1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi'an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Trillos-Almanza MC, Aguilar MM, Buist-Homan M, Bomer N, Gomez KA, de Meijer VE, van Vilsteren FGI, Blokzijl H, Moshage H. Branched-chain amino acids and their metabolites decrease human and rat hepatic stellate cell activation. Mol Biol Rep 2024; 51:1116. [PMID: 39495311 PMCID: PMC11534903 DOI: 10.1007/s11033-024-10027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND End-stage liver diseases (ESLDs) are a significant global health challenge due to their high prevalence and severe health impacts. Despite the severe outcomes associated with ESLDs, therapeutic options remain limited. Targeting the activation of hepatic stellate cells (HSCs), key drivers of extracellular matrix accumulation during liver injury presents a novel therapeutic approach. In ESLDs patients, branched-chain amino acids (BCAAs, leucine, isoleucine and valine) levels are decreased, and supplementation has been proposed to attenuate liver fibrosis and improve regeneration. However, their effects on HSCs require further investigation. OBJECTIVE To evaluate the efficacy of BCAAs and their metabolites, branched-chain α-keto acids (BCKAs), in modulating HSCs activation in human and rat models. METHODS Primary HSCs from rats and cirrhotic and non-cirrhotic human livers, were cultured and treated with BCAAs or BCKAs to assess their effects on both preventing (from day 1 of isolation) and reversing (from day 7 of isolation) HSCs activation. RESULTS In rat HSCs, leucine and BCKAs significantly reduced fibrotic markers and cell proliferation. In human HSCs, the metabolite of isoleucine decreased cell proliferation around 85% and increased the expression of branched-chain ketoacid dehydrogenase. The other metabolites also showed antifibrotic effects in HSCs from non-cirrhotic human livers. CONCLUSION BCAAs and their respective metabolites inhibit HSC activation with species-specific responses. Further research is needed to understand how BCAAs influence liver fibrogenesis. BCKAs supplementation could be a strategic approach for managing ESLDs, considering the nutritional status and amino acid profiles of patients.
Collapse
Affiliation(s)
- Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | - Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Karla Arevalo Gomez
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Carreras-Torres R, Galván-Femenía I, Farré X, Cortés B, Díez-Obrero V, Carreras A, Moratalla-Navarro F, Iraola-Guzmán S, Blay N, Obón-Santacana M, Moreno V, de Cid R. Multiomic integration analysis identifies atherogenic metabolites mediating between novel immune genes and cardiovascular risk. Genome Med 2024; 16:122. [PMID: 39449064 PMCID: PMC11515386 DOI: 10.1186/s13073-024-01397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Understanding genetic-metabolite associations has translational implications for informing cardiovascular risk assessment. Interrogating functional genetic variants enhances our understanding of disease pathogenesis and the development and optimization of targeted interventions. METHODS In this study, a total of 187 plasma metabolite levels were profiled in 4974 individuals of European ancestry of the GCAT| Genomes for Life cohort. Results of genetic analyses were meta-analysed with additional datasets, resulting in up to approximately 40,000 European individuals. Results of meta-analyses were integrated with reference gene expression panels from 58 tissues and cell types to identify predicted gene expression associated with metabolite levels. This approach was also performed for cardiovascular outcomes in three independent large European studies (N = 700,000) to identify predicted gene expression additionally associated with cardiovascular risk. Finally, genetically informed mediation analysis was performed to infer causal mediation in the relationship between gene expression, metabolite levels and cardiovascular risk. RESULTS A total of 44 genetic loci were associated with 124 metabolites. Lead genetic variants included 11 non-synonymous variants. Predicted expression of 53 fine-mapped genes was associated with 108 metabolite levels; while predicted expression of 6 of these genes was also associated with cardiovascular outcomes, highlighting a new role for regulatory gene HCG27. Additionally, we found that atherogenic metabolite levels mediate the associations between gene expression and cardiovascular risk. Some of these genes showed stronger associations in immune tissues, providing further evidence of the role of immune cells in increasing cardiovascular risk. CONCLUSIONS These findings propose new gene targets that could be potential candidates for drug development aimed at lowering the risk of cardiovascular events through the modulation of blood atherogenic metabolite levels.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Girona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Iván Galván-Femenía
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Xavier Farré
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Virginia Díez-Obrero
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Ferran Moratalla-Navarro
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Mireia Obón-Santacana
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Víctor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain.
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain.
| |
Collapse
|
4
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Lyu J, Lim JY, Han Y, Na K, Jung S, Park YJ. Protein source associated with risk of metabolic syndrome in adults with low and adequate protein intake: A prospective cohort study of middle-aged and older adults. J Nutr Health Aging 2024; 28:100393. [PMID: 39418750 DOI: 10.1016/j.jnha.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Metabolic syndrome is associated with an increased risk of diabetes, cardiovascular disease, and all-cause mortality. Some evidence suggests that the cardiometabolic health benefits of protein intake may vary by the source (animal or plant); however, the evidence is inconsistent. This study aimed to assess the risk of developing metabolic syndrome according to the protein source. PARTICIPANTS Among a total of 3,310 participants aged 40 years or older in the Ansan and Ansung population based prospective cohort, 1,543 incident cases of metabolic syndrome were identified between 2007 and 2018. MEASUREMENTS Dietary intake was assessed using a validated food frequency questionnaire. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) by quintile (Q), adjusting for demographics and health-related lifestyle factors. RESULTS Higher intake of animal protein (HRquintile5 (Q5) vs quintile1 (Q1) [95% CIs]: 0.76 [0.59-0.96], P-trend ≤ 0.0307) and a higher relative intake of animal protein (HRQ5 vs.Q1: 0.78 [0.64-0.95], P-trend ≤ 0.0017) were associated with a significantly decreased risk of developing metabolic syndrome. In subgroup analyses, associations between the risk of metabolic syndrome and the relative intake of animal and plant protein differed according to whether the total protein intake was within the recommended nutrient intake (RNI). Specifically, significant associations were observed only among those with a total protein consumption below the RNI (HRQ5vs Q1 [95% CIs]: 0.72 [0.56-0.93] for the relative intake of animal protein), but not among those consuming above the RNI. This association was more significant in women than in men. CONCLUSION A higher absolute and relative intake of animal protein were associated with a significantly decreased risk of metabolic syndrome, particularly among those who consumed less than the RNI of protein.
Collapse
Affiliation(s)
- Jieun Lyu
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Chungcheongbuk-do 28159, Republic of Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joong-Yeon Lim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Chungcheongbuk-do 28159, Republic of Korea
| | - Yerim Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Yang X, Li W, Li W, Liu H, Wang L, Leng J, Fan Y, Yang X, Liu M, Hu G. Dietary intakes of branch chained amino acids and obesity risk among Chinese gestational diabetes women. Front Nutr 2024; 11:1436450. [PMID: 39449822 PMCID: PMC11500634 DOI: 10.3389/fnut.2024.1436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Epidemiological studies have assessed the correlation between daily dietary branch chain amino acid (BCAA) intakes and the risk of obesity, however, the findings from these studies were inconsistent and investigations among GDM women were few. Objective The present study was to investigate the associations of daily BCAA intakes with the risks of overweight and abdominal obesity among women with prior gestational diabetes mellitus (GDM) postpartum. Method We performed a cross-sectional study of 1,263 women with prior GDM at 1-5 years post-delivery. Logistic regression models were used to estimate the associations of daily dietary intakes of BCAAs with the risks of overweight and abdominal obesity. Results The multivariable-adjusted odds ratios (ORs) across quartiles of daily BCAA intakes postpartum were 1.42 (95% confidence interval [CI] 1.02-1.97), 1.00 (reference), 1.21 (95% CI 0.88-1.68), and 1.31 (95% CI 0.95-1.81) for general overweight, and 1.38 (95% CI 0.99-1.90), 1.00, 1.19 (95% CI 0.86-1.64), and 1.43 (95% CI 1.04-1.98) for abdominal obesity, respectively. Women with the lowest quartile of daily BCAA intakes significantly increased the risks of general overweight (OR 1.49; 95 %CI 1.06-2.09) and abdominal obesity (OR 1.50; 95 %CI 1.08-2.11) compared with women at quartile 2 of daily BCAA intakes after further adjustment of daily energy intake. Conclusion The present study indicated that daily lower BCAA intakes were associated with increased risks of general overweight and abdominal obesity among women with prior GDM.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Weiqin Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Wei Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Huikun Liu
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Leishen Wang
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Junhong Leng
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Yuxin Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Lim JJ, Prodhan UK, Silvestre MP, Liu AY, McLay J, Fogelholm M, Raben A, Poppitt SD, Cameron-Smith D. Low serum glycine strengthens the association between branched-chain amino acids and impaired insulin sensitivity assessed before and after weight loss in a population with pre-diabetes: The PREVIEW_NZ cohort. Clin Nutr 2024; 43:17-25. [PMID: 39423758 DOI: 10.1016/j.clnu.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
AIM Accumulation of circulating branched-chain amino acids (BCAA) is a hallmark feature of impaired insulin sensitivity. As intracellular BCAA catabolism is dependent on glycine availability, we hypothesised that the concurrent measurement of circulating glycine and BCAA may yield a stronger association with markers of insulin sensitivity than either BCAA or glycine alone. This study therefore examined the correlative relationships of BCAA, BCAA and glycine together, plus glycine alone on insulin sensitivity-related markers before and after an 8-week low energy diet (LED) intervention. METHODS This is a secondary analysis of the PREVIEW (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World) Study New Zealand sub-cohort. Eligible participants with pre-diabetes at baseline who achieved ≥8 % body weight loss following an LED intervention were included, of which 167 paired (Week 0 and Week 8) blood samples were available for amino acid analysis. Glycemic and other data were retrieved from the PREVIEW consortium database. Repeated measures linear mixed models were used to test the association between amino acids and insulin sensitivity-related markers (HOMA2-IR, glucose, insulin, and C-peptide). RESULTS Elevated BCAA was associated with impaired insulin sensitivity (p < 0.05), with strength of association (ηp2) almost doubled when glycine was added to the model. However, glycine in isolation was not associated with insulin sensitivity-related markers. The magnitude (β-estimates) of positive association between BCAA and HOMA2-IR, and inverse association between glycine and HOMA2-IR, increased when body weight was higher (Body weight∗BCAA, Body weight∗glycine, p < 0.05, both). CONCLUSION Low serum glycine strengthened the association between BCAA and impaired insulin sensitivity. Given that glycine is necessary to facilitate intracellular BCAA catabolism, measurement of glycine is necessary to complement BCAA analysis to comprehensively understand the contribution of amino acid metabolism in insulin sensitivity. CLINICAL TRIAL REGISTRATION This study was registered with ClinicalTrials.gov (NCT01777893).
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand.
| | - Utpal K Prodhan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Amy Y Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica McLay
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore
| |
Collapse
|
8
|
Grankvist N, Jönsson C, Hedin K, Sundqvist N, Sandström P, Björnsson B, Begzati A, Mickols E, Artursson P, Jain M, Cedersund G, Nilsson R. Global 13C tracing and metabolic flux analysis of intact human liver tissue ex vivo. Nat Metab 2024; 6:1963-1975. [PMID: 39210089 PMCID: PMC11496108 DOI: 10.1038/s42255-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Liver metabolism is central to human physiology and influences the pathogenesis of common metabolic diseases. Yet, our understanding of human liver metabolism remains incomplete, with much of current knowledge based on animal or cell culture models that do not fully recapitulate human physiology. Here, we perform in-depth measurement of metabolism in intact human liver tissue ex vivo using global 13C tracing, non-targeted mass spectrometry and model-based metabolic flux analysis. Isotope tracing allowed qualitative assessment of a wide range of metabolic pathways within a single experiment, confirming well-known features of liver metabolism but also revealing unexpected metabolic activities such as de novo creatine synthesis and branched-chain amino acid transamination, where human liver appears to differ from rodent models. Glucose production ex vivo correlated with donor plasma glucose, suggesting that cultured liver tissue retains individual metabolic phenotypes, and could be suppressed by postprandial levels of nutrients and insulin, and also by pharmacological inhibition of glycogen utilization. Isotope tracing ex vivo allows measuring human liver metabolism with great depth and resolution in an experimentally tractable system.
Collapse
Affiliation(s)
- Nina Grankvist
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jönsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Hedin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Per Sandström
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bergthor Björnsson
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Arjana Begzati
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | | | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Mohit Jain
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, San Diego, CA, USA
| | - Gunnar Cedersund
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H, Chen L. Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism 2024:156037. [PMID: 39317264 DOI: 10.1016/j.metabol.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND AIMS The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor. METHODS AND RESULTS Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes. CONCLUSION BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.
Collapse
Affiliation(s)
- Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
10
|
Huang H, Chen H, Yao Y, Lou X. Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med 2024; 30:149. [PMID: 39267003 PMCID: PMC11391606 DOI: 10.1186/s10020-024-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Obesity is a global epidemic, and the low-grade chronic inflammation of adipose tissue in obese individuals can lead to insulin resistance and type 2 diabetes. Adipose tissue macrophages (ATMs) are the main source of pro-inflammatory cytokines in adipose tissue, making them an important target for therapy. While branched-chain amino acids (BCAA) have been strongly linked to obesity and type 2 diabetes in humans, the relationship between BCAA catabolism and adipose tissue inflammation is unclear. This study aims to investigate whether disrupted BCAA catabolism influences the function of adipose tissue macrophages and the secretion of pro-inflammatory cytokines in adipose tissue, and to determine the underlying mechanism. This research will help us better understand the role of BCAA catabolism in adipose tissue inflammation, obesity, and type 2 diabetes. METHODS In vivo, we examined whether the BCAA catabolism in ATMs was altered in high-fat diet-induced obesity mice, and if BCAA supplementation would influence obesity, glucose tolerance, insulin sensitivity, adipose tissue inflammation and ATMs polarization in mice. In vitro, we isolated ATMs from standard chow and high BCAA-fed group mice, using RNA-sequencing to investigate the potential molecular pathway regulated by BCAA accumulation. Finally, we performed targeted gene silence experiment and used immunoblotting assays to verify our findings. RESULTS We found that BCAA catabolic enzymes in ATMs were influenced by high-fat diet induced obesity mice, which caused the accumulation of both BCAA and its downstream BCKA. BCAA supplementation will cause obesity and insulin resistance compared to standard chow (STC) group. And high BCAA diet will induce pro-inflammatory cytokines including Interlukin-1beta (IL-1β), Tumor Necrosis Factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) secretion in adipose tissue as well as promoting ATMs M1 polarization (pro-inflammatory phenotype). Transcriptomic analysis revealed that a high BCAA diet would activate IFNGR1/JAK1/STAT1 pathway, and IFNGR1 specific silence can abolish the effect of BCAA supplementation-induced inflammation and ATMs M1 polarization. CONCLUSIONS The obesity mice model reveals the catabolism of BCAA was disrupted which will cause the accumulation of BCAA, and high-level BCAA will promote ATMs M1 polarization and increase the pro-inflammatory cytokines in adipose tissue which will cause the insulin resistance in further. Therefore, reducing the circulating level of BCAA can be a therapeutic strategy in obesity and insulin resistance patients.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Yu Yao
- Department of Neurology, JinHua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Xueyong Lou
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China.
| |
Collapse
|
11
|
González-Domínguez Á, Savolainen O, Domínguez-Riscart J, Landberg R, Lechuga-Sancho A, González-Domínguez R. Probing erythrocytes as sensitive and reliable sensors of metabolic disturbances in the crosstalk between childhood obesity and insulin resistance: findings from an observational study, in vivo challenge tests, and ex vivo incubation assays. Cardiovasc Diabetol 2024; 23:336. [PMID: 39261864 PMCID: PMC11391635 DOI: 10.1186/s12933-024-02395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Although insulin resistance (IR) is among the most frequent and pathogenically relevant complications accompanying childhood obesity, its role in modulating and exacerbating obesity pathophysiology has not yet been completely clarified. METHODS To get deeper insights into the interplay between childhood obesity and IR, we leveraged a comprehensive experimental design based on a combination of observational data, in vivo challenge tests (i.e., oral glucose tolerance test), and ex vivo assays (i.e., incubation of erythrocytes with insulin) using a population comprising children with obesity and IR, children with obesity without IR, and healthy controls, from whom plasma and erythrocyte samples were collected for subsequent metabolomics analysis. RESULTS Children with concomitant IR showed exacerbated metabolic disturbances in the crosstalk between endogenous, microbial, and environmental determinants, including failures in energy homeostasis, amino acid metabolism, oxidative stress, synthesis of steroid hormones and bile acids, membrane lipid composition, as well as differences in exposome-related metabolites associated with diet, exposure to endocrine disruptors, and gut microbiota. Furthermore, challenge tests and ex vivo assays revealed a deleterious impact of IR on individuals' metabolic flexibility, as reflected in blunted capacity to regulate homeostasis in response to hyperinsulinemia, at both systemic and erythroid levels. CONCLUSIONS Thus, we have demonstrated for the first time that metabolite alterations in erythrocytes represent reliable and sensitive biomarkers to disentangle the metabolic complexity of IR and childhood obesity. This study emphasizes the crucial need of addressing inter-individual variability factors, such as the presence of comorbidities, to obtain a more accurate understanding of obesity-related molecular mechanisms.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Jesús Domínguez-Riscart
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Alfonso Lechuga-Sancho
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
- Departamento Materno Infantil y Radiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, 11009, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| |
Collapse
|
12
|
Jensch R, Baber R, Körner A, Kiess W, Ceglarek U, Garten A, Vogel M. Association of Whole Blood Amino Acid and Acylcarnitine Metabolome with Anthropometry and IGF-I Serum Levels in Healthy Children and Adolescents in Germany. Metabolites 2024; 14:489. [PMID: 39330496 PMCID: PMC11433988 DOI: 10.3390/metabo14090489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Physiological changes of blood amino acids and acylcarnitines during healthy child development are poorly studied. The LIFE (Leipziger Forschungszentrum für Zivilisationserkrankungen) Child study offers a platform with a large cohort of healthy children to investigate these dynamics. We aimed to assess the intra-person variability of 28 blood metabolites and their associations with anthropometric parameters related to growth and excess body fat. METHODS Concentrations of 22 amino acids (AA), 5 acylcarnitines (AC) and free carnitine of 2213 children aged between 3 months and 19 years were analyzed using liquid chromatography/tandem mass spectrometry. Values were transformed into standard deviation scores (SDS) to account for sex- and age-related variations. The stability of metabolites was assessed through the coefficient of determination. Associations with parameters for body composition and insulin-like growth factor-I (IGF-I) SDS were determined by the Pearson correlation and linear regression. RESULTS Our research revealed substantial within-person variation in metabolite concentrations during childhood and adolescence. Most metabolites showed a positive correlation with body composition parameters, with a notable influence of sex, pubertal status and weight group. Glycine exhibited negative associations with parameters of body fat distribution, especially in normal weight girls, overweight/obese boys and during puberty. CONCLUSION Blood AA and AC measurements may contribute to elucidating pathogenesis pathways of adiposity-related comorbidities, but the specific timings and conditions of development during childhood and adolescence need to be taken into consideration.
Collapse
Affiliation(s)
- Ricky Jensch
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
| | - Ronny Baber
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig, Paul-List Str. 13/15, 04103 Leipzig, Germany
| | - Antje Körner
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Wieland Kiess
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Uta Ceglarek
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig, Paul-List Str. 13/15, 04103 Leipzig, Germany
| | - Antje Garten
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
| | - Mandy Vogel
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Das MK, Savidge B, Pearl JE, Yates T, Miles G, Pareek M, Haldar P, Cooper AM. Altered hepatic metabolic landscape and insulin sensitivity in response to pulmonary tuberculosis. PLoS Pathog 2024; 20:e1012565. [PMID: 39331683 PMCID: PMC11463835 DOI: 10.1371/journal.ppat.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Chronic inflammation triggers development of metabolic disease, and pulmonary tuberculosis (TB) generates chronic systemic inflammation. Whether TB induced-inflammation impacts metabolic organs and leads to metabolic disorder is ill defined. The liver is the master regulator of metabolism and to determine the impact of pulmonary TB on this organ we undertook an unbiased mRNA and protein analyses of the liver in mice with TB and reanalysed published data on human disease. Pulmonary TB led to upregulation of genes in the liver related to immune signalling and downregulation of genes encoding metabolic processes. In liver, IFN signalling pathway genes were upregulated and this was reflected in increased biochemical evidence of IFN signalling, including nuclear location of phosphorylated Stat-1 in hepatocytes. The liver also exhibited reduced expression of genes encoding the gluconeogenesis rate-limiting enzymes Pck1 and G6pc. Phosphorylation of CREB, a transcription factor controlling gluconeogenesis was drastically reduced in the livers of mice with pulmonary TB as was phosphorylation of other glucose metabolism-related kinases, including GSK3a, AMPK, and p42. In support of the upregulated IFN signalling being linked to the downregulated metabolic functions in the liver, we found suppression of gluconeogenic gene expression and reduced CREB phosphorylation in hepatocyte cell lines treated with interferons. The impact of reduced gluconeogenic gene expression in the liver was seen when infected mice were less able to convert pyruvate, a gluconeogenesis substrate, to the same extent as uninfected mice. Infected mice also showed evidence of reduced systemic and hepatic insulin sensitivity. Similarly, in humans with TB, we found that changes in a metabolite-based signature of insulin resistance correlates temporally with successful treatment of active TB and with progression to active TB following exposure. These data support the hypothesis that TB drives interferon-mediated alteration of hepatic metabolism resulting in reduced gluconeogenesis and drives systemic reduction of insulin sensitivity.
Collapse
Affiliation(s)
- Mrinal K. Das
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Ben Savidge
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Gareth Miles
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, United Kingdom
| | - Manish Pareek
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Department of Infection and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- NIHR Respiratory Biomedical Research Centre, Leicester, Glenfield Hospital, Groby Road, Leicester, United Kingdom
| | - Andrea M. Cooper
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
14
|
Wyatt EC, VanDerStad LR, Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Valsartan Rescues Suppressed Mitochondrial Metabolism during Insulin Resistance in C2C12 Myotubes. Cell Biochem Funct 2024; 42:e4117. [PMID: 39243192 DOI: 10.1002/cbf.4117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed Bckdha expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.
Collapse
Affiliation(s)
- Emily C Wyatt
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Lindsey R VanDerStad
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Pamela M Lundin
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
15
|
Li Z, Hao J, Wang T, Guo C, Liu L. Branched-chain amino acids and risk of lung cancer: insights from mendelian randomization and NHANES III. J Thorac Dis 2024; 16:5248-5261. [PMID: 39268127 PMCID: PMC11388241 DOI: 10.21037/jtd-24-420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 09/15/2024]
Abstract
Background Recent studies have observed the relationships of circulatory and dietary intake of branched-chain amino acids (BCAAs) with long-term risk of certain cancers. However, the exact causality of BCAA with lung cancer (LUCA) and its pathological subtypes remains obscure. The aim of this study is to investigate the association between BCAA metabolism and risk of LUCA. Methods Here we conducted Mendelian randomization (MR) and observational epidemiological analyses to investigate the association between BCAA and risk of LUCA. With single nucleotide polymorphism (SNP)-phenotype association data extracted from genome-wide association studies (GWAS), we performed univariate and multivariate MR analyses to infer the causal effect of circulatory BCAA concentrations on LUCA. We further investigated the effects of several potential mediators and quantified the mediation effects. Population-level analyses were performed in the National Health and Nutrition Examination Survey (NHANES) III. Results Our results demonstrated that genetically predicted circulatory valine concentrations causally increased the risk of overall LUCA [odds ratio (OR) =1.324, 95% confidence interval (CI): 1.058-1.658, P=0.01]. For pathological subgroups, elevated levels of leucine, isoleucine, valine, and total BCAA were founded to be significantly associated with a higher risk of squamous cell lung cancer (LUSC); however, they did not significantly affect lung adenocarcinoma (LUAD). Moreover, body mass index (BMI) mediated approximately 3.91% (95% CI: 1.22-7.18%) of the total effect of leucine on LUSC. In the NHANES III population, dietary total BCAA intake was significantly associated with BMI ≥30 kg/m2, while no non-linear relationships were observed. Conclusions This study provides genetic evidence for the histology-specific causality of BCAA on LUCA and implies the mediation role of BMI in this relationship. Further studies are needed to confirm these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Zongyuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jianqi Hao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chenglin Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
17
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024. [PMID: 39186818 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
18
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Liu T, Liu Y, Yan T, Zhang B, Zhou L, Zhu W, Wang G, Kang J, Peng W, Shi L. Intermittent fasting, exercise, and dietary modification induce unique transcriptomic signatures of multiple tissues governing metabolic homeostasis during weight loss and rebound weight gain. J Nutr Biochem 2024; 130:109649. [PMID: 38642842 DOI: 10.1016/j.jnutbio.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and its related metabolic diseases bring great challenges to public health. In-depth understanding on the efficacy of weight-loss interventions is critical for long-term weight control. Our study demonstrated the comparable efficacy of exercise (EX), intermittent fasting (IF), or the change of daily diet from an unhealthy to a normal chow (DR) for weight reduction, but largely divergently affected metabolic status and transcriptome of subcutaneous fat, scapular brown fat, skeletal muscles and liver in high-fat-high-fructose diet (HFHF) induced obese mice. EX and IF reduced systematic inflammation, improved glucose and lipid metabolism in liver and muscle, and amino acid metabolism and thermogenesis in adipose tissues. EX exhibited broad regulatory effects on TCA cycle, carbon metabolism, thermogenesis, propanoate-, fatty acid and amino acid metabolism across multiple tissues. IF prominently affected genes involved in mitophagy and autophagy in adipose tissues and core genes involved in butanoate metabolism in liver. DR, however, failed to improve metabolic homeostasis and biological dysfunctions in obese mice. Notably, by exploring potential inter-organ communication, we identified an obesity-resistant-like gene profile that were strongly correlated with HFHF induced metabolic derangements and could predict the degree of weight regain induced by the follow-up HFHF diet. Among them, 12 genes (e.g., Gdf15, Tfrc, Cdv3, Map2k4, and Nqo1) were causally associated with human metabolic traits, i.e., BMI, body fat mass, HbA1C, fasting glucose, and cholesterol. Our findings provide critical groundwork for improved understanding of the impacts of weight-loss interventions on host metabolism. The identified genes predicting weight regain may be considered regulatory targets for improving long-term weight control.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Baobao Zhang
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wanyu Zhu
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Kang
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China.
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
20
|
Mathioudaki A, Fanni G, Eriksson JW, Pereira MJ. Metabolomic Profiling of Adipose Tissue in Type 2 Diabetes: Associations with Obesity and Insulin Resistance. Metabolites 2024; 14:411. [PMID: 39195507 DOI: 10.3390/metabo14080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The global prevalence of Type 2 Diabetes (T2D) poses significant public health challenges due to its associated severe complications. Insulin resistance is central to T2D pathophysiology, particularly affecting adipose tissue function. This cross-sectional observational study investigates metabolic alterations in subcutaneous adipose tissue (SAT) associated with T2D to identify potential therapeutic targets. We conducted a comprehensive metabolomic analysis of SAT from 40 participants (20 T2D, 20 ND-T2D), matched for sex, age, and BMI (Body Mass Index). Metabolite quantification was performed using GC/MS and LC/MS/MS platforms. Correlation analyses were conducted to explore associations between metabolites and clinical parameters. We identified 378 metabolites, including significant elevations in TCA cycle (tricarboxylic acid cycle) intermediates, branched-chain amino acids (BCAAs), and carbohydrates, and a significant reduction in the nucleotide-related metabolites in T2D subjects compared to those without T2D. Obesity exacerbated these alterations, particularly in amino acid metabolism. Adipocyte size negatively correlated with BCAAs, while adipocyte glucose uptake positively correlated with unsaturated fatty acids and glycerophospholipids. Our findings reveal distinct metabolic dysregulation in adipose tissue in T2D, particularly in energy metabolism, suggesting potential therapeutic targets for improving insulin sensitivity and metabolic health. Future studies should validate these findings in larger cohorts and explore underlying mechanisms to develop targeted interventions.
Collapse
Affiliation(s)
- Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
21
|
Mensink M. Dietary protein, amino acids and type 2 diabetes mellitus: a short review. Front Nutr 2024; 11:1445981. [PMID: 39114126 PMCID: PMC11305142 DOI: 10.3389/fnut.2024.1445981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes is a widespread metabolic disorder and results from insulin resistance and impaired insulin secretion. Modifiable factors like diet, physical activity, and body weight play crucial roles in diabetes prevention, with targeted interventions reducing diabetes risk by about 60%. High-protein consumption, above the recommended intake of 0.8 g/kg body weight per day, have often explored in relation to diabetes risk. However, the relationship between dietary protein and diabetes is multifaceted. Observational studies have linked high total and animal protein intake to an increased risk of type 2 diabetes, particularly in obese women. Elevated levels of branched-chain amino acids (BCAA), which can result from dietary intake, protein breakdown, as well as an impaired catabolism, are strong predictors of cardiometabolic risk and insulin resistance. With several mechanism linking BCAA to insulin resistance. On the other hand, intervention studies suggest that high-protein diets can support weight loss and improve cardiometabolic risk factors. However, the impact on insulin sensitivity and glucose homeostasis is not straightforward. Proteins and amino acids stimulate both insulin and glucagon secretion, influencing glucose levels, but chronic effects remain uncertain. This short narrative review aims to provide an update on the relationship between increased dietary protein intake, amino acids, insulin resistance and type 2 diabetes, and to describe protein recommendations for type 2 diabetes.
Collapse
Affiliation(s)
- Marco Mensink
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
22
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Effect of mTORC Agonism via MHY1485 with and without Rapamycin on C2C12 Myotube Metabolism. Int J Mol Sci 2024; 25:6819. [PMID: 38999929 PMCID: PMC11241331 DOI: 10.3390/ijms25136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
23
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
24
|
Tang N, Liu Y, Yang S, Zhong M, Cui D, Chai O, Wang Y, Liu Y, Zhang X, Hou Z, Sun H. Correlation between newborn weight and serum BCAAs in pregnant women with diabetes. Nutr Diabetes 2024; 14:38. [PMID: 38839749 PMCID: PMC11153640 DOI: 10.1038/s41387-024-00301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential amino acids for mammals. Maternal BCAAs during pregnancy have been associated with newborn development. Meanwhile, BCAAs have been tightly linked with insulin resistance and diabetes in recent years. Diabetes in pregnancy is a common metabolic disorder. The current study aims to assess the circulating BCAA levels in pregnant women with diabetes and their relationship with neonatal development. METHODS The serum concentrations of BCAAs and their corresponding branched-chain α-keto acids (BCKAs) catabolites in 33 pregnant women with normal glucose tolerance, 16 pregnant women with type 2 diabetes before pregnancy (PDGM), and 15 pregnant women with gestational diabetes mellitus (GDM) were determined using a liquid chromatography system coupled to a mass spectrometer. The data were tested for normal distribution and homogeneity of variance before statistical analysis. Correlations were computed with the Pearson correlation coefficient. RESULTS The maternal serum BCAAs and BCKAs levels during late pregnancy were higher in women with PGDM than those in healthy women. Meanwhile, the circulating BCAAs and BCKAs showed no significant changes in women with GDM compared with those in healthy pregnant women. Furthermore, the circulating BCAA and BCKA levels in women with PGDM were positively correlated with the weight of the newborn. The circulating leucine level in women with GDM was positively correlated with the weight of the newborn. BCAA and BCKA levels in healthy pregnant women showed no correlation with newborn weight. CONCLUSIONS The serum BCAAs in pregnant women with diabetes, which was elevated in PGDM but not GDM, were positively correlated with newborn weight. These findings highlight potential approaches for early identification of high-risk individuals and interventions to reduce the risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Na Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Sa Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengyu Zhong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Dongqing Cui
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ou Chai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yurong Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yunwei Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhimin Hou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
Urano T, Kuroda T, Uenishi K, Shiraki M. Serum branched-chain amino acid levels are associated with fracture risk in Japanese women. Geriatr Gerontol Int 2024; 24:603-608. [PMID: 38745353 DOI: 10.1111/ggi.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
AIM Branched-chain amino acids (BCAAs) have been shown to exert beneficial effects on muscle and bone metabolism; however, no studies to date have investigated whether BCAAs have beneficial effects on bone fractures. Herein, we aim to prospectively investigate the relationship between serum BCAA concentrations and the occurrence of vertebral fractures (VFs) in Japanese women. METHODS During the observation period (7.5 ± 6.1 years), 188 of 983 participants experienced VF. Kaplan-Meier analyses were conducted to examine time-dependent variations in the vertebral compression fracture occurrence rate. Patients were stratified into quartiles based on serum BCAA concentration for this analysis. RESULTS The analysis results indicated that the group with the lowest BCAA level developed VFs significantly earlier and with a higher frequency than the other groups (P < 0.001). A Cox proportional hazards model showed that BCAA concentration was a significant risk factor for incident fracture, even after adjusting for possible confounding factors. A series of multiple regression analyses were performed to identify factors related to serum BCAA concentration, with the results identifying levels of glycated hemoglobin (P < 0.001), adiponectin (P < 0.001), and NOx (P = 0.011) as significant factors associated with serum BCAA. CONCLUSIONS Overall, the present study revealed that a lower serum BCAA level was an independent risk factor for incident VF in postmenopausal women. Geriatr Gerontol Int 2024; 24: 603-608.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, International University of Health and Welfare School of Medicine, Narita City, Japan
| | | | - Kazuhiro Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, Sakado, Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Azumino City, Japan
| |
Collapse
|
26
|
Abar L, Zuber V, Otto GW, Tzoulaki I, Dehghan A. Unravelling genetic architecture of circulatory amino acid levels, and their effect on risk of complex disorders. NAR Genom Bioinform 2024; 6:lqae046. [PMID: 38711861 PMCID: PMC11071119 DOI: 10.1093/nargab/lqae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Variations in serum amino acid levels are linked to a multitude of complex disorders. We report the largest genome-wide association study (GWAS) on nine serum amino acids in the UK Biobank participants (117 944, European descent). We identified 34 genomic loci for circulatory levels of alanine, 48 loci for glutamine, 44 loci for glycine, 16 loci for histidine, 11 loci for isoleucine, 19 loci for leucine, 9 loci for phenylalanine, 32 loci for tyrosine and 20 loci for valine. Our gene-based analysis mapped 46-293 genes associated with serum amino acids, including MIP, GLS2, SLC gene family, GCKR, LMO1, CPS1 and COBLL1.The gene-property analysis across 30 tissues highlighted enriched expression of the identified genes in liver tissues for all studied amino acids, except for isoleucine and valine, in muscle tissues for serum alanine and glycine, in adrenal gland tissues for serum isoleucine and leucine, and in pancreatic tissues for serum phenylalanine. Mendelian randomization (MR) phenome-wide association study analysis and subsequent two-sample MR analysis provided evidence that every standard deviation increase in valine is associated with 35% higher risk of type 2 diabetes and elevated levels of serum alanine and branched-chain amino acids with higher levels of total cholesterol, triglyceride and low-density lipoprotein, and lower levels of high-density lipoprotein. In contrast to reports by observational studies, MR analysis did not support a causal association between studied amino acids and coronary artery disease, Alzheimer's disease, breast cancer or prostate cancer. In conclusion, we explored the genetic architecture of serum amino acids and provided evidence supporting a causal role of amino acids in cardiometabolic health.
Collapse
Affiliation(s)
- Leila Abar
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Verena Zuber
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Georg W Otto
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- Centre for Systems Biology, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| | - Abbas Dehghan
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
27
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Fructose Reduces Mitochondrial Metabolism and Increases Extracellular BCAA during Insulin Resistance in C2C12 Myotubes. Nutrients 2024; 16:1582. [PMID: 38892515 PMCID: PMC11174010 DOI: 10.3390/nu16111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27268, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27268, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
28
|
Yousf S, Batra HS, Jha RM, Sardesai DM, Ananthamohan K, Chugh J, Sharma S. Identification of potential serum biomarkers associated with HbA1c levels in Indian type 2 diabetic subjects using NMR-based metabolomics. Clin Chim Acta 2024; 557:117857. [PMID: 38484908 DOI: 10.1016/j.cca.2024.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics. MATERIALS AND METHODS The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR spectroscopy and major perturbed metabolites were identified by multivariate analysis and receiver operating characteristic (ROC) modules. RESULTS Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively. CONCLUSION We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hitender S Batra
- Department of Biochemistry, Armed Forces Medical College (AFMC), Wanowrie, Pune 411040, India; Department of Biochemistry, Symbiosis Medical College for Women, Pune 412115, India.
| | - Rakesh M Jha
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
29
|
Hernandez N, Lokhnygina Y, Ramaker ME, Ilkayeva O, Muehlbauer MJ, Crawford ML, Grant RP, Hsia DS, Jain N, Bain JR, Armstrong S, Newgard CB, Freemark M, Gumus Balikcioglu P. Sex Differences in Branched-chain Amino Acid and Tryptophan Metabolism and Pathogenesis of Youth-onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e1345-e1358. [PMID: 38066593 PMCID: PMC10940256 DOI: 10.1210/clinem/dgad708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 03/16/2024]
Abstract
OBJECTIVES Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids including tryptophan for uptake into β cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance, we compared urine metabolites in overweight/obese youth with type 2 diabetes (T2D) with those in nondiabetic overweight/obese and lean youth. METHODS Metabolites were measured in 24-hour and first-morning urine samples of 56 nondiabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, aged 12 to 21 years. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and nondiabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-HIAA/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and hemoglobin A1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSION Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.
Collapse
Affiliation(s)
- Natalie Hernandez
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Megan Elizabeth Ramaker
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Matthew L Crawford
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Russell P Grant
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Daniel S Hsia
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Nina Jain
- Division of Endocrinology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James R Bain
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah Armstrong
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
- Division of General Pediatrics and Adolescent Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Freemark
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
30
|
Andary CM, Al KF, Chmiel JA, Gibbons S, Daisley BA, Parvathy SN, Maleki Vareki S, Bowdish DME, Silverman MS, Burton JP. Dissecting mechanisms of fecal microbiota transplantation efficacy in disease. Trends Mol Med 2024; 30:209-222. [PMID: 38195358 DOI: 10.1016/j.molmed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Catherine M Andary
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Shaeley Gibbons
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Seema Nair Parvathy
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Saman Maleki Vareki
- Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Dawn M E Bowdish
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Michael S Silverman
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
31
|
Rivera CN, Smith CE, Draper LV, Kee ME, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes. J Cell Biochem 2024; 125:e30520. [PMID: 38226684 DOI: 10.1002/jcb.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Carly E Smith
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Lillian V Draper
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison E Kee
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
32
|
Manninen S, Tilles-Tirkkonen T, Aittola K, Männikkö R, Karhunen L, Kolehmainen M, Schwab U, Lindström J, Lakka T, Pihlajamäki J. Associations of Lifestyle Patterns with Glucose and Lipid Metabolism in Finnish Adults at Increased Risk of Type 2 Diabetes. Mol Nutr Food Res 2024; 68:e2300338. [PMID: 38308150 DOI: 10.1002/mnfr.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Indexed: 02/04/2024]
Abstract
SCOPE Various lifestyle and sociodemographic factors have been associated with risk factors for type 2 diabetes (T2D). However, their combined associations with T2D risk factors have been studied much less. MATERIALS AND RESULTS This study investigates cross-sectional associations of lifestyle patterns with T2D risk factors among 2925 adults at increased risk participating in the Stop Diabetes study. Lifestyle patterns are determined using principal component analysis (PCA) with several lifestyle and sociodemographic factors. The associations of lifestyle patterns with measures of glucose and lipid metabolism and serum metabolites analyzed by nuclear magnetic resonance (NMR) spectroscopy are studied using linear regression analysis. "Healthy eating" pattern is associated with better glucose and insulin metabolism, more favorable lipoprotein and fatty acid profiles and lower serum concentrations of metabolites related to inflammation, insulin resistance, and T2D. "High socioeconomic status and low physical activity" pattern is associated with increased serum concentrations of branched-chain amino acids, as are "Meat and poultry" and "Sleeping hours" patterns. "Snacks" pattern is associated with lower serum concentrations of ketone bodies. CONCLUSIONS Our results show, in large scale primary care setting, that healthy eating is associated with better glucose and lipid metabolism and reveal novel associations of lifestyle patterns with metabolites related to glucose metabolism.
Collapse
Affiliation(s)
- Suvi Manninen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Tanja Tilles-Tirkkonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Kirsikka Aittola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Reija Männikkö
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Leila Karhunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, KYS, 70029, Finland
| | - Jaana Lindström
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, KYS, 70029, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70211, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, KYS, 70029, Finland
| |
Collapse
|
33
|
Wu J, Li Z, Zhu H, Chang Y, Li Q, Chen J, Shen G, Feng J. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics. Obesity (Silver Spring) 2024; 32:571-582. [PMID: 38112246 DOI: 10.1002/oby.23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim of this study was to identify the differential metabolic characteristics of children with overweight and obesity and understand their potential mechanism in different age stratifications. METHODS Four hundred seventy-three children were recruited and divided into two age stratifications: >4 years (older children) and ≤4 years (younger children), and overweight and obesity were defined according to their BMI percentile. A one dimensional proton nuclear magnetic resonance (1 H-NMR)-based metabolomics strategy combined with pattern recognition methods was used to identify the metabolic characteristics of childhood overweight and obesity. RESULTS Four and sixteen potential biomarkers related to overweight and two and twenty potential biomarkers related to obesity were identified from younger and older children, respectively. Fluctuations in phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate co-occurred in children with obesity at two age stratifications. The disturbances in biosynthesis and metabolism of amino acids, lipid metabolism, and galactose metabolism disturbance were mainly involved in children with overweight and obesity. CONCLUSIONS The metabolic disturbances show a significant progression from overweight to obesity in children, and different metabolic characteristics were demonstrated in age stratifications. The changes in the levels of phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate were tracked with the persistence of childhood obesity. These findings will promote the mechanistic understanding of childhood overweight and obesity.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Zhenchang Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
35
|
Matchado MS, Rühlemann M, Reitmeier S, Kacprowski T, Frost F, Haller D, Baumbach J, List M. On the limits of 16S rRNA gene-based metagenome prediction and functional profiling. Microb Genom 2024; 10:001203. [PMID: 38421266 PMCID: PMC10926695 DOI: 10.1099/mgen.0.001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms. Prior studies have cast doubts on the quality of these predictions, motivating us to systematically evaluate these tools using matched 16S rRNA gene sequencing, metagenomic datasets, and simulated data. Our contribution is threefold: (i) using simulated data, we investigate if technical biases could explain the discordance between inferred and expected results; (ii) considering human cohorts for type two diabetes, colorectal cancer and obesity, we test if health-related differential abundance measures of functional categories are concordant between 16S rRNA gene-inferred and metagenome-derived profiles and; (iii) since 16S rRNA gene copy number is an important confounder in functional profiles inference, we investigate if a customised copy number normalisation with the rrnDB database could improve the results. Our results show that 16S rRNA gene-based functional inference tools generally do not have the necessary sensitivity to delineate health-related functional changes in the microbiome and should thus be used with care. Furthermore, we outline important differences in the individual tools tested and offer recommendations for tool selection.
Collapse
Affiliation(s)
- Monica Steffi Matchado
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sandra Reitmeier
- ZIEL - Institute for Food & Health, Core Facility Microbiome, Technical University of Munich, Freising, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Core Facility Microbiome, Technical University of Munich, Freising, Germany
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
36
|
Sharma S, Zhang X, Azhar G, Patyal P, Verma A, KC G, Wei JY. Valine improves mitochondrial function and protects against oxidative stress. Biosci Biotechnol Biochem 2024; 88:168-176. [PMID: 38093456 PMCID: PMC10807754 DOI: 10.1093/bbb/zbad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 01/26/2024]
Abstract
Among the branched-chain amino acids, leucine and isoleucine have been well studied for their roles in improving mitochondrial function and reducing oxidative stress. However, role of valine in mitochondrial function regulation and oxidative stress management remains elusive. This study investigated valine effect on mitochondrial function and oxidative stress in vitro. Valine increased expression of genes involved in mitochondrial biogenesis and dynamics. It upregulates mitochondrial function at complexes I, II, and IV levels of electron transport chain. Flow cytometry studies revealed, valine reduced oxidative stress by significantly lowering mitochondrial reactive oxygen species and protein expression of 4-hydroxynonenal. Functional role of valine against oxidative stress was analyzed by XFe96 Analyzer. Valine sustained oxidative phosphorylation and improved ATP generation rates during oxidative stress. In conclusion, our findings shed more light on the critical function of valine in protecting mitochondrial function thereby preventing mitochondrial/cellular damage induced by oxidative stress.
Collapse
Affiliation(s)
- Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Grishma KC
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
37
|
Qiang YX, You J, He XY, Guo Y, Deng YT, Gao PY, Wu XR, Feng JF, Cheng W, Yu JT. Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274,160 participants. Alzheimers Res Ther 2024; 16:16. [PMID: 38254212 PMCID: PMC10802055 DOI: 10.1186/s13195-023-01379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Blood-based biomarkers for dementia are gaining attention due to their non-invasive nature and feasibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) and assessed their predictive potential. METHODS This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were employed to investigate longitudinal associations between metabolites and dementia. The importance of these metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subsequently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors. RESULTS During a median follow-up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabolites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, and branched-chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a significantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demographic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD. CONCLUSIONS We conducted the largest metabolome investigation of dementia to date, for the first time revealed the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.
Collapse
Affiliation(s)
- Yi-Xuan Qiang
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, 200433, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, 200433, China.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
38
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
39
|
Imai D, Nakanishi N, Shinagawa N, Yamamoto S, Ichikawa T, Sumi M, Matsui T, Hosomi Y, Hasegawa Y, Munekawa C, Miyoshi T, Okamura T, Kitagawa N, Hashimoto Y, Okada H, Sakui N, Sasano R, Hamaguchi M, Fukui M. Association of Elevated Serum Branched-chain Amino Acid Levels With Longitudinal Skeletal Muscle Loss. J Endocr Soc 2024; 8:bvad178. [PMID: 38213909 PMCID: PMC10783241 DOI: 10.1210/jendso/bvad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 01/13/2024] Open
Abstract
Context Branched-chain amino acids (BCAA) are substrates for protein synthesis. Although their intake may contribute to an increase in skeletal muscle mass, elevated serum BCAA levels have been reported to be associated with insulin resistance, potentially resulting in decreased skeletal muscle mass. Objective This study aimed to explore the association between elevated serum BCAA levels and longitudinal skeletal muscle loss. Design and Setting A cohort analysis was conducted, in which serum amino acids were analyzed in healthy individuals who underwent a medical health checkup at Kameoka Municipal Hospital (HOZUGAWA study), Japan. Patients Seventy-one participants (37 men and 34 women) underwent follow-up checkups after the baseline visit. The follow-up duration was 1.2 ± .4 years. Main Outcome Measures The relationship between fasting baseline serum BCAA levels and lifestyle factors, body composition, blood test results, dietary history, and changes in skeletal muscle mass was evaluated. Results In both men and women, serum BCAA levels were positively correlated with body weight, body mass index, skeletal muscle mass index (SMI), and serum triglycerides but inversely correlated with serum high-density lipoprotein cholesterol. In men, fasting serum BCAA levels were inversely associated with the rate of change in SMI (adjusted β = -.529, P = .006), and elevated BCAA levels were independently associated with a longitudinal decrease in skeletal muscle mass (odds ratio: 1.740; 95% confidence interval: 1.023-2.960 per 50 nmol/mL serum BCAAs increase). Conclusion Increased circulating BCAAs could be an indicator of skeletal muscle loss in men.
Collapse
Affiliation(s)
- Dan Imai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Natsuko Shinagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shinta Yamamoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Madoka Sumi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaaki Matsui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yukako Hosomi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Chihiro Munekawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomoki Miyoshi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetology and Endocrinology, Kyoto Okamoto Memorial Hospital, Kyoto, 613-0034, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetology, Kameoka Municipal Hospital, Kyoto, 621-8585, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, 570-8540, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | | | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
40
|
Farra SD. Acute consumption of a branched chain amino acid and vitamin B-6 containing sports drink does not improve multiple sprint exercise performance, but increases post-exercise blood glucose. Front Nutr 2023; 10:1266422. [PMID: 38144425 PMCID: PMC10740374 DOI: 10.3389/fnut.2023.1266422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose The aim of this study was to investigate the ergogenicity of BioSteel High Performance Sports Drink (B-HPSD), a commercially available branched chain amino acid (BCAA) and vitamin B-6 (VitB-6) supplement, on multiple sprint exercise (MSE). Methods Eleven experienced cyclists completed two MSE trials in counterbalanced order, after ingesting either B-HPSD (2,256 mg of BCAA, 300 mcg of VitB-6) or placebo (PLA). The MSE protocol consisted of five maximal effort 1 km sprints on a cycle ergometer separated by 2 min of active recovery. Power output (PO) was continuously measured throughout the cycling protocol. Heart rate (HR) and ratings of perceived exertion (RPE) were monitored following each sprint. Capillary blood samples were collected and analyzed for lactate and glucose before and 2 min post-trial. Cognitive function was assessed before and 15 min after the exercise protocol. Results The PO maintained during each 1 km sprint decreased throughout the protocol (p < 0.05), but the change in PO was similar between conditions. Post-exercise blood glucose was elevated after consuming B-HPSD but not PLA (p < 0.05). Blood lactate (p < 0.05), HR (p < 0.05) and RPE (p < 0.05) increased throughout the trials, however no differences were observed between conditions. Cognitive performance improved after exercise (p < 0.05), but the change was similar between conditions. Conclusion These results demonstrate that acute B-HPSD consumption does not have an ergogenic effect on MSE performance. However, ingestion of B-HPSD increased post-exercise blood glucose concentration when compared to PLA.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Applied Health and Community Studies, Sheridan College, Brampton, ON, Canada
| |
Collapse
|
41
|
Haley JA, Jang C, Guertin DA. A new era of understanding in vivo metabolic flux in thermogenic adipocytes. Curr Opin Genet Dev 2023; 83:102112. [PMID: 37703635 PMCID: PMC10840980 DOI: 10.1016/j.gde.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Nonshivering thermogenesis by brown adipose tissue (BAT) is an adaptive mechanism for maintaining body temperature in cold environments. BAT is critical in rodents and human infants and has substantial influence on adult human metabolism. Stimulating BAT therapeutically is also being investigated as a strategy against metabolic diseases because of its ability to function as a catabolic sink. Thus, understanding how brown adipocytes and the related brite/beige adipocytes use nutrients to fuel their demanding metabolism has both basic and translational implications. Recent advances in mass spectrometry and isotope tracing are improving the ability to study metabolic flux in vivo. Here, we review how such strategies are advancing our understanding of adipocyte thermogenesis and conclude with key future questions.
Collapse
Affiliation(s)
- John A Haley
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Sone H, Lee TJ, Lee BR, Heo D, Oh S, Kwon SH. MicroRNA-mediated attenuation of branched-chain amino acid catabolism promotes ferroptosis in chronic kidney disease. Nat Commun 2023; 14:7814. [PMID: 38016961 PMCID: PMC10684653 DOI: 10.1038/s41467-023-43529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Chronic kidney disease can develop from kidney injury incident to chemotherapy with cisplatin, which complicates the prognosis of cancer patients. MicroRNAs regulate gene expression by pairing with specific sets of messenger RNAs. Therefore, elucidating direct physical interactions between microRNAs and their target messenger RNAs can help decipher crucial biological processes associated with cisplatin-induced kidney injury. Through intermolecular ligation and transcriptome-wide sequencing, we here identify direct pairs of microRNAs and their target messenger RNAs in the kidney of male mice injured by cisplatin. We find that a group of cisplatin-induced microRNAs can target select messenger RNAs that affect the mitochondrial metabolic pathways in the injured kidney. Specifically, a cisplatin-induced microRNA, miR-429-3p, suppresses the pathway that catabolizes branched-chain amino acids in the proximal tubule, leading to cell death dependent on lipid peroxidation, called ferroptosis. Identification of miRNA-429-3p-mediated ferroptosis stimulation suggests therapeutic potential for modulating the branched-chain amino acid pathway in ameliorating cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Hisakatsu Sone
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Byung Rho Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Dan Heo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon, 22711, South Korea
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
Yang W, Jiang W, Guo S. Regulation of Macronutrients in Insulin Resistance and Glucose Homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023; 15:4671. [PMID: 37960324 PMCID: PMC10647592 DOI: 10.3390/nu15214671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (W.Y.); (W.J.)
| |
Collapse
|
44
|
Rivera CN, Watne RM, Wommack AJ, Vaughan RA. The effect of insulin resistance on extracellular BCAA accumulation and SLC25A44 expression in a myotube model of skeletal muscle insulin resistance. Amino Acids 2023; 55:1701-1705. [PMID: 37740788 DOI: 10.1007/s00726-023-03336-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Insulin resistance is often accompanied by elevated circulating branched-chain amino acids (BCAA). We investigated the effects of insulin resistance on the mitochondrial BCAA transporter, SLC25A44, using a myotube model of insulin resistance. Insulin sensitivity and SLC25A44 expression were assessed via Western blot. Liquid chromatography-mass spectrometry was used to evaluate extracellular BCAA media content. Insulin resistance reduced pAkt activation following insulin stimulation but did not alter SLC25A44 expression. Under select conditions, insulin resistance led to the accumulation of extracellular BCAA.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC, 27262-3598, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC, 27262-3598, USA.
| |
Collapse
|
45
|
Peeters WM, Gram M, Dias GJ, Vissers MCM, Hampton MB, Dickerhof N, Bekhit AE, Black MJ, Oxbøll J, Bayer S, Dickens M, Vitzel K, Sheard PW, Danielson KM, Hodges LD, Brønd JC, Bond J, Perry BG, Stoner L, Cornwall J, Rowlands DS. Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes. Redox Biol 2023; 67:102918. [PMID: 37812879 PMCID: PMC10570009 DOI: 10.1016/j.redox.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
We recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.
Collapse
Affiliation(s)
- W M Peeters
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand; School of Biomedical, Nutritional and Sport Science, Newcastle University, United Kingdom
| | - M Gram
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand
| | - G J Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - M C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - M B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - N Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A E Bekhit
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
| | - M J Black
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand
| | - J Oxbøll
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand
| | - S Bayer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - M Dickens
- School of Health Sciences, Massey University, Wellington, Auckland, New Zealand
| | - K Vitzel
- School of Health Sciences, Massey University, Wellington, Auckland, New Zealand
| | - P W Sheard
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - K M Danielson
- Department of Anaesthesiology and Surgery, University of Otago, Wellington, New Zealand
| | - L D Hodges
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand
| | - J C Brønd
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - J Bond
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand
| | - B G Perry
- School of Health Sciences, Massey University, Wellington, Auckland, New Zealand
| | - L Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, USA
| | - J Cornwall
- Centre for Early Learning in Medicine, University of Otago, Dunedin, New Zealand
| | - D S Rowlands
- Metabolic and Microvascular Laboratory, School of Sport, Exercise and Nutrition, Massey University, Wellington, Auckland, New Zealand.
| |
Collapse
|
46
|
Teymoori F, Ahmadirad H, Jahromi MK, Mokhtari E, Farhadnejad H, Mohammadzadeh M, Babrpanjeh M, Shahrokhtabar T, Jamshidi S, Mirmiran P. Serum branched amino acids and the risk of all-cause mortality: a meta-analysis and systematic review. Amino Acids 2023; 55:1475-1486. [PMID: 37725184 DOI: 10.1007/s00726-023-03329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Recently, the serum levels of branched-chain amino acids (BCAAs) have been considered as an indicator to evaluate health status and predict chronic diseases risk. This systematic review and meta-analysis aimed to assess the relationship between Serum BCAAs and the risk of all-cause mortality. We carried out a comprehensive and systematic search in various important databases, including PubMed, Scopus, and Web of Science databases to find the relevant studies published up to October 2022 with no language, design, or time limitation. We extracted the reported hazard ratio (HR) with 95% confidence interval (CI) and odds ratio (OR) with 95%CI in cohorts and case-control studies, respectively, and computed the log HR or OR and its standard error. Then, we used the random-effects model with inverse variance weighting method for the present meta-analysis, to calculate the pooled effect size. Ten observational studies, including nine cohort studies and one case-control study, were included in the present meta-analysis. The number of participants ranges from 53 to 26,711, with an age range of 18-99 years. During 6 months to 24 years of follow-up, 3599 deaths were ascertained. The pooled results indicated that there was no significant association between serum BCAAs (RR: 1.17; 95% CI 0.85-1.60), isoleucine (RR: 1.41; 95%CI 0.92-2.17), leucine (RR: 1.13; 95% CI 0.94-1.36), and valine (RR: 1.02; 95%CI 0.86-1.22) and all-cause mortality. Also, there was significant heterogeneity between studies for serum BCAAs (I2 = 74.1% and P-heterogeneity = 0.021), isoleucine (I2 = 89.4% and P-heterogeneity < 0.001), leucine (I2 = 87.8% and P-heterogeneity < 0.001), and valine (I2 = 86.6% and P-heterogeneity < 0.001). Our results suggested that the serum BCAAs and its components, including isoleucine, leucine, and valine, were not associated with the risk of all-cause mortality.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Babrpanjeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahere Shahrokhtabar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Imam Ali Hospital, Shiraz University of Medical Sciences, Kazerun, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Wang T, Wang M, Liu L, Xie F, Wu X, Li L, Ji J, Wu D. Lower serum branched-chain amino acid catabolic intermediates are predictive signatures specific to patients with diabetic foot. Nutr Res 2023; 119:33-42. [PMID: 37716292 DOI: 10.1016/j.nutres.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Diabetic foot (DF) is one of the serious chronic complications of diabetes. Accurate prediction of the risk of DF may take timely intervention measures to prevent its occurrence. The understanding of metabolomic changes in the progression of diabetes to DF may reveal new targets for interventions. We hypothesized that changes in metabolic pathways during DF would lead to changes in the metabolic profile, which could be predictive signature specific to it. In the present study, 43 participants with type 2 diabetes mellitus (T2DM), 32 T2DM participants with DF (T2DM-F), and 36 healthy subjects were enrolled and their serum samples were used for targeted and nonpolar metabolic analysis with liquid chromatography-tandem mass spectrometry. Differential metabolites related to T2DM-F were discovered in metabolomic analysis. Lasso machine learning regression model, random forest algorithm, causal mediation analysis, disease risk assessment, and clinical decision model were carried out. T2DM and T2DM-F groups could be distinguished with the healthy control group. The differential metabolites were all enriched in alpha-linolenic acid and linoleic acid metabolic pathways including arachidonic acid, docosapentaenoic-acid 22N-6, and docosahexaenoic-acid, which were significantly lower in the T2DM and T2DM-F groups compared with the healthy control group. The differential metabolites in T2DM-F vs T2DM groups were enriched to branched-chain amino acid (BCAA) catabolic pathways involving in methylmalonic acid, succinic acid, 3-methyl-2-oxovaleric acid, and ketoleucine, which were the BCAA catabolic intermediates and significantly lower in the T2DM-F compared with the T2DM group except for succinic acid. We reveal a new set of predictive signatures and associate the lower BCAA catabolic intermediates with the progression from T2DM to T2DM-F.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, 518027, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Liming Liu
- Pathology Department, Shenzhen People's Hospital, Shenzhen, 518027, China
| | - Fang Xie
- Department of Endocrinology, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, 518027, China
| | - Xuanqin Wu
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, 518027, China
| | - Liang Li
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, 518027, China
| | - Jun Ji
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen, 518027, China.
| | - Dafang Wu
- Department of Endocrinology, Affiliated Xi'an No.1 Hospital of Northwest University, Xi'an, 710000, Shanxi, China.
| |
Collapse
|
48
|
Boirie Y, Pinel A, Guillet C. Protein and amino acids in obesity: friends or foes? Curr Opin Clin Nutr Metab Care 2023; 26:508-513. [PMID: 37807957 DOI: 10.1097/mco.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Nutritional interventions using protein and amino acids in obesity are popular therapeutical strategies to limit obesity development. However, the effects of dietary protein intake and amino acid metabolic alterations involved in obesity pathophysiology have not been completely unravelled. Significant recent studies have brought to light new findings in these areas, which are the primary focus of this review. RECENT FINDINGS We describe the effects of protein intake on weight regain prevention, the influence on gut microbiota, the response to low-protein highly processed foods, and the contrasting impacts of a high-protein diet on adults and children. We also explore newly discovered correlations between amino acids, liver fat accumulation, and the dysregulation of the liver-pancreas axis due to alterations in amino acid levels in the context of obesity. Lastly, we consider branched-chain amino acids, along with glycine and tryptophan, as significant biomarkers during periods of positive or negative energy balance. SUMMARY Interventions using dietary protein in obesity may be useful, especially during energy restriction but also in sarcopenic obesity. Furthermore, metabolic profiles that encompass alterations in certain amino acids can provide valuable insights into the metabolic condition of patients with obesity, particularly in relation to insulin resistance and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Yves Boirie
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
- Clinical Nutrition Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Pinel
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
| | - Christelle Guillet
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
| |
Collapse
|
49
|
Lee YH, Park S. Genetic and Lifestyle-Related Factors Influencing Serum Hyper-Propionylcarnitine Concentrations and Their Association with Metabolic Syndrome and Cardiovascular Disease Risk. Int J Mol Sci 2023; 24:15810. [PMID: 37958793 PMCID: PMC10647558 DOI: 10.3390/ijms242115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The genetic and environmental determinants of serum propionylcarnitine concentrations (PC) remain largely unexplored. This study investigated the impact of genetic and environmental factors on serum propionylcarnitine levels in middle-aged and elderly participants from the Ansan/Ansung cohort of the Korean Genome and Epidemiology Study. Our goal was to understand the role of PC on the risk of metabolic syndrome (MetS) leading to cardiovascular disease, particularly concerning branched-chain amino acid (BCAA) metabolism. We analyzed participants' demographic, lifestyle, and biochemical data with and without MetS. Serum metabolite concentrations, including carnitine, acylcarnitine, and amino acid concentrations, were measured, and the components of MetS were evaluated. Genetic variants associated with low and high PC were selected using genome-wide association studies after adjusting for MetS-related parameters. Further, genetic variants and lifestyle factors that interacted with the polygenic risk score (PRS) were analyzed. Participants with MetS were older and less educated, and their alcohol intake was higher than non-MetS participants. PC was significantly associated with the MetS risk and increased the serum levels of BCAAs and other amino acids. Higher PC positively correlated with MetS components, insulin resistance, and cardiovascular risk factors. Intake of calcium, sodium, and vitamin D were inversely associated with PC, but coffee consumption was positively linked to PC. Multiple C2 And Transmembrane Domain Containing-1 (MCTP1)_rs4290997, Kinesin Family Member-7 (KIF7)_rs2350480, Coagulation Factor-II (F2)_rs2070850, Peroxisomal Biogenesis Factor-3 (PEX3)_rs223231, TBC1 Domain Family Member-22A (TBC1D22A)_rs910543, and Phospholipase A2 Group-IV-C (PLA2G4C)_rs7252136 interact with each other to have a threefold influence on PC. The PRS for the six-genetic variant model also interacted with age; the diet rich in beans, potato, and kimchi; and smoking status, influencing PC. In conclusion, elevated PC was associated with MetS and cardiovascular disease risk, suggesting their potential as disease biomarkers.
Collapse
Affiliation(s)
- Yong-Hwa Lee
- Department of Cosmetic Biotechnology, Hoseo University, Asan 31499, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
50
|
Danilova EY, Maslova AO, Stavrianidi AN, Nosyrev AE, Maltseva LD, Morozova OL. CKD Urine Metabolomics: Modern Concepts and Approaches. PATHOPHYSIOLOGY 2023; 30:443-466. [PMID: 37873853 PMCID: PMC10594523 DOI: 10.3390/pathophysiology30040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
One of the primary challenges regarding chronic kidney disease (CKD) diagnosis is the absence of reliable methods to detect early-stage kidney damage. A metabolomic approach is expected to broaden the current diagnostic modalities by enabling timely detection and making the prognosis more accurate. Analysis performed on urine has several advantages, such as the ease of collection using noninvasive methods and its lower protein and lipid content compared with other bodily fluids. This review highlights current trends in applied analytical methods, major discoveries concerning pathways, and investigated populations in the context of urine metabolomic research for CKD over the past five years. Also, we are presenting approaches, instrument upgrades, and sample preparation modifications that have improved the analytical parameters of methods. The onset of CKD leads to alterations in metabolism that are apparent in the molecular composition of urine. Recent works highlight the prevalence of alterations in the metabolic pathways related to the tricarboxylic acid cycle and amino acids. Including diverse patient cohorts, using numerous analytical techniques with modifications and the appropriate annotation and explanation of the discovered biomarkers will help develop effective diagnostic models for different subtypes of renal injury with clinical applications.
Collapse
Affiliation(s)
- Elena Y. Danilova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Anna O. Maslova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Andrey N. Stavrianidi
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Alexander E. Nosyrev
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Larisa D. Maltseva
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| | - Olga L. Morozova
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| |
Collapse
|