1
|
Laux DA, Azuma MC, Cain ME. Effects of repeated voluntary oral consumption of synthetic delta-9-tetrahydrocannabinol on locomotor activity and cannabinoid receptor 1 expression. Behav Brain Res 2024; 477:115315. [PMID: 39461370 DOI: 10.1016/j.bbr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
As cannabis legalization expands, preclinical studies continue to investigate the impact of repeated exposure to delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in the plant. With the increasing popularity of cannabis infused foods, the rise of THC in medicinal applications have also expanded. The present study addresses a critical gap in existing literature by investigating the behavioral and neurobiological effects of low-dose edible THC in a preclinical rodent model. Adult male rats were administered synthetic-THC (Dronabinol) (0.0625 mg/kg, 0.125 mg/kg, and 0.25 mg/kg) or vehicle (sesame oil) through edible cookies, 90 min prior to eight locomotor sessions. Locomotor activity significantly increased in both 0.0625 mg/kg and 0.25 mg/kg THC groups, indicating a dose-dependent relationship. Repeated 0.25 mg/kg THC administration dose-dependently reduced cannabinoid receptor 1 expression in the hippocampus. The observed neurobiological change from low dose oral THC advances our understanding of repeated cannabis use. These findings also emphasize the importance of refining rodent models for translational relevance.
Collapse
Affiliation(s)
- Dylan A Laux
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Miki C Azuma
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Gom RC, Wickramarachchi P, George AG, Lightfoot SHM, Newton-Gunderson D, Hill MN, Teskey GC, Colangeli R. Phytocannabinoids restore seizure-induced alterations in emotional behaviour in male rats. Neuropsychopharmacology 2024:10.1038/s41386-024-02005-y. [PMID: 39433952 DOI: 10.1038/s41386-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Epilepsy often presents with severe emotional comorbidities including anxiety and abnormal fear responses which impose a significant burden on, and reduce, quality of life in people living with the disease. Our lab has recently shown that kindled seizures lead to changes in emotional processing resulting from the downregulation of anandamide signalling within the amygdala. Phytocannabinoids derived from the Cannabis sativa plant have attracted a lot of interest as a new class of drugs with potential anticonvulsant effects. Among the wide number of compounds occurring in Cannabis sativa, Δ9- tetrahydrocannabinol (THC), the one responsible for its main psychoactive effects, and the nonpsychoactive cannabidiol (CBD) have been extensively examined under pre-clinical and clinical contexts to control seizures, however, neither have been assessed in the context of the management of emotional comorbidities associated with seizure activity. We used two behavioural procedures to assess anxiety- and fear-like responding in adult male Long-Evans rats: elevated plus maze and auditory fear conditioning. In agreement with previous reports, we found seizure-induced increases in anxiety- and fear-like responding. These effects were reversed by either CBD (vaporized) or THC (oral). We also found that antagonism of serotonin 1 A receptors prior to CBD exposure prevented its protective effects. Phytocannabinoids offer a novel and reliable opportunity to treat seizure induced comorbid emotional alterations.
Collapse
Affiliation(s)
- Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada.
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dana Newton-Gunderson
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Department of Experimental and Clinical Medicine; Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
3
|
Weerts EM, Jenkins BW, Kuang RY, Hausker A, Moore CF. Orally administered Cannabigerol (CBG) in rats: Cannabimimetic actions, anxiety-like behavior, and inflammation-induced pain. Pharmacol Biochem Behav 2024; 245:173883. [PMID: 39322049 DOI: 10.1016/j.pbb.2024.173883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Cannabigerol (CBG) is a phytocannabinoid found in cannabis that is promoted for medical use and other health benefits, but current empirical data on the behavioral effects of CBG are lacking. The purpose of this study was to evaluate the effects of a wide dose range of orally administered CBG on outcomes related to its potential cannabimimetic effects (cannabinoid tetrad), as well as effects on anxiety-like behavior, inflammation and related pain hypersensitivity. In a series of experiments, male and female Sprague Dawley rats received oral CBG (per os [p.o.]) or vehicle prior to testing of effects on 1) the cannabinoid tetrad (30-600 mg/kg, p.o.): assessments of locomotor activity, body temperature, antinociception (tail flick test), and catalepsy (bar test); 2) acoustic startle response (ASR) test of anxiety-like behavior (30-300 mg/kg, p.o.); 3) carrageenan-induced inflammation (paw edema), hyperalgesia (Hargreaves test), and allodynia (von Frey test) tests (10-60 mg/kg, p.o.). Positive control groups were administered THC (0-30 mg/kg, p.o.) for the cannabinoid tetrad assay, the benzodiazepine lorazepam (0-3 mg/kg, intraperitoneal [i.p.]) for the ASR test, or the opioid analgesic morphine (0-10 mg/kg, i.p.) for the carrageenan-induced inflammation and pain hypersensitivity tests. CBG did not produce cannabimimetic actions in the tetrad, but increased locomotor activity at the highest doses (300-600 mg/kg). THC produced typical dose-related cannabimimetic effects. CBG did not produce anxiolytic effects in the ASR test, while groups pretreated with lorazepam showed reductions in ASR. Finally, pretreatment with CBG prior to an intraplantar injection of carrageenan did not prevent the induction of an acute inflammatory state (i.e., increased paw edema and associated hyperalgesia and allodynia). In contrast, morphine alleviated hyperalgesia and allodynia induced by intraplantar carrageenan but did not affect the development of paw edema. In sum, these data do not support the use of oral CBG for anxiety or inflammatory pain.
Collapse
Affiliation(s)
- Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Robbie Y Kuang
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Alma Hausker
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
4
|
Hoch E, Preuss UW. [Cannabis use and cannabis use disorders]. DER NERVENARZT 2024; 95:781-796. [PMID: 39134752 DOI: 10.1007/s00115-024-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Cannabis use and cannabis use disorders have taken on a new social significance as a result of partial legalization. In 2021 a total of 4.5 million adults (8.8%) in Germany used the drug. The number of users as well as problematic use have risen in the last decade. Cannabis products with a high delta-9-tetrahydrocannabinol (THC) content and their regular use lead to changes in cannabinoid receptor distribution in the brain and to modifications in the structure and functionality of relevant neuronal networks. The consequences of cannabinoid use are particularly in the psychological functioning and can include intoxication, harmful use, dependence with withdrawal symptoms and cannabis-induced mental disorders. Changes in the diagnostics between ICD-10 and ICD-11 are presented. Interdisciplinary S3 guidelines on cannabis-related disorders are currently being developed and will be finalized shortly.
Collapse
Affiliation(s)
- E Hoch
- Klinik und Polyklinik für Psychiatrie und Psychotherapie, Klinik der Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336, München, Deutschland.
- IFT Institut für Therapieforschung, München, Deutschland.
- Charlotte-Fresenius University, München, Deutschland.
| | - U W Preuss
- Universitätsklinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther Universität Halle-Wittenberg, Halle, Deutschland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Klinikum Ludwigsburg, Ludwigsburg, Deutschland
| |
Collapse
|
5
|
Hinckley JD, Ferland JMN, Hurd YL. The Developmental Trajectory to Cannabis Use Disorder. Am J Psychiatry 2024; 181:353-358. [PMID: 38706340 PMCID: PMC11296671 DOI: 10.1176/appi.ajp.20231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The increase of cannabis use, particularly with the evolution of high potency products, and of cannabis use disorder (CUD) are a growing healthcare concern. While the harms of adult use and potential medicinal properties of cannabis continue to be debated, it is becoming evident that adolescent cannabis use is a critical window for CUD risk with potential lifelong mental health implications. Herein, we discuss mental health consequences of adolescent cannabis use, factors that contribute to the risk of developing CUD, and what remains unclear in the changing legal landscape of cannabis use. We also discuss the importance of preclinical models to provide translational insight about the causal relationship of cannabis to CUD-related phenotypes and conclude with highlighting opportunities for clinicians and allied professionals to engage in addressing adolescent cannabis use.
Collapse
Affiliation(s)
- Jesse D. Hinckley
- Division of Addiction Science, Treatment & Prevention, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| | - Jacqueline-Marie N. Ferland
- Department of Psychiatry, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Addiction Institute at Mount Sinai, New York, New York
| | - Yasmin L. Hurd
- Department of Psychiatry, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Addiction Institute at Mount Sinai, New York, New York
| |
Collapse
|
6
|
English A, Uittenbogaard F, Torrens A, Sarroza D, Slaven AVE, Piomelli D, Bruchas MR, Stella N, Land BB. A preclinical model of THC edibles that produces high-dose cannabimimetic responses. eLife 2024; 12:RP89867. [PMID: 38214701 PMCID: PMC10945583 DOI: 10.7554/elife.89867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.
Collapse
Affiliation(s)
- Anthony English
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Fleur Uittenbogaard
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Alexa Torrens
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Dennis Sarroza
- Departments of Pharmacology, University of WashingtonSeattleUnited States
| | - Anna Veronica Elizabeth Slaven
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
| | - Daniele Piomelli
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Michael R Bruchas
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
- Department of Anesthesiology, University of WashingtonSeattleUnited States
| | - Nephi Stella
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Psychiatry & Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Benjamin Bruce Land
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Sallam NA, Peterson CS, Baglot SL, Kohro Y, Trang T, Hill MN, Borgland SL. Sex Differences in Plasma, Adipose Tissue, and Central Accumulation of Cannabinoids, and Behavioral Effects of Oral Cannabis Consumption in Male and Female C57BL/6 Mice. Int J Neuropsychopharmacol 2023; 26:773-783. [PMID: 37715955 PMCID: PMC10674081 DOI: 10.1093/ijnp/pyad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Cannabis edibles are an increasingly popular form of cannabis consumption. Oral consumption of cannabis has distinct physiological and behavioral effects compared with injection or inhalation. An animal model is needed to understand the pharmacokinetics and physiological effects of oral cannabis consumption in rodents as a model for human cannabis edible use. METHODS Adult male and female C57BL/6 mice received a single dose of commercially available cannabis oil (5 mg/kg Δ⁹-tetrahydrocannabinol [THC]) by oral gavage. At 0.5, 1, 2, 3, and 6 hours post exposure, plasma, hippocampus, and adipose tissue were collected for THC, 11-OH-THC, and THC-COOH measures. RESULTS We report delayed time to peak THC and 11-OH-THC concentrations in plasma, brain, and adipose tissue, which is consistent with human pharmacokinetics studies. We also found sex differences in the cannabis tetrad: (1) female mice had a delayed hypothermic effect 6 hours post consumption, which was not present in males; (2) females had stronger catalepsy than males; (3) males were less mobile following cannabis exposure, whereas female mice showed no difference in locomotion but an anxiogenic effect at 3 hours post exposure; and (4) male mice displayed a longer-lasting antinociceptive effect of oral cannabis. CONCLUSIONS Oral cannabis consumption is a translationally relevant form of administration that produces similar physiological effects as injection or vaping administration and thus should be considered as a viable approach for examining the physiological effects of cannabis moving forward. Furthermore, given the strong sex differences in metabolism of oral cannabis, these factors should be carefully considered when designing animal studies on the effects of cannabis.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Colleen S Peterson
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| | - Samantha L Baglot
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada
| | - Yuta Kohro
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tuan Trang
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada (Dr Hill and Ms Baglot)
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Freeman-Striegel L, Hamilton J, Kannappan R, Bell T, Robison L, Thanos PK. Chronic Δ9-tetrahydrocannabinol treatment has dose-dependent effects on open field exploratory behavior and [ 3H] SR141716A receptor binding in the rat brain. Life Sci 2023:121825. [PMID: 37270168 DOI: 10.1016/j.lfs.2023.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
AIMS Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33 % increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.
Collapse
Affiliation(s)
- Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Renuka Kannappan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Tyler Bell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Lisa Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America.
| |
Collapse
|
11
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
12
|
Halbout B, Hutson C, Hua L, Inshishian V, Mahler SV, Ostlund SB. Long-term effects of THC exposure on reward learning and motivated behavior in adolescent and adult male rats. Psychopharmacology (Berl) 2023; 240:1151-1167. [PMID: 36933028 PMCID: PMC10102061 DOI: 10.1007/s00213-023-06352-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
RATIONALE The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. OBJECTIVE AND METHODS We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats' capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. RESULTS THC exposure had no effect on rats' ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats' willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1 receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. CONCLUSIONS Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Leann Hua
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Stringfield SJ, Sanders BE, Suppo JA, Sved AF, Torregrossa MM. Nicotine Enhances Intravenous Self-administration of Cannabinoids in Adult Rats. Nicotine Tob Res 2023; 25:1022-1029. [PMID: 36426873 PMCID: PMC10077937 DOI: 10.1093/ntr/ntac267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Nicotine and cannabis are commonly used together, yet few studies have investigated the effects of concurrent administration. Nicotine exhibits reinforcement enhancing effects by promoting the reinforcing properties of stimuli including other drugs. As many studies of this effect used non-contingent nicotine, we implemented a dual-self-administration model where rats have simultaneous access to two drugs and choose which to self-administer throughout a session. Here, we investigated the effect of self-administered or non-contingently delivered nicotine on cannabinoid self-administration. METHODS Adult male rats were allowed to self-administer the synthetic cannabinoid WIN 55,212-2 (WIN) intravenously, with or without subcutaneous nicotine injections before each session. A separate group of animals were allowed to self-administer WIN, nicotine, or saline using a dual-catheter procedure, where each solution was infused independently and associated with a separate operant response. A third group of male and female rats were allowed to self-administer delta-9-tetrahydrocannabinol (THC) with or without pre-session injections of nicotine. RESULTS Nicotine injections increased self-administration of WIN and THC. During dual self-administration, nicotine availability increased saline and WIN infusions but nicotine intake was not changed by WIN or saline availability. Rats preferred nicotine over saline, but preferred nicotine and WIN equally when both were available. The effect of nicotine on cannabinoid self-administration was acute and reversible when nicotine was no longer present. CONCLUSIONS These results expand our understanding of the ability of nicotine to enhance reinforcement of other drugs and suggest that co-use of nicotine and cannabinoids promotes cannabinoid use beyond what would be taken alone. IMPLICATIONS This study utilizes a dual intravenous self-administration model to investigate the ability of nicotine to enhance cannabinoid intake. Our results demonstrate that the reinforcement enhancing properties of nicotine on drug use extend to include cannabinoids, but that this effect occurs specifically when nicotine is administered alongside the cannabinoid. Interestingly, cannabinoid use did not promote nicotine intake, suggesting this mechanism of reinforcement is specific to nicotine.
Collapse
Affiliation(s)
| | - Bryson E Sanders
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jude A Suppo
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan F Sved
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Stella N. Interrogating the Impact of Δ 9-Tetrahydrocannabinol Use During Adolescence: Microglia Lead the Way. Biol Psychiatry 2022; 92:830-831. [PMID: 36328703 DOI: 10.1016/j.biopsych.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nephi Stella
- Department of Pharmacology and the Department of Psychiatry and Behavioral Sciences, Center for Cannabis Research, and Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
16
|
Gogulski HY, Craft RM. Adolescent THC exposure: effects on pain-related, exploratory, and consummatory behaviors in adult male vs. female rats. Psychopharmacology (Berl) 2022; 239:1563-1578. [PMID: 35266035 DOI: 10.1007/s00213-022-06094-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/13/2022] [Indexed: 01/01/2023]
Abstract
RATIONALE Adolescent cannabinoid exposure has been shown to alter cognitive, reward-related, and motor behaviors as well as mesocorticolimbic dopamine (DA) function in adult animals. Pain is also influenced by mesocorticolimbic DA function, but it is not known whether pain or cannabinoid analgesia in adults is altered by early exposure to cannabinoids. OBJECTIVE To determine whether adolescent Δ9-tetrahydrocannabinol (THC) exposure alters pain-related behaviors before and after induction of persistent inflammatory pain, and whether it influences antinociceptive of THC, in adult rats, and to compare the impact of adolescent THC exposure on pain to its effects on known DA-dependent behaviors such as exploration and consumption of a sweet solution. METHODS Vehicle or THC (2.5 to 10 mg/kg s.c.) was administered daily to male and female rats on post-natal day (PND) 30-43. In adulthood (PND 80-88), sensitivity to mechanical and thermal stimuli before and after intraplantar injection of complete Freund's adjuvant (CFA) was determined. Antinociceptive, exploratory, and consummatory effects of 2.0 mg/kg THC were then examined. RESULTS Adolescent THC exposure did not significantly alter adult sensitivity to non-noxious or noxious stimuli either before or after CFA injection, nor did it alter the antinociceptive effect of THC. In contrast, adolescent THC exposure altered adult exploratory and consummatory behaviors in a sex-dependent manner: when tested as adults, adolescent THC-treated males showed less hedonic drinking than adolescent vehicle-treated males, and females but not males that had been THC-exposed as adolescents showed reduced sensitivity to THC-induced suppression of activity and THC-induced hedonic drinking as adults. CONCLUSIONS Adolescent THC exposure that altered both exploratory and consummatory behaviors in adults did not alter pain-related behaviors either before or after induction of inflammatory pain, suggesting that cannabinoid exposure during adolescence is not likely to substantially alter pain or cannabinoid analgesia in adulthood.
Collapse
Affiliation(s)
- Hannah Y Gogulski
- Psychology Department, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Rebecca M Craft
- Psychology Department, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
17
|
Cannabinoid tetrad effects of oral Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in male and female rats: sex, dose-effects and time course evaluations. Psychopharmacology (Berl) 2022; 239:1397-1408. [PMID: 34652500 PMCID: PMC9287828 DOI: 10.1007/s00213-021-05995-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The legalization of medicinal use of Cannabis sativa in most US states and the removal of hemp from the Drug Enforcement Agency (DEA) controlled substances act has resulted in a proliferation of products containing Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for oral consumption (e.g., edibles, oils, and tinctures) that are being used for recreational and medicinal purposes. OBJECTIVE This study examined the effects of cannabinoids THC and CBD when administered orally on measures of pain sensitivity, body temperature, locomotor activity, and catalepsy (i.e., cannabinoid tetrad) in male and female Sprague Dawley rats. METHODS Rats (N = 24, 6 per sex/drug group) were administered THC (1-20 mg/kg), CBD (3-30 mg/kg), or sesame oil via oral gavage. Thermal and mechanical pain sensitivity (tail flick assay, von Frey test), rectal measurements for body temperature, locomotor activity, and the bar-test of catalepsy were completed. A separate group of rats (N = 8/4 per sex) was administered morphine (5-20 mg/kg; intraperitoneal, IP) and evaluated for pain sensitivity as a positive control. RESULTS We observed classic tetrad effects of antinociception, hypothermia, hyper- and hypolocomotion, and catalepsy after oral administration of THC that were long lasting (> 7 h). CBD modestly increased mechanical pain sensitivity and produced sex-dependent effects on body temperature and locomotor activity. CONCLUSIONS Oral THC and CBD produced long lasting effects that differed in magnitude and time course when compared with other routes of administration. Examination of cannabinoid effects administered via different routes of administration, species, and in both males and females is critical to enhance translation.
Collapse
|
18
|
Moore CF, Stiltner JW, Davis CM, Weerts EM. Translational models of cannabinoid vapor exposure in laboratory animals. Behav Pharmacol 2022; 33:63-89. [PMID: 33136615 PMCID: PMC8079522 DOI: 10.1097/fbp.0000000000000592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabis is one of the most frequently used psychoactive substances in the world. The most common route of administration for cannabis and cannabinoid constituents such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is via smoking or vapor inhalation. Preclinical vapor models have been developed, although the vaporization devices and delivery methods vary widely across laboratories. This review examines the emerging field of preclinical vapor models with a focus on cannabinoid exposure in order to (1) summarize vapor exposure parameters and other methodological details across studies; (2) discuss the pharmacological and behavioral effects produced by exposure to vaporized cannabinoids; and (3) compare behavioral effects of cannabinoid vapor administration with those of other routes of administration. This review will serve as a guide for past and current vapor delivery methods in animals, synergize findings across studies, and propose future directions for this area of research.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey W. Stiltner
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Baglot SL, Hume C, Petrie GN, Aukema RJ, Lightfoot SHM, Grace LM, Zhou R, Parker L, Rho JM, Borgland SL, McLaughlin RJ, Brechenmacher L, Hill MN. Pharmacokinetics and central accumulation of delta-9-tetrahydrocannabinol (THC) and its bioactive metabolites are influenced by route of administration and sex in rats. Sci Rep 2021; 11:23990. [PMID: 34907248 PMCID: PMC8671514 DOI: 10.1038/s41598-021-03242-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Up to a third of North Americans report using cannabis in the prior month, most commonly through inhalation. Animal models that reflect human consumption are critical to study the impact of cannabis on brain and behaviour. Most animal studies to date utilize injection of delta-9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis). THC injections produce markedly different physiological and behavioural effects than inhalation, likely due to distinctive pharmacokinetics. The current study directly examined if administration route (injection versus inhalation) alters metabolism and central accumulation of THC and metabolites over time. Adult male and female Sprague–Dawley rats received either an intraperitoneal injection or a 15-min session of inhaled exposure to THC. Blood and brains were collected at 15, 30, 60, 90 and 240-min post-exposure for analysis of THC and metabolites. Despite achieving comparable peak blood THC concentrations in both groups, our results indicate higher initial brain THC concentration following inhalation, whereas injection resulted in dramatically higher 11-OH-THC concentration, a potent THC metabolite, in blood and brain that increased over time. Our results provide evidence of different pharmacokinetic profiles following inhalation versus injection. Accordingly, administration route should be considered during data interpretation, and translational animal work should strongly consider using inhalation models.
Collapse
Affiliation(s)
- Samantha L Baglot
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada. .,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada.
| | - Catherine Hume
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology & Anatomy
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Laine M Grace
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada
| | - Ruokun Zhou
- Southern Alberta Mass Spectrometry (SAMS) Facility, University of Calgary, Calgary, AB, Canada
| | - Linda Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Stephanie L Borgland
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Laurent Brechenmacher
- Southern Alberta Mass Spectrometry (SAMS) Facility, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada. .,Department of Cell Biology & Anatomy
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
20
|
Ruiz CM, Torrens A, Lallai V, Castillo E, Manca L, Martinez MX, Justeson DN, Fowler CD, Piomelli D, Mahler SV. Pharmacokinetic and pharmacodynamic properties of aerosolized ("vaped") THC in adolescent male and female rats. Psychopharmacology (Berl) 2021; 238:3595-3605. [PMID: 34495367 PMCID: PMC8665923 DOI: 10.1007/s00213-021-05976-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Adolescent exposure to ∆9-tetrahydrocannabinol (THC), the psychotropic constituent of cannabis, might affect brain development, and in rodent models leads to long-term behavioral and physiological alterations. Yet, the basic pharmacology of this drug in adolescent rodents, especially when ingested via ecologically relevant routes like aerosol inhalation, commonly referred to as "vaping," is still poorly characterized. Moreover, sex differences exist in THC metabolism, kinetics, and behavioral effects, but these have not been rigorously examined after vapor dosing in adolescents. OBJECTIVES We investigated the pharmacokinetics and pharmacodynamics of aerosolized THC (30 min inhalation exposure, 25 or 100 mg/ml) in adolescent Wistar rats of both sexes. METHODS Liquid chromatography/mass spectrometry analysis of THC and its major metabolites was conducted on blood plasma and brain tissue at 5, 30, 60, and 120 min following a 30-min aerosol dosing session. Effects on activity in a novel environment for 120 min after aerosol, and temperature, were measured in separate rats. RESULTS We found sex-dependent differences in the pharmacokinetics of THC and its active (11-OH-THC) and inactive (11-COOH-THC) metabolites in the blood and brain, along with dose- and sex-dependent effects on anxiety-like and exploratory behaviors; namely, greater 11-OH-THC levels accompanied by greater behavioral effects in females at the low dose but similar hypothermic effects in both sexes at the high dose. CONCLUSIONS These results provide a benchmark for dosing adolescent rats with aerosolized (or "vaped") THC, which could facilitate adoption by other labs of this potentially human-relevant THC exposure model to understand cannabis effects on the developing brain.
Collapse
Affiliation(s)
- C M Ruiz
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - A Torrens
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - V Lallai
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - E Castillo
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - L Manca
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - M X Martinez
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D N Justeson
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - C D Fowler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D Piomelli
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - S V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Ellner D, Hallam B, Frie JA, Thorpe HHA, Shoaib M, Kayir H, Jenkins BW, Khokhar JY. Discordant Effects of Cannabinoid 2 Receptor Antagonism/Inverse Agonism During Adolescence on Pavlovian and Instrumental Reward Learning in Adult Male Rats. Front Synaptic Neurosci 2021; 13:732402. [PMID: 34526887 PMCID: PMC8437373 DOI: 10.3389/fnsyn.2021.732402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The endocannabinoid system is responsible for regulating a spectrum of physiological activities and plays a critical role in the developing brain. During adolescence, the endocannabinoid system is particularly sensitive to external insults that may change the brain’s developmental trajectory. Cannabinoid receptor type 2 (CB2R) was initially thought to predominantly function in the peripheral nervous system, but more recent studies have implicated its role in the mesolimbic pathway, a network largely attributed to reward circuitry and reward motivated behavior, which undergoes extensive changes during adolescence. It is therefore important to understand how CB2R modulation during adolescence can impact reward-related behaviors in adulthood. In this study, adolescent male rats (postnatal days 28–41) were exposed to a low or high dose of the CB2R antagonist/inverse agonist SR144528 and Pavlovian autoshaping and instrumental conditional behavioral outcomes were measured in adulthood. SR144528-treated rats had significantly slower acquisition of the autoshaping task, seen by less lever pressing behavior over time [F(2, 19) = 5.964, p = 0.010]. Conversely, there was no effect of adolescent SR144528 exposure on instrumental conditioning. These results suggest that modulation of the CB2R in adolescence differentially impacts reward-learning behaviors in adulthood.
Collapse
Affiliation(s)
- Danna Ellner
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bryana Hallam
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jude A Frie
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Shoaib
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Hakan Kayir
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Peters KZ, Zlebnik NE, Cheer JF. Cannabis exposure during adolescence: A uniquely sensitive period for neurobiological effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:95-120. [PMID: 34801175 DOI: 10.1016/bs.irn.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is a crucial developmental period where neural circuits are refined and the brain is especially vulnerable to external insults. The endocannabinoid (eCB) system undergoes changes during adolescence which affect the way in which it modulates the development of other systems, in particular dopamine circuits, which show protracted development into adolescence. Given the rise of cannabis use by adolescents and young people, as well as variants containing increasingly higher concentrations of THC, it is now crucial to understand the unique effects of adolescent exposure to cannabis on the developing brain and it might shape future adult vulnerabilities to conditions such as psychosis, schizophrenia, addiction and more. Here we discuss the development of the eCB system across the lifespan, how CB1 receptors modulate dopamine release and potential neurobiological and behavioral effects of adolescent THC exposure on the developing brain such as alterations in excitatory/inhibitory balance during this developmental period.
Collapse
Affiliation(s)
- K Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom.
| | - N E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
24
|
Hernandez CM, Orsini CA, Blaes SL, Bizon JL, Febo M, Bruijnzeel AW, Setlow B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J Psychopharmacol 2021; 35:848-863. [PMID: 33295231 PMCID: PMC8187454 DOI: 10.1177/0269881120965931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, USA,Department of Psychiatry, University of Florida, Gainesville, USA,Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA,Department of Psychology, The University of Texas at Austin, Austin, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| |
Collapse
|
25
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
26
|
Morie KP, Potenza MN. A Mini-Review of Relationships Between Cannabis Use and Neural Foundations of Reward Processing, Inhibitory Control and Working Memory. Front Psychiatry 2021; 12:657371. [PMID: 33967859 PMCID: PMC8100188 DOI: 10.3389/fpsyt.2021.657371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 01/26/2023] Open
Abstract
Cannabis is commonly used, and use may be increasing in the setting of increasing legalization and social acceptance. The scope of the effects of cannabis products, including varieties with higher or lower levels of Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD), on domains related to addictive behavior deserves attention, particularly as legalization continues. Cannabis use may impact neural underpinnings of cognitive functions linked to propensities to engage in addictive behaviors. Here we consider these neurocognitive processes within the framework of the dual-process model of addictions. In this mini-review, we describe data on the relationships between two main constituents of cannabis (THC and CBD) and neural correlates of reward processing, inhibitory control and working memory.
Collapse
Affiliation(s)
- Kristen P. Morie
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Wethersfield, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Laviolette SR. Exploring the impact of adolescent exposure to cannabinoids and nicotine on psychiatric risk: insights from translational animal models. Psychol Med 2021; 51:940-947. [PMID: 31801641 DOI: 10.1017/s0033291719003325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adolescence represents a highly sensitive period of mammalian neurodevelopment wherein critical synaptic and structural changes are taking place in brain regions involved in cognition, self-regulation and emotional processing. Importantly, neural circuits such as the mesocorticolimbic pathway, comprising the prefrontal cortex, sub-cortical mesolimbic dopamine system and their associated input/output centres, are particularly vulnerable to drug-related insults. Human adolescence represents a life-period wherein many individuals first begin to experiment with recreational drugs such as nicotine and cannabis, both of which are known to profoundly modulate neurochemical signalling within the mesocorticolimbic pathway and to influence both long-term and acute neuropsychiatric symptoms. While a vast body of epidemiological clinical research has highlighted the effects of adolescent exposure to drugs such as nicotine and cannabis on the developing adolescent brain, many of these studies are limited to correlative analyses and rely on retrospective self-reports from subjects, making causal interpretations difficult to discern. The use of pre-clinical animal studies can avoid these issues by allowing for precise temporal and dose-related experimental control over drug exposure during adolescence. In addition, such animal-based research has the added advantage of allowing for in-depth molecular, pharmacological, genetic and neuronal analyses of how recreational drug exposure may set up the brain for neuropsychiatric risk. This review will explore some of the advantages and disadvantages of these models, with a focus on the common, divergent and synergistic effects of adolescent nicotine and cannabis exposure on neuropsychiatric risk.
Collapse
Affiliation(s)
- Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, CanadaN6A3K7
| |
Collapse
|
28
|
Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110141. [PMID: 33069816 DOI: 10.1016/j.pnpbp.2020.110141] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
Cannabis and alcohol co-use is prevalent in adolescence, but the long-term behavioural effects of this co-use remain largely unexplored. The aim of this study is to investigate the effects of adolescent alcohol and Δ9-tetrahydracannabinol (THC) vapour co-exposure on cognitive- and reward-related behaviours. Male Sprague-Dawley rats received vapourized THC (10 mg vapourized THC/four adolescent rats) or vehicle every other day (from post-natal day (PND) 28-42) and had continuous voluntary access to ethanol (10% volume/volume) in adolescence. Alcohol intake was measured during the exposure period to assess the acute effects of THC on alcohol consumption. In adulthood (PND 56+), rats underwent behavioural testing. Adolescent rats showed higher alcohol preference, assessed using the two-bottle choice test, on days on which they were not exposed to THC vapour. In adulthood, rats that drank alcohol as adolescents exhibited short-term memory deficits and showed decreased alcohol preference; on the other hand, rats exposed to THC vapour showed learning impairments in the delay-discounting task. Vapourized THC, alcohol or their combination had no effect on anxiety-like behaviours in adulthood. Our results show that although adolescent THC exposure acutely affects alcohol drinking, adolescent alcohol and cannabis co-use may not produce long-term additive effects.
Collapse
|
29
|
Stringfield SJ, Torregrossa MM. Disentangling the lasting effects of adolescent cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110067. [PMID: 32791165 DOI: 10.1016/j.pnpbp.2020.110067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Cannabis is the most widely used illicit substance among adolescents, and adolescent cannabis use is associated with various neurocognitive deficits that can extend into adulthood. A growing body of evidence supports the hypothesis that adolescence encompasses a vulnerable period of development where exposure to exogenous cannabinoids can alter the normative trajectory of brain maturation. In this review, we present an overview of studies of human and rodent models that examine lasting effects of adolescent exposure. We include evidence from meta-analyses, longitudinal, or cross-sectional studies in humans that consider age of onset as a factor that contributes to the behavioral dysregulation and altered structural or functional development in cannabis users. We also discuss evidence from preclinical rodent models utilizing well-characterized or innovative routes of exposure, investigating the effects of dose and timing to produce behavioral deficits or alterations on a neuronal and behavioral level. Multiple studies from both humans and animals provide contrasting results regarding the magnitude of residual effects. Combined evidence suggests that exposure to psychoactive cannabinoids during adolescence has the potential to produce subtle, but lasting, alterations in neurobiology and behavior.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Stringfield SJ, Torregrossa MM. Intravenous self-administration of delta-9-THC in adolescent rats produces long-lasting alterations in behavior and receptor protein expression. Psychopharmacology (Berl) 2021; 238:305-319. [PMID: 33111197 PMCID: PMC7796919 DOI: 10.1007/s00213-020-05684-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
RATIONALE Initial exposure to cannabinoids, including Δ-9-tetrahydrocannabinol (THC), often occurs during adolescence. Considerable neurodevelopmental alterations occur throughout adolescence, and the environmental insult posed by exogenous cannabinoid exposure may alter natural developmental trajectories. Multiple studies suggest that long-lasting deficits in cognitive function occur as a result of adolescent cannabis use, but considerable variability exists in the magnitude of these effects. OBJECTIVES We sought to establish a novel procedure for achieving intravenous THC self-administration in adolescent rats in order to determine if volitional THC intake in adolescence produced indices of addiction-related behavior, altered working memory performance in adulthood, or altered the expression of proteins associated with these behaviors across several brain regions. METHODS Male and female adolescent rats learned to operantly self-administer escalating doses of THC intravenously from PD 32-51. Upon reaching adulthood they were tested in abstinence for cued reinstatement of THC-seeking and working memory performance on a delayed-match-to-sample task. In a separate cohort, glutamatergic, GABAergic, and cannabinoid receptor protein expression was measured in multiple brain regions. RESULTS Both male and female adolescents self-administered THC and exhibited cue-induced lever pressing throughout abstinence. THC-exposed males exhibited slightly enhanced working memory performance in adulthood, and better performance positively correlated with total THC self-administered during adolescence. Adolescent THC-exposed rats exhibited reductions in CB1, GABA, and glutamate receptor protein, primarily in the prefrontal cortex, dorsal hippocampus, and ventral tegmental area. CONCLUSIONS These results suggest that THC exposure at self-administered doses can produce moderate behavioral and molecular alterations, including sex-dependent effects on working memory performance in adulthood.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Suite 223, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Suite 223, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
31
|
De Gregorio D, Dean Conway J, Canul ML, Posa L, Bambico FR, Gobbi G. Effects of chronic exposure to low doses of Δ9- tetrahydrocannabinol in adolescence and adulthood on serotonin/norepinephrine neurotransmission and emotional behaviors. Int J Neuropsychopharmacol 2020; 23:pyaa058. [PMID: 32725198 PMCID: PMC7745253 DOI: 10.1093/ijnp/pyaa058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic exposure to the Δ9-tetrahydrocannabinol (THC), the main cannabis pharmacological component, during adolescence has been shown to be associated with an increased risk of depression and suicidality in humans. AIMS Little is known about the impact of the long-term effects of chronic exposure to low doses of THC in adolescent compared to adult rodents. METHODS THC (1mg/kg i.p., once a day) or vehicle was administered for 20 days in both adolescent (post-natal day, PND 30-50) and young adult rats (PND 50-70). After a long washout period (20 days), several behavioral paradigms and electrophysiological recordings of serotonin (5-HT) and norepinephrine (NE) neurons were carried out. RESULTS Adolescent THC exposure resulted in depressive lbehaviors: a significant decrease in latency to first immobility in the forced swim test, increased anhedonia in the sucrose preference test. Decrease entries in the open arm were observed in the elevated plus maze after adolescent and adult exposure, indicating anxiousphenotype. A significant reduction in dorsal raphe serotonergic neural activity without changing locus coeruleus noradrenergic neural activity was found in THC adolescent and adult exposure. CONCLUSIONS Altogether, these findings suggest that low doses of chronic THC exposure during the developmental period and adulthood could result in increased vulnerability of the 5-HT system and anxiety symptoms; however, depressive phenotypes occur only after adolescent, but not adult exposure, underscoring the higher vulnerability of young ages to the mental effects of cannabis.
Collapse
Affiliation(s)
- Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Joshua Dean Conway
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Martha-Lopez Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Molla HM, Tseng KY. Neural substrates underlying the negative impact of cannabinoid exposure during adolescence. Pharmacol Biochem Behav 2020; 195:172965. [PMID: 32526217 DOI: 10.1016/j.pbb.2020.172965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 11/15/2022]
Abstract
As cannabinoid use among the adolescent population becomes widespread with recent legalizations, understanding more about its effects on the developing brain becomes increasingly important. Adolescent cannabinoid use has been shown to elicit both short and long lasting effects on cortical function, in part due to its impact on maturing brain regions including the prefrontal cortex and associated inputs. This paper provides an overview of current state of knowledge on the lasting impact of repeated cannabinoid exposure on behavior and associated neural circuits in adolescents compared to other age groups. Data obtained from human and rodent literature are integrated to discuss potential neural mechanisms underpinning the enduring negative impact of cannabinoid exposure during this sensitive period of brain development.
Collapse
Affiliation(s)
- Hanna M Molla
- Department of Anatomy and Cell Biology, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA; Department of Cellular and Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
34
|
Abraham AD, Leung EJY, Wong BA, Rivera ZMG, Kruse LC, Clark JJ, Land BB. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology 2020; 45:1105-1114. [PMID: 31812152 PMCID: PMC7235274 DOI: 10.1038/s41386-019-0585-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆9-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.
Collapse
Affiliation(s)
- Antony D Abraham
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Edward J Y Leung
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Brenden A Wong
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Zeena M G Rivera
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Lauren C Kruse
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.
| |
Collapse
|
35
|
Vaporized Cannabis Extracts Have Reinforcing Properties and Support Conditioned Drug-Seeking Behavior in Rats. J Neurosci 2020; 40:1897-1908. [PMID: 31953372 DOI: 10.1523/jneurosci.2416-19.2020] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/11/2023] Open
Abstract
Recent trends in cannabis legalization have increased the necessity to better understand the effects of cannabis use. Animal models involving traditional cannabinoid self-administration approaches have been notoriously difficult to establish and differences in the drug used and its route of administration have limited the translational value of preclinical studies. To address this challenge in the field, we have developed a novel method of cannabis self-administration using response-contingent delivery of vaporized Δ9-tetrahydrocannabinol-rich (CANTHC) or cannabidiol-rich (CANCBD) whole-plant cannabis extracts. Male Sprague-Dawley rats were trained to nose-poke for discrete puffs of CANTHC, CANCBD, or vehicle (VEH) in daily 1 h sessions. Cannabis vapor reinforcement resulted in strong discrimination between active and inactive operanda. CANTHC maintained higher response rates under fixed ratio schedules and higher break points under progressive ratio schedules compared with CANCBD or VEH, and the number of vapor deliveries positively correlated with plasma THC concentrations. Moreover, metabolic phenotyping studies revealed alterations in locomotor activity, energy expenditure, and daily food intake that are consistent with effects in human cannabis users. Furthermore, both cannabis regimens produced ecologically relevant brain concentrations of THC and CBD and CANTHC administration decreased hippocampal CB1 receptor binding. Removal of CANTHC reinforcement (but not CANCBD) resulted in a robust extinction burst and an increase in cue-induced cannabis-seeking behavior relative to VEH. These data indicate that volitional exposure to THC-rich cannabis vapor has bona fide reinforcing properties and collectively support the utility of the vapor self-administration model for the preclinical assessment of volitional cannabis intake and cannabis-seeking behaviors.SIGNIFICANCE STATEMENT The evolving legal landscape concerning recreational cannabis use has increased urgency to better understand its effects on the brain and behavior. Animal models are advantageous in this respect; however, current approaches typically used forced injections of synthetic cannabinoids or isolated cannabis constituents that may not capture the complex effects of volitional cannabis consumption. We have developed a novel model of cannabis self-administration using response-contingent delivery of vaporized cannabis extracts containing high concentrations of Δ9 tetrahydrocannabinol (THC) or cannabidiol. Our data indicate that THC-rich cannabis vapor has reinforcing properties that support stable rates of responding and conditioned drug-seeking behavior. This approach will be valuable for interrogating effects of cannabis and delineating neural mechanisms that give rise to aberrant cannabis-seeking behavior.
Collapse
|
36
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
37
|
Smoker MP, Hernandez M, Zhang Y, Boehm SL. Assessment of Acute Motor Effects and Tolerance Following Self-Administration of Alcohol and Edible ∆ 9 -Tetrahydrocannabinol in Adolescent Male Mice. Alcohol Clin Exp Res 2019; 43:2446-2457. [PMID: 31524960 DOI: 10.1111/acer.14197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cannabinoids and their principle psychoactive target, the cannabinoid type 1 receptor (CB1R), impact a number of alcohol-related properties, and although alcohol and cannabis are often co-used, particularly in adolescence, few animal models of this phenomenon exist. We modeled the co-use of alcohol and ∆9 -tetrahydrocannabinol (THC) in adolescent mice using ingestive methods popular during this developmental period in humans, namely binge-drinking and edible THC. With this model, we assessed levels of use, acute effects, and tolerance to each substance. METHODS Adolescent male C57BL/6J mice had daily, limited access to 1 of 2 edible doughs (THC or control), to 1 of 2 fluids (ethanol (EtOH) or water), and in 1 of 2 orders (dough-fluid or fluid-dough). Home cage locomotor activity was recorded both during access and after access. On the day following the final access session, a subset of mice were assessed for functional and metabolic tolerance to alcohol using accelerating rotarod and blood EtOH concentrations, respectively. The remaining mice were assessed for tolerance to THC-induced hypothermia, and whole-brain CB1R expression was assessed in all mice. RESULTS EtOH intake was on par with levels previously reported in adolescent mice. Edible THC was well-consumed, but consumption decreased at the highest dose provided. Locomotor activity increased following EtOH intake and decreased following edible THC consumption, and edible THC increased fluid intake in general. The use of alcohol produced neither functional nor metabolic tolerance to an alcohol challenge. However, the use of edible THC impaired subsequent drug-free rotarod performance and was associated with a reduction in THC's hypothermic effect. CONCLUSIONS Adolescent mice self-administered both alcohol and edible THC to a degree sufficient to acutely impact locomotor activity. However, only edible THC consumption had lasting effects during short-term abstinence. Thus, this adolescent co-use model could be used to explore sex differences in self-administration and the impact substance co-use might have on other domains such as mood and cognition.
Collapse
Affiliation(s)
- Michael P Smoker
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Maribel Hernandez
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Yanping Zhang
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Stephen L Boehm
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
38
|
Affiliation(s)
- Marco Leyton
- From the Departments of Psychiatry and Psychology, McGill University; the Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University; the Center for Studies in Behavioral Neurobiology, Concordia University; and the Research Unit on Children’s Psychosocial Maladjustment, Université de Montréal, Montreal, Que., Canada
| |
Collapse
|