1
|
Couch ACM, Brown AM, Raimundo C, Solomon S, Taylor M, Sichlinger L, Matuleviciute R, Srivastava DP, Vernon AC. Transcriptional and cellular response of hiPSC-derived microglia-neural progenitor co-cultures exposed to IL-6. Brain Behav Immun 2024; 122:27-43. [PMID: 39098436 DOI: 10.1016/j.bbi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Amelia M Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Catarina Raimundo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Morgan Taylor
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
2
|
Spann MN, Bansal R, Aydin E, Pollatou A, Alleyne K, Bennett M, Sawardekar S, Delapenha K, Cheng B, Lee S, Monk C, Peterson BS. Maternal prenatal immune activation associated with brain tissue microstructure and metabolite concentrations in newborn infants. Brain Behav Immun 2024; 122:279-286. [PMID: 39163912 PMCID: PMC11551918 DOI: 10.1016/j.bbi.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Few human studies have assessed the association of prenatal maternal immune activation (MIA) with measures of brain development and psychiatric risk in newborn offspring. Our goal was to identify the effects of MIA during the 2nd and 3rd trimesters of pregnancy on newborn measures of brain metabolite concentrations, tissue microstructure, and motor development. This was a prospective longitudinal cohort study conducted with nulliparous pregnant women who were aged 14 to 19 years and recruited in their 2nd trimester, as well as their children who were followed through 14 months of age. MIA was indexed by maternal interleukin-6 (IL-6) and C-reactive protein (CRP) in both trimesters of pregnancy. Primary outcomes included: (1) newborn brain metabolite concentrations as ratios to creatine (N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr) measured using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity, measured using Diffusion Tensor Imaging; and (3) indices of motor development, assessed prenatally and postnatally at ages 4- and 14-months. Maternal IL-6 and CRP levels associated significantly with both metabolites in the putamen, thalamus, insula, and the internal capsule. Maternal IL-6 associated significantly with fractional anisotropy in the putamen, caudate, thalamus, insula, and precuneus, and with mean diffusivity in the inferior parietal and middle temporal gyrus. CRP associated significantly with fractional anisotropy in the thalamus, insula, and putamen. Significant associations were found in common regions across imaging modalities, though the direction of associations differed by immune marker. In addition, both maternal IL-6 and CRP (in both trimesters) prenatally associated significantly with offspring motor development at 4- and 14-months of age. The left thalamus mediated effects of IL-6 on postnatal motor development. These findings demonstrate that levels of MIA in mid- to late pregnancy in a generally healthy sample associate with tissue characteristics in newborn brain regions that primarily support motor integration and coordination, as well as behavioral regulation. Those brain effects may contribute to differences in motor development.
Collapse
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States.
| | - Ravi Bansal
- Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ezra Aydin
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Angeliki Pollatou
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kiarra Alleyne
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Margaret Bennett
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Kayla Delapenha
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Bin Cheng
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Seonjoo Lee
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Catherine Monk
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Bradley S Peterson
- Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Zhu Y, Webster MJ, Mendez Victoriano G, Middleton FA, Massa PT, Weickert CS. Molecular Evidence for Altered Angiogenesis in Neuroinflammation-Associated Schizophrenia and Bipolar Disorder Implicate an Abnormal Midbrain Blood-Brain Barrier. Schizophr Bull 2024:sbae184. [PMID: 39471484 DOI: 10.1093/schbul/sbae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Angiogenesis triggered by inflammation increases BBB permeability and facilitates macrophage transmigration. In the midbrain, we have discovered molecular alterations related to the blood-brain barrier (BBB), including endothelial cell changes associated with macrophage diapedesis, in neuroinflammatory schizophrenia and bipolar disorder, but changes in angiogenesis are yet to be reported. Hypothesis: We expected to discover molecular evidence of altered angiogenesis in the midbrain in individuals with schizophrenia and bipolar disorder compared to controls, with these changes more evident in "high" inflammation schizophrenia as compared to "low" inflammation. STUDY DESIGN In a case-control post-mortem cohort including schizophrenia (n = 35), bipolar disorder (n = 35), and controls (n = 33), we measured mRNA (RT-PCR) and protein (multiplex immunoassays) and performed immunohistochemistry to determine levels and anatomical distribution of angiogenesis-related molecules in the ventral midbrain. STUDY RESULTS We found large changes in angiogenesis factors in bipolar disorder high inflammatory subgroup (increased angiopoietin-2 and SERPINE1 mRNAs, but decreased angiopoietin-1, angiopoietin-2, and TEK receptor proteins). In schizophrenia high inflammatory subgroup, we found a robust increase in SERPINE1 mRNA and protein levels. However, we found no significant changes in angiopoietins in schizophrenia. We found that VEGFA mRNA level was increased in high inflammation schizophrenia, but only reached statistical significance compared to one low inflammatory subgroup. CONCLUSIONS Thus, angiogenesis signaling pathways appeared to be involved in the BBB alterations when inflammation is also present in the midbrain of schizophrenia and bipolar disorder, with increased levels of SERPINE1 in schizophrenia high inflammatory subgroup and with a putative suppression of angiopoietin signaling in bipolar disorder high inflammatory subgroup.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, United States
| | - Gerardo Mendez Victoriano
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Paul T Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, United States
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
4
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
5
|
Debs SR, Rothmond DA, Zhu Y, Weickert CS, Purves-Tyson TD. Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. J Psychiatr Res 2024; 177:118-128. [PMID: 39004003 DOI: 10.1016/j.jpsychires.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Stress and inflammation are risk factors for schizophrenia. Chronic psychosocial stress is associated with subcortical hyperdopaminergia, a core feature of schizophrenia. Hyperdopaminergia arises from midbrain neurons, leading us to hypothesise that changes in stress response pathways may occur in this region. To identify whether transcriptional changes in glucocorticoid and mineralocorticoid receptors (NR3C1/GR, NR3C2/MR) or other stress signalling molecules (FKBP4, FKBP5) exist in schizophrenia midbrain, we measured gene expression in the human brain (N = 56) using qRT-PCR. We assessed whether alterations in these mRNAs were related to previously identified high/low inflammatory status. We investigated relationships between stress-related transcripts themselves, and between FKBP5 mRNA, dopaminergic, and glial cell transcripts in diagnostic and inflammatory subgroups. Though unchanged by diagnosis, GR mRNA levels were reduced in high inflammatory compared to low inflammatory schizophrenia cases (p = 0.026). We found no effect of diagnosis or inflammation on MR mRNA. FKBP4 mRNA was decreased and FKBP5 mRNA was increased in schizophrenia (p < 0.05). FKBP5 changes occurred in high inflammatory (p < 0.001), whereas FKBP4 changes occurred in low inflammatory schizophrenia cases (p < 0.05). The decrease in mRNA encoding the main stress receptor (GR), as well as increased transcript levels of the stress-responsive negative regulator (FKBP5), may combine to blunt the midbrain response to stress in schizophrenia when neuroinflammation is present. Negative correlations between FKBP5 mRNA and dopaminergic transcripts in the low inflammatory subgroup suggest higher levels of FKBP5 mRNA may also attenuate dopaminergic neurotransmission in schizophrenia even when inflammation is absent. We report alterations in GR-mediated stress signalling in the midbrain in schizophrenia.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
6
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Tillmann KE, Schaer R, Mueller FS, Mueller K, Voelkl B, Weber-Stadlbauer U, Pollak DD. Differential effects of purified low molecular weight Poly(I:C) in the maternal immune activation model depend on the laboratory environment. Transl Psychiatry 2024; 14:300. [PMID: 39033141 PMCID: PMC11271296 DOI: 10.1038/s41398-024-03014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
The Poly (I:C) (polyriboinosinic-polyribocytidilic acid) paradigm of maternal immune activation (MIA) is most widely used as experimental model for the evaluation of the effects of gestational infection on the brain and behavior of the progeny. We have previously reported significant batch-to-batch variability in the effects of Poly (I:C), purchased from the same supplier (Sigma-Aldrich), on maternal and fetal immune responses and found these differences to be dependent on the relative amount of synthetic double-stranded RNA fragments in the high versus low molecular weight (LMW) range contained in the compound. We here resorted to Poly (I:C) purified for LMW dsRNA fragments to establish a MIA paradigm with increased reproducibility and enhanced standardization in an effort to refine the MIA paradigm and characterize its effect on offspring behavior. We found that the parallel application of LMW Poly (I:C) in two different MIA-experienced laboratories (Vienna and Zurich) yielded differential outcomes in terms of maternal immune responses and behavioral phenotypes in the offspring generation. In both experimental sites, administration of LMW Poly (I:C) induced a significant sickness response and cytokine induction in the pregnant dam and fetal brains, while the expected deficit in sociability as one main behavioral outcome parameter in the MIA progeny, was only present in the Zurich, but not the Vienna cohort. We conclude that although using Poly (I:C) purified for a defined molecular weight range reduces batch-to-batch variability, it does not make the MIA model more reliable and robust. The differential response in behavioral phenotypes of the MIA offspring between the two laboratories illustrates the highly complex interaction between prenatal and postnatal milieus - including the laboratory environment - that determine offspring phenotypic outcomes after MIA. Consequently, establishing a new MIA protocol or implementing the MIA model firstly under new or changed environmental conditions must include the assessment of offspring behavior to ensure solid and reproducible experimental outcomes.
Collapse
Affiliation(s)
- Katharina E Tillmann
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Ron Schaer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Karin Mueller
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Voelkl
- Animal Welfare Division, Veterinary Public Health Institute University of Bern, Bern, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Chandra J. The potential role of the p75 receptor in schizophrenia: neuroimmunomodulation and making life or death decisions. Brain Behav Immun Health 2024; 38:100796. [PMID: 38813083 PMCID: PMC11134531 DOI: 10.1016/j.bbih.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
The nerve growth factor receptor, also referred to as tumour necrosis factor II and the p75 neurotrophin receptor (p75), serves pleiotropic functions in both the peripheral and central nervous system, involving modulation of immune responses, cell survival and cell death signalling in response to multiple ligands including cytokines such as TNFα, as well as proneurotrophins and mature neurotrophins. Whilst in vitro and in vivo studies have characterised various responses of the p75 receptor in isolated conditions, it remains unclear whether the p75 receptor serves to provide neuroprotection or contributes to neurotoxicity in neuroinflammatory and neurotrophin-deficit conditions, such as those presenting in schizophrenia. The purpose of this mini-review is to characterise the potential signalling mechanisms of the p75 receptor respective to neuropathological changes prevailing in schizophrenia to ultimately propose how specific functions of the receptor may underlie altered levels of p75 in specific cell types. On the basis of this evaluation, this mini-review aims to promote avenues for future research in utilising the therapeutic potential of ligands for the p75 receptor in psychiatric disorders, whereby heightened inflammation and reductions in trophic signalling mechanisms coalesce in the brain, potentially resulting in tissue damage.
Collapse
Affiliation(s)
- Jessica Chandra
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
10
|
North HF, Weissleder C, Bitar M, Barry G, Fullerton JM, Webster MJ, Weickert CS. RNA-sequencing suggests extracellular matrix and vasculature dysregulation could impair neurogenesis in schizophrenia cases with elevated inflammation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:50. [PMID: 38704390 PMCID: PMC11069512 DOI: 10.1038/s41537-024-00466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
A subgroup of schizophrenia cases with elevated inflammation have reduced neurogenesis markers and increased macrophage density in the human subependymal zone (SEZ; also termed subventricular zone or SVZ) neurogenic niche. Inflammation can impair neurogenesis; however, it is unclear which other pathways are associated with reduced neurogenesis. This research aimed to discover transcriptomic differences between inflammatory subgroups of schizophrenia in the SEZ. Total RNA sequencing was performed on SEZ tissue from schizophrenia cases, designated into low inflammation (n = 13) and high inflammation (n = 14) subgroups, based on cluster analysis of inflammation marker gene expression. 718 genes were differentially expressed in high compared to low inflammation schizophrenia (FDR p < 0.05) and were most significantly over-represented in the pathway 'Hepatic Fibrosis/Hepatic Stellate-Cell Activation'. Genes in this pathway relate to extracellular matrix stability (including ten collagens) and vascular remodelling suggesting increased angiogenesis. Collagen-IV, a key element of the basement membrane and fractones, had elevated gene expression. Immunohistochemistry revealed novel collagen-IV+ fractone bulbs within the human SEZ hypocellular gap. Considering the extracellular matrix's regulatory role in SEZ neurogenesis, fibrosis-related alterations in high inflammation schizophrenia may disrupt neurogenesis. Increased angiogenesis could facilitate immune cell transmigration, potentially explaining elevated macrophages in high inflammation schizophrenia. This discovery-driven analysis sheds light on how inflammation may contribute to schizophrenia neuropathology in the neurogenic niche.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | | | - Guy Barry
- OncoLife Therapeutics, Yeronga, QLD, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800, Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia.
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Chaves C, Dursun SM, Tusconi M, Hallak JEC. Neuroinflammation and schizophrenia - is there a link? Front Psychiatry 2024; 15:1356975. [PMID: 38389990 PMCID: PMC10881867 DOI: 10.3389/fpsyt.2024.1356975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Center (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Liu F, Xu W, Wang Y, Huang Z, Zhu Z, Ou W, Tang W, Fu J, Liu C, Gu Y, Liu Y, Du P. LAMB3 Promotes Intestinal Inflammation Through SERPINA3 and Is Directly Transcriptionally Regulated by P65 in Inflammatory Bowel Disease. Inflamm Bowel Dis 2024; 30:257-272. [PMID: 37454278 DOI: 10.1093/ibd/izad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 07/18/2023]
Abstract
BACKGROUND Various extracellular matrix (ECM) reshaping events are involved in inflammatory bowel disease (IBD). LAMB3 is a vital subunit of laminin-332, an important ECM component. Data on the biological function of LAMB3 in intestinal inflammation are lacking. Our aim is to discuss the effect of LAMB3 in IBD. METHODS LAMB3 expression was assessed in cultured intestinal epithelial cells, inflamed mucosal tissues of patients and mouse colitis models. RNA sequencing, quantitative real-time polymerase chain reaction and Western blotting were used to detect the LAMB3 expression distribution and potential downstream target genes. Dual-luciferase assays and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to determine whether P65 could transcriptionally activate LAMB3 under tumor necrosis factor α stimulation. RESULTS LAMB3 expression was increased in inflammatory states in intestinal epithelial cells and colonoids and was associated with adverse clinical outcomes in Crohn's disease. Knockdown of LAMB3 inhibited the expression of proinflammatory cytokines. Mechanistically, LAMB3 expression was directly transcriptionally activated by P65 and was inhibited by nuclear factor kappa B inhibitors under tumor necrosis factor α stimulation. Furthermore, RNA sequencing and replenishment experiments revealed that LAMB3 upregulated SERPINA3 to promote intestinal inflammation via the integrin α3β1/FAK pathway. CONCLUSION We propose that LAMB3 could serve as a potential therapeutic target of IBD and a predictor of intestinal stenosis of Crohn's disease. Our findings demonstrate the important role of ECM in the progression of IBD and offer an experimental basis for the treatment and prognosis of IBD.
Collapse
Affiliation(s)
- Fangyuan Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Xu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaosheng Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyu Huang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhehui Zhu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijun Ou
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenbo Tang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jihong Fu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenying Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yubei Gu
- Department of Gastroenterology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res 2024; 332:115708. [PMID: 38171169 DOI: 10.1016/j.psychres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Schizophrenia is a devastating psychiatric disorder that has detrimental effects on a significant portion of the global population. Electroconvulsive therapy (ECT), as a safe and effective physical therapy for schizophrenia, has demonstrated the ability to rapidly improve both positive and negative symptoms. Despite being used to treat schizophrenia for over 80 years, the therapeutic mechanisms of ECT are still in the early stages of exploration. Evidence has suggested that immune inflammation contributes to the pathogenesis of schizophrenia by interacting with neurotransmitters, neurodevelopment, and neurodegeneration. Given the importance of ECT as a fast-acting physical therapy for schizophrenia, gaining a deeper understanding of the role of immune inflammation may lead to developing innovative therapeutic approaches. This review summarized existing research that examined changes in peripheral inflammation following ECT in schizophrenia patients, and the effects of electroconvulsive stimulation (ECS) on neuroinflammation in animal studies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
15
|
Weickert TW, Jacomb I, Lenroot R, Lappin J, Weinberg D, Brooks WS, Brown D, Pellen D, Kindler J, Mohan A, Wakefield D, Lloyd AR, Stanton C, O'Donnell M, Liu D, Galletly C, Shannon Weickert C. Adjunctive canakinumab reduces peripheral inflammation markers and improves positive symptoms in people with schizophrenia and inflammation: A randomized control trial. Brain Behav Immun 2024; 115:191-200. [PMID: 37848096 DOI: 10.1016/j.bbi.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Clinical trials of anti-inflammatories in schizophrenia do not show clear and replicable benefits, possibly because patients were not recruited based on elevated inflammation status. Interleukin 1-beta (IL-1β) mRNA and protein levels are increased in serum, plasma, cerebrospinal fluid, and brain of some chronically ill patients with schizophrenia, first episode psychosis, and clinical high-risk individuals. Canakinumab, an approved anti-IL-1β monoclonal antibody, interferes with the bioactivity of IL-1β and interrupts downstream signaling. However, the extent to which canakinumab reduces peripheral inflammation markers, such as, high sensitivity C-reactive protein (hsCRP) and symptom severity in schizophrenia patients with inflammation is unknown. TRIAL DESIGN We conducted a randomized, placebo-controlled, double-blind, parallel groups, 8-week trial of canakinumab in chronically ill patients with schizophrenia who had elevated peripheral inflammation. METHODS Twenty-seven patients with schizophrenia or schizoaffective disorder and elevated peripheral inflammation markers (IL-1β, IL-6, hsCRP and/or neutrophil to lymphocyte ratio: NLR) were randomized to a one-time, subcutaneous injection of canakinumab (150 mg) or placebo (normal saline) as an adjunctive antipsychotic treatment. Peripheral blood hsCRP, NLR, IL-1β, IL-6, IL-8 levels were measured at baseline (pre injection) and at 1-, 4- and 8-weeks post injection. Symptom severity was assessed at baseline and 4- and 8-weeks post injection. RESULTS Canakinumab significantly reduced peripheral hsCRP over time, F(3, 75) = 5.16, p = 0.003. Significant hsCRP reductions relative to baseline were detected only in the canakinumab group at weeks 1, 4 and 8 (p's = 0.0003, 0.000002, and 0.004, respectively). There were no significant hsCRP changes in the placebo group. Positive symptom severity scores were significantly reduced at week 8 (p = 0.02) in the canakinumab group and week 4 (p = 0.02) in the placebo group. The change in CRP between week 8 and baseline (b = 1.9, p = 0.0002) and between week 4 and baseline (b = 6.0, p = 0.001) were highly significant predictors of week 8 change in PANSS Positive Symptom severity scores. There were no significant changes in negative symptoms, general psychopathology or cognition in either group. Canakinumab was well tolerated and only 7 % discontinued. CONCLUSIONS Canakinumab quickly reduces peripheral hsCRP serum levels in patients with schizophrenia and inflammation; after 8 weeks of canakinumab treatment, the reductions in hsCRP are related to reduced positive symptom severity. Future studies should consider increased doses or longer-term treatment to confirm the potential benefits of adjunctive canakinumab in schizophrenia. Australian and New Zealand Clinical Trials Registry number: ACTRN12615000635561.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia.
| | - Isabella Jacomb
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Julia Lappin
- School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - David Brown
- NSW Health Pathology-ICPMR, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Pellen
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Jochen Kindler
- Neuroscience Research Australia, Sydney, New South Wales, Australia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Adith Mohan
- School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Denis Wakefield
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive Stanton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Maryanne O'Donnell
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia; Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Locah Health Network, Adelaide, South Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Locah Health Network, Adelaide, South Australia, Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Flores A, Nguyen NM, Pendyala G. Developmental outcomes with perinatal exposure (DOPE) to prescription opioids. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:339-351. [PMID: 38058996 PMCID: PMC10696573 DOI: 10.1515/nipt-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Researchers have found considerable evidence in the past 20 years that perinatal opioid exposure leads to an increased risk of developmental disorders in offspring that persist into adulthood. The use of opioids to treat pain concerning pregnancy, delivery, and postpartum complications has been rising. As a result, communities have reported a 300-400 % increase in Neonatal Opioid Withdrawal Syndrome (NOWS). NOWS represents the initial stage of several behavioral, phenotypic, and synaptic deficits. This review article summarizes the Developmental Outcomes of Perinatal Exposure (DOPE) to prescription opioids. Moreover, we also seek to connect these findings to clinical research that describes DOPE at multiple stages of life. Since specific mechanisms that underlie DOPE remain unclear, this article aims to provide a framework for conceptualizing across all ages and highlight the implications they may have for longevity.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
17
|
Guerrin CG, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, Doorduin J, de Vries EF. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress 2023; 27:100580. [PMID: 37920548 PMCID: PMC10618826 DOI: 10.1016/j.ynstr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1β protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jing Zheng
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Maria Franquesa-Mullerat
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
18
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
19
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
20
|
Yotova AY, Li LL, O’Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Embryonic and adult synaptic proteome perturbations after maternal immune activation: Identification of persistent changes relevant for early intervention. RESEARCH SQUARE 2023:rs.3.rs-3100753. [PMID: 37461513 PMCID: PMC10350178 DOI: 10.21203/rs.3.rs-3100753/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Maternal infections during pregnancy pose an increased risk for neurodevelopmental psychiatric disorders (NPDs) in the offspring. Here, we examined age- and sex-dependent dynamic changes of the hippocampal synaptic proteome after maternal immune activation (MIA) in embryonic and adult mice. Adult male and female MIA offspring exhibited social deficits and sex-specific depression-like behaviours, among others, validating the model. Furthermore, we observed dose-, age-, and sex-dependent synaptic proteome differences. Analysis of the embryonic synaptic proteome implicates sphingolipid and ketoacid metabolism pathway disruptions during neurodevelopment for NPD-pertinent sequelae. In the embryonic hippocampus, prenatal immune activation also led to changes in neuronal guidance, glycosphingolipid metabolism important for signalling and myelination, and post-translational modification of proteins that regulate intercellular interaction and developmental timing. In adulthood, the observed changes in synaptoneurosomes revealed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, and hormone-mediated metabolism. Importantly, 68 of the proteins with differential abundance in the embryonic brains of MIA offspring were also altered in adulthood, 75% of which retained their directionality. These proteins are involved in synaptic organisation, neurotransmitter receptor regulation, and the vesicle cycle. A cluster of persistently upregulated proteins, including AKT3, PAK1/3, PPP3CA, formed a functional network enriched in the embryonic brain that is involved in cellular responses to environmental stimuli. To infer a link between the overlapping protein alterations and cognitive and psychiatric traits, we probed human phenome-wise association study data for cognitive and psychiatric phenotypes and all, but PORCN were significantly associated with the investigated domains. Our data provide insights into the dynamic effects of an early prenatal immune activation on developing and mature hippocampi and highlights targets for early intervention in individuals exposed to such immune challenges.
Collapse
Affiliation(s)
- Anna Y. Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - Aet O’Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - David A. Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| |
Collapse
|
21
|
Spann MN, Bansal R, Aydin E, Pollatou A, Alleyne K, Bennett M, Sawardekar S, Cheng B, Lee S, Monk C, Peterson BS. Maternal prenatal immune activation associated with brain tissue microstructure and metabolite concentrations in newborn infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.01.23292113. [PMID: 37461481 PMCID: PMC10350159 DOI: 10.1101/2023.07.01.23292113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Importance Few translational human studies have assessed the association of prenatal maternal immune activation with altered brain development and psychiatric risk in newborn offspring. Objective To identify the effects of maternal immune activation during the 2nd and 3rd trimesters of pregnancy on newborn brain metabolite concentrations, tissue microstructure, and longitudinal motor development. Design Prospective longitudinal cohort study conducted from 2012 - 2017. Setting Columbia University Irving Medical Center and Weill Cornell Medical College. Participants 76 nulliparous pregnant women, aged 14 to 19 years, were recruited in their 2nd trimester, and their children were followed through 14 months of age. Exposure Maternal immune activation indexed by maternal interleukin-6 and C-reactive protein in the 2nd and 3rd trimesters of pregnancy. Main Outcomes and Measures The main outcomes included (1) newborn metabolite concentrations, measured as N-acetylaspartate, creatine, and choline using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity measured using Diffusion Tensor Imaging; and (3) indices of motor development assessed prenatally and postnatally at ages 4- and 14-months. Results Maternal interleukin-6 and C-reactive protein levels in the 2nd or 3rd trimester were significantly positively associated with the N-acetylaspartate, creatine, and choline concentrations in the putamen, thalamus, insula, and anterior limb of the internal capsule. Maternal interleukin-6 was associated with fractional anisotropy in the putamen, insula, thalamus, precuneus, and caudate, and with mean diffusivity in the inferior parietal and middle temporal gyrus. C-reactive protein was associated with fractional anisotropy in the thalamus, insula, and putamen. Regional commonalities were found across imaging modalities, though the direction of the associations differed by immune marker. In addition, a significant positive association was observed between offspring motor development and both maternal interleukin-6 and C-reactive protein (in both trimesters) prenatally and 4- and 14-months of age. Conclusions and Relevance Using a healthy sample, these findings demonstrate that levels of maternal immune activation in mid- to late pregnancy associate with tissue characteristics in newborn brain regions primarily supporting motor integration/coordination and behavioral regulation and may lead to alterations in motor development.
Collapse
Affiliation(s)
- Marisa N Spann
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Ravi Bansal
- Children's Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ezra Aydin
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Angeliki Pollatou
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kiarra Alleyne
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Margaret Bennett
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Bin Cheng
- New York State Psychiatric Institute, New York, NY
| | - Seonjoo Lee
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Catherine Monk
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York State Psychiatric Institute, New York, NY
| | - Bradley S Peterson
- Children's Hospital Los Angeles, Los Angeles, CA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Sager REH, Walker AK, Middleton FA, Robinson K, Webster MJ, Gentile K, Wong ML, Shannon Weickert C. Changes in cytokine and cytokine receptor levels during postnatal development of the human dorsolateral prefrontal cortex. Brain Behav Immun 2023; 111:186-201. [PMID: 36958512 DOI: 10.1016/j.bbi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Zhu Y, Webster MJ, Walker AK, Massa P, Middleton FA, Weickert CS. Increased prefrontal cortical cells positive for macrophage/microglial marker CD163 along blood vessels characterizes a neuropathology of neuroinflammatory schizophrenia. Brain Behav Immun 2023; 111:46-60. [PMID: 36972743 DOI: 10.1016/j.bbi.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcript levels of cytokines and SERPINA3 have been used to define a substantial subset (40%) of individuals with schizophrenia with elevated inflammation and worse neuropathology in the dorsolateral prefrontal cortex (DLPFC). In this study, we tested if inflammatory proteins are likewise related to high and low inflammatory states in the human DLFPC in people with schizophrenia and controls. Levels of inflammatory cytokines (IL6, IL1β, IL18, IL8) and a macrophage marker (CD163 protein) were measured in brains obtained from the National Institute of Mental Health (NIMH) (N = 92). First, we tested for diagnostic differences in protein levels overall, then we determined the percentage of individuals that could be defined as "high" inflammation using protein levels. IL-18 was the only cytokine to show increased expression in schizophrenia compared to controls overall. Interestingly, two-step recursive clustering analysis showed that IL6, IL18, and CD163 protein levels could be used as predictors of "high and low" inflammatory subgroups. By this model, a significantly greater proportion of schizophrenia cases (18/32; 56.25%; SCZ) were identified as belonging to the high inflammatory (HI) subgroup compared to control cases (18/60; 30%; CTRL) [χ2(1) = 6.038, p = 0.014]. When comparing across inflammatory subgroups, IL6, IL1β, IL18, IL8, and CD163 protein levels were elevated in both SCZ-HI and CTRL-HI compared to both low inflammatory subgroups (all p < 0.05). Surprisingly, TNFα levels were significantly decreased (-32.2%) in schizophrenia compared to controls (p < 0.001), and were most diminished in the SCZ-HI subgroup compared to both CTRL-LI and CTRL-HI subgroups (p < 0.05). Next, we asked if the anatomical distribution and density of CD163+ macrophages differed in those with schizophrenia and high inflammation status. Macrophages were localized to perivascular sites and found surrounding small, medium and large blood vessels in both gray matter and white matter, with macrophage density highest at the pial surface in all schizophrenia cases examined. A higher density of CD163+ macrophages, that were also larger and more darkly stained, was found in the SCZ-HI subgroup (+154% p < 0.05). We also confirmed the rare existence of parenchymal CD163+ macrophages in both high inflammation subgroups (schizophrenia and controls). Brain CD163+ cell density around blood vessels positively correlated with CD163 protein levels. In conclusion, we find a link between elevated interleukin cytokine protein levels, decreased TNFα protein levels, and elevated CD163+ macrophage densities especially along small blood vessels in those with neuroinflammatory schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Adam K Walker
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, Vic, Australia
| | - Paul Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
24
|
Couch ACM, Solomon S, Duarte RRR, Marrocu A, Sun Y, Sichlinger L, Matuleviciute R, Polit LD, Hanger B, Brown A, Kordasti S, Srivastava DP, Vernon AC. Acute IL-6 exposure triggers canonical IL6Ra signaling in hiPSC microglia, but not neural progenitor cells. Brain Behav Immun 2023; 110:43-59. [PMID: 36781081 PMCID: PMC10682389 DOI: 10.1016/j.bbi.2023.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Prenatal exposure to elevated interleukin (IL)-6 levels is associated with increased risk for psychiatric disorders with a putative neurodevelopmental origin, such as schizophrenia (SZ), autism spectrum condition (ASC) and bipolar disorder (BD). Although rodent models provide causal evidence for this association, we lack a detailed understanding of the cellular and molecular mechanisms in human model systems. To close this gap, we characterized the response of human induced pluripotent stem cell (hiPSC-)derived microglia-like cells (MGL) and neural progenitor cells (NPCs) to IL-6 in monoculture. RESULTS We observed that human forebrain NPCs did not respond to acute IL-6 exposure in monoculture at both protein and transcript levels due to the absence of IL6R expression and soluble (s)IL6Ra secretion. By contrast, acute IL-6 exposure resulted in STAT3 phosphorylation and increased IL6, JMJD3 and IL10 expression in MGL, confirming activation of canonical IL6Ra signaling. Bulk RNAseq identified 156 up-regulated genes (FDR < 0.05) in MGL following acute IL-6 exposure, including IRF8, REL, HSPA1A/B and OXTR, which significantly overlapped with an up-regulated gene set from human post-mortem brain tissue from individuals with schizophrenia. Acute IL-6 stimulation significantly increased MGL motility, consistent with gene ontology pathways highlighted from the RNAseq data and replicating rodent model indications that IRF8 regulates microglial motility. Finally, IL-6 induces MGLs to secrete CCL1, CXCL1, MIP-1α/β, IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 after 3 h and 24 h. CONCLUSION Our data provide evidence for cell specific effects of acute IL-6 exposure in a human model system, ultimately suggesting that microglia-NPC co-culture models are required to study how IL-6 influences human cortical neural progenitor cell development in vitro.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rodrigo R R Duarte
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Medicine, Weill Cornell Medical College, Cornell University, NY, USA
| | - Alessia Marrocu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Yiqing Sun
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Amelia Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
25
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
26
|
Dang X, Song M, Lv L, Yang Y, Luo XJ. Proteome-wide Mendelian randomization reveals the causal effects of immune-related plasma proteins on psychiatric disorders. Hum Genet 2023; 142:809-818. [PMID: 37085628 DOI: 10.1007/s00439-023-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, Henan, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
27
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
28
|
Herrera-Imbroda J, Flores-López M, Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Bordallo-Aragón A, Rodríguez de Fonseca F, Mayoral-Cleríes F. The Inflammatory Signals Associated with Psychosis: Impact of Comorbid Drug Abuse. Biomedicines 2023; 11:biomedicines11020454. [PMID: 36830990 PMCID: PMC9953424 DOI: 10.3390/biomedicines11020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychosis and substance use disorders are two diagnostic categories whose association has been studied for decades. In addition, both psychosis spectrum disorders and drug abuse have recently been linked to multiple pro-inflammatory changes in the central nervous system. We have carried out a narrative review of the literature through a holistic approach. We used PubMed as our search engine. We included in the review all relevant studies looking at pro-inflammatory changes in psychotic disorders and substance use disorders. We found that there are multiple studies that relate various pro-inflammatory lipids and proteins with psychosis and substance use disorders, with an overlap between the two. The main findings involve inflammatory mediators such as cytokines, chemokines, endocannabinoids, eicosanoids, lysophospholipds and/or bacterial products. Many of these findings are present in different phases of psychosis and in substance use disorders such as cannabis, cocaine, methamphetamines, alcohol and nicotine. Psychosis and substance use disorders may have a common origin in an abnormal neurodevelopment caused, among other factors, by a neuroinflammatory process. A possible convergent pathway is that which interrelates the transcriptional factors NFκB and PPARγ. This may have future clinical implications.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Paloma Ruiz-Sastre
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Carlos Gómez-Sánchez-Lafuente
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Antonio Bordallo-Aragón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral-Cleríes
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
29
|
Li X, Wu X, Li W, Yan Q, Zhou P, Xia Y, Yao W, Zhu F. HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via linc01930/cGAS Axis in Recent-Onset Schizophrenia. Int J Mol Sci 2023; 24:ijms24033000. [PMID: 36769337 PMCID: PMC9917391 DOI: 10.3390/ijms24033000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting about 1% of individuals worldwide. Increased innate immune activation and neuronal apoptosis are common findings in schizophrenia. Interferon beta (IFN-β), an essential cytokine in promoting and regulating innate immune responses, causes neuronal apoptosis in vitro. However, the precise pathogenesis of schizophrenia is unknown. Recent studies indicate that a domesticated endogenous retroviral envelope glycoprotein of the W family (HERV-W ENV, also called ERVWE1 or syncytin 1), derived from the endogenous retrovirus group W member 1 (ERVWE1) locus on chromosome 7q21.2, has a high level in schizophrenia. Here, we found an increased serum IFN-β level in schizophrenia and showed a positive correlation with HERV-W ENV. In addition, serum long intergenic non-protein coding RNA 1930 (linc01930), decreased in schizophrenia, was negatively correlated with HERV-W ENV and IFN-β. In vitro experiments showed that linc01930, mainly in the nucleus and with noncoding functions, was repressed by HERV-W ENV through promoter activity suppression. Further studies indicated that HERV-W ENV increased IFN-β expression and neuronal apoptosis by restraining the expression of linc01930. Furthermore, HERV-W ENV enhanced cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes protein (STING) expression and interferon regulatory factor 3 (IRF3) phosphorylation in neuronal cells. Notably, cGAS interacted with HERV-W ENV and triggered IFN-β expression and neuronal apoptosis caused by HERV-W ENV. Moreover, Linc01930 participated in the increased neuronal apoptosis and expression level of cGAS and IFN-β induced by HERV-W ENV. To summarize, our results suggested that linc01930 and IFN-β might be novel potential blood-based biomarkers in schizophrenia. The totality of these results also showed that HERV-W ENV facilitated antiviral innate immune response, resulting in neuronal apoptosis through the linc01930/cGAS/STING pathway in schizophrenia. Due to its monoclonal antibody GNbAC1 application in clinical trials, we considered HERV-W ENV might be a reliable therapeutic choice for schizophrenia.
Collapse
Affiliation(s)
- Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
30
|
Ermakov EA, Mednova IA, Boiko AS, Buneva VN, Ivanova SA. Chemokine Dysregulation and Neuroinflammation in Schizophrenia: A Systematic Review. Int J Mol Sci 2023; 24:2215. [PMID: 36768537 PMCID: PMC9917146 DOI: 10.3390/ijms24032215] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Chemokines are known to be immunoregulatory proteins involved not only in lymphocyte chemotaxis to the site of inflammation, but also in neuromodulation, neurogenesis, and neurotransmission. Multiple lines of evidence suggest a peripheral proinflammatory state and neuroinflammation in at least a third of patients with schizophrenia. Therefore, chemokines can be active players in these processes. In this systematic review, we analyzed the available data on chemokine dysregulation in schizophrenia and the association of chemokines with neuroinflammation. It has been shown that there is a genetic association of chemokine and chemokine receptor gene polymorphisms in schizophrenia. Besides, the most reliable data confirmed by the results of meta-analyses showed an increase in CXCL8/IL-8, CCL2/MCP-1, CCL4/MIP-1β, CCL11/eotaxin-1 in the blood of patients with schizophrenia. An increase in CXCL8 has been found in cerebrospinal fluid, but other chemokines have been less well studied. Increased/decreased expression of genes of chemokine and their receptors have been found in different areas of the brain and peripheral immune cells. The peripheral proinflammatory state may influence the expression of chemokines since their expression is regulated by pro- and anti-inflammatory cytokines. Mouse models have shown an association of schizophrenia with dysregulation of the CX3CL1-CX3CR1 and CXCL12-CXCR4 axes. Altogether, dysregulation in chemokine expression may contribute to neuroinflammation in schizophrenia. In conclusion, this evidence indicates the involvement of chemokines in the neurobiological processes associated with schizophrenia.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia
| |
Collapse
|
31
|
Paumgartten FJR, De Grava Kempinas W, Shiota K. Viral infections, vaccines and antiviral drugs in pregnancy and the development of the conceptus. Reprod Toxicol 2023; 115:36-39. [PMID: 36403853 DOI: 10.1016/j.reprotox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | |
Collapse
|
32
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
33
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
34
|
Li J, Wang Y, Yuan X, Kang Y, Song X. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Front Psychiatry 2023; 14:1126632. [PMID: 36873215 PMCID: PMC9978517 DOI: 10.3389/fpsyt.2023.1126632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Characterized by psychotic symptoms, negative symptoms and cognitive deficits, schizophrenia had a catastrophic effect on patients and their families. Multifaceted reliable evidence indicated that schizophrenia is a neurodevelopmental disorder. Microglia, the immune cells in central nervous system, related to many neurodevelopmental diseases. Microglia could affect neuronal survival, neuronal death and synaptic plasticity during neurodevelopment. Anomalous microglia during neurodevelopment may be associated with schizophrenia. Therefore, a hypothesis proposes that the abnormal function of microglia leads to the occurrence of schizophrenia. Nowadays, accumulating experiments between microglia and schizophrenia could afford unparalleled probability to assess this hypothesis. Herein, this review summarizes the latest supporting evidence in order to shed light on the mystery of microglia in schizophrenia.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- College of First Clinical, Chongqing Medical University, Chongqing, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Webster MJ. Infections, Inflammation, and Psychiatric Illness: Review of Postmortem Evidence. Curr Top Behav Neurosci 2023; 61:35-48. [PMID: 35505055 DOI: 10.1007/7854_2022_362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While there is an abundance of epidemiological evidence implicating infectious agents in the etiology of severe mental illnesses, postmortem studies have not yet detected an increased incidence of microbial nucleic acid or proteins in the brains of people with mental illness. Nevertheless, abnormally expressed immune and inflammatory markers have consistently been found in the postmortem brain of patients with schizophrenia and mood disorders. Some of these abnormalities may be the result of an infection in utero or early in life that not only impacted the developing immune system but also the developing neurons of the brain. Some of the immune markers that are consistently found to be upregulated in schizophrenia implicate a possible viral infection and the blood brain barrier in the etiology and neuropathology of the disorder.
Collapse
|
36
|
Relationship between the Dietary Inflammatory Index Score and Cytokine Levels in Chinese Pregnant Women during the Second and Third Trimesters. Nutrients 2022; 15:nu15010194. [PMID: 36615851 PMCID: PMC9824482 DOI: 10.3390/nu15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The impact of dietary inflammatory potential on serum cytokine concentrations in second and third trimesters of Chinese pregnant women is not clear. A total of 175 pregnant women from the Tianjin Maternal and Child Health Education and Service Cohort (TMCHESC) were included. The dietary inflammatory index (DII) was calculated based on 24-h food records. Serum tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, IL-8, IL-10, C-reactive protein (CRP), and monocyte chemoattractant protein-1 (MCP-1) levels in the second and third trimesters were measured. The mean DII scores (mean ± SD) were -0.07 ± 1.65 and 0.06 ± 1.65 in the second and third trimesters, respectively. In the third trimester, IL-1β (p = 0.039) and MCP-1 (p = 0.035) levels decreased and then increased with increasing DII scores. IL-10 concentrations decreased in pregnant women whose DII scores increased between the second and third trimesters (p = 0.011). Thiamin and vitamin C were negatively correlated with MCP-1 (β = -0.879, and β = -0.003) and IL-6 (β = -0.602, and β = -0.002) levels in the third trimester. In conclusion, the DII score had a U-shaped association with cytokine levels during the third trimester. Changes in DII scores between the second and third trimesters of pregnancy were correlated with cytokine levels during the third trimester.
Collapse
|
37
|
Increased blood neutrophil extracellular traps (NETs) associated with early life stress: translational findings in recent-onset schizophrenia and rodent model. Transl Psychiatry 2022; 12:526. [PMID: 36572669 PMCID: PMC9792518 DOI: 10.1038/s41398-022-02291-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Higher levels of interleukin (IL)-6 and elevated neutrophil counts are consistently reported in the blood of patients with schizophrenia. Stressors during childhood and/or adolescence are major socioenvironmental risk factors for schizophrenia and may contribute to immune dysregulation. Previous studies using blood cytokines to stratify patients with schizophrenia suggest that only a subset presents a low-grade inflammatory state. However, these studies have not addressed whether environmental factors such as childhood maltreatment contributed to identifying inflammatory clusters. Moreover, a neutrophil-related mechanism (Neutrophil Extracellular Traps; NETs) central to both the initiation and chronicity of autoimmune and inflammatory diseases has never been investigated in psychiatry. Elevated NETs in schizophrenia may predispose patients to inflammatory and autoimmune diseases resulting in reduced life expectancy. We, therefore, investigated NETs as a novel mechanism and biological target in early schizophrenia and their role together with IL-6 and childhood maltreatment in identifying cluster subgroups. We found increased NETs in the plasma of patients with early schizophrenia (n = 78) compared to both their unaffected siblings (n = 25) and community controls (n = 78), irrespective of sex, body mass index, psychoactive drug use, or tobacco smoking. Increased NETs in patients were unrelated to antipsychotic treatment, which was further tested in vitro using fresh neutrophils. By applying unsupervised two-step clustering analysis, we integrated values of NETs, IL-6, and childhood maltreatment scores. We identified two main clusters; childhood maltreatment scores and NETs were the most important variables contributing to cluster separation (high-CL1 and low-CL2), while IL-6 was the least contributor. Patients allocated in the high-CL1 (61.5%) had significantly higher childhood maltreatment scores, NETs, and IL-6 levels than the remaining groups (patients low-CL2, siblings, and controls high-CL1 and low-CL2). We complemented these findings with a rat model based on stress exposure during adolescence that results in several schizophrenia-like changes in adulthood. We found that adolescent stressed rats had higher NETs and IL-6 levels in serum compared to non-stressed rats with a tendency to produce more NETs from the bone marrow. Altogether, this study brings a novel cellular-based mechanism in schizophrenia that, combined with early-stress, could be useful to identify subgroups for more personalised treatments.
Collapse
|
38
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
39
|
Jiao Y, Sun YT, Chen NF, Zhou LN, Guan X, Wang JY, Wei WJ, Han C, Jiang XL, Wang YC, Zou W, Liu J. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats. Neural Regen Res 2022; 17:2518-2525. [PMID: 35535905 PMCID: PMC9120712 DOI: 10.4103/1673-5374.339002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/ischemic brain injury associated with maternal immune activation and the underlying mechanism. We established neonatal rat models of hypoxic/ischemic brain injury by exposing pregnant rats to lipopolysaccharide on day 16 or 17 of pregnancy. Rat offspring were intranasally administered hUC-MSCs on postnatal day 14. We found that polypyrimidine tract-binding protein-1 (PTBP-1) participated in the regulation of lipopolysaccharide-induced maternal immune activation, which led to neonatal hypoxic/ischemic brain injury. Intranasal delivery of hUC-MSCs inhibited PTBP-1 expression, alleviated neonatal brain injury-related inflammation, and regulated the number and function of glial fibrillary acidic protein-positive astrocytes, thereby promoting plastic regeneration of neurons and improving brain function. These findings suggest that hUC-MSCs can effectively promote the repair of neonatal hypoxic/ischemic brain injury related to maternal immune activation through inhibition of PTBP-1 expression and astrocyte activation.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue-Tong Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Nai-Fei Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Li-Na Zhou
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jia-Yi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Xiao-Lei Jiang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cells and Precision Medicine; College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
40
|
Puvogel S, Alsema A, Kracht L, Webster MJ, Weickert CS, Sommer IEC, Eggen BJL. Single-nucleus RNA sequencing of midbrain blood-brain barrier cells in schizophrenia reveals subtle transcriptional changes with overall preservation of cellular proportions and phenotypes. Mol Psychiatry 2022; 27:4731-4740. [PMID: 36192459 PMCID: PMC9734060 DOI: 10.1038/s41380-022-01796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.
Collapse
Affiliation(s)
- Sofía Puvogel
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Astrid Alsema
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Parksepp M, Haring L, Kilk K, Taalberg E, Kangro R, Zilmer M, Vasar E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022; 12:983. [PMID: 36295885 PMCID: PMC9610466 DOI: 10.3390/metabo12100983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 08/31/2023] Open
Abstract
The objective of this study was to evaluate how schizophrenia spectrum disorders and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum level of acylcarnitines (ACs), cytokines and metabolic biomarkers and to characterize the dynamics of inflammatory and metabolic changes in the early course of the disorder. A total of 112 adults participated in the study (54 patients with first-episode psychosis (FEP) and 58 control subjects). Biomolecule profiles were measured at the onset of first-episode psychosis and 0.6 years and 5.1 years after the initiation of APs. The results of the present study confirmed that specific metabolic-inflammatory imbalance characterizes AP-naïve patients. Short-term (0.6-years) AP treatment has a favourable effect on psychotic symptoms, as well as the recovery of metabolic flexibility and resolution of low-level inflammation. However, 5.1 years of AP treatment resulted in weight gain and increased serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, interferon-γ, hexoses, acetylcarnitine, short-chain ACs (C3, C4) and long-chain ACs (C16:2, C18:1, C18:2). In conclusion, despite the improvement in psychotic symptoms, 5.1 years of AP treatment was accompanied by a pronounced metabolic-inflammatory imbalance, which was confirmed by the presence of enhanced pro-inflammatory activity and increased obesity with changes in the metabolism of carbohydrates, lipids, and their metabolites.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, 50417 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Egon Taalberg
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
42
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
43
|
Zhu Y, Owens SJ, Murphy CE, Ajulu K, Rothmond D, Purves-Tyson T, Middleton F, Webster MJ, Weickert CS. Inflammation-related transcripts define "high" and "low" subgroups of individuals with schizophrenia and bipolar disorder in the midbrain. Brain Behav Immun 2022; 105:149-159. [PMID: 35764269 DOI: 10.1016/j.bbi.2022.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Dopamine dysregulation in schizophrenia may be associated with midbrain inflammation. Previously, we found elevated levels of pro-inflammatory cytokine mRNAs in the post-mortem midbrain of people with schizophrenia (46%) but not from unaffected controls (0%) using a brain cohort from Sydney, Australia. Here, we measured cytokine mRNAs and proteins in the midbrain in the Stanley Medical Research Institute (SMRI) array cohort (N = 105). We tested if the proportions of individuals with schizophrenia and with high inflammation can be replicated, and if individuals with bipolar disorder with elevated midbrain cytokines can be identified. mRNA levels of 7 immune transcripts from post-mortem midbrain tissue were measured via RT-PCR and two-step recursive clustering analysis was performed using 4 immune transcripts to define "high and low" inflammatory subgroups. The clustering predictors used were identical to our earlier midbrain study, and included: IL1B, IL6, TNF, and SERPINA3 mRNA levels. 46% of schizophrenia cases (16/35 SCZ), 6% of controls (2/33 CTRL), and 29% of bipolar disorder cases (10/35 BPD) were identified as belonging to the high inflammation (HI) subgroups [χ2 (2) = 13.54, p < 0.001]. When comparing inflammatory subgroups, all four mRNAs were significantly increased in SCZ-HI and BPD-HI compared to low inflammation controls (CTRL-LI) (p < 0.05). Additionally, protein levels of IL-1β, IL-6, and IL-18 were elevated in SCZ-HI and BPD-HI compared to all other low inflammatory subgroups (all p < 0.05). Surprisingly, TNF-α protein levels were unchanged according to subgroups. In conclusion, we determined that almost half of the individuals with schizophrenia were defined as having high inflammation in the midbrain, replicating our previous findings. Further, we detected close to one-third of those with bipolar disorder to be classified as having high inflammation. Elevations in some pro-inflammatory cytokine mRNAs (IL-1β and IL-6) were also found at the protein level, whereas TNF mRNA and protein levels were not concordant.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Samantha J Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Kachikwulu Ajulu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Debora Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Tertia Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Frank Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
44
|
North HF, Weissleder C, Fullerton JM, Webster MJ, Weickert CS. Increased immune cell and altered microglia and neurogenesis transcripts in an Australian schizophrenia subgroup with elevated inflammation. Schizophr Res 2022; 248:208-218. [PMID: 36108465 DOI: 10.1016/j.schres.2022.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
We previously identified a subgroup of schizophrenia cases (~40 %) with heightened inflammation in the neurogenic subependymal zone (SEZ) (North et al., 2021b). This schizophrenia subgroup had changes indicating reduced microglial activity, increased peripheral immune cells, increased stem cell dormancy/quiescence and reduced neuronal precursor cells. The present follow-up study aimed to replicate and extend those novel findings in an independent post-mortem cohort of schizophrenia cases and controls from Australia. RNA was extracted from SEZ tissue from 20 controls and 22 schizophrenia cases from the New South Wales Brain Tissue Resource Centre, and gene expression analysis was performed. Cluster analysis of inflammation markers (IL1B, IL1R1, SERPINA3 and CXCL8) revealed a high-inflammation schizophrenia subgroup comprising 52 % of cases, which was a significantly greater proportion than the 17 % of high-inflammation controls. Consistent with our previous report (North et al., 2021b), those with high-inflammation and schizophrenia had unchanged mRNA expression of markers for steady-state and activated microglia (IBA1, HEXB, CD68), decreased expression of phagocytic microglia markers (P2RY12, P2RY13), but increased expression of markers for macrophages (CD163), monocytes (CD14), natural killer cells (FCGR3A), and the adhesion molecule ICAM1. Similarly, the high-inflammation schizophrenia subgroup emulated increased quiescent stem cell marker (GFAPD) and decreased neuronal progenitor (DLX6-AS1) and immature neuron marker (DCX) mRNA expression; but also revealed a novel increase in a marker of immature astrocytes (VIM). Replicating primary results in an independent cohort demonstrates that inflammatory subgroups in the SEZ in schizophrenia are reliable, robust and enhance understanding of neuropathological heterogeneity when studying schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
45
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
46
|
Petty A, Glass LJ, Rothmond DA, Purves-Tyson T, Sweeney A, Kondo Y, Kubo S, Matsumoto M, Weickert CS. Increased levels of a pro-inflammatory IgG receptor in the midbrain of people with schizophrenia. J Neuroinflammation 2022; 19:188. [PMID: 35841099 PMCID: PMC9287858 DOI: 10.1186/s12974-022-02541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is growing evidence that neuroinflammation may contribute to schizophrenia neuropathology. Elevated pro-inflammatory cytokines are evident in the midbrain from schizophrenia subjects, findings that are driven by a subgroup of patients, characterised as a "high inflammation" biotype. Cytokines trigger the release of antibodies, of which immunoglobulin G (IgG) is the most common. The level and function of IgG is regulated by its transporter (FcGRT) and by pro-inflammatory IgG receptors (including FcGR3A) in balance with the anti-inflammatory IgG receptor FcGR2B. Testing whether abnormalities in IgG activity contribute to the neuroinflammatory abnormalities schizophrenia patients, particularly those with elevated cytokines, may help identify novel treatment targets. METHODS Post-mortem midbrain tissue from healthy controls and schizophrenia cases (n = 58 total) was used to determine the localisation and abundance of IgG and IgG transporters and receptors in the midbrain of healthy controls and schizophrenia patients. Protein levels of IgG and FcGRT were quantified using western blot, and gene transcript levels of FcGRT, FcGR3A and FcGR2B were assessed using qPCR. The distribution of IgG in the midbrain was assessed using immunohistochemistry and immunofluorescence. Results were compared between diagnostic (schizophrenia vs control) and inflammatory (high vs low inflammation) groups. RESULTS We found that IgG and FcGRT protein abundance (relative to β-actin) was unchanged in people with schizophrenia compared with controls irrespective of inflammatory subtype. In contrast, FcGRT and FcGR3A mRNA levels were elevated in the midbrain from "high inflammation" schizophrenia cases (FcGRT; p = 0.02, FcGR3A; p < 0.0001) in comparison to low-inflammation patients and healthy controls, while FcGR2B mRNA levels were unchanged. IgG immunoreactivity was evident in the midbrain, and approximately 24% of all individuals (control subjects and schizophrenia cases) showed diffusion of IgG from blood vessels into the brain. However, the intensity and distribution of IgG was comparable across schizophrenia cases and control subjects. CONCLUSION These findings suggest that an increase in the pro-inflammatory Fcγ receptor FcGR3A, rather than an overall increase in IgG levels, contribute to midbrain neuroinflammation in schizophrenia patients. However, more precise information about IgG-Fcγ receptor interactions is needed to determine their potential role in schizophrenia neuropathology.
Collapse
Affiliation(s)
- A Petty
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - L J Glass
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - D A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - T Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A Sweeney
- NSW Brain Tissue Resource Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Y Kondo
- Astellas Research Institute of America LLC, San Diego, CA, 92121, USA
| | - S Kubo
- Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - M Matsumoto
- Astellas Research Institute of America LLC, San Diego, CA, 92121, USA
| | - C Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
47
|
Zhu Y, Webster MJ, Murphy CE, Middleton FA, Massa PT, Liu C, Dai R, Weickert CS. Distinct Phenotypes of Inflammation Associated Macrophages and Microglia in the Prefrontal Cortex Schizophrenia Compared to Controls. Front Neurosci 2022; 16:858989. [PMID: 35844224 PMCID: PMC9279891 DOI: 10.3389/fnins.2022.858989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Maree J. Webster
- Stanley Medical Research Institute, Rockville, MD, United States
| | - Caitlin E. Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frank A. Middleton
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Paul T. Massa
- Department of Neurology and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Cyndi Shannon Weickert
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
48
|
Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, Palmer E, Karwath A, Barsky A, Gkoutos GV, Wood S, Barnes NM, David AS, Donohoe G, Neill JC, Deakin B, Khandaker GM, Upthegrove R. Inflammation and Brain Structure in Schizophrenia and Other Neuropsychiatric Disorders: A Mendelian Randomization Study. JAMA Psychiatry 2022; 79:498-507. [PMID: 35353173 PMCID: PMC8968718 DOI: 10.1001/jamapsychiatry.2022.0407] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 02/02/2023]
Abstract
Importance Previous in vitro and postmortem research suggests that inflammation may lead to structural brain changes via activation of microglia and/or astrocytic dysfunction in a range of neuropsychiatric disorders. Objective To investigate the relationship between inflammation and changes in brain structures in vivo and to explore a transcriptome-driven functional basis with relevance to mental illness. Design, Setting, and Participants This study used multistage linked analyses, including mendelian randomization (MR), gene expression correlation, and connectivity analyses. A total of 20 688 participants in the UK Biobank, which includes clinical, genomic, and neuroimaging data, and 6 postmortem brains from neurotypical individuals in the Allen Human Brain Atlas (AHBA), including RNA microarray data. Data were extracted in February 2021 and analyzed between March and October 2021. Exposures Genetic variants regulating levels and activity of circulating interleukin 1 (IL-1), IL-2, IL-6, C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF) were used as exposures in MR analyses. Main Outcomes and Measures Brain imaging measures, including gray matter volume (GMV) and cortical thickness (CT), were used as outcomes. Associations were considered significant at a multiple testing-corrected threshold of P < 1.1 × 10-4. Differential gene expression in AHBA data was modeled in brain regions mapped to areas significant in MR analyses; genes were tested for biological and disease overrepresentation in annotation databases and for connectivity in protein-protein interaction networks. Results Of 20 688 participants in the UK Biobank sample, 10 828 (52.3%) were female, and the mean (SD) age was 55.5 (7.5) years. In the UK Biobank sample, genetically predicted levels of IL-6 were associated with GMV in the middle temporal cortex (z score, 5.76; P = 8.39 × 10-9), inferior temporal (z score, 3.38; P = 7.20 × 10-5), fusiform (z score, 4.70; P = 2.60 × 10-7), and frontal (z score, -3.59; P = 3.30 × 10-5) cortex together with CT in the superior frontal region (z score, -5.11; P = 3.22 × 10-7). No significant associations were found for IL-1, IL-2, CRP, or BDNF after correction for multiple comparison. In the AHBA sample, 5 of 6 participants (83%) were male, and the mean (SD) age was 42.5 (13.4) years. Brain-wide coexpression analysis showed a highly interconnected network of genes preferentially expressed in the middle temporal gyrus (MTG), which further formed a highly connected protein-protein interaction network with IL-6 (enrichment test of expected vs observed network given the prevalence and degree of interactions in the STRING database: 43 nodes/30 edges observed vs 8 edges expected; mean node degree, 1.4; genome-wide significance, P = 4.54 × 10-9). MTG differentially expressed genes that were functionally enriched for biological processes in schizophrenia, autism spectrum disorder, and epilepsy. Conclusions and Relevance In this study, genetically determined IL-6 was associated with brain structure and potentially affects areas implicated in developmental neuropsychiatric disorders, including schizophrenia and autism.
Collapse
Affiliation(s)
- John A. Williams
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute for Translational Medicine, University of Birmingham, Birmingham, United Kingdom
- Health Data Research UK (HRD), Midlands Site, Birmingham, United Kingdom
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Paris Alexandros Lalousis
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Fatima Batool
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
| | - Sian Lowri Griffiths
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Edward Palmer
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Andreas Karwath
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute for Translational Medicine, University of Birmingham, Birmingham, United Kingdom
- Health Data Research UK (HRD), Midlands Site, Birmingham, United Kingdom
| | - Andrey Barsky
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute for Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute for Translational Medicine, University of Birmingham, Birmingham, United Kingdom
- Health Data Research UK (HRD), Midlands Site, Birmingham, United Kingdom
| | - Stephen Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Nicholas M. Barnes
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony S. David
- Institute of Mental Health, University College London, London, United Kingdom
| | - Gary Donohoe
- School of Psychology, National University of Ireland Galway, Galway, Ireland
- Centre for Neuroimaging, Cognition and Genomics, National University of Ireland Galway, Galway, Ireland
| | - Joanna C. Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Golam M. Khandaker
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Bristol, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
49
|
Massrali A, Adhya D, Srivastava DP, Baron-Cohen S, Kotter MR. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front Neurosci 2022; 16:834058. [PMID: 35495047 PMCID: PMC9039720 DOI: 10.3389/fnins.2022.834058] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.
Collapse
Affiliation(s)
- Aïcha Massrali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|