1
|
Zeidan HM, Nashaat NH, Hemimi M, Hashish AF, Elsaeid A, Abd El-Ghaffar N, Helal SI, Meguid NA. Expression Patterns of miRNAs in Egyptian Children with ADHD: Clinical Study with Correlation Analysis. J Mol Neurosci 2024; 74:46. [PMID: 38652370 PMCID: PMC11039553 DOI: 10.1007/s12031-024-02220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8.2 ± 2) and neurotypical ones in Group II (N = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner's parent rating scale-R. Measuring the expression levels of the miRNAs was performed by qRT-PCR for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner's scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (p = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (p = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.
Collapse
Affiliation(s)
- Hala M Zeidan
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt.
| | - Neveen Hassan Nashaat
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Adel F Hashish
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Amal Elsaeid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa Abd El-Ghaffar
- Clinical and Chemical Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Suzette I Helal
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| |
Collapse
|
2
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 PMCID: PMC10581556 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, USA
- Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
4
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Athanasopoulou K, Chondrou V, Xiropotamos P, Psarias G, Vasilopoulos Y, Georgakilas GK, Sgourou A. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis. J Mol Med (Berl) 2023; 101:1097-1112. [PMID: 37486375 PMCID: PMC10482784 DOI: 10.1007/s00109-023-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Non-coding RNA (ncRNA) species, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been currently imputed for lesser or greater involvement in human erythropoiesis. These RNA subsets operate within a complex circuit with other epigenetic components and transcription factors (TF) affecting chromatin remodeling during cell differentiation. Lymphoma/leukemia-related (LRF) TF exerts higher occupancy on DNA CpG rich sites and is implicated in several differentiation cell pathways and erythropoiesis among them and also directs the epigenetic regulation of hemoglobin transversion from fetal (HbF) to adult (HbA) form by intervening in the γ-globin gene repression. We intended to investigate LRF activity in the evolving landscape of cells' commitment to the erythroid lineage and specifically during HbF to HbA transversion, to qualify this TF as potential repressor of lncRNAs and miRNAs. Transgenic human erythroleukemia cells, overexpressing LRF and further induced to erythropoiesis, were subjected to expression analysis in high LRF occupancy genetic loci-producing lncRNAs. LRF abundance in genetic loci transcribing for studied lncRNAs was determined by ChIP-Seq data analysis. qPCRs were performed to examine lncRNA expression status. Differentially expressed miRNA pre- and post-erythropoiesis induction were assessed by next-generation sequencing (NGS), and their promoter regions were charted. Expression levels of lncRNAs were correlated with DNA methylation status of flanked CpG islands, and contingent co-regulation of hosted miRNAs was considered. LRF-binding sites were overrepresented in LRF overexpressing cell clones during erythropoiesis induction and exerted a significant suppressive effect towards lncRNAs and miRNA collections. Based on present data interpretation, LRF's multiplied binding capacity across genome is suggested to be transient and associated with higher levels of DNA methylation. KEY MESSAGES: During erythropoiesis, LRF displays extensive occupancy across genetic loci. LRF significantly represses subsets of lncRNAs and miRNAs during erythropoiesis. Promoter region CpG islands' methylation levels affect lncRNA expression. MiRNAs embedded within lncRNA loci show differential regulation of expression.
Collapse
Affiliation(s)
- Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
6
|
Cabana-Domínguez J, Llonga N, Arribas L, Alemany S, Vilar-Ribó L, Demontis D, Fadeuilhe C, Corrales M, Richarte V, Børglum AD, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Transcriptomic risk scores for attention deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:3493-3502. [PMID: 37537283 PMCID: PMC10618083 DOI: 10.1038/s41380-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in molecular mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anders D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Krivosova M, Adamcakova J, Kaadt E, Mumm BH, Dvorska D, Brany D, Dankova Z, Dohal M, Samec M, Ferencova N, Tonhajzerova I, Ondrejka I, Hrtanek I, Hutka P, Oppa M, Mokry J, Elfving B. The VEGF protein levels, miR-101-3p, and miR-122-5p are dysregulated in plasma from adolescents with major depression. J Affect Disord 2023; 334:60-68. [PMID: 37127118 DOI: 10.1016/j.jad.2023.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Jana Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Erik Kaadt
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Birgitte Hviid Mumm
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Matus Dohal
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Peter Hutka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Miloslav Oppa
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Garcia-Argibay M, Zhang-James Y, Cortese S, Lichtenstein P, Larsson H, Faraone SV. Predicting childhood and adolescent attention-deficit/hyperactivity disorder onset: a nationwide deep learning approach. Mol Psychiatry 2023; 28:1232-1239. [PMID: 36536075 PMCID: PMC10005952 DOI: 10.1038/s41380-022-01918-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder with a high degree of psychiatric and physical comorbidity, which complicates its diagnosis in childhood and adolescence. We analyzed registry data from 238,696 persons born and living in Sweden between 1995 and 1999. Several machine learning techniques were used to assess the ability of registry data to inform the diagnosis of ADHD in childhood and adolescence: logistic regression, random Forest, gradient boosting, XGBoost, penalized logistic regression, deep neural network (DNN), and ensemble models. The best fitting model was the DNN, achieving an area under the receiver operating characteristic curve of 0.75, 95% CI (0.74-0.76) and balanced accuracy of 0.69. At the 0.45 probability threshold, sensitivity was 71.66% and specificity was 65.0%. There was an overall agreement in the feature importance among all models (τ > .5). The top 5 features contributing to classification were having a parent with criminal convictions, male sex, having a relative with ADHD, number of academic subjects failed, and speech/learning disabilities. A DNN model predicting childhood and adolescent ADHD trained exclusively on Swedish register data achieved good discrimination. If replicated and validated in an external sample, and proven to be cost-effective, this model could be used to alert clinicians to individuals who ought to be screened for ADHD and to aid clinicians' decision-making with the goal of decreasing misdiagnoses. Further research is needed to validate results in different populations and to incorporate new predictors.
Collapse
Affiliation(s)
- Miguel Garcia-Argibay
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
9
|
Honorato-Mauer J, Xavier G, Ota VK, Chehimi SN, Mafra F, Cuóco C, Ito LT, Ormond R, Asprino PF, Oliveira A, Bugiga AVG, Torrecilhas AC, Bressan R, Manfro GG, Miguel EC, Rohde LA, Pan PM, Salum GA, Pellegrino R, Belangero S, Santoro ML. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents. Transl Psychiatry 2023; 13:47. [PMID: 36746925 PMCID: PMC9902559 DOI: 10.1038/s41398-023-02326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are present in numerous peripheral bodily fluids and function in critical biological processes, including cell-to-cell communication. Most relevant to the present study, EVs contain microRNAs (miRNAs), and initial evidence from the field indicates that miRNAs detected in circulating EVs have been previously associated with mental health disorders. Here, we conducted an exploratory longitudinal and cross-sectional analysis of miRNA expression in serum EVs from adolescent participants. We analyzed data from a larger ongoing cohort study, evaluating 116 adolescent participants at two time points (wave 1 and wave 2) separated by three years. Two separate data analyses were employed: A cross-sectional analysis compared individuals diagnosed with Major Depressive Disorder (MDD), Anxiety disorders (ANX) and Attention deficit/Hyperactivity disorder (ADHD) with individuals without psychiatric diagnosis at each time point. A longitudinal analysis assessed changes in miRNA expression over time between four groups showing different diagnostic trajectories (persistent diagnosis, first incidence, remitted and typically developing/control). Total EVs were isolated, characterized by size distribution and membrane proteins, and miRNAs were isolated and sequenced. We then selected differentially expressed miRNAs for target prediction and pathway enrichment analysis. In the longitudinal analysis, we did not observe any statistically significant results. In the cross-sectional analysis: in the ADHD group, we observed an upregulation of miR-328-3p at wave 1 only; in the MDD group, we observed a downregulation of miR-4433b-5p, miR-584-5p, miR-625-3p, miR-432-5p and miR-409-3p at wave 2 only; and in the ANX group, we observed a downregulation of miR-432-5p, miR-151a-5p and miR-584-5p in ANX cases at wave 2 only. Our results identified previously observed and novel differentially expressed miRNAs and their relationship with three mental health disorders. These data are consistent with the notion that these miRNAs might regulate the expression of genes associated with these traits in genome-wide association studies. The findings support the promise of continued identification of miRNAs contained within peripheral EVs as biomarkers for mental health disorders.
Collapse
Affiliation(s)
- Jessica Honorato-Mauer
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Gabriela Xavier
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Samar Nasser Chehimi
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Fernanda Mafra
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Cássia Cuóco
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Lucas Toshio Ito
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | | | - Adrielle Oliveira
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victoria Gomes Bugiga
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Rodrigo Bressan
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Gisele Gus Manfro
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento de Psiquiatria, Faculdade de Medicina da USP- FMUSP, Instituto de Psiquiatria do HCFMUSP, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
- Child Mind Institute, New York, NY, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sintia Belangero
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil.
- Disciplina de Biologia Molecular, Departamento de Bioquímica, - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
10
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N, Fadeuilhe C, Corrales M, Richarte V, Ramos-Quiroga JA, Ribasés M. Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2022; 12:409. [PMID: 36153331 PMCID: PMC9509350 DOI: 10.1038/s41398-022-02182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
14
|
Wang Z, Lu T, Li X, Jiang M, Jia M, Liu J, Zhang D, Li J, Wang L. Altered Expression of Brain-specific Autism-Associated miRNAs in the Han Chinese Population. Front Genet 2022; 13:865881. [PMID: 35342389 PMCID: PMC8942769 DOI: 10.3389/fgene.2022.865881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Autism is a complex neurodevelopmental disorder. However, its etiology is still unknown. MicroRNAs (miRNAs) are key post-transcriptional regulators. They play an important role in neurodevelopment and brain functions and may be involved in the pathogenesis of autism. Previous studies indicated altered expression of miRNAs in patients with autism. However, the findings were not consistent, and further explorations were needed. This study aimed to investigate whether miRNAs were dysregulated in autism. We examined the expression of 30 brain-specific autism-associated miRNAs in 110 patients with autism and 113 controls in the Han Chinese population using quantitative reverse transcription–polymerase chain reaction. The results demonstrated that 10 miRNAs (hsa-miR-191-5p, hsa-miR-151a-3p, hsa-miR-139-5p, hsa-miR-181a-5p, hsa-miR-432-5p, hsa-miR-181b-5p, hsa-miR-195-5p, hsa-miR-328-3p, hsa-miR-106a-5p, and hsa-miR-484) were significantly differentially expressed (false discovery rate <0.05). All of them were up-regulated in patients with autism compared with controls. The targets of these miRNAs were enriched for genes and pathways related to neurodevelopment, brain functions and autism. These findings suggested the participation of these 10 miRNAs in the pathogenesis of autism in the Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Meixiang Jia
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Jing Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| |
Collapse
|
15
|
Sotoudeh Anvari M, Vasei H, Najmabadi H, Badv RS, Golipour A, Mohammadi-Yeganeh S, Salehi S, Mohamadi M, Goodarzynejad H, Mowla SJ. Identification of microRNAs associated with human fragile X syndrome using next-generation sequencing. Sci Rep 2022; 12:5011. [PMID: 35322102 PMCID: PMC8943156 DOI: 10.1038/s41598-022-08916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by a mutation in the FMR1 gene which can lead to a loss or shortage of the FMR1 protein. This protein interacts with specific miRNAs and can cause a range of neurological disorders. Therefore, miRNAs could act as a novel class of biomarkers for common CNS diseases. This study aimed to test this theory by exploring the expression profiles of various miRNAs in Iranian using deep sequencing-based technologies and validating the miRNAs affecting the expression of the FMR1 gene. Blood samples were taken from 15 patients with FXS (9 males, 6 females) and 12 controls. 25 miRNAs were differentially expressed in individuals with FXS compared to controls. Levels of 9 miRNAs were found to be significantly changed (3 upregulated and 6 downregulated). In Patients, the levels of hsa-miR-532-5p, hsa-miR-652-3p and hsa-miR-4797-3p were significantly upregulated while levels of hsa-miR-191-5p, hsa-miR-181-5p, hsa-miR-26a-5p, hsa-miR-30e-5p, hsa-miR-186-5p, and hsa-miR-4797-5p exhibited significant downregulation; and these dysregulations were confirmed by RT-qPCR. This study presents among the first evidence of altered miRNA expression in blood samples from patients with FXS, which could be used for diagnostic, prognostic, and treatment purposes. Larger studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Maryam Sotoudeh Anvari
- Department of Molecular Pathology, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Vasei
- Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
| | - Hossein Najmabadi
- Department of Genetics, School of Rehabilitation Sciences, Genetic Research Center, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Golipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Salehi
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mohamadi
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Goodarzynejad
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Wang LJ, Kuo HC, Lee SY, Huang LH, Lin Y, Lin PH, Li SC. MicroRNAs serve as prediction and treatment-response biomarkers of attention-deficit/hyperactivity disorder and promote the differentiation of neuronal cells by repressing the apoptosis pathway. Transl Psychiatry 2022; 12:67. [PMID: 35184133 PMCID: PMC8858317 DOI: 10.1038/s41398-022-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.
Collapse
Affiliation(s)
- Liang-Jen Wang
- grid.145695.a0000 0004 1798 0922Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- grid.145695.a0000 0004 1798 0922Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Determination of molecular signatures and pathways common to brain tissues of autism spectrum disorder: Insights from comprehensive bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Zhu P, Pan J, Cai QQ, Zhang F, Peng M, Fan XL, Ji H, Dong YW, Wu XZ, Wu LH. MicroRNA profile as potential molecular signature for attention deficit hyperactivity disorder in children. Biomarkers 2022; 27:230-239. [PMID: 34989306 DOI: 10.1080/1354750x.2021.2024600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIMS Attention deficit/hyperactivity disorder (ADHD) is a prevalent disorder of neurodevelopment in children. The diagnosis of ADHD mainly relies on the symptoms and some may be misdiagnosed due to age-based variation in behaviours. This study aimed to explore biomarkers that are greatly needed for the accurate diagnosis of ADHD. METHODS 742 samples were retrospectively investigated in 3 independent cohorts, screening, training, and validation, for circulation microRNA measurement using microarray, Taqman polymerase chain reaction and regression analysis. RESULTS A panel of five miRNAs (miR-4516, miR-6090, miR-4763-3p, miR-4281 and miR-4466) were identified as ADHD independent risk factors that provided a high diagnostic accuracy and specificity of ADHD (AUC =0.940 and 0.927 in the training and validation datasets, respectively). This panel of miRNAs differentiated ADHD well from control groups. After clinical improvement by treatment, the panel of miRNAs in patients and AUC changed significantly, and were close to those in healthy controls. Importantly, the targets of the miRNAs identified were commonly enriched in receptor signalling pathways, ion channels and synapse structures. CONCLUSION Our study identified a useful panel of miRNAs that have considerable clinical value in evaluating ADHD and provide important evidence for aberrant epigenetic regulation in ADHD.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Jing Pan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Qian Qian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Fan Zhang
- BengBu Medical College, Benbu, 233000, Anhui, P.R. China
| | - Min Peng
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200126, P.R. China
| | - Xing Li Fan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Hua Ji
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Li Hui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| |
Collapse
|
19
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
20
|
Takahashi N, Ishizuka K, Inada T. Peripheral biomarkers of attention-deficit hyperactivity disorder: Current status and future perspective. J Psychiatr Res 2021; 137:465-470. [PMID: 33798973 DOI: 10.1016/j.jpsychires.2021.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/08/2021] [Indexed: 01/28/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, characterized by a persistent pattern of inattention, hyperactivity, and impulsivity. Since the diagnosis of ADHD is defined by operational diagnostic criteria consisting of several clinical symptoms, a number of heterogeneous mechanisms have been considered to be implicated in its pathophysiology. Although no clinically reliable biomarkers are available for the diagnosis of ADHD, several plausible candidate biomarkers have been proposed based on recent advances in biochemistry and molecular biology. This review article summarizes potential peripheral biomarkers associated with ADHD, mainly from recently published case-control studies. These include 1) biochemical markers: neurotransmitters and their receptors, neurotrophic factors, serum electrolytes, and inflammation markers; 2) genetic and epigenetic markers: microRNA, mRNA expression, and peripheral DNA methylation; 3) physiological markers: eye movement and electroencephalography. It also discusses the limitations and future directions of these potential biomarkers for application in clinical practice.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Child and Adolescent Psychiatry, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, 431-3192, Shizuoka, Japan
| | - Kanako Ishizuka
- Department of Child and Adolescent Psychiatry, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Toshiya Inada
- Department of Psychiatry and Psychobiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Aichi, Japan.
| |
Collapse
|
21
|
MicroRNAs in ascending thoracic aortic aneurysms. Biosci Rep 2021; 40:225830. [PMID: 32678444 PMCID: PMC7385583 DOI: 10.1042/bsr20200218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Thoracic Aortic Aneurysm (TAA) is characterized by the dilation of the aorta and is fatal if not diagnosed and treated appropriately. The underlying genetic mechanisms have not been completely delineated, so better knowledge of the physiopathology of TAAs is needed to improve detection and therapy. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and are known to be involved in cardiovascular diseases (CVDs). The current study aimed to identify miRNAs that can be used as possible biomarkers for the early diagnosis of patients with ascending TAAs (ATAAs). MiRNA expression was profiled by NanoString nCounter technology using 12 samples including tissue and pre- and post-surgical plasma from ATAA patients. Four miRNAs were selected and further validated by real time polymerase chain reaction (RT-PCR) in 22 plasma samples from which three miRNAs (hsa-miR140-5p, hsa-miR-191-5p and hsa-miR-214-3p) showed significant expression level differences between the two types of plasma samples. Further analyses of the corresponding predicted target genes by these miRNAs, revealed two genes (Myotubularin-related protein 4 (MTMR4) and Phosphatase 1 catalytic subunit β (PPP1CB)) whose expression was inversely correlated with the expression of their respective miRNAs. Overall, in this pilot study, we identified three miRNAs that might serve as potential biomarkers and therapeutic targets in ATAA.
Collapse
|
22
|
Pujol-Gualdo N, Sánchez-Mora C, Ramos-Quiroga JA, Ribasés M, Soler Artigas M. Integrating genomics and transcriptomics: Towards deciphering ADHD. Eur Neuropsychopharmacol 2021; 44:1-13. [PMID: 33495110 DOI: 10.1016/j.euroneuro.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition that represents the most common neurodevelopmental disorder in childhood, persisting into adulthood in around 40-65% of the cases. ADHD is characterised by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity. Mounting evidence points towards ADHD having a strong genetic component and the first genome-wide significant findings have recently been reported. However, the functional characterization of variants unravelled by genome-wide association studies (GWAS) is challenging. Likewise, gene expression profiling studies have also been undertaken and novel integrative approaches combining genomic and transcriptomic data are starting to be conducted, which offers an exciting way that might provide a more informative insight towards the genetic architecture of ADHD. In this review, we summarised current knowledge on genomics, transcriptomics and integrative approaches in ADHD, focusing on GWAS and GWAS meta-analyses (GWAS-MA)- as genomics analyses- microarray and RNA-seq- as transcriptomics analyses-, and studies integrating genomics and transcriptomics data. In addition, current strengths and limitations of such approaches are discussed and further research avenues are proposed in order to face unsolved issues. Although important progress has been made, there is still a long way ahead to elucidate the biological mechanisms of ADHD, which eventually may lead to more personalized approaches in the future. Large- scale research efforts and new technological and statistical approaches are envisaged as important means towards deciphering ADHD in the upcoming years.
Collapse
Affiliation(s)
- Natàlia Pujol-Gualdo
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Mortimer N, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Richarte V, Corrales M, Fadeuilhe C, Rivero O, Lesch KP, Casas M, Ramos-Quiroga JA, Artigas MS, Ribasés M. Transcriptome profiling in adult attention-deficit hyperactivity disorder. Eur Neuropsychopharmacol 2020; 41:160-166. [PMID: 33221139 DOI: 10.1016/j.euroneuro.2020.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 01/27/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70%. Although the largest genome-wide association study (GWAS) meta-analysis on ADHD identified independent loci conferring risk to the disorder, the molecular mechanisms underlying the genetic basis of the disorder remain to be elucidated. To explore ADHD biology, we ran a two-step transcriptome profiling in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. Through this exploratory study we found eight differentially expressed genes in ADHD. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD.
Collapse
Affiliation(s)
- Niall Mortimer
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Netherlands
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
A Pilot Longitudinal Evaluation of MicroRNAs for Monitoring the Cognitive Impairment in Pediatric Multiple Sclerosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, seem to play a key role in complex diseases like multiple sclerosis (MS), as well as in many cognitive functions associated with the disease. In a previous cross-sectional evaluation on pediatric MS (PedMS) patients, the expression of some miRNAs and their target genes were found to be associated with the scores of some neuropsychiatric tests, thus suggesting that they may be involved in early processes of cognitive impairment. To verify these data, we asked the same patients to be re-evaluated after a 1-year interval; unfortunately, only nine of them agreed to this further clinical and molecular analysis. The main results showed that 13 differentially expressed miRNAs discriminated the two time-points. Among them, the expression of miR-182-5p, miR-320a-3p, miR-744-5p and miR-192-5p significantly correlated with the attention and information processing speed performances, whereas the expression of miR-182-5p, miR-451a, miR-4742-3p and miR-320a-3p correlated with the expressive language performances. The analysis of mRNA expression uncovered 58 predicted and/or validated miRNA-target pairs, including 23 target genes, some of them already associated with cognitive impairment, such as the transducing beta like 1 X-linked receptor-1 gene (TBL1XR1), correlated to disorders of neurodevelopment; the Snf2 related CREBBP activator protein gene (SRCAP) that was found implicated in a rare form of dementia; and the glia maturation factor beta gene (GMFB), which has been reported to be implicated in neurodegeneration and neuroinflammation. No molecular pathways involving the most targeted genes survived the adjustment for multiple data. Although preliminary, these findings showed the feasibility of the methods also applied to longitudinal investigations, as well as the reliability of the obtained results. These findings should be confirmed in larger PedMS cohorts in order to identify early markers of cognitive impairment, towards which more efficient therapeutic efforts can be addressed.
Collapse
|
25
|
Elkins IJ, Saunders GRB, Malone SM, Wilson S, McGue M, Iacono WG. Differential implications of persistent, remitted, and late-onset ADHD symptoms for substance abuse in women and men: A twin study from ages 11 to 24. Drug Alcohol Depend 2020; 212:107947. [PMID: 32444170 PMCID: PMC7293951 DOI: 10.1016/j.drugalcdep.2020.107947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Persistence and emergence of ADHD in adulthood are associated with substance problems. We investigate differential implications of ADHD course for tobacco, alcohol, or marijuana problems by sex, then whether substance misuse results from ADHD or contributes to it, through a twin differences design. METHODS A population-based cohort of 998 twins (61 % monozygotic; 52 % female), born in Minnesota from 1988 to 1994, was prospectively assessed from ages 11-24. Childhood ADHD was oversampled. At age 24, 255 had a history of childhood-onset ADHD (160 persistent, 95 remitted); 93 had late-onset ADHD symptoms identified in late-adolescence/adulthood. Persistent, remitted, and late-onset groups were compared to those without ADHD (N = 459) on childhood characteristics and age-24 substance problems. RESULTS Persistent and late-onset groups differed in childhood; twin concordances suggested greater genetic etiology for persistent ADHD. As adolescents, however, both groups were high in conduct problems; by adulthood, they were comparably high in substance problems. In particular, women whose ADHD persisted were 5 times more likely to develop tobacco use disorder than women without ADHD. Remitted ADHD was associated with less-increased risk, except for alcohol problems among women. Consistent with possible causality, monozygotic female twins with more age-17 ADHD symptoms than co-twins had more age-24 tobacco symptoms; a similar association was found for alcohol. CONCLUSIONS Presence or emergence of ADHD in early adulthood increases substance problems to a greater degree for women than men. While effects of substances on later ADHD were not statistically significant, detection was limited by the relative rarity of late-adolescent substance symptoms.
Collapse
Affiliation(s)
- Irene J. Elkins
- University of Minnesota, Twin Cities: Department of Psychology, 75 E. River Rd, Minneapolis, MN 55455
| | - Gretchen R. B. Saunders
- University of Minnesota, Twin Cities: Department of Psychology, 75 E. River Rd, Minneapolis, MN 55455
| | - Stephen M. Malone
- University of Minnesota, Twin Cities: Department of Psychology, 75 E. River Rd, Minneapolis, MN 55455
| | - Sylia Wilson
- University of Minnesota, Twin Cities: Institute of Child Development, 51 E. River Rd, Minneapolis, MN 55455, United States
| | - Matt McGue
- University of Minnesota, Twin Cities: Department of Psychology, 75 E. River Rd, Minneapolis, MN 55455
| | - William G. Iacono
- University of Minnesota, Twin Cities: Department of Psychology, 75 E. River Rd, Minneapolis, MN 55455
| |
Collapse
|
26
|
Rovira P, Sánchez-Mora C, Pagerols M, Richarte V, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Shireby G, Hannon E, Mill J, Casas M, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl Psychiatry 2020; 10:199. [PMID: 32561708 PMCID: PMC7305172 DOI: 10.1038/s41398-020-0860-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.
Collapse
Affiliation(s)
- Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gemma Shireby
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
MiRNA profiles in blood plasma from mother-child duos in human biobanks and the implication of sample quality: Circulating miRNAs as potential early markers of child health. PLoS One 2020; 15:e0231040. [PMID: 32240265 PMCID: PMC7117735 DOI: 10.1371/journal.pone.0231040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/13/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been linked to several diseases and to regulation of almost every biological process. This together with their stability while freely circulating in blood suggests that they could serve as minimal-invasive biomarkers for a wide range of diseases. Successful miRNA-based biomarker discovery in plasma is dependent on controlling sources of preanalytical variation, such as cellular contamination and hemolysis, as they can be major causes of altered miRNA expression levels. Analysis of plasma quality is therefore a crucial step for the best output when searching for novel miRNA biomarkers. METHODS Plasma quality was assessed by three different methods in samples from mother-child duos (maternal and cord blood, N = 2x38), with collection and storage methods comparable to large cohort study biobanks. Total RNA was isolated and the expression profiles of 201 miRNAs was obtained by qPCR to identify differentially expressed miRNAs in cord and maternal plasma samples. RESULTS All three methods for quality assurance indicate that the plasma samples used in this study are of high quality with very low levels of contamination, suitable for analysis of circulating miRNAs. We identified 19 significantly differentially expressed miRNAs between cord and maternal plasma samples (paired t-tests, FDR<0.05, and fold change>±1.5), and we observed low correlation of miRNA transcript levels between cord and maternal samples throughout our dataset. CONCLUSIONS Our findings suggest that good quality plasma samples suitable for miRNA profiling can be achieved from samples collected and stored by large biobanks. Incorporation of extensive quality control measures, such as those established here, would be beneficial for future projects. The overall low correlation of miRNA expression between cord and maternal samples is an interesting observation, and promising for our future studies on identification of miRNA-based biomarkers in cord blood plasma, considering that these samples were collected at term and some exchange of blood components between cord and maternal blood frequently occur.
Collapse
|
28
|
Viola TW, Heberle BA, Zaparte A, Sanvicente-Vieira B, Wainer LM, Fries GR, Walss-Bass C, Grassi-Oliveira R. Peripheral blood microRNA levels in females with cocaine use disorder. J Psychiatr Res 2019; 114:48-54. [PMID: 31026664 PMCID: PMC6546503 DOI: 10.1016/j.jpsychires.2019.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is growing emphasis in the field of psychiatry on the need to identify candidate biomarkers to aid in diagnosis and clinical management of addictive disorders. MicroRNAs (miRNAs) are small nucleotide sequences with the ability to regulate gene expression at the transcriptomic level. However, the role of miRNAs as potential biomarkers for addiction is still underexplored. Based on translational and clinical findings, we compared the expression levels of microRNA-124 (miR-124), microRNA-181 (miR-181), and microRNA-212 (miR-212) between a group of females with cocaine use disorder (CUD; n = 30) and a group of healthy female controls (HC; n = 20). METHODS Blood expression levels of miR-124, miR-181, and miR-212 in the HC and CUD group were determined by qPCR, using two miRNAs as endogenous controls (miR-24 and miR-126). Substance use behavior was assessed by self-report using the Addiction Severity Index (ASI-6) and depressive symptoms severity was measured using the Beck Depressive Inventory (BDI-II). Urine screen test was performed to detect cocaine metabolites. RESULTS Mir-124 and miR-181 were upregulated in the CUD group (p > 0.01). Furthermore, increased cognitive/affective depression symptoms were identified among a CUD subgroup with the higher miR-181 expression levels (p > 0.05). No significant difference in expression levels was found for miR-212. CONCLUSIONS MiR-124 and miR-181 show promise as biomarkers for CUD when assessed in the peripheral blood. Further investigation is needed to elucidate the molecular mechanisms underlying these associations and to validate target genes regulated by these miRNAs.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bernardo Aguzzoli Heberle
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Department of Behavioral Neuroscience & Psychopharmacology (BNP), University of Kentucky (UKY), 741 South Limestone, Room B453, Lexington, KY, 40506-0509, USA
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo Mendes Wainer
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 77054 East Rd, Houston, TX, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 77054 East Rd, Houston, TX, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|