1
|
Hicks EM, Seah C, Deans M, Lee S, Johnston KJA, Cote A, Ciarcia J, Chakka A, Collier L, Holtzheimer PE, Young KA, Krystal JH, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Decoding the transcriptomic signatures of psychological trauma in human cortex and amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619681. [PMID: 39484441 PMCID: PMC11526900 DOI: 10.1101/2024.10.23.619681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Psychological trauma has profound effects on brain function and precipitates psychiatric disorders in vulnerable individuals, however, the molecular mechanisms linking trauma with psychiatric risk remain incompletely understood. Using RNA-seq data postmortem brain tissue of a cohort of 304 donors (N=136 with trauma exposure), we investigated transcriptional signatures of trauma exposures in two cortical regions (dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex) and two amygdala regions (medial amygdala and basolateral amygdala) associated with stress processing and regulation. We focused on dissecting heterogeneity of traumatic experiences in these transcriptional signatures by investigating exposure to several trauma types (childhood, adulthood, complex, single acute, combat, and interpersonal traumas) and interactions with sex. Overall, amygdala regions were more vulnerable to childhood traumas, whereas cortical regions were more vulnerable to adulthood trauma (regardless of childhood experience). Using cell-type-specific expression imputation, we identified a strong transcriptional response of medial amygdala excitatory neurons to childhood trauma, which coincided with dysregulation observed in a human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons exposed to hydrocortisone. We resolved multiscale coexpression networks for each brain region and identified modules enriched in trauma signatures and whose connectivity was altered with trauma. Trauma-associated coexpression modules provide insight into coordinated functional dysregulation with different traumas and point to potential gene targets for further dissection. Together, these data provide a characterization of the long-lasting human encoding of traumatic experiences in corticolimbic regions of human brain.
Collapse
|
2
|
Sforzini L, Marizzoni M, Bottanelli C, Kunšteková V, Zonca V, Saleri S, Kose M, Lombardo G, Mariani N, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Riva MA, Mondelli V, Bullmore ET, Cattaneo A, Pariante CM. Transcriptomic profiles in major depressive disorder: the role of immunometabolic and cell-cycle-related pathways in depression with different levels of inflammation. Mol Psychiatry 2024:10.1038/s41380-024-02736-w. [PMID: 39271754 DOI: 10.1038/s41380-024-02736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Transcriptomic profiles are important indicators for molecular mechanisms and pathways involved in major depressive disorder (MDD) and its different phenotypes, such as immunometabolic depression. We performed whole-transcriptome and pathway analyses on 139 individuals from the observational, case-control, BIOmarkers in DEPression (BIODEP) study, 105 with MDD and 34 controls. We divided MDD participants based on levels of inflammation, as measured by serum high-sensitivity C-reactive protein (CRP), in n = 39 'not inflamed' (CRP < 1 mg/L), n = 31 with 'elevated CRP' (1-3 mg/L), and n = 35 with 'low-grade inflammation' (>3 mg/L). We performed whole-blood RNA sequencing using Illumina NextSeq 550 and statistical analyses with the Deseq2 package for R statistics (RUV-corrected) and subsequent pathway analyses with Ingenuity Pathway Analysis. Immunometabolic pathways were activated in individuals with CRP > 1 mg/L, although surprisingly the CRP 1-3 group showed stronger immune activation than the CRP > 3 group. The main pathways identified in the comparison between CRP < 1 group and controls were cell-cycle-related, which may be protective against immunometabolic abnormalities in this 'non-inflamed' depressed group. We further divided MDD participants based on exposure and response to antidepressants (n = 47 non-responders, n = 37 responders, and n = 22 unmedicated), and identified specific immunomodulatory and neuroprotective pathways in responders (especially vs. non-responders), which could be relevant to treatment response. In further subgroup analyses, we found that the specific transcriptional profile of responders is independent of CRP levels, and that the inhibition of cell-cycle-related pathways in MDD with CRP < 1 mg/L is present only in those who are currently depressed, and not in the responders. The present study demonstrates immunometabolic and cell-cycle-related transcriptomic pathways associated with MDD and different (CRP-based and treatment-based) MDD phenotypes, while shedding light on potential molecular mechanisms that could prevent or facilitate an individual's trajectory toward immunometabolic depression and/or treatment-non-responsive depression. The recognition and integration of these mechanisms will facilitate a precision-medicine approach in MDD.
Collapse
Affiliation(s)
- Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK.
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Moira Marizzoni
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Chiara Bottanelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Veronika Kunšteková
- Institute of Biology, Faculty of Medicine, Slovak Medical University, Limbova 14, 833 03, Bratislava, Slovakia
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Valentina Zonca
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Samantha Saleri
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Melisa Kose
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Giulia Lombardo
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Nicole Mariani
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Maria A Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Courtney Worrell
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, Glasgow, G12 8TF, UK
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marco A Riva
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
3
|
Sessa F, Polito R, Li Rosi G, Salerno M, Esposito M, Pisanelli D, Ministeri F, Messina A, Carotenuto M, Chieffi S, Messina G, Monda M. Neurobiology and medico-legal aspects of suicides among older adults: a narrative review. Front Psychiatry 2024; 15:1449526. [PMID: 39290301 PMCID: PMC11405742 DOI: 10.3389/fpsyt.2024.1449526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
The task of preventing suicide in older adults is an important social burden as older adults aged above 65 are exposed to singular psychological aspects that increase suicide risks. Moreover, when an older adult corpse is found, the medico-legal inspection represents a fundamental tool to identify the exact cause of death, classifying or excluding it as suicide. In this scenario, this review aims to explore the neurobiological factors that could be related to suicidal behavior in older adults. A further goal of this review is the exploration of the medico-legal aspects surrounding older adult suicides, clarifying the importance of forensic investigation. Particularly, this review examines issues such as neurotransmitter imbalances, cognitive impairment, neuroinflammation, psychosocial factors related to geriatric suicide, and neurodegenerative diseases. Additionally, medico-legal aspects such as policy considerations, legal frameworks, mental health assessments, ethical implications and forensic investigation were explored. Considering the importance of this phenomenon, especially in western countries, a need has emerged for focused screening tools on suicidal behavior among older adults, in order to contain it. Therefore, this review makes an exhaustive appraisal of the literature giving insights into the delicate interplay between neurobiology as well as mental health in relation to older adult suicide within a medico-legal context. The comprehension of different aspects about this complex phenomenon is fundamental to propose new and more effective interventions, supporting tailored initiatives such as family support and improving healthcare, specifically towards vulnerable ageing societies to reduce older adult suicide risks.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Li Rosi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Daniela Pisanelli
- Microbiology and Virology Unit, Ospedali Riuniti, Viale Luigi Pinto, Foggia, Italy
| | - Federica Ministeri
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sergio Chieffi
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Giovanni Messina
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Marcellino Monda
- Department of Clinical Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
4
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
5
|
Sokolov AV, Schiöth HB. Decoding depression: a comprehensive multi-cohort exploration of blood DNA methylation using machine learning and deep learning approaches. Transl Psychiatry 2024; 14:287. [PMID: 39009577 PMCID: PMC11250806 DOI: 10.1038/s41398-024-02992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The causes of depression are complex, and the current diagnosis methods rely solely on psychiatric evaluations with no incorporation of laboratory biomarkers in clinical practices. We investigated the stability of blood DNA methylation depression signatures in six different populations using six public and two domestic cohorts (n = 1942) conducting mega-analysis and meta-analysis of the individual studies. We evaluated 12 machine learning and deep learning strategies for depression classification both in cross-validation (CV) and in hold-out tests using merged data from 8 separate batches, constructing models with both biased and unbiased feature selection. We found 1987 CpG sites related to depression in both mega- and meta-analysis at the nominal level, and the associated genes were nominally related to axon guidance and immune pathways based on enrichment analysis and eQTM data. Random forest classifiers achieved the highest performance (AUC 0.73 and 0.76) in CV and hold-out tests respectively on the batch-level processed data. In contrast, the methylation showed low predictive power (all AUCs < 0.57) for all classifiers in CV and no predictive power in hold-out tests when used with harmonized data. All models achieved significantly better performance (>14% gain in AUCs) with pre-selected features (selection bias), with some of the models (joint autoencoder-classifier) reaching AUCs of up to 0.91 in the final testing regardless of data preparation. Different algorithmic feature selection approaches may outperform limma, however, random forest models perform well regardless of the strategy. The results provide an overview over potential future biomarkers for depression and highlight many important methodological aspects for DNA methylation-based depression profiling including the use of machine learning strategies.
Collapse
Affiliation(s)
- Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Zonca V, Marizzoni M, Saleri S, Zajkowska Z, Manfro PH, Souza L, Viduani A, Sforzini L, Swartz JR, Fisher HL, Kohrt BA, Kieling C, Riva MA, Cattaneo A, Mondelli V. Inflammation and immune system pathways as biological signatures of adolescent depression-the IDEA-RiSCo study. Transl Psychiatry 2024; 14:230. [PMID: 38824135 PMCID: PMC11144232 DOI: 10.1038/s41398-024-02959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The biological mechanisms underlying the onset of major depressive disorder (MDD) have predominantly been studied in adult populations from high-income countries, despite the onset of depression typically occurring in adolescence and the majority of the world's adolescents living in low- and middle-income countries (LMIC). Taking advantage of a unique adolescent sample in an LMIC (Brazil), this study aimed to identify biological pathways characterizing the presence and increased risk of depression in adolescence, and sex-specific differences in such biological signatures. We collected blood samples from a risk-stratified cohort of 150 Brazilian adolescents (aged 14-16 years old) comprising 50 adolescents with MDD, 50 adolescents at high risk of developing MDD but without current MDD, and 50 adolescents at low risk of developing MDD and without MDD (25 females and 25 males in each group). We conducted RNA-Seq and pathway analysis on whole blood. Inflammatory-related biological pathways, such as role of hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza (z-score = 3.464, p < 0.001), interferon signaling (z-score = 2.464, p < 0.001), interferon alpha/beta signaling (z-score = 3.873, p < 0.001), and complement signaling (z-score = 2, p = 0.002) were upregulated in adolescents with MDD compared with adolescents without MDD independently from their level of risk. The up-regulation of such inflammation-related pathways was observed in females but not in males. Inflammatory-related pathways involved in the production of cytokines and in interferon and complement signaling were identified as key indicators of adolescent depression, and this effect was present only in females.
Collapse
Affiliation(s)
- Valentina Zonca
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Samantha Saleri
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Zuzanna Zajkowska
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Pedro H Manfro
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Laila Souza
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Anna Viduani
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Luca Sforzini
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Helen L Fisher
- King's College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Brandon A Kohrt
- Center for Global Mental Health Equity, Department of Psychiatry and Behavioral Health, School of Medicine and Health Sciences, The George Washington University, 2120 L St NW, Ste 600, Washington, DC, 20037D, USA
| | - Christian Kieling
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Valeria Mondelli
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
7
|
Peng Q, Gilder DA, Bernert RA, Karriker-Jaffe KJ, Ehlers CL. Genetic factors associated with suicidal behaviors and alcohol use disorders in an American Indian population. Mol Psychiatry 2024; 29:902-913. [PMID: 38177348 PMCID: PMC11176067 DOI: 10.1038/s41380-023-02379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
American Indians (AI) demonstrate the highest rates of both suicidal behaviors (SB) and alcohol use disorders (AUD) among all ethnic groups in the US. Rates of suicide and AUD vary substantially between tribal groups and across different geographical regions, underscoring a need to delineate more specific risk and resilience factors. Using data from over 740 AI living within eight contiguous reservations, we assessed genetic risk factors for SB by investigating: (1) possible genetic overlap with AUD, and (2) impacts of rare and low-frequency genomic variants. Suicidal behaviors included lifetime history of suicidal thoughts and acts, including verified suicide deaths, scored using a ranking variable for the SB phenotype (range 0-4). We identified five loci significantly associated with SB and AUD, two of which are intergenic and three intronic on genes AACSP1, ANK1, and FBXO11. Nonsynonymous rare and low-frequency mutations in four genes including SERPINF1 (PEDF), ZNF30, CD34, and SLC5A9, and non-intronic rare and low-frequency mutations in genes OPRD1, HSD17B3 and one lincRNA were significantly associated with SB. One identified pathway related to hypoxia-inducible factor (HIF) regulation, whose 83 nonsynonymous rare and low-frequency variants on 10 genes were significantly linked to SB as well. Four additional genes, and two pathways related to vasopressin-regulated water metabolism and cellular hexose transport, also were strongly associated with SB. This study represents the first investigation of genetic factors for SB in an American Indian population that has high risk for suicide. Our study suggests that bivariate association analysis between comorbid disorders can increase statistical power; and rare and low-frequency variant analysis in a high-risk population enabled by whole-genome sequencing has the potential to identify novel genetic factors. Although such findings may be population specific, rare functional mutations relating to PEDF and HIF regulation align with past reports and suggest a biological mechanism for suicide risk and a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - David A Gilder
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebecca A Bernert
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Kudryavtseva N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. Int J Mol Sci 2024; 25:2882. [PMID: 38474132 DOI: 10.3390/ijms25052882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.
Collapse
Affiliation(s)
- Vladimir Babenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Smagin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina Kovalenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna Galyamina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia Kudryavtseva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
9
|
Sala-Cirtog M, Sirbu IO. Analysis of MicroRNA-Transcription Factors Co-Regulatory Network Linking Depression and Vitamin D Deficiency. Int J Mol Sci 2024; 25:1114. [PMID: 38256187 PMCID: PMC10815958 DOI: 10.3390/ijms25021114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Depression and vitamin D deficiency are often co-occurring pathologies, the common pathogenetic ground of which includes an augmented inflammatory response. However, the molecular details of this relationship remain unclear. Here, we used a bioinformatic approach to analyze GEO transcriptome datasets of major depressive disorder (MDD) and vitamin D deficiency (VDD) to identify the hub genes within the regulatory networks of commonly differentially expressed genes (DEGs). The MDD-VDD shared regulatory network contains 100 DEGs (71 upregulated and 29 downregulated), with six hub genes (PECAM1, TLR2, PTGS2, LRRK2, HCK, and IL18) all significantly upregulated, of which PTGS2 (also known as COX2) shows the highest inference score and reference count. The subsequent analysis of the miRNA-transcription factors network identified COX2, miR-146a-5p, and miR-181c-5p as key co-regulatory actors in the MDD-VDD shared molecular pathogenic mechanisms. Subsequent analysis of published MDD and VDD transcriptome data confirmed the importance of the identified hub genes, further validating our bioinformatic analytical pipeline. Our study demonstrated that PTGS2 was highly upregulated in both depressive patients and patients with low vitamin D plasma levels. Therefore, regulators targeting PTGS2, like miR-146a-5p and miR181c-5p, may have great potential in controlling both diseases simultaneously, accentuating their role in future research.
Collapse
Affiliation(s)
- Maria Sala-Cirtog
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania;
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania;
- Center for Complex Network Science, University of Medicine and Pharmacy “Victor Babes”, E. Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
10
|
Xu K, Ren Y, Fan L, Zhao S, Feng J, Zhong Q, Tu D, Wu W, Chen J, Xie P. TCF4 and RBFOX1 as peripheral biomarkers for the differential diagnosis and treatment of major depressive disorder. J Affect Disord 2024; 345:252-261. [PMID: 37890537 DOI: 10.1016/j.jad.2023.10.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Recent genome-wide association studies on major depressive disorder (MDD) have indicated the involvement of LRFN5 and OLFM4; however, the expression levels and roles of these molecules in MDD remain unclear. The present study aimed to determine the serum levels of TCF4 and RBFOX1 in patients with MDD and to investigate whether these molecules could be used as biomarkers for MDD diagnosis. METHODS The study included 99 drug-naïve MDD patients, 90 drug-treated MDD patients, and 81 healthy controls (HCs). Serum TCF4 and RBFOX1 levels were measured by ELISA. Pearson's correlation analysis was conducted to determine the association between TCF4/RBFOX1 and clinical variables. Linear support vector machine classifier was used to evaluate the diagnostic capabilities of TCF4 and RBFOX1. RESULTS Serum TCF4 and RBFOX1 levels were substantially higher in MDD patients than in HCs and significantly lower in drug-treated MDD patients than in drug-naïve MDD patients. Moreover, serum TCF4 and RBFOX1 levels were associated with the Hamilton Depression Scale score, duration of illness, serum lipids levels, and hepatic function. Thus, both these molecules showed potential as biomarkers for MDD. TCF4 and RBFOX1 combination exhibited a higher diagnostic performance, with the mean area under the curve values of 0.9861 and 0.9936 in the training and testing sets, respectively. LIMITATIONS Small sample size and investigation of only the peripheral nervous system. CONCLUSIONS TCF4 and RBFOX1 may be involved in the pathogenesis of MDD, and their combination may serve as a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Zang JCS, Hohoff C, Van Assche E, Lange P, Kraft M, Sandmann S, Varghese J, Jörgens S, Knight MJ, Baune BT. Immune gene co-expression signatures implicated in occurence and persistence of cognitive dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110826. [PMID: 37451594 DOI: 10.1016/j.pnpbp.2023.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Cognitive dysfunction contributes significantly to the burden caused by Major Depressive Disorder (MDD). Yet, while compelling evidence suggests that different biological processes play a part in both MDD aetiology and the development of cognitive decline more generally, we only begin to understand the molecular underpinnings of depression-related cognitive impairment. Developments in psychometric assessments, molecular high-throughput methods and systems biology derived analysis strategies advance this endeavour. Here, we aim to identify gene expression signatures associated with cognitive dysfunction and cognitive improvement following therapy using RNA sequencing to analyze the whole blood-derived transcriptome of altogether 101 MDD patients who enrolled in the CERT-D study. The mRNA(Nova)Seq based transcriptome was analyzed from whole blood taken at baseline assessment, and patients' cognitive performance was measured twice at baseline and following eight weeks of therapy by means of the THINC integrated tool. Thirty-six patients showed comparatively low cognitive performance at baseline assessment, and 32 patients showed comparatively strong cognitive improvement following therapy. Differential gene expression analysis was performed using limma to a significance threshold of 0.05 and a logFC cutoff of |1.2|. Although we observed some indications for expression differences related to low cognitive performance and cognitive therapy response, signals did not withstand adjustment for multiple testing. Applying WGCNA, we retrieved altogether 25 modules of co-expressed genes and we used a combination of correlational and linear analyses to identify modules related to baseline cognitive performance and cognitive improvement following therapy. Three immune modules reflected distinct but interrelated immune processes (the yellow module: neutrophil-mediated immunity, the darkorange module: interferon signaling, the tan module: platelet activation), and higher expression of the yellow (r = -0.21, p < .05), the dark orange (r = 0.2, p < .05), and the tan (r = -0.23, p < .05) module correlated significantly negatively with patients' cognitive baseline performance. Patients' cognitive baseline performance was a significant predictor of the darkorange module (b = -0.039, p < .05) and the tan module's expression (b = 0.02, p < .05) and was close to becoming a significant predictor of the yellow module's expression (b = -0.02, p = .05). Furthermore, patients characterized by comparatively low cognitive performance at baseline showed significantly higher expression of the tan module when compared to all other patients F(1,97) = 4.32, p < .05, η= 0.04. Following eight weeks of treatment, we observed altogether significant improvement in patients' cognitive performance (b = 0.30, p < .001), and patients with comparatively high cognitive gain showed noticeably lower, but not significantly lower F(1,98) = 3.76, p = .058, expression of a dark turquoise module, which reflects complement and B-cell-associated immune processes. Noteworthy, the relation between cognitive performance and module expression remained observable after controlling for symptom severity and BMI, which partly accounted for variance in module expression. As such, our findings provide further evidence for the involvement of immune processes in MDD related cognitive dysfunction and they suggest that different immune processes contribute to the development and long-term persistence of cognitive dysfunction in the context of depression.
Collapse
Affiliation(s)
- Johannes C S Zang
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Evelien Van Assche
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Pia Lange
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Manuel Kraft
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany.
| | - Silke Jörgens
- Department of Psychiatry, University of Münster, 48149 Münster, Germany.
| | - Matthew J Knight
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Scheepstra KWF, Mizee MR, van Scheppingen J, Adelia A, Wever DD, Mason MRJ, Dubbelaar ML, Hsiao CC, Eggen BJL, Hamann J, Huitinga I. Microglia Transcriptional Profiling in Major Depressive Disorder Shows Inhibition of Cortical Gray Matter Microglia. Biol Psychiatry 2023; 94:619-629. [PMID: 37121366 DOI: 10.1016/j.biopsych.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microglia have been implicated in the pathophysiology of major depressive disorder (MDD), but information on biological mechanisms is limited. Therefore, we investigated the gene expression profile of microglial cells in relation to neuronal regulators of microglia activity in well-characterized MDD and control autopsy brains. METHODS Pure, intact microglia were isolated at brain autopsy from occipital cortex gray matter (GM) and corpus callosum white matter of 13 donors with MDD and 10 age-matched control donors for RNA sequencing. Top differentially expressed genes were validated using immunohistochemistry staining. Because gene expression changes were only detected in GM microglia, neuronal regulators of microglia were investigated in cortical tissue and synaptosomes from the cortex by reverse transcriptase-quantitative polymerase chain reaction and Western blot. RESULTS Transcriptome analysis revealed 92 genes differentially expressed in microglia isolated from GM, but none in microglia from white matter in donors with MDD, compared with control donors. Of these, 81 genes were less abundantly expressed in GM in MDD, including CD163, MKI67, SPP1, CD14, FCGR1A/C, and C1QA/B/C. Accordingly, pathways related to effector mechanisms, such as the complement system and phagocytosis, were differentially regulated in GM microglia in MDD. Immunohistochemistry staining revealed significantly lower expression of CD163 protein in MDD. Whole tissue analysis showed an increase in CD200 (p = .0009) and CD47 (p = .068) messenger RNA, and CD47 protein was significantly elevated (p = .0396) in synaptic fractions of MDD cases. CONCLUSIONS Transcriptional profiling indicates an immune-suppressed microglial phenotype in MDD that is possibly caused by neuronal regulation.
Collapse
Affiliation(s)
- Karel W F Scheepstra
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Adelia Adelia
- Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Dennis D Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Mendorf S, Schönenberg A, Heimrich KG, Prell T. Prospective associations between hand grip strength and subsequent depressive symptoms in men and women aged 50 years and older: insights from the Survey of Health, Aging, and Retirement in Europe. Front Med (Lausanne) 2023; 10:1260371. [PMID: 37780562 PMCID: PMC10536140 DOI: 10.3389/fmed.2023.1260371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction In previous cross-sectional and longitudinal studies, depressive symptoms have been associated with lower hand grip strength (HGS), which is a convenient measure of overall muscular strength and serves as a marker of poor health. Most studies have considered low sample sizes or highly selective patient cohorts. Methods We studied the association between depressive symptoms (EURO-D) and HGS in three waves from the cross-national panel dataset Survey of Health, Aging, and Retirement in Europe (SHARE). Linear regressions and Generalized Estimating Equations (GEE) were conducted to determine factors associated with depressive symptoms and investigate whether HGS predicts future depressive symptoms. Results Cross-sectional HGS explained 7.0% (Wave 4), 5.7% (Wave 5), and 6.4% (Wave 6) of the EURO-D variance. In the GEE, we analyzed people without depression in Wave 4 (N = 39,572). HGS predicted future EURO-D (B = -0.21, OR = 0.979, 95%CI (0.979, 0.980), p < 0.001) and remained a significant predictor of future depressive symptoms after adjustment for age, sex, psychosocial and physical covariates. Discussion Muscle strength is a known marker for physical health, but a relation with mental health has also been proposed previously. This study confirmed the link between HGS and depressive symptoms in men and women aged ≥50 years in a large longitudinal dataset. Further research is required to understand the mechanisms behind this link to determine whether HGS can serve as a specific marker of depressive symptomology, or whether they coexist due to common underlying disease processes.
Collapse
Affiliation(s)
- Sarah Mendorf
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Konstantin G. Heimrich
- Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Geriatrics, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Geriatrics, Halle University Hospital, Halle, Germany
| |
Collapse
|
14
|
Bouzid A, Almidani A, Zubrikhina M, Kamzanova A, Ilce BY, Zholdassova M, Yusuf AM, Bhamidimarri PM, AlHaj HA, Kustubayeva A, Bernstein A, Burnaev E, Sharaev M, Hamoudi R. Integrative bioinformatics and artificial intelligence analyses of transcriptomics data identified genes associated with major depressive disorders including NRG1. Neurobiol Stress 2023; 26:100555. [PMID: 37583471 PMCID: PMC10423927 DOI: 10.1016/j.ynstr.2023.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/17/2023] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder and is amongst the most prevalent psychiatric disorders. MDD remains challenging to diagnose and predict its onset due to its heterogeneous phenotype and complex etiology. Hence, early detection using diagnostic biomarkers is critical for rapid intervention. In this study, a mixture of AI and bioinformatics were used to mine transcriptomic data from publicly available datasets including 170 MDD patients and 121 healthy controls. Bioinformatics analysis using gene set enrichment analysis (GSEA) and machine learning (ML) algorithms were applied. The GSEA revealed that differentially expressed genes in MDD patients are mainly enriched in pathways related to immune response, inflammatory response, neurodegeneration pathways and cerebellar atrophy pathways. Feature selection methods and ML provided predicted models based on MDD-altered genes with ≥75% of accuracy. The integrative analysis between the bioinformatics and ML approaches identified ten key MDD-related biomarkers including NRG1, CEACAM8, CLEC12B, DEFA4, HP, LCN2, OLFM4, SERPING1, TCN1 and THBS1. Among them, NRG1, active in synaptic plasticity and neurotransmission, was the most robust and reliable to distinguish between MDD patients and healthy controls amongst independent external datasets consisting of a mixture of populations. Further evaluation using saliva samples from an independent cohort of MDD and healthy individuals confirmed the upregulation of NRG1 in patients with MDD compared to healthy controls. Functional mapping to the human brain regions showed NRG1 to have high expression in the main subcortical limbic brain regions implicated in depression. In conclusion, integrative bioinformatics and ML approaches identified putative non-invasive diagnostic MDD-related biomarkers panel for the onset of depression.
Collapse
Affiliation(s)
- Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdulrahman Almidani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maria Zubrikhina
- Applied AI Center, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Altyngul Kamzanova
- The Center for Cognitive Neuroscience, Al Farabi Kazakh National University, Kazakhstan
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Manzura Zholdassova
- The Center for Cognitive Neuroscience, Al Farabi Kazakh National University, Kazakhstan
| | - Ayesha M. Yusuf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamid A. AlHaj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Almira Kustubayeva
- The Center for Cognitive Neuroscience, Al Farabi Kazakh National University, Kazakhstan
| | - Alexander Bernstein
- Applied AI Center, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Evgeny Burnaev
- Applied AI Center, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maxim Sharaev
- Applied AI Center, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Sforzini L, Cattaneo A, Ferrari C, Turner L, Mariani N, Enache D, Hastings C, Lombardo G, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Kose M, Cattane N, Lopizzo N, Mazzelli M, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Jones D, Drevets WC, Mondelli V, Bullmore ET, Pariante CM. Higher immune-related gene expression in major depression is independent of CRP levels: results from the BIODEP study. Transl Psychiatry 2023; 13:185. [PMID: 37264010 PMCID: PMC10235092 DOI: 10.1038/s41398-023-02438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Sforzini
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK.
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Service, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, 25124, Italy
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Giulia Lombardo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Maria A Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Nadia Cattane
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, Scotland
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre, London, W1G 0BG, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Gilder D, Bernert R, Karriker-Jaffe K, Ehlers C, Peng Q. Genetic Factors Associated with Suicidal Behaviors and Alcohol Use Disorders in an American Indian Population. RESEARCH SQUARE 2023:rs.3.rs-2950284. [PMID: 37398076 PMCID: PMC10312956 DOI: 10.21203/rs.3.rs-2950284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
American Indians (AI) demonstrate the highest rates of both suicidal behaviors (SB) and alcohol use disorders (AUD) among all ethnic groups in the US. Rates of suicide and AUD vary substantially between tribal groups and across different geographical regions, underscoring a need to delineate more specific risk and resilience factors. Using data from over 740 AI living within eight contiguous reservations, we assessed genetic risk factors for SB by investigating: (1) possible genetic overlap with AUD, and (2) impacts of rare and low frequency genomic variants. Suicidal behaviors included lifetime history of suicidal thoughts and acts, including verified suicide deaths, scored using a ranking variable for the SB phenotype (range 0-4). We identified five loci significantly associated with SB and AUD, two of which are intergenic and three intronic on genes AACSP1, ANK1, and FBXO11. Nonsynonymous rare mutations in four genes including SERPINF1 (PEDF), ZNF30, CD34, and SLC5A9, and non-intronic rare mutations in genes OPRD1, HSD17B3 and one lincRNA were significantly associated with SB. One identified pathway related to hypoxia-inducible factor (HIF) regulation, whose 83 nonsynonymous rare variants on 10 genes were significantly linked to SB as well. Four additional genes, and two pathways related to vasopressin-regulated water metabolism and cellular hexose transport, also were strongly associated with SB. This study represents the first investigation of genetic factors for SB in an American Indian population that has high risk for suicide. Our study suggests that bivariate association analysis between comorbid disorders can increase statistical power; and rare variant analysis in a high-risk population enabled by whole-genome sequencing has the potential to identify novel genetic factors. Although such findings may be population specific, rare functional mutations relating to PEDF and HIF regulation align with past reports and suggest a biological mechanism for suicide risk and a potential therapeutic target for intervention.
Collapse
|
17
|
Roever L, Cavalcante BRR, Improta-Caria AC. Long-term consequences of COVID-19 on mental health and the impact of a physically active lifestyle: a narrative review. Ann Gen Psychiatry 2023; 22:19. [PMID: 37170283 PMCID: PMC10174610 DOI: 10.1186/s12991-023-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/16/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Respiratory viruses damage not only the upper respiratory tract in humans, but also several different organs such as the brain. Some of the neurological consequences of COVID-19 reported are anosmia, headache, stroke, declined cognitive function, and impaired mental health, among others. People who had COVID-19 have a higher risk of sequelae in the central nervous system (CNS). However, it is not known which are all possible sequelae and how long will last the long-term effects of the COVID-19 pandemic on behavioral patterns and quality of life. AIM We intend to address the long-term impacts of COVID-19 on mental health and the relevance of physical exercise during the pandemic. METHODS We conducted a literature search using PubMed to find the articles that were related to these themes. RESULTS We found 23,489 papers initially, and then we applied the inclusion/exclusion criteria to narrow down our search to 3617 articles and selected 1380 eligible articles after a thorough reading of titles and abstracts. The findings indicated that COVID-19 impacted general mental health and led many not only hospitalized patients to develop cognitive decline, memory impairment, anxiety, sleep alterations, and depressive-like behavior. Furthermore, the fear of vaccines and their effects had negatively affected mental health and directly impacted mortality rates in unvaccinated COVID-19 patients. CONCLUSIONS Preventive measures must be undertaken, such as the vaccination of the entire population, vaccination hesitancy discouragement by creating awareness among individuals, and people's engagement in a physically active lifestyle, since being physically active is a low-cost and effective measure to restore or inhibit the negative outcomes from COVID-19 on mental health.
Collapse
Affiliation(s)
- Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
18
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Yao J, Chen C, Guo Y, Yang Y, Liu X, Chu S, Ai Q, Zhang Z, Lin M, Yang S, Chen N. A Review of Research on the Association between Neuron-Astrocyte Signaling Processes and Depressive Symptoms. Int J Mol Sci 2023; 24:ijms24086985. [PMID: 37108148 PMCID: PMC10139177 DOI: 10.3390/ijms24086985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a mental illness that has a serious negative impact on physical and mental health. The pathophysiology of depression is still unknown, and therapeutic medications have drawbacks, such as poor effectiveness, strong dependence, adverse drug withdrawal symptoms, and harmful side effects. Therefore, the primary purpose of contemporary research is to understand the exact pathophysiology of depression. The connection between astrocytes, neurons, and their interactions with depression has recently become the focus of great research interest. This review summarizes the pathological changes of neurons and astrocytes, and their interactions in depression, including the alterations of mid-spiny neurons and pyramidal neurons, the alterations of astrocyte-related biomarkers, and the alterations of gliotransmitters between astrocytes and neurons. In addition to providing the subjects of this research and suggestions for the pathogenesis and treatment techniques of depression, the intention of this article is to more clearly identify links between neuronal-astrocyte signaling processes and depressive symptoms.
Collapse
Affiliation(s)
- Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi Guo
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinya Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
21
|
Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev 2023; 146:105040. [PMID: 36639069 PMCID: PMC9974865 DOI: 10.1016/j.neubiorev.2023.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Stress-related neuropathologies are pivotal in developing major depressive disorder (MDD) and are often governed by gene-regulatory changes. Being a stress-responsive gene-regulatory factor, microRNAs (miRNAs) have tremendous biomolecular potential to define an altered gene-regulatory landscape in the MDD brain. MiRNAs' regulatory roles in the MDD brain are closely aligned with changes in plasticity, neurogenesis, and stress-axis functions. MiRNAs act at the epigenetic interface between stress-induced environmental stimuli and cellular pathologies by triggering large-scale gene expression changes in a highly coordinated fashion. The parallel changes in peripheral circulation may provide an excellent opportunity for miRNA to devise more effective treatment strategies and help explore their potential as biomarkers in treatment response. This review discusses the role of miRNAs as epigenetic modifiers in the etiopathogenesis of MDD. Concurrently, key research is highlighted to show the progress in using miRNAs as predictive biomarkers for treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Dobrek L, Głowacka K. Depression and Its Phytopharmacotherapy-A Narrative Review. Int J Mol Sci 2023; 24:4772. [PMID: 36902200 PMCID: PMC10003400 DOI: 10.3390/ijms24054772] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Depression is a mental health disorder that develops as a result of complex psycho-neuro-immuno-endocrinological disturbances. This disease presents with mood disturbances, persistent sadness, loss of interest and impaired cognition, which causes distress to the patient and significantly affects the ability to function and have a satisfying family, social and professional life. Depression requires comprehensive management, including pharmacological treatment. Because pharmacotherapy of depression is a long-term process associated with the risk of numerous adverse drug effects, much attention is paid to alternative therapy methods, including phytopharmacotherapy, especially in treating mild or moderate depression. Preclinical studies and previous clinical studies confirm the antidepressant activity of active compounds in plants, such as St. John's wort, saffron crocus, lemon balm and lavender, or less known in European ethnopharmacology, roseroot, ginkgo, Korean ginseng, borage, brahmi, mimosa tree and magnolia bark. The active compounds in these plants exert antidepressive effects in similar mechanisms to those found in synthetic antidepressants. The description of phytopharmacodynamics includes inhibiting monoamine reuptake and monoamine oxidase activity and complex, agonistic or antagonistic effects on multiple central nervous system (CNS) receptors. Moreover, it is noteworthy that the anti-inflammatory effect is also important to the antidepressant activity of the plants mentioned above in light of the hypothesis that immunological disorders of the CNS are a significant pathogenetic factor of depression. This narrative review results from a traditional, non-systematic literature review. It briefly discusses the pathophysiology, symptomatology and treatment of depression, with a particular focus on the role of phytopharmacology in its treatment. It provides the mechanisms of action revealed in experimental studies of active ingredients isolated from herbal antidepressants and presents the results of selected clinical studies confirming their antidepressant effectiveness.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
23
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
25
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
26
|
Nunes PV, Suemoto CK, Rodriguez RD, Paraizo Leite RE, Nascimento C, Pasqualucci CA, Nitrini R, Jacob-Filho W, Grinberg LT, Lafer B. Neuropathology of depression in non-demented older adults: A large postmortem study of 741 individuals. Neurobiol Aging 2022; 117:107-116. [PMID: 35709536 PMCID: PMC9970030 DOI: 10.1016/j.neurobiolaging.2022.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Associations between age-related neuropathological lesions and adult-onset lifetime major depressive disorder (a-MDD), late-life MDD (LLD), or depressive symptoms close to death (DS) were examined in a large community sample of non-demented older adults. Seven hundred forty-one individuals (age at death = 72.2 ± 11.7 years) from the Biobank for Aging Studies were analyzed. a-MDD was present in 54 (7.3%) participants, LLD in 80 (10.8%), and DS in 168 (22.7%). After adjustment for covariates and compared to controls, a-MDD, LDD and DS were associated with small vessel disease (p = 0.039, p = 0.003, and p = 0.003 respectively); LLD, and DS were associated with brain infarcts (p = 0.012, p = 0.018, respectively) and Lewy body disease (p = 0.043, p = 0.002, respectively). DS was associated with beta-amyloid plaque burden (p = 0.027) and cerebral amyloid angiopathy (p = 0.035) in cognitively normal individuals (Clinical Dementia Rating scale = 0). Vascular brain pathology was the strongest correlate of clinical depictions of depression in the absence of dementia, corroborating the vascular hypothesis of depression. Lewy body pathology underlay DS. An older adult with DS or LLD should be monitored for possible cognitive decline or neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Villela Nunes
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Claudia Kimie Suemoto
- Department of Geriatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberta Diehl Rodriguez
- Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Camila Nascimento
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Ricardo Nitrini
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Wilson Jacob-Filho
- Department of Geriatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Memory and Aging Center University of California, San Francisco, CA, USA
| | - Beny Lafer
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
27
|
Haas-Neill S, Iwashita E, Dvorkin-Gheva A, Forsythe P. Effects of Two Distinct Psychoactive Microbes, Lacticaseibacillus rhamnosus JB-1 and Limosilactobacillus reuteri 6475, on Circulating and Hippocampal mRNA in Male Mice. Int J Mol Sci 2022; 23:ijms23179653. [PMID: 36077051 PMCID: PMC9456087 DOI: 10.3390/ijms23179653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Discovery of the microbiota-gut–brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut–brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Eiko Iwashita
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paul Forsythe
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 569 Heritage Medical Research Center, Edmonton, AB T6G 2S2, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence:
| |
Collapse
|
28
|
Schell G, Roy B, Prall K, Dwivedi Y. miR-218: A Stress-Responsive Epigenetic Modifier. Noncoding RNA 2022; 8:ncrna8040055. [PMID: 35893238 PMCID: PMC9326663 DOI: 10.3390/ncrna8040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the epigenetic role of microRNAs (miRNAs) has been a critical development in the field of neuropsychiatry and in understanding their underlying pathophysiology. Abnormalities in miRNA expression are often seen as key to the pathogenesis of many stress-associated mental disorders, including major depressive disorder (MDD). Recent advances in omics biology have further contributed to this understanding and expanded the role of miRNAs in networking a diverse array of molecular pathways, which are essentially related to the stress adaptivity of a healthy brain. Studies have highlighted the role of many such miRNAs in causing maladaptive changes in the brain's stress axis. One such miRNA is miR-218, which is debated as a critical candidate for increased stress susceptibility. miR-218 is expressed throughout the brain, notably in the hippocampus and prefrontal cortex (PFC). It is expressed at various levels through life stages, as seen by adolescent and adult animal models. Until now, a minimal number of studies have been conducted on human subjects to understand its role in stress-related abnormalities in brain circuits. However, several studies, including animal and cell-culture models, have been used to understand the impact of miR-218 on stress response and hypothalamic-pituitary-adrenal (HPA) axis function. So far, expression changes in this miRNA have been found to regulate signaling pathways such as glucocorticoid signaling, serotonergic signaling, and glutamatergic signaling. Recently, the developmental role of miR-218 has generated interest, given its increasing expression from adolescence to adulthood and targeting the Netrin-1/DCC signaling pathway. Since miR-218 expression affects neuronal development and plasticity, it is expected that a change in miR-218 expression levels over the course of development may negatively impact the process and make individuals stress-susceptible in adulthood. In this review, we describe the role of miR-218 in stress-induced neuropsychiatric conditions with an emphasis on stress-related disorders.
Collapse
|
29
|
Lee B, Shin E, Song I, Chang B. Depression in Adolescence and Brain-Derived Neurotrophic Factor. Front Mol Neurosci 2022; 15:947192. [PMID: 35875661 PMCID: PMC9302599 DOI: 10.3389/fnmol.2022.947192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
The incidence of depression among adolescents has been rapidly increasing in recent years. Environmental and genetic factors have been identified as important risk factors for adolescent depression. However, the mechanisms underlying the development of adolescent depression that are triggered by these risk factors are not well understood. Clinical and preclinical studies have focused more on adult depression, and differences in depressive symptoms between adolescents and adults make it difficult to adequately diagnose and treat adolescent depression. Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the pathophysiology of many psychiatric disorders, including depression. However, there are still few studies on adolescent depression. Therefore, in this review paper, the causes and treatment of adolescent depression and the function of BDNF are investigated.
Collapse
|
30
|
Amasi-Hartoonian N, Sforzini L, Cattaneo A, Pariante CM. Cause or consequence? Understanding the role of cortisol in the increased inflammation observed in depression. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100356. [PMID: 35634363 PMCID: PMC7612780 DOI: 10.1016/j.coemr.2022.100356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids such as cortisol are a class of steroid hormones that play an important role in co-ordinating the body's response to stress. Elevated cortisol levels and increased inflammation have frequently been reported in patients with depression. The currently accepted "glucocorticoid resistance" model posits this increased inflammation as a consequence of reduced sensitivity to cortisol's putative anti-inflammatory action. However, opposing evidence has accumulated that supports a more recent model, which instead proposes that cortisol possesses immune potentiating properties and may thus directly cause the increased inflammation seen in depression. Despite all of this, a clear explanation of the neuroendocrine mechanism that contributes to the development of depression is still lacking and thus requires further investigation in improved future studies.
Collapse
Affiliation(s)
- Nare Amasi-Hartoonian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| |
Collapse
|
31
|
Biomarkers common for inflammatory periodontal disease and depression: A systematic review. Brain Behav Immun Health 2022; 21:100450. [PMID: 35330865 PMCID: PMC8938251 DOI: 10.1016/j.bbih.2022.100450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysregulated immune response arising in the periphery can induce depressive symptoms through neuroimmune interactions. Inflammatory oral pathology can be a potent inducer of chronic neuroimmune response relevant to depression. We aimed to synthesize available evidence for the association between inflammatory periodontal diseases (IPD) and major depression (MD) in relation to a broad range of biomarkers. Methods Medline, Embase, PsycInfo, Cochrane Library, Web of Science and Scopus databases were searched from inception until January 27, 2022. Search terms included subject headings and synonyms for inflammatory periodontal disease and depression. Studies that reported data on both depression and inflammatory periodontal disease as categories along with measurement of a biomarker were considered. Two reviewers independently selected the articles for inclusion, extracted data and assessed the quality of each study. The protocol for this study was registered with PROSPERO, CRD42021215524. Results Twenty-eight studies were included in the final review-eleven cross-sectional studies, seven case-control studies, and six prospective cohort studies conducted in humans; the remaining four were experimental animal studies. Eighteen studies including all animal studies reported a positive association between depression and periodontal disease; one study reported a negative association and another nine studies found no such associations. Twenty studies reported mixed associations between IPD and biomarkers (i.e, salivary, serum, urine or gingival crevicular fluid cortisol, C reactive protein, cytokines, etc.). Biomarkers related to depression were gingival crevicular fluid cortisol, interleukin 6 (IL-6), Il-1β, immunoglobulin G against Bacterioides forsythus; root canal lipopolysaccharides; blood IL-6, IL-1β, cortisol, advanced oxidation protein products, nitric oxide metabolites, lipid hydroperoxides and trapping antioxidant parameter; whereas five studies found no associations between depression and a biomarker. Although animal studies showed interaction of immune, inflammatory and neurotrophic biomarkers in the relationship between depression and periodontal disease, human studies showed mixed findings. In most studies, there were risks of bias due to the sample selection and assessment protocol. Study heterogeneity and limited number of comparable studies reporting on shared biomarkers precluded a meta-analysis. Conclusion Immune-inflammatory contribution to depression was evident in the context of inflammatory periodontal diseases, but whether biomarkers mediate the associations between IPD and MD needs to be tested through methodologically rigorous studies aiming specifically at this hypothesis.
Collapse
|
32
|
Kamran M, Bibi F, ur. Rehman A, Morris DW. Major Depressive Disorder: Existing Hypotheses about Pathophysiological Mechanisms and New Genetic Findings. Genes (Basel) 2022; 13:646. [PMID: 35456452 PMCID: PMC9025468 DOI: 10.3390/genes13040646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder generally characterized by symptoms associated with mood, pleasure and effectiveness in daily life activities. MDD is ranked as a major contributor to worldwide disability. The complex pathogenesis of MDD is not yet understood, and this is a major cause of failure to develop new therapies and MDD recurrence. Here we summarize the literature on existing hypotheses about the pathophysiological mechanisms of MDD. We describe the different approaches undertaken to understand the molecular mechanism of MDD using genetic data. Hundreds of loci have now been identified by large genome-wide association studies (GWAS). We describe these studies and how they have provided information on the biological processes, cell types, tissues and druggable targets that are enriched for MDD risk genes. We detail our understanding of the genetic correlations and causal relationships between MDD and many psychiatric and non-psychiatric disorders and traits. We highlight the challenges associated with genetic studies, including the complexity of MDD genetics in diverse populations and the need for a study of rare variants and new studies of gene-environment interactions.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.K.); (A.u.R.)
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Discipline of Biochemistry, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Farhana Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Asim. ur. Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.K.); (A.u.R.)
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Discipline of Biochemistry, National University of Ireland Galway, H91 CF50 Galway, Ireland
| |
Collapse
|
33
|
Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur Neuropsychopharmacol 2022; 56:100-111. [PMID: 35152032 DOI: 10.1016/j.euroneuro.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide. Polymorphisms in cytochrome P450 genes (CYP450) were demonstrated to play a significant role in antidepressant response and side effects, but their effect in real-world clinical practice is poorly known. We determined the metabolic status of CYP2C19 based on the combination of *1, *2, *3 and *17 alleles extracted from genome-wide data in 1239 patients with MDD, pharmacologically treated in a naturalistic setting. Symptom improvement and side effects were assessed using the Montgomery and Åsberg Depression Rating Scale and the Udvalg for Kliniske Undersøgelse scale, respectively. We tested if symptom improvement, response and side effects were associated with CYP2C19 metabolic status adjusting for potential confounders. We considered patients treated with drugs for depression having CYP2C19 genotyping recommended by guidelines (T1 Drugs); secondarily, with all psychotropic drugs having CYP2C19 as relevant metabolic path (T2 Drugs). In the group treated with T1 drugs (n = 540), poor metabolizers (PMs) showed higher response and higher symptom improvement compared to normal metabolizers (p = 0.023 and p = 0.009, respectively), but also higher risk of autonomic and neurological side effects (p = 0.022 and p = 0.022 respectively). In patients treated with T2 drugs (n = 801), similar results were found. No associations between metabolizer status and other types of side effects were found (psychic and other side effects). Our study suggests potential advantages of CYP2C19 pharmacogenetic testing to guide treatment prescription, that may not be limited to the drugs currently recommended by guidelines.
Collapse
|
34
|
Pathak GA, Singh K, Wendt FR, Fleming TW, Overstreet C, Koller D, Tylee DS, De Angelis F, Cabrera Mendoza B, Levey DF, Koenen KC, Krystal JH, Pietrzak RH, O' Donell C, Gaziano JM, Falcone G, Stein MB, Gelernter J, Pasaniuc B, Mancuso N, Davis LK, Polimanti R. Genetically regulated multi-omics study for symptom clusters of posttraumatic stress disorder highlights pleiotropy with hematologic and cardio-metabolic traits. Mol Psychiatry 2022; 27:1394-1404. [PMID: 35241783 PMCID: PMC9210390 DOI: 10.1038/s41380-022-01488-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may arise in response to severe traumatic event and is diagnosed based on three main symptom clusters (reexperiencing, avoidance, and hyperarousal) per the Diagnostic Manual of Mental Disorders (version DSM-IV-TR). In this study, we characterized the biological heterogeneity of PTSD symptom clusters by performing a multi-omics investigation integrating genetically regulated gene, splicing, and protein expression in dorsolateral prefrontal cortex tissue within a sample of US veterans enrolled in the Million Veteran Program (N total = 186,689). We identified 30 genes in 19 regions across the three PTSD symptom clusters. We found nine genes to have cell-type specific expression, and over-representation of miRNA-families - miR-148, 30, and 8. Gene-drug target prioritization approach highlighted cyclooxygenase and acetylcholine compounds. Next, we tested molecular-profile based phenome-wide impact of identified genes with respect to 1678 phenotypes derived from the Electronic Health Records of the Vanderbilt University biorepository (N = 70,439). Lastly, we tested for local genetic correlation across PTSD symptom clusters which highlighted metabolic (e.g., obesity, diabetes, vascular health) and laboratory traits (e.g., neutrophil, eosinophil, tau protein, creatinine kinase). Overall, this study finds comprehensive genomic evidence including clinical and regulatory profiles between PTSD, hematologic and cardiometabolic traits, that support comorbidities observed in epidemiologic studies of PTSD.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Tyne W Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda Cabrera Mendoza
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, CT, USA
| | - Christopher O' Donell
- Cardiology Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Guido Falcone
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI 1004D, Box 208018, New Haven, CT, 06520, USA
| | - Murray B Stein
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA.
- VA CT Healthcare Center, West Haven, CT, 06516, USA.
| |
Collapse
|
35
|
Zonca V. Preventive strategies for adolescent depression: What are we missing? A focus on biomarkers. Brain Behav Immun Health 2021; 18:100385. [PMID: 34825234 PMCID: PMC8604665 DOI: 10.1016/j.bbih.2021.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
Adolescent depression is an important global issue with several unmet needs that still must be addressed and, to date, there are only few effective preventive strategies to reduce the burden of this disorder worldwide. In this mini-review, the evidence and potential ways to improve an early detection will be discussed as well as prompt interventions by focusing on a better understanding of the risks underlying the developing of adolescent depression from both a sociodemographic and a biological perspective.
Collapse
Affiliation(s)
- Valentina Zonca
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK.,Biological Psychiatry Lab, IRCCS Istituto Centro San Giovanni di Dio, Brescia, Italy
| |
Collapse
|
36
|
Brown M, Worrell C, Pariante CM. Inflammation and early life stress: An updated review of childhood trauma and inflammatory markers in adulthood. Pharmacol Biochem Behav 2021; 211:173291. [PMID: 34695507 DOI: 10.1016/j.pbb.2021.173291] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Inflammation, as a neurobiological consequence of childhood trauma, has frequently been reported across research, however, recent investigations suggest this relationship may be dependent on specificities such as type of trauma, type of inflammatory marker, and additional mediatory variables - such as body mass index (BMI), age, and sex. As an updated version of a previous review by Baumeister et al., the current review comprised a search of PubMed, which identified 37 articles that collectively assessed 4 inflammatory markers (CRP, IL-6, TNFα and IL-1β). A review of the studies revealed predominantly non-significant associations between childhood trauma and elevated levels of all inflammatory markers in adulthood. However, in line with previous research, discrepancies in significance arose when considering type of trauma, type of inflammatory marker, and additional variables. Compared to neglect, abuse showed greater significant associations with elevated inflammatory markers in adulthood, though this was dependent on the individual subtypes (emotional, physical or sexual). Mediation analyses reported BMI as a significant mediator, though, when controlled for, no significant differences were found. Sex differences were reported but investigations were sparse. Future research should investigate the mediatory role of sex differences in the inflammatory effects of childhood trauma. Many studies in the review were restricted by use of the same trauma measure - the Childhood Trauma Questionnaire. To assess greater variety of trauma types, future studies should utilize other standardized measures to explore these avenues.
Collapse
Affiliation(s)
- Mollie Brown
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK.
| | - Courtney Worrell
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK.
| | - Carmine M Pariante
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK.
| |
Collapse
|
37
|
Kim HK, Zai G, Hennings JM, Müller DJ, Kloiber S. Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm (Vienna) 2021; 128:1461-1477. [PMID: 34415438 DOI: 10.1007/s00702-021-02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
More than a third of patients treated with antidepressants experience treatment resistance. Furthermore, molecular pathways involved in antidepressant effect have yet to be fully understood. Therefore, we performed a systematic review of clinical studies that examined changes in RNA expression levels produced by antidepressant treatment. Literature search was performed through April 2021 for peer-reviewed studies measuring changes in mRNA or non-coding RNA levels before and after antidepressant treatment in human participants following PRISMA guidelines. Thirty-one studies were included in qualitative synthesis. We identified a large amount of heterogeneity between the studies for genes/RNAs measured, antidepressants used, and treatment duration. Of the six RNAs examined by more than one study, expression of the brain-derived neurotrophic factor (BDNF) gene and genes in the inflammation pathway, particularly IL-1β, were consistently reported to be altered by antidepressant treatment. Limitations of this review include heterogeneity of the studies, possibility of positive publication bias, and risk of false-negative findings secondary to small sample sizes. In conclusion, our systematic review provides an updated synthesis of RNA expression changes produced by antidepressant treatment in human participants, where genes in the BDNF and inflammatory pathways were identified as potential targets of antidepressant effect. Importantly, these findings also highlight the need for replication of the included studies in multiple strong, placebo-controlled studies for the identification of evidence-based markers that can be targeted to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Inoue T, Fujimoto S, Marumoto T, Kitagawa T, Ishida K, Nakajima T, Moriguchi Y, Fujikawa K, Watanabe K. Early Improvement with Vortioxetine Predicts Response and Remission: A Post Hoc Analysis of Data from a Clinical Trial Conducted in Japan. Neuropsychiatr Dis Treat 2021; 17:3735-3741. [PMID: 34955641 PMCID: PMC8694398 DOI: 10.2147/ndt.s340309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
AIM Several weeks of treatment with an antidepressive agent may be required before efficacy is demonstrated in patients with major depressive disorder. This study investigated the predictive value of early partial improvement with vortioxetine for treatment response and remission. METHODS This was a post hoc analysis of an 8-week, randomized, double-blind, placebo-controlled, Phase 3 study of vortioxetine (10 mg or 20 mg) in Japanese patients aged 20-75 years with recurrent major depressive disorder and a Montgomery-Åsberg Depression Rating Scale (MADRS) score of at least 26. The key outcomes were the predictive value of early partial improvement (reduction in MADRS total score of ≥20% from baseline to week 2) with vortioxetine for MADRS response (≥50% decrease in score from baseline) and remission (decrease in score to ≤10) at week 8. RESULTS Relevant data were available for 478 patients; 62/158 patients receiving placebo, 71/162 receiving vortioxetine 10 mg, and 66/158 receiving vortioxetine 20 mg were early improvers. Early improvers receiving vortioxetine (10 mg or 20 mg) were more likely than non-early improvers to achieve a week 8 response (71.2-73.2% vs 29.7-38.0%) or remission (50.7-51.5% vs 17.4-18.7%). Positive predictive values for response and remission with vortioxetine were ~70% and ~50%, respectively; negative predictive values were ~70% and ~80%, respectively. CONCLUSION Improvement with vortioxetine may be predicted by early partial improvement in MADRS score. Some patients may benefit from longer-term treatment even without early improvement, another finding that may aid clinical decision-making. ClinicalTrials.gov registration for primary study: NCT02389816.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Shinji Fujimoto
- Japan Medical Office, Takeda Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Tatsuro Marumoto
- Japan Medical Office, Takeda Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Tadayuki Kitagawa
- Takeda Development Center - Japan, Takeda Pharmaceutical Co., Ltd, Osaka, Japan
| | - Kazuyuki Ishida
- Takeda Development Center - Japan, Takeda Pharmaceutical Co., Ltd, Osaka, Japan
| | - Tadashi Nakajima
- Japan Medical Office, Takeda Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - Keita Fujikawa
- Japan Medical Office, Takeda Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Koichiro Watanabe
- Department of Neuropsychiatry, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|