antidepressants. In BD, there were no within-subject associations with symptom severity. However, greater inter-individual variability (primarily on inhibitory control and speeded functions) was associated with lower functioning, more negative -and disorganized symptoms, earlier age at onset, longer duration of illness, and increased medication use. These results highlight larger individual differences in patients compared to controls on various cognitive domains. Further investigations of the causes and correlates of individual differences in cognitive function are warranted.
Collapse
Affiliation(s)
- Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Camilla Bärthel Flaaten
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sundet
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Chin AHB, Al-Balas Q, Ahmad MF, Alsomali N, Ghaly M. Islamic Perspectives on Polygenic Testing and Selection of IVF Embryos (PGT-P) for Optimal Intelligence and Other Non-Disease-Related Socially Desirable Traits. JOURNAL OF BIOETHICAL INQUIRY 2023:10.1007/s11673-023-10293-0. [PMID: 38047997 DOI: 10.1007/s11673-023-10293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/20/2023] [Indexed: 12/05/2023]
Abstract
In recent years, the genetic testing and selection of IVF embryos, known as preimplantation genetic testing (PGT), has gained much traction in clinical assisted reproduction for preventing transmission of genetic defects. However, a more recent ethically and morally controversial development in PGT is its possible use in selecting IVF embryos for optimal intelligence quotient (IQ) and other non-disease-related socially desirable traits, such as tallness, fair complexion, athletic ability, and eye and hair colour, based on polygenic risk scores (PRS), in what is referred to as PGT-P. Artificial intelligence (AI) and machine learning-based analysis of big data sets collated from genome sequencing of specific human ethnic populations can be used to estimate an individual embryo's likelihood of developing such multifactorial traits by analysing the combination of specific genetic variants within its genome. Superficially, this technique appears compliant with Islamic principles and ethics. Because there is no modification of the human genome, there is no tampering with Allah's creation (taghyīr khalq Allah). Nevertheless, a more critical analysis based on the five maxims of Islamic jurisprudence (qawa'id fiqhiyyah) that are often utilized in discourses on Islamic bioethics, namely qaṣd (intention), yaqın̄ (certainty), ḍarar (injury), ḍarūra (necessity), and `urf (custom), would instead reveal some major ethical and moral flaws of this new medical technology in the selection of non-disease-related socially desirable traits, and its non-compliance with the spirit and essence of Islamic law (shariah). Muslim scholars, jurists, doctors, and biomedical scientists should debate this further and issue a fatwa on this new medical technology platform.
Collapse
Affiliation(s)
- A H B Chin
- Singapore Fertility and IVF Consultancy Pvt Ltd., Hong Lim Complex, 531A Upper Cross Street, Chinatown, Singapore.
| | - Q Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - M F Ahmad
- Advanced Reproductive Centre (ARC), Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - N Alsomali
- Research Center, Neuroscience Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M Ghaly
- Research Center for Islamic Legislation and Ethics (CILE), College of Islamic Studies, Hamad Bin Khalifa University, Ar-Rayyan, Qatar.
| |
Collapse
|
23
|
Mothersill D, Loughnane G, Grasso G, Hargreaves A. Knowledge, attitudes, and behaviours towards schizophrenia, bipolar disorder, and autism: a pilot study. Ir J Psychol Med 2023; 40:634-640. [PMID: 34857060 DOI: 10.1017/ipm.2021.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Lack of knowledge and discriminatory attitudes and behaviours towards individuals with mental disorders is a worldwide problem but may be particularly damaging for young people. This pilot study examined knowledge, attitudes and behaviours towards schizophrenia, bipolar disorder and autism within a large sample of adults in Ireland, a country with the youngest population in Europe, in order to better understand public views on these groups. METHODS In a correlational, cross-sectional design, 307 adults in Ireland over the age of 18 completed a questionnaire over Google Forms examining knowledge, attitudes and behaviours towards schizophrenia, bipolar disorder and autism. Responses to questions specifically relating to each diagnosis were compared using trimmed mean ANOVA to examine whether responses to questions differed depending on diagnosis. RESULTS Results indicate varied knowledge, attitudes and behaviours towards these groups, but a majority believe it should be a research priority. ANOVA and post hoc tests revealed significant differences in knowledge, attitudes and behaviours towards each of schizophrenia, bipolar disorder, and autism (p < 0.005), and reported attitudes and behaviours towards schizophrenia were more negative than either bipolar disorder or autism. A majority of participants (54.8%) felt not informed enough about mental health by the media. CONCLUSIONS In our Irish sample, type and level of stigma varies according to mental health diagnosis. Our sample also report feeling inadequately informed about mental health by the media. Thus future policy and campaigns could consider targeting individual mental health diagnoses, with a focus on increasing familiarity and knowledge.
Collapse
Affiliation(s)
- David Mothersill
- Psychology Department, School of Business, National College of Ireland, Dublin, Ireland
| | - Gerard Loughnane
- School of Business, National College of Ireland, Dublin, Ireland
| | - Gabriela Grasso
- Psychology Department, School of Business, National College of Ireland, Dublin, Ireland
| | - April Hargreaves
- Psychology Department, School of Business, National College of Ireland, Dublin, Ireland
| |
Collapse
|
24
|
Jaholkowski P, Hindley GFL, Shadrin AA, Tesfaye M, Bahrami S, Nerhus M, Rahman Z, O’Connell KS, Holen B, Parker N, Cheng W, Lin A, Rødevand L, Karadag N, Frei O, Djurovic S, Dale AM, Smeland OB, Andreassen OA. Genome-wide Association Analysis of Schizophrenia and Vitamin D Levels Shows Shared Genetic Architecture and Identifies Novel Risk Loci. Schizophr Bull 2023; 49:1654-1664. [PMID: 37163672 PMCID: PMC10686370 DOI: 10.1093/schbul/sbad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.
Collapse
Affiliation(s)
- Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London, UK
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and
Oslo University Hospital, Oslo, Norway
| | - Markos Tesfaye
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Department of Psychiatry, St. Paul’s Hospital Millennium Medical
College, Addis Ababa, Ethiopia
| | - Shahram Bahrami
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Mari Nerhus
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Department of Special Psychiatry, Akershus University
Hospital, Lørenskog, Norway
- Division of Health Services Research and Psychiatry,
Institute of Clinical Medicine, Campus Ahus, University of Oslo,
Oslo, Norway
| | - Zillur Rahman
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Nadine Parker
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Aihua Lin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of
Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital,
Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of
Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego,
La Jolla, CA
- Multimodal Imaging Laboratory, University of California San
Diego, La Jolla, CA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA
- Department of Neurosciences, University of California San
Diego, La Jolla, CA
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health
and Addiction, Oslo University Hospital, and Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and
Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Liu H, Wang L, Yu H, Chen J, Sun P. Polygenic Risk Scores for Bipolar Disorder: Progress and Perspectives. Neuropsychiatr Dis Treat 2023; 19:2617-2626. [PMID: 38050614 PMCID: PMC10693760 DOI: 10.2147/ndt.s433023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Bipolar disorder (BD) is a common and highly heritable psychiatric disorder, the study of BD genetic characteristics can help with early prevention and individualized treatment. At the same time, BD is a highly heterogeneous polygenic genetic disorder with significant genetic overlap with other psychiatric disorders. In recent years, polygenic risk scores (PRS) derived from genome-wide association studies (GWAS) data have been widely used in genetic studies of various complex diseases and can be used to explore the genetic susceptibility of diseases. This review discusses phenotypic associations and genetic correlations with other conditions of BD based on PRS, and provides ideas for genetic studies and prevention of BD.
Collapse
Affiliation(s)
- Huanxi Liu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Hui Yu
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| |
Collapse
|
26
|
Wootton O, Shadrin AA, Bjella T, Smeland OB, van der Meer D, Frei O, O’Connell KS, Ueland T, Andreassen OA, Stein DJ, Dalvie S. Genomic Insights into the Shared and Distinct Genetic Architecture of Cognitive Function and Schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298348. [PMID: 38014326 PMCID: PMC10680895 DOI: 10.1101/2023.11.13.23298348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cognitive impairment is a major determinant of functional outcomes in schizophrenia, and efforts to understand the biological basis of cognitive dysfunction in the disorder are ongoing. Previous studies have suggested genetic overlap between global cognitive ability and schizophrenia, but further work is needed to delineate the shared genetic architecture. Here, we apply genomic structural equation modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank (UKB). We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). We identified three broad factors (visuo-spatial, verbal analytic and decision/reaction time) that underly the genetic correlations between the UKB cognitive tests. Global genetic correlations showed a significant but moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found evidence of substantial polygenic overlap between each cognitive factor and schizophrenia but show that most loci shared between the latent cognitive factors and schizophrenia have unique patterns of association with the cognitive factors. Biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we find that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptom dimensions. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.
Collapse
Affiliation(s)
- Olivia Wootton
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Alexey A. Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B. Smeland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Blindern, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dan J. Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk & Resilience in Mental Disorders, South Africa
| | - Shareefa Dalvie
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Libedinsky I, Helwegen K, Simón LG, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Quantifying brain connectivity signatures by means of polyconnectomic scoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559327. [PMID: 37808808 PMCID: PMC10557693 DOI: 10.1101/2023.09.26.559327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A broad range of neuropsychiatric disorders are associated with alterations in macroscale brain circuitry and connectivity. Identifying consistent brain patterns underlying these disorders by means of structural and functional MRI has proven challenging, partly due to the vast number of tests required to examine the entire brain, which can lead to an increase in missed findings. In this study, we propose polyconnectomic score (PCS) as a metric designed to quantify the presence of disease-related brain connectivity signatures in connectomes. PCS summarizes evidence of brain patterns related to a phenotype across the entire landscape of brain connectivity into a subject-level score. We evaluated PCS across four brain disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 individuals. Our findings consistently show that patients exhibit significantly higher PCS compared to controls, with effect sizes that go beyond other single MRI metrics ([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate that PCS serves as a valuable tool for stratifying individuals, for example within the psychosis continuum, distinguishing patients with schizophrenia from their first-degree relatives (d = 0.42, p = 4 × 10-3, FDR-corrected), and first-degree relatives from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS is useful to uncover associations between brain connectivity patterns related to neuropsychiatric disorders and mental health, psychosocial factors, and body measurements.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Hope S, Shadrin AA, Lin A, Bahrami S, Rødevand L, Frei O, Hübenette SJ, Cheng W, Hindley G, Nag H, Ulstein L, Efrim-Budisteanu M, O'Connell K, Dale AM, Djurovic S, Nærland T, Andreassen OA. Bidirectional genetic overlap between autism spectrum disorder and cognitive traits. Transl Psychiatry 2023; 13:295. [PMID: 37709755 PMCID: PMC10502136 DOI: 10.1038/s41398-023-02563-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable condition with a large variation in cognitive function. Here we investigated the shared genetic architecture between cognitive traits (intelligence (INT) and educational attainment (EDU)), and risk loci jointly associated with ASD and the cognitive traits. We analyzed data from genome-wide association studies (GWAS) of INT (n = 269,867), EDU (n = 766,345) and ASD (cases n = 18,381, controls n = 27,969). We used the bivariate causal mixture model (MiXeR) to estimate the total number of shared genetic variants, local analysis of co-variant annotation (LAVA) to estimate local genetic correlations, conditional false discovery rate (cond/conjFDR) to identify specific overlapping loci. The MiXeR analyses showed that 12.7k genetic variants are associated with ASD, of which 12.0k variants are shared with EDU, and 11.1k are shared with INT with both positive and negative relationships within overlapping variants. The majority (59-68%) of estimated shared loci have concordant effect directions, with a positive, albeit modest, genetic correlation between ASD and EDU (rg = 0.21, p = 2e-13) and INT (rg = 0.22, p = 4e-12). We discovered 43 loci jointly associated with ASD and cognitive traits (conjFDR<0.05), of which 27 were novel for ASD. Functional analysis revealed significant differential expression of candidate genes in the cerebellum and frontal cortex. To conclude, we quantified the genetic architecture shared between ASD and cognitive traits, demonstrated mixed effect directions, and identified the associated genetic loci and molecular pathways. The findings suggest that common genetic risk factors for ASD can underlie both better and worse cognitive functioning across the ASD spectrum, with different underlying biology.
Collapse
Affiliation(s)
- Sigrun Hope
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway.
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway.
| | - Alexey A Shadrin
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Saira J Hübenette
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy Hindley
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Heidi Nag
- Frambu Resource Centre for Rare Disorders, Siggerud, Norway
| | | | - Magdalena Efrim-Budisteanu
- Prof. Dr. Alex Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- "Victor Babes", Național Institute of Pathology, Bucharest, Romania
| | - Kevin O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Terje Nærland
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Hindley G, Shadrin AA, van der Meer D, Parker N, Cheng W, O'Connell KS, Bahrami S, Lin A, Karadag N, Holen B, Bjella T, Deary IJ, Davies G, Hill WD, Bressler J, Seshadri S, Fan CC, Ueland T, Djurovic S, Smeland OB, Frei O, Dale AM, Andreassen OA. Multivariate genetic analysis of personality and cognitive traits reveals abundant pleiotropy. Nat Hum Behav 2023; 7:1584-1600. [PMID: 37365406 PMCID: PMC10824266 DOI: 10.1038/s41562-023-01630-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.
Collapse
Affiliation(s)
- Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK.
| | - Alexey A Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
| | - Dennis van der Meer
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Naz Karadag
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thomas Bjella
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - W David Hill
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Chun Chieh Fan
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Torill Ueland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Blindern, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
30
|
Aas M, Andreassen OA, Gjerstad J, Rødevand L, Hjell G, Johansen IT, Lunding SH, Ormerod MBEG, Lagerverg TV, Steen NE, Djurovic S, Akkouh I. Expression of ANK3 moderates the association between childhood trauma and affective traits in severe mental disorders. Sci Rep 2023; 13:13845. [PMID: 37620394 PMCID: PMC10449847 DOI: 10.1038/s41598-023-40310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Exposure to early life trauma increases the risk of psychopathology later in life. Here we investigated if ANK3 mRNA levels influence the relationship between childhood trauma experiences and clinical characteristics in mental disorders. A sample of 174 patients with bipolar disorder and 291 patients with schizophrenia spectrum disorder were included. Patients were diagnosed using the Structured Clinical Interview for DSM-IV, and childhood trauma was assessed using the childhood trauma questionnaire. Age at illness onset and number of psychotic and affective episodes were assessed from interview and medical records. Current depressive symptoms were measured using the calgary depression scale for schizophrenia and the inventory for depressive symptomatology. ANK3 expression was analyzed in whole blood using the Illumina HumanHT-12 v4 Expression BeadChip. Analyses were carried out with the Process adjusted for confounders. Within the total sample, patients with both high ANK3 expression and with the most severe childhood sexual abuse had more manic/hypomanic episodes and an earlier age at onset of the first episode. ANK3 mRNA levels also moderated the relationship between emotional neglect and manic/hypomanic episodes. Our results suggest that ANK3 expression levels moderate the association between specific types of childhood trauma and affective traits in mental disorders.
Collapse
Affiliation(s)
- Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes Gjerstad
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Linn Rødevand
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Monica B E G Ormerod
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trine V Lagerverg
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Clinical Science, NORMENT, University of Bergen, Bergen, Norway
| | - Ibrahim Akkouh
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Zhao X, Song L, Yang A, Zhang Z, Zhang J, Yang YT, Zhao XM. Prioritizing genes associated with brain disorders by leveraging enhancer-promoter interactions in diverse neural cells and tissues. Genome Med 2023; 15:56. [PMID: 37488639 PMCID: PMC10364416 DOI: 10.1186/s13073-023-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.
Collapse
Affiliation(s)
- Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Zichao Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Internatioal Human Phenome Institutes (Shanghai), Shanghai, 200433, China.
| |
Collapse
|
32
|
Tachi R, Ohi K, Nishizawa D, Soda M, Fujikane D, Hasegawa J, Kuramitsu A, Takai K, Muto Y, Sugiyama S, Kitaichi K, Hashimoto R, Ikeda K, Shioiri T. Mitochondrial genetic variants associated with bipolar disorder and Schizophrenia in a Japanese population. Int J Bipolar Disord 2023; 11:26. [PMID: 37477801 PMCID: PMC10361950 DOI: 10.1186/s40345-023-00307-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are complex psychotic disorders (PSY), with both environmental and genetic factors including possible maternal inheritance playing a role. Some studies have investigated whether genetic variants in the mitochondrial chromosome are associated with BD and SZ. However, the genetic variants identified as being associated are not identical among studies, and the participants were limited to individuals of European ancestry. Here, we investigate associations of genome-wide genetic variants in the mitochondrial chromosome with BD, SZ, and PSY in a Japanese population. METHODS After performing quality control for individuals and genetic variants, we investigated whether mitochondrial genetic variants [minor allele frequency (MAF) > 0.01, n = 45 variants) are associated with BD, SZ, and PSY in 420 Japanese individuals consisting of patients with BD (n = 51), patients with SZ (n = 172), and healthy controls (HCs, n = 197). RESULTS Of mitochondrial genetic variants, three (rs200478835, rs200044200 and rs28359178 on or near NADH dehydrogenase) and one (rs200478835) were significantly associated with BD and PSY, respectively, even after correcting for multiple comparisons (PGC=0.045-4.9 × 10- 3). In particular, individuals with the minor G-allele of rs200044200, a missense variant, were only observed among patients with BD (MAF = 0.059) but not HCs (MAF = 0) (odds ratio=∞). Three patients commonly had neuropsychiatric family histories. CONCLUSIONS We suggest that mitochondrial genetic variants in NADH dehydrogenase-related genes may contribute to the pathogenesis of BD and PSY in the Japanese population through dysfunction of energy production.
Collapse
Affiliation(s)
- Ryobu Tachi
- School of Medicine, Gifu University, Gifu, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan.
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
33
|
Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:42. [PMID: 37429882 DOI: 10.1038/s41537-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Cognitive impairment is a core clinical feature of schizophrenia, exerting profound adverse effects on social functioning and quality of life in a large proportion of patients with schizophrenia. However, the mechanisms underlying the pathogenesis of schizophrenia-related cognitive impairment are not well understood. Microglia, the primary resident macrophages in the brain, have been shown to play important roles in psychiatric disorders, including schizophrenia. Increasing evidence has revealed excessive microglial activation in cognitive deficits related to a broad range of diseases and medical conditions. Relative to that about age-related cognitive deficits, current knowledge about the roles of microglia in cognitive impairment in neuropsychiatric disorders, such as schizophrenia, is limited, and such research is in its infancy. Thus, we conducted this review of the scientific literature with a focus on the role of microglia in schizophrenia-associated cognitive impairment, aiming to gain insight into the roles of microglial activation in the onset and progression of such impairment and to consider how scientific advances could be translated to preventive and therapeutic interventions. Research has demonstrated that microglia, especially those in the gray matter of the brain, are activated in schizophrenia. Upon activation, microglia release key proinflammatory cytokines and free radicals, which are well-recognized neurotoxic factors contributing to cognitive decline. Thus, we propose that the inhibition of microglial activation holds potential for the prevention and treatment of cognitive deficits in patients with schizophrenia. This review identifies potential targets for the development of new treatment strategies and eventually the improvement of care for these patients. It might also help psychologists and clinical investigators in planning future research.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, 300222, Tianjin, China.
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| |
Collapse
|
34
|
Cheng W, Parker N, Karadag N, Koch E, Hindley G, Icick R, Shadrin A, O'Connell KS, Bjella T, Bahrami S, Rahman Z, Tesfaye M, Jaholkowski P, Rødevand L, Holen B, Lagerberg TV, Steen NE, Djurovic S, Dale AM, Frei O, Smeland OB, Andreassen OA. The relationship between cannabis use, schizophrenia, and bipolar disorder: a genetically informed study. Lancet Psychiatry 2023; 10:441-451. [PMID: 37208114 PMCID: PMC10311008 DOI: 10.1016/s2215-0366(23)00143-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The relationship between psychotic disorders and cannabis use is heavily debated. Shared underlying genetic risk is one potential explanation. We investigated the genetic association between psychotic disorders (schizophrenia and bipolar disorder) and cannabis phenotypes (lifetime cannabis use and cannabis use disorder). METHODS We used genome-wide association summary statistics from individuals with European ancestry from the Psychiatric Genomics Consortium, UK Biobank, and International Cannabis Consortium. We estimated heritability, polygenicity, and discoverability of each phenotype. We performed genome-wide and local genetic correlations. Shared loci were identified and mapped to genes, which were tested for functional enrichment. Shared genetic liabilities to psychotic disorders and cannabis phenotypes were explored using causal analyses and polygenic scores, using the Norwegian Thematically Organized Psychosis cohort. FINDINGS Psychotic disorders were more heritable than cannabis phenotypes and more polygenic than cannabis use disorder. We observed positive genome-wide genetic correlations between psychotic disorders and cannabis phenotypes (range 0·22-0·35) with a mixture of positive and negative local genetic correlations. Three to 27 shared loci were identified for the psychotic disorder and cannabis phenotype pairs. Enrichment of mapped genes implicated neuronal and olfactory cells as well as drug-gene targets for nicotine, alcohol, and duloxetine. Psychotic disorders showed a causal effect on cannabis phenotypes, and lifetime cannabis use had a causal effect on bipolar disorder. Of 2181 European participants from the Norwegian Thematically Organized Psychosis cohort applied in polygenic risk score analyses, 1060 (48·6%) were females and 1121 (51·4%) were males (mean age 33·1 years [SD 11·8]). 400 participants had bipolar disorder, 697 had schizophrenia, and 1044 were healthy controls. Within this sample, polygenic scores for cannabis phenotypes predicted psychotic disorders independently and improved prediction beyond the polygenic score for the psychotic disorders. INTERPRETATION A subgroup of individuals might have a high genetic risk of developing a psychotic disorder and using cannabis. This finding supports public health efforts to reduce cannabis use, particularly in individuals at high risk or patients with psychotic disorders. Identified shared loci and their functional implications could facilitate development of novel treatments. FUNDING US National Institutes of Health, the Research Council Norway, the South-East Regional Health Authority, Stiftelsen Kristian Gerhard Jebsen, EEA-RO-NO-2018-0535, European Union's Horizon 2020 Research and Innovation Programme, the Marie Skłodowska-Curie Actions, and University of Oslo Life Science.
Collapse
Affiliation(s)
- Weiqiu Cheng
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Nadine Parker
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Guy Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romain Icick
- INSERM UMR-S1144, University of Paris, Paris, France
| | - Alexey Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Markos Tesfaye
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; Department of Psychiatry, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Psychiatry, and Department of Neurosciences, and Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway.
| |
Collapse
|
35
|
Rokham H, Falakshahi H, Fu Z, Pearlson G, Calhoun VD. Evaluation of boundaries between mood and psychosis disorder using dynamic functional network connectivity (dFNC) via deep learning classification. Hum Brain Mapp 2023; 44:3180-3195. [PMID: 36919656 PMCID: PMC10171526 DOI: 10.1002/hbm.26273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The validity and reliability of diagnoses in psychiatry is a challenging topic in mental health. The current mental health categorization is based primarily on symptoms and clinical course and is not biologically validated. Among multiple ongoing efforts, neurological observations alongside clinical evaluations are considered to be potential solutions to address diagnostic problems. The Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) has published multiple papers attempting to reclassify psychotic illnesses based on biological rather than symptomatic measures. However, the effort to investigate the relationship between this new categorization approach and other neuroimaging techniques, including resting-state fMRI data, is still limited. This study focused on investigating the relationship between different psychotic disorders categorization methods and resting-state fMRI-based measures called dynamic functional network connectivity (dFNC) using state-of-the-art artificial intelligence (AI) approaches. We applied our method to 613 subjects, including individuals with psychosis and healthy controls, which were classified using both the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the B-SNIP biomarker-based (Biotype) approach. Statistical group differences and cross-validated classifiers were performed within each framework to assess how different categories. Results highlight interesting differences in occupancy in both DSM-IV and Biotype categorizations compared to healthy individuals, which are distributed across specific transient connectivity states. Biotypes tended to show less distinctiveness in occupancy level and included fewer cellwise differences. Classification accuracy obtained by DSM-IV and Biotype categories were both well above chance. Results provided new insights and highlighted the benefits of both DSM-IV and biology-based categories while also emphasizing the importance of future work in this direction, including employing further data types.
Collapse
Affiliation(s)
- Hooman Rokham
- Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐institutional Center of Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, and Emory UniversityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Haleh Falakshahi
- Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐institutional Center of Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, and Emory UniversityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Zening Fu
- Tri‐institutional Center of Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, and Emory UniversityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Godfrey Pearlson
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of NeuroscienceYale UniversityNew HavenConnecticutUSA
- Olin Neuropsychiatry Research CenterHartford HospitalHartfordConnecticutUSA
| | - Vince D. Calhoun
- Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐institutional Center of Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, and Emory UniversityGeorgia State UniversityAtlantaGeorgiaUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
36
|
Yang G, Ullah HMA, Parker E, Gorsi B, Libowitz M, Maguire C, King JB, Coon H, Lopez-Larson M, Anderson JS, Yandell M, Shcheglovitov A. Neurite outgrowth deficits caused by rare PLXNB1 mutation in pediatric bipolar disorder. Mol Psychiatry 2023; 28:2525-2539. [PMID: 37032361 DOI: 10.1038/s41380-023-02035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Pediatric bipolar disorder (PBD) is a severe mood dysregulation condition that affects 0.5-1% of children and teens in the United States. It is associated with recurrent episodes of mania and depression and an increased risk of suicidality. However, the genetics and neuropathology of PBD are largely unknown. Here, we used a combinatorial family-based approach to characterize cellular, molecular, genetic, and network-level deficits associated with PBD. We recruited a PBD patient and three unaffected family members from a family with a history of psychiatric illnesses. Using resting-state functional magnetic resonance imaging (rs-fMRI), we detected altered resting-state functional connectivity in the patient as compared to an unaffected sibling. Using transcriptomic profiling of patient and control induced pluripotent stem cell (iPSC)-derived telencephalic organoids, we found aberrant signaling in the molecular pathways related to neurite outgrowth. We corroborated the presence of neurite outgrowth deficits in patient iPSC-derived cortical neurons and identified a rare homozygous loss-of-function PLXNB1 variant (c.1360C>C; p.Ser454Arg) responsible for the deficits in the patient. Expression of wild-type PLXNB1, but not the variant, rescued neurite outgrowth in patient neurons, and expression of the variant caused the neurite outgrowth deficits in cortical neurons from PlxnB1 knockout mice. These results indicate that dysregulated PLXNB1 signaling may contribute to an increased risk of PBD and other mood dysregulation-related disorders by disrupting neurite outgrowth and functional brain connectivity. Overall, this study established and validated a novel family-based combinatorial approach for studying cellular and molecular deficits in psychiatric disorders and identified dysfunctional PLXNB1 signaling and neurite outgrowth as potential risk factors for PBD.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Ethan Parker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Bushra Gorsi
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, USA
| | - Mark Libowitz
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA
| | - Jace B King
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Melissa Lopez-Larson
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Lopez-Larson and Associates, Park City, UT, USA
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Alex Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA.
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
37
|
Abstract
Evolutionary biology provides a crucial foundation for medicine and behavioral science that has been missing from psychiatry. Its absence helps to explain slow progress; its advent promises major advances. Instead of offering a new kind of treatment, evolutionary psychiatry provides a scientific foundation useful for all kinds of treatment. It expands the search for causes from mechanistic explanations for disease in some individuals to evolutionary explanations for traits that make all members of a species vulnerable to disease. For instance, capacities for symptoms such as pain, cough, anxiety and low mood are universal because they are useful in certain situations. Failing to recognize the utility of anxiety and low mood is at the root of many problems in psychiatry. Determining if an emotion is normal and if it is useful requires understanding an individual's life situation. Conducting a review of social systems, parallel to the review of systems in the rest of medicine, can help achieve that understanding. Coping with substance abuse is advanced by acknowledging how substances available in modern environments hijack chemically mediated learning mechanisms. Understanding why eating spirals out of control in modern environments is aided by recognizing the motivations for caloric restriction and how it arouses famine protection mechanisms that induce binge eating. Finally, explaining the persistence of alleles that cause serious mental disorders requires evolutionary explanations of why some systems are intrinsically vulnerable to failure. The thrill of finding functions for apparent diseases is evolutionary psychiatry's greatest strength and weakness. Recognizing bad feelings as evolved adaptations corrects psychiatry's pervasive mistake of viewing all symptoms as if they were disease manifestations. However, viewing diseases such as panic disorder, melancholia and schizophrenia as if they are adaptations is an equally serious mistake in evolutionary psychiatry. Progress will come from framing and testing specific hypotheses about why natural selection left us vulnerable to mental disorders. The efforts of many people over many years will be needed before we will know if evolutionary biology can provide a new paradigm for understanding and treating mental disorders.
Collapse
Affiliation(s)
- Randolph M Nesse
- Departments of Psychiatry and Psychology, University of Michigan, Ann Arbor, MI, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
38
|
Rammos A, Kirov G, Hubbard L, Walters JTR, Holmans P, Owen MJ, O'Donovan MC, Rees E. Family-based analysis of the contribution of rare and common genetic variants to school performance in schizophrenia. Mol Psychiatry 2023; 28:2081-2087. [PMID: 36914811 PMCID: PMC10575776 DOI: 10.1038/s41380-023-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Impaired cognition in schizophrenia is associated with worse functional outcomes. While genetic factors are known to contribute to variation in cognition in schizophrenia, few rare coding variants with strong effects have been identified, and the relative effects from de novo, inherited and non-transmitted alleles are unknown. We used array and exome sequencing data from 656 proband-parent trios to examine the contribution of common and rare variants to school performance, and by implication cognitive function, in schizophrenia. Parental transmission of common alleles contributing to higher educational attainment (p value = 0.00015; OR = 2.63) and intelligence (p value = 0.00009; OR = 2.80), but not to schizophrenia, were associated with higher proband school performance. No significant effects were seen for non-transmitted parental common alleles. Probands with lower school performance were enriched for damaging de novo coding variants in genes associated with developmental disorders (DD) (p value = 0.00026; OR = 11.6). Damaging, ultra-rare coding variants in DD genes that were transmitted or non-transmitted from parents, had no effects on school performance. Among probands with lower school performance, those with damaging de novo coding variants in DD genes had a higher rate of comorbid mild intellectual disability (p value = 0.0002; OR = 15.6). Overall, we provide evidence for rare and common genetic contributions to school performance in schizophrenia. The strong effects for damaging de novo coding variants in DD genes provide further evidence that cognitive impairment in schizophrenia has a shared aetiology with developmental disorders. Furthermore, we report no evidence in this sample that non-transmitted parental common alleles for cognitive traits contributed to school performance in schizophrenia via indirect effects on the environment.
Collapse
Affiliation(s)
- Alexandros Rammos
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
39
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
40
|
Liu K, Wang S, Zhou Y, Huang S, Liu Y, Song L, He Z. Genetic associations between circulating metabolic biomarkers and lung cancer in East Asians and Europeans. Eur J Med Res 2023; 28:158. [PMID: 37101305 PMCID: PMC10131379 DOI: 10.1186/s40001-023-01116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Metabolic biomarkers are reported to be associated with the risk of lung cancer (LC). However, the observed associations from epidemiological studies are either inconsistent or inconclusive. METHODS The genetic summary data of high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), fasting plasma glucose (FPG), and glycated hemoglobin (HbA1c) and those of the LC and its histological subtypes were retrieved from previous GWASs. We performed two-sample Mendelian randomization (MR) and multivariable MR analyses to examine the associations between genetically predicted metabolic biomarkers and LC in East Asians and Europeans. RESULTS In East Asians, the inverse-variance weighted (IVW) method suggests that LDL (odds ratio [OR] = 0.799, 95% CI 0.712-0.897), TC (OR = 0.713, 95% CI 0.638-0.797), and TG (OR = 0.702, 95% CI 0.613-0.804) were significantly associated with LC after correction for multiple testing. For the remaining three biomarkers, we did not detect significant association with LC by any MR method. Multivariable MR (MVMR) analysis yielded an OR of 0.958 (95% CI 0.748-1.172) for HDL, 0.839 (95% CI 0.738-0.931) for LDL, 0.942 (95% CI 0.742-1.133) for TC, 1.161 (95% CI 1.070-1.252) for TG, 1.079 (95% CI 0.851-1.219) for FPG, and 1.101 (95% CI 0.922-1.191) for HbA1c. In Europeans, the univariate MR analyses did not detect significant association between exposures and outcomes. However, in MVMR analysis integrating circulating lipids and lifestyle risk factors (smoking, alcohol drinking, and body mass index), we found that TG was positively associated with LC in Europeans (OR = 1.660, 95% CI 1.060-2.260). Subgroup and sensitivity analysis yielded similar results to the main analyses. CONCLUSIONS Our study provides genetic evidence that circulating levels of LDL was negatively associated with LC in East Asians, whereas TG was positively associated with LC in both populations.
Collapse
Affiliation(s)
- Kai Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shangshang Wang
- Nursing department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuhan Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sha Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijiang Song
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Flaaten CB, Melle I, Gardsjord E, Bjella T, Engen MJ, Vaskinn A, Åsbø G, Wold KF, Widing L, Lyngstad SH, Haatveit B, Simonsen C, Ueland T. Course of intellectual functioning in schizophrenia and bipolar disorder: a 10-year follow-up study. Psychol Med 2023; 53:2662-2670. [PMID: 35256030 PMCID: PMC10123835 DOI: 10.1017/s0033291721004645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Intellectual functioning (IQ) is lower in schizophrenia patients compared to healthy controls, with bipolar patients intermediate between the two. Declines in IQ mark the onset of schizophrenia, while stability is generally found post-onset. There are to date few studies on long-term IQ development in bipolar disorder. This study presents 10-year follow-up data on IQ, including premorbid IQ estimates, to track the developmental course from pre-onset levels to long-term outcomes in both patient groups compared to healthy controls. METHODS We included 139 participants with schizophrenia, 76 with bipolar disorder and 125 healthy controls. Mixed model analyses were used to estimate developmental slopes for IQ scores from estimated premorbid level (NART IQ) through baseline (WASI IQ) measured within 12 months post-onset, to 10-year follow-up (WASI IQ), with pairwise group comparisons. The best fit was found using a model with a breakpoint at baseline assessment. RESULTS Only the schizophrenia group had significant declines from estimated premorbid to baseline IQ levels compared to controls. When comparing patient groups, schizophrenia patients had steeper declines than the bipolar group. Increases in IQ were found in all groups over the follow-up period. CONCLUSIONS Trajectories of IQ from premorbid level to 10-year follow-up indicated declines from estimated premorbid level to illness onset in both patient groups, followed by increases during the follow-up period. Schizophrenia patients had a steeper decline than bipolar patients. During follow-up, increases indicate developmental improvement for both patient groups, but with a maintained lag compared to healthy controls due to lower premorbid levels.
Collapse
Affiliation(s)
- Camilla Bärthel Flaaten
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erlend Gardsjord
- Division of Mental Health and Addiction, Unit for Early Intervention in Psychosis, Oslo University Hospital, Oslo, Norway
| | - Thomas Bjella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Magnus Johan Engen
- Division of Mental Health and Addiction, Nydalen DPS, Oslo University Hospital, Oslo, Norway
| | - Anja Vaskinn
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Gina Åsbø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Fjelnseth Wold
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Line Widing
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Siv Hege Lyngstad
- Division of Mental Health and Addiction, Nydalen DPS, Oslo University Hospital, Oslo, Norway
| | - Beathe Haatveit
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Carmen Simonsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Bharadhwaj VS, Mubeen S, Sargsyan A, Jose GM, Geissler S, Hofmann-Apitius M, Domingo-Fernández D, Kodamullil AT. Integrative analysis to identify shared mechanisms between schizophrenia and bipolar disorder and their comorbidities. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110688. [PMID: 36462601 DOI: 10.1016/j.pnpbp.2022.110688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Schizophrenia and bipolar disorder are characterized by highly similar neuropsychological signatures, implying shared neurobiological mechanisms between these two disorders. These disorders also have comorbidities, such as type 2 diabetes mellitus (T2DM). To date, an understanding of the mechanisms that mediate the link between these two disorders remains incomplete. In this work, we identify and investigate shared patterns across multiple schizophrenia, bipolar disorder and T2DM gene expression datasets through multiple strategies. Firstly, we investigate dysregulation patterns at the gene-level and compare our findings against disease-specific knowledge graphs (KGs). Secondly, we analyze the concordance of co-expression patterns across datasets to identify disease-specific as well as common pathways. Thirdly, we examine enriched pathways across datasets and disorders to identify common biological mechanisms between them. Lastly, we investigate the correspondence of shared genetic variants between these two disorders and T2DM as well as the disease-specific KGs. In conclusion, our work reveals several shared candidate genes and pathways, particularly those related to the immune system, such as TNF signaling pathway, IL-17 signaling pathway and NF-kappa B signaling pathway and nervous system, such as dopaminergic synapse and GABAergic synapse, which we propose mediate the link between schizophrenia and bipolar disorder and its shared comorbidity, T2DM.
Collapse
Affiliation(s)
- Vinay Srinivas Bharadhwaj
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany.
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany; Fraunhofer Center for Machine Learning, Germany
| | - Astghik Sargsyan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany
| | - Geena Mariya Jose
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| | | | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Fraunhofer Center for Machine Learning, Germany; Enveda Biosciences, Boulder, CO, 80301, USA
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany; Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| |
Collapse
|
43
|
Bora E, Verim B, Akgul O, Ildız A, Ceylan D, Alptekin K, Özerdem A, Akdede BB. Clinical and developmental characteristics of cognitive subgroups in a transdiagnostic sample of schizophrenia spectrum disorders and bipolar disorder. Eur Neuropsychopharmacol 2023; 68:47-56. [PMID: 36640733 DOI: 10.1016/j.euroneuro.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Evidence suggests that neurocognitive dysfunction is a transdiagnostic feature of individuals across the continuum between schizophrenia and bipolar disorder. However, there is significant heterogeneity of neuropsychological and social-cognitive abilities in schizophrenia, schizoaffective disorder, and bipolar disorder. The current study aimed to investigate the clinical and developmental characteristics of cognitive subgroups within the schizo-bipolar spectrum. 147 clinically stable patients with schizophrenia, schizoaffective or bipolar disorder were assessed using clinical rating scales for current psychotic and affective symptoms, and a comprehensive neuropsychological battery including measures of social cognition (Hinting and Reading the mind from the Eyes (RMET) task)). Developmental history and premorbid academic functioning were also evaluated. The study also included 36 healthy controls. Neurocognitive subgroups were investigated using latent class analysis (LCA). The optimal number of clusters was determined based on the Bayesian information criterion. A logistic regression analysis was conducted to investigate the predictors of membership to the globally impaired subgroup. LCA revealed two neurocognitive clusters including globally impaired (n = 89, 60.5%) and near-normal cognitive functioning (n = 58, 39.5%) subgroups. The near-normal cognitive functioning subgroup was not significantly different from healthy controls. The globally impaired subgroup had a higher score of developmental abnormalities (p<0.001), poorer premorbid academic functioning, mothers who were less educated and more severe disorganized speech (p = 0.001) and negative symptoms (p = 0.004) compared to the near-normal cognitive functioning group. History of developmental abnormalities and persistent disorganization rather than diagnosis are significant predictors of the subgroup of individuals with global cognitive impairment in the schizophrenia-bipolar disorder continuum.
Collapse
Affiliation(s)
- Emre Bora
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey.
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ozge Akgul
- Department of Psychology, İzmir Demokrasi University, İzmir, Turkey
| | - Ayşegül Ildız
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Psychiatry and Psychology, Koc University, Istanbul, Turkey
| | - Köksal Alptekin
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Berna Binnur Akdede
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
44
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
45
|
Muntané G, Vázquez-Bourgon J, Sada E, Martorell L, Papiol S, Bosch E, Navarro A, Crespo-Facorro B, Vilella E. Polygenic risk scores enhance prediction of body mass index increase in individuals with a first episode of psychosis. Eur Psychiatry 2023; 66:e28. [PMID: 36852609 PMCID: PMC10044301 DOI: 10.1192/j.eurpsy.2023.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Individuals with a first episode of psychosis (FEP) show rapid weight gain during the first months of treatment, which is associated with a reduction in general physical health. Although genetics is assumed to be a significant contributor to weight gain, its exact role is unknown. METHODS We assembled a population-based FEP cohort of 381 individuals that was split into a Training (n = 224) set and a Validation (n = 157) set to calculate the polygenic risk score (PRS) in a two-step process. In parallel, we obtained reference genome-wide association studies for body mass index (BMI) and schizophrenia (SCZ) to examine the pleiotropic landscape between the two traits. BMI PRSs were added to linear models that included sociodemographic and clinical variables to predict BMI increase (∆BMI) in the Validation set. RESULTS The results confirmed considerable shared genetic susceptibility for the two traits involving 449 near-independent genomic loci. The inclusion of BMI PRSs significantly improved the prediction of ∆BMI at 12 months after the onset of antipsychotic treatment by 49.4% compared to a clinical model. In addition, we demonstrated that the PRS containing pleiotropic information between BMI and SCZ predicted ∆BMI better at 3 (12.2%) and 12 months (53.2%). CONCLUSIONS We prove for the first time that genetic factors play a key role in determining ∆BMI during the FEP. This finding has important clinical implications for the early identification of individuals most vulnerable to weight gain and highlights the importance of examining genetic pleiotropy in the context of medically important comorbidities for predicting future outcomes.
Collapse
Affiliation(s)
- Gerard Muntané
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Departamento de Medicina y Psiquiatría, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ester Sada
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elena Bosch
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Barcelonaβeta Brain Research Center, Fundació Pasqual Maragall, Barcelona, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Instituto de Biomedicina de Sevilla (IBiS), University Hospital Virgen del Rocío, Seville, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
46
|
Selten JP, Ormel J. Low status, humiliation, dopamine and risk of schizophrenia. Psychol Med 2023; 53:609-613. [PMID: 36695070 PMCID: PMC9976000 DOI: 10.1017/s0033291722003816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 01/26/2023]
Abstract
The social defeat hypothesis of schizophrenia, which proposes that the chronic experience of outsider status or subordinate position leads to increased striatal dopamine activity and thereby to increased risk, has been criticized. The aims of this paper are to improve the definition of defeat and to integrate the social defeat hypothesis with the neurodevelopmental hypothesis. Marmot advanced the idea that low status is pathogenic in that it is associated with a lack of social participation and a lack of autonomy. Given the similarity with outsider status and subordinate position, we re-define social defeat as low status. From this new perspective it is also likely that pre-schizophrenic impairments (of neurodevelopmental origin or not) are pathogenic in that they contribute to low status. The effect of low status may be enhanced by repeated exposure to humiliation, but few studies have measured this variable. Since most individuals exposed to low status do not develop schizophrenia, we propose that this risk factor increases the risk of disorder in the presence of a poor homeostatic control of dopamine neurons in midbrain and dorsal striatum. This is consistent with studies of healthy subjects which report a negative association between low socio-economic status and dopamine D2/D3 receptor availability in the dorsal striatum. In this new version of the social defeat hypothesis we propose that the combination of low status, repeated humiliation and poor homeostatic control of dopamine neurons in midbrain and dorsal striatum leads to increased striatal dopamine activity and thereby to an increased risk of schizophrenia.
Collapse
Affiliation(s)
- Jean Paul Selten
- University of Maastricht, School for Mental Health and Neuroscience, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Health Care, Leiden, The Netherlands
| | - Johan Ormel
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Andreassen OA, Hindley GFL, Frei O, Smeland OB. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 2023; 22:4-24. [PMID: 36640404 PMCID: PMC9840515 DOI: 10.1002/wps.21034] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.
Collapse
Affiliation(s)
- Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Aas M, Ueland T, Lagerberg TV, Melle I, Aminoff SR, Hoegh MC, Lunding SH, Laskemoen JF, Steen NE, Andreassen OA. Retrospectively assessed childhood trauma experiences are associated with illness severity in mental disorders adjusted for symptom state. Psychiatry Res 2023; 320:115045. [PMID: 36621206 DOI: 10.1016/j.psychres.2022.115045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Converging evidence suggests that childhood trauma is a causal factor in schizophrenia (SZ) and in bipolar disorders (BD). Here, we investigated whether retrospective reports are associated with severity of illness, independent of current symptom state in a large sample of participants with SZ or BD. We included 1260 individuals (SZ [n = 461], BD [n = 352]), and healthy controls; HC [n = 447]) recruited from the same catchment area. A history of childhood trauma was obtained with the Childhood Trauma Questionnaire (CTQ). Diagnosis and episodes were obtained with the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). Clinical symptoms (state) were assessed with the Positive and Negative Syndrome scale (PANSS), the Calgary Depression Scale (CDSS). Trait related illness characteristics were assessed with age at illness onset, number of episodes, and lifetime suicide attempts. Patients who reported multiple types of childhood trauma experiences had significantly more severe illness course including an earlier illness onset, more mood episodes, and increased risk of at least one suicide attempt, also after adjusting for current symptom state. Retrospective assessed childhood trauma experiences are associated with illness severity in mental disorders adjusted for symptom state. Our results strengthen the role of childhood trauma in development of psychopathology.
Collapse
Affiliation(s)
- Monica Aas
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Torill Ueland
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Trine V Lagerberg
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Sofie R Aminoff
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Margrethe C Hoegh
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Jannicke F Laskemoen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Norway
| |
Collapse
|
49
|
Hasse-Sousa M, Martins DS, Petry-Perin C, Britto MJSD, Remus IB, Lapa CDO, Reckziegel RDFX, Sales SCD, Jesus LSD, Philippsen M, Massuda R, Van Rheenen TE, Gama CS, Czepielewski LS. The role of semantic clustering in the relationship between verbal memory and psychosocial functioning in schizophrenia and bipolar disorder: Possible distinct cognitive pathway compared to healthy controls. J Affect Disord 2023; 320:330-339. [PMID: 36162669 DOI: 10.1016/j.jad.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Verbal memory (VM) is impaired in schizophrenia (SZ) and bipolar disorder (BD), and predicts psychosocial functioning. However, there is a lack of research exploring the role of VM component processes, including semantic clustering, in these disorders. Semantic clustering might impact this association, as effective semantic memory strategies may reflect unimpaired executive control, leading to an adequate functioning. We aimed to investigate VM components in SZ and BD, and the role of semantic clustering in the relationship between VM and functioning. METHODS We included 495 participants (156 SZ, 172 BD, and 167 healthy controls (HC)) that underwent an assessment using the Hopkins Verbal Learning Test - Revised for VM and the Functioning Assessment Short Test for psychosocial functioning. We compared groups through ANOVAs and investigated the effect of semantic clustering in the relationship between VM total immediate free recall and functioning through linear regression models. RESULTS SZ had worse overall VM performance compared to BD, which performed worse than HCs. HCs used more semantic clustering than SZ and BD, but there were no differences between the two clinical groups. In HCs, semantic clustering impacted the relationship between VM performance and functioning, while no interaction was observed in SZ or BD. LIMITATIONS Cross-sectional design; no medication effects or other cognitive functions were assessed. CONCLUSIONS SZ and BD may use an alternative cognitive pathway in which the relationship between VM and functioning is independent of complex cognitive processes such as semantic clustering, supporting the cognitive remediation targeting of VM in these disorders.
Collapse
Affiliation(s)
- Mathias Hasse-Sousa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dayane Santos Martins
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Petry-Perin
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Julia Silva de Britto
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Isadora Bosini Remus
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clara de Oliveira Lapa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ramiro de Freitas Xavier Reckziegel
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sarah Corrêa de Sales
- Psychosis Treatment and Research Program, Department of Forensic Medicine and Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Stephane de Jesus
- Psychosis Treatment and Research Program, Department of Forensic Medicine and Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marielli Philippsen
- Psychosis Treatment and Research Program, Department of Forensic Medicine and Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Raffael Massuda
- Psychosis Treatment and Research Program, Department of Forensic Medicine and Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
| | - Clarissa Severino Gama
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Sanguinetti Czepielewski
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
50
|
Valli I, De la Serna E, Segura AG, Pariente JC, Calvet-Mirabent A, Borras R, Ilzarbe D, Moreno D, Martín-Martínez N, Baeza I, Rosa-Justicia M, Garcia-Rizo C, Díaz-Caneja CM, Crossley NA, Young AH, Vieta E, Mas S, Castro-Fornieles J, Sugranyes G. Genetic and Structural Brain Correlates of Cognitive Subtypes Across Youth at Family Risk for Schizophrenia and Bipolar Disorder. J Am Acad Child Adolesc Psychiatry 2023; 62:74-83. [PMID: 35710081 DOI: 10.1016/j.jaac.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Cognitive impairment is an important feature of schizophrenia (SZ) and bipolar disorder (BP) with severity across the two disorders characterized by significant heterogeneity. Youth at family risk for SZ and BP were clustered based on cognitive function and examined in terms of the clinical, genetic, and brain imaging correlates of cluster membership. METHOD One hundred sixty participants, 32 offspring of patients with SZ, 59 offspring of patients with BP and 69 offspring of healthy control parents underwent clinical and cognitive assessments, genotyping and structural MRI. K-means clustering was used to group family risk participants based on cognitive measures. Clusters were compared in terms of cortical and subcortical brain measures as well as polygenic risk scores. RESULTS Participants were grouped in 3 clusters with intact, intermediate, and impaired cognitive performance. The intermediate and impaired clusters had lower total brain surface area compared with the intact cluster, with prominent localization in frontal and temporal cortices. No between-cluster differences were identified in cortical thickness and subcortical brain volumes. The impaired cluster also had poorer psychosocial functioning and worse PRS-COG compared with the other 2 clusters and with offspring of healthy control parents, while there was no significant between-cluster difference in terms of PRS-SZ and PRS-BP. PRS-COG predicted psychosocial functioning, yet this effect did not appear to be mediated by an effect of PRS-COG on brain area. CONCLUSION Stratification based on cognition may help to elucidate the biological underpinnings of cognitive heterogeneity across SZ and BP risk.
Collapse
Affiliation(s)
- Isabel Valli
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London.
| | - Elena De la Serna
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain
| | | | - Jose C Pariente
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Roger Borras
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Ilzarbe
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain
| | - Dolores Moreno
- Institute of Neuroscience, Hospital Clínic Barcelona, Spain; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Nuria Martín-Martínez
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Inmaculada Baeza
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain; University of Barcelona, Spain
| | - Mireia Rosa-Justicia
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Clemente Garcia-Rizo
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain
| | - Covadonga M Díaz-Caneja
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Nicolas A Crossley
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain; University of Barcelona, Spain
| | - Sergi Mas
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University of Barcelona, Spain
| | - Josefina Castro-Fornieles
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain; University of Barcelona, Spain
| | - Gisela Sugranyes
- Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Institute of Neuroscience, Hospital Clínic Barcelona, Spain; University of Barcelona, Spain
| |
Collapse
|