1
|
Feng J, Liu H, Jiang K, Gong X, Huang R, Zhou C, Mao J, Chen Y, Xu H, Zhang X, Yang X, Zhao D. Enhanced oxidative stress aggravates BLM-induced pulmonary fibrosis by promoting cellular senescence through enhancing NLRP3 activation. Life Sci 2024; 358:123128. [PMID: 39393575 DOI: 10.1016/j.lfs.2024.123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is a disease associated with aging, where increased oxidative stress accelerates the progression of pulmonary fibrosis (PF). The specific mechanisms through which oxidative stress intensifies PF are still not fully understood. MATERIALS AND METHODS In this study, we used bleomycin (BLM)-induced PF mouse model and TGF-β-induced collagen deposition cells for in vivo and in vitro experiments, respectively. Additionally, we employed BSO, a glutathione synthesis inhibitor, to induce excess reactive oxygen species (ROS). KEY FINDINGS Our findings revealed that heightened ROS production significantly exacerbated PF development in mice and increased collagen deposition in A549 cells. We also showed that cellular senescence was further intensified by the combined treatment of BSO with BLM or TGF-β, as indicated by the increased levels of p53 and p21, along with an increase in β-galactosidase-positive cells. Moreover, inflammatory responses, including inflammatory cells, inflammatory cytokines, and ROS levels were dramatically increased with the BSO and BLM or TGF-β combination. Mechanistically, we found that NLRP3 inflammasome was activated more significantly by the combined treatments of BSO with BLM or TGF-β. Inhibition of NLRP3 ameliorated the aging-related phenotype and reduced p53 and p21 expression. Furthermore, we showed that N-acetylcysteine (NAC) treatment significantly attenuated BLM or BLM plus BSO-enhanced PF in vivo. SIGNIFICANCE Our study demonstrates that elevated ROS levels contribute to the development of PF via NLRP3-mediated cellular senescence. We also provide that targeting oxidative stress might be an effective strategy for treating PF.
Collapse
Affiliation(s)
- Jiukang Feng
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Xinyu Gong
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rong Huang
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Zhou
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiali Mao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanli Chen
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoming Zhang
- School of Basic Medicine Science, Anhui Medical University, Hefei, China
| | - Xiaoxiao Yang
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
3
|
Jin H, Park SY, Lee JE, Park H, Jeong M, Lee H, Cho J, Lee YS. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol Ther 2024:S1525-0016(24)00653-1. [PMID: 39342428 DOI: 10.1016/j.ymthe.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
G2 and S phase-expressed protein 1 (GTSE1) has been implicated in the development of pulmonary fibrosis (PF); however, its biological function, molecular mechanism, and potential clinical implications remain unknown. Here, we explored the genomic data of patients with idiopathic PF (IPF) and found that GTSE1 expression is elevated in their lung tissues, but rarely expressed in normal lung tissues. Thus, we explored the biological role and downstream events of GTSE1 using IPF patient tissues and PF mouse models. The comprehensive bioinformatics analyses suggested that the increase of GTSE1 in IPF is linked to the enhanced gene signature for the epithelial-to-mesenchymal transition (EMT), leading us to investigate the potential interaction between GTSE1 and EMT transcription factors. GTSE1 preferentially binds to the less stable form of zinc-finger E-box-binding homeobox 1 (ZEB1), the unphosphorylated form at Ser585, inhibiting ZEB1 degradation. Consistently, the ZEB1 protein level in IPF patient and PF mouse tissues correlates with the GTSE1 protein level and the amount of collagen accumulation, representing fibrosis severity. Collectively, our findings highlight the GTSE1-ZEB1 axis as a novel driver of the pathological EMT characteristic during PF development and progression, supporting further investigation into GTSE1-targeting approaches for PF treatment.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea; Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji Eun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hangyeol Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Michaela Jeong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 120-749, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
4
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch S, Neely A, Marconett CN, Ryan AL. Culture Conditions Differentially Regulate the Inflammatory Niche and Cellular Phenotype of Tracheo-Bronchial Basal Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611264. [PMID: 39282256 PMCID: PMC11398510 DOI: 10.1101/2024.09.04.611264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Human bronchial epithelial cells (HBECs) derived from the tracheo-bronchial regions of human airways provide an excellent in vitro model for studying pathological mechanisms and evaluating therapeutics in human airway cells. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media, airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and Pneumacult Ex plus (PEx+). Extensive RNA sequencing, immune assays and electrical measurements revealed that PEx+ media significantly drove cell proliferation and a broad pro-inflammatory phenotype in BCs. In contrast, BCs expanded in AECGM, displayed increased expression of structural and extracellular matrix components at high passage. Whereas culture in AECGM increased expression of some cytokines at high passage, DSI suppressed inflammation altogether thus implicating TGF-β in BC inflammatory processes. Differentiation capacity declined with time in culture irrespective of expansion media except for PLUNC expressing secretory cells that were elevated at high passage in AECGM and PEx+ suggestive of an immune modulatory role of PLUNC in BCs. These findings underscore the profound impact of media conditions on inflammatory niche and function of in vitro expanded BCs. The broad pro-inflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic application.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Denise A. Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Adrian M. Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Rosemary Sease
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Ben A. Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Shana Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Crystal N. Marconett
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Wang Y, Zhao F, Wang X, Zuo H, Ru Y, Cao X, Wang Y. Targeted liposomes for macrophages-mediated pulmonary fibrosis therapy. Drug Deliv Transl Res 2024; 14:2356-2369. [PMID: 38167826 DOI: 10.1007/s13346-023-01508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Pulmonary fibrosis (PF) is a horrible lung disease that causes pulmonary ventilation dysfunction and respiratory failure, severely impacting sufferers' physical and mental health. Existing drugs can only partially control the condition and are prone to toxic side effects. Anti-inflammatory treatment is the committed step to alleviate PF. Celastrol (CLT) has significant anti-inflammatory effects and can reverse M1-type transformation of macrophages. In this study, we have developed liposomes loaded with CLT, modified with folate (FA), designated FA-CLT-Lips, which facilitate drug delivery by targeting macrophages. FA-CLT-Lips were shown to be more readily absorbed by macrophages in vitro and to encourage the transition of M1 macrophages into M2 macrophages. In addition, FA-CLT-Lips can inhibit the phosphorylation of Smad2/3, effectively reducing the deposition of extracellular matrix (ECM) and the production of inflammatory factors. This showed that FA-CLT-Lips can ameliorate early lung fibrosis by lowering inflammation. In vivo studies have shown that FA-CLT-Lips accumulate in lung tissue to better attenuate lung injury and collagen deposition, with less toxicity compared to free CLT. In summary, FA receptor-targeting liposomes loaded with CLT provide a secure and reliable PF therapy.
Collapse
Affiliation(s)
- Yujie Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangyu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Haojie Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yiming Ru
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xi Cao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China.
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China.
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
6
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
You Y, Wu X, Yuan H, He Y, Chen Y, Wang S, Min H, Chen J, Li C. Crystalline silica-induced recruitment and immuno-imbalance of CD4 + tissue resident memory T cells promote silicosis progression. Commun Biol 2024; 7:971. [PMID: 39122899 PMCID: PMC11316055 DOI: 10.1038/s42003-024-06662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational crystalline silica (CS) particle exposure leads to silicosis. The burden of CS-associated disease remains high, and treatment options are limited due to vague mechanisms. Here we show that pulmonary CD4+ tissue-resident memory T cells (TRM) accumulate in response to CS particles, mediating the pathogenesis of silicosis. The TRM cells are derived from peripheral lymphocyte recruitment and in situ expansion. Specifically, CD69+CD103+ TRM-Tregs depend more on circulating T cell replenishment. CD69 and CD103 can divide the TRM cells into functionally distinct subsets, mirroring the immuno-balance within CD4+ TRM cells. However, targeting CD103+ TRM-Tregs do not mitigate disease phenotype since the TRM subsets exert immunosuppressive but not pro-fibrotic roles. After identifying pathogenic CD69+CD103- subsets, we highlight IL-7 for their maintenance and function, that present a promising avenue for mitigating silicosis. Together, our findings highlight the distinct role of CD4+ TRM cells in mediating CS-induced fibrosis and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Xiulin Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yinghui Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Sisi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| |
Collapse
|
8
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
9
|
Bartold K, Iskierko Z, Sharma PS, Lin HY, Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed J 2024; 47:100729. [PMID: 38657859 PMCID: PMC11340561 DOI: 10.1016/j.bj.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) diagnosis is still the diagnosis of exclusion. Differentiating from other forms of interstitial lung diseases (ILDs) is essential, given the various therapeutic approaches. The IPF course is now unpredictable for individual patients, although some genetic factors and several biomarkers have already been associated with various IPF prognoses. Since its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. The present review critically examines the recent literature on molecular biomarkers potentially useful in IPF diagnostics. The examined biomarkers are grouped into breath and sputum biomarkers, serologically assessed extracellular matrix neoepitope markers, and oxidative stress biomarkers in lung tissue. Fibroblasts and complete blood count have also gained recent interest in that respect. Although several biomarker candidates have been profiled, there has yet to be a single biomarker that proved specific to the IPF disease. Nevertheless, various IPF biomarkers have been used in preclinical and clinical trials to verify their predictive and monitoring potential.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland.
| |
Collapse
|
10
|
Wei Y, Guo H, Chen S, Tang XX. Regulation of macrophage activation by lactylation in lung disease. Front Immunol 2024; 15:1427739. [PMID: 39026681 PMCID: PMC11254698 DOI: 10.3389/fimmu.2024.1427739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Lactylation is a process where lactate, a cellular metabolism byproduct, is added to proteins, altering their functions. In the realm of macrophage activation, lactylation impacts inflammatory response and immune regulation. Understanding the effects of lactylation on macrophage activation is vital in lung diseases, as abnormal activation and function are pivotal in conditions like pneumonia, pulmonary fibrosis, COPD, and lung cancer. This review explores the concept of lactylation, its regulation of macrophage activation, and recent research progress in lung diseases. It offers new insights into lung disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Yungeng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
11
|
Suarez-Castillejo C, Calvo N, Preda L, Córdova Díaz R, Toledo-Pons N, Martínez J, Pons J, Vives-Borràs M, Pericàs P, Ramón L, Iglesias A, Cànaves-Gómez L, Valera Felices JL, Morell-García D, Núñez B, Sauleda J, Sala-Llinàs E, Alonso-Fernández A. Cardiopulmonary Complications after Pulmonary Embolism in COVID-19. Int J Mol Sci 2024; 25:7270. [PMID: 39000378 PMCID: PMC11242326 DOI: 10.3390/ijms25137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Although pulmonary embolism (PE) is a frequent complication in COVID-19, its consequences remain unknown. We performed pulmonary function tests, echocardiography and computed tomography pulmonary angiography and identified blood biomarkers in a cohort of consecutive hospitalized COVID-19 patients with pneumonia to describe and compare medium-term outcomes according to the presence of PE, as well as to explore their potential predictors. A total of 141 patients (56 with PE) were followed up during a median of 6 months. Post-COVID-19 radiological lung abnormalities (PCRLA) and impaired diffusing capacity for carbon monoxide (DLCOc) were found in 55.2% and 67.6% cases, respectively. A total of 7.3% had PE, and 6.7% presented an intermediate-high probability of pulmonary hypertension. No significant difference was found between PE and non-PE patients. Univariate analysis showed that age > 65, some clinical severity factors, surfactant protein-D, baseline C-reactive protein, and both peak red cell distribution width and Interleukin (IL)-10 were associated with DLCOc < 80%. A score for PCRLA prediction including age > 65, minimum lymphocyte count, and IL-1β concentration on admission was constructed with excellent overall performance. In conclusion, reduced DLCOc and PCRLA were common in COVID-19 patients after hospital discharge, but PE did not increase the risk. A PCRLA predictive score was developed, which needs further validation.
Collapse
Affiliation(s)
- Carla Suarez-Castillejo
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Néstor Calvo
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luminita Preda
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Rocío Córdova Díaz
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Martínez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Pons
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Miquel Vives-Borràs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
| | - Pere Pericàs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luisa Ramón
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Cànaves-Gómez
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jose Luis Valera Felices
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Morell-García
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Belén Núñez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alberto Alonso-Fernández
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Fedorchenko Y, Zimba O, Yatsyshyn R, Doskaliuk B, Zaiats L, Fedorchenko M. The interplay between rheumatic diseases and pulmonary health. Rheumatol Int 2024; 44:1179-1184. [PMID: 38509351 DOI: 10.1007/s00296-024-05565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Patients with rheumatic diseases (RDs) are prone to a number of comorbidities, particularly those affecting the respiratory system due to inflammatory and autoimmune mechanisms. Rheumatoid arthritis (RA), systemic sclerosis (SSc), and inflammatory idiopathic myopathies (IIMs) often present with progressive interstitial lung disease (ILD). The prevalence of ILD varies among patients with RDs, with 11% in RA, 47% in SSc, and 41% in IIMs. Some diagnostic markers, including KL-6, cytokines TNF-α and IL-6, and autoantibodies (anti-CCP), play a crucial role in assessing and predicting the course of pulmonary involvement in RDs. Lung fibrosis is a progressive disorder in SSc and RA, limiting the effiency of therapeutic interventions. Re-evaluating treatment approaches with disease-modifying anti-rheumatic drugs (DMARDs) is crucial for understanding their impact on the risk of lung affections. Despite initial concerns surrounding methotrexate, recent evidence points to its benefits in RA-associated interstitial lung disease (RA-ILD). Recognizing the intricate relationship between autoimmune RDs and lung affections is crucial for formulating effective treatment strategies. Emphasis is placed on collaborative efforts of rheumatologists and pulmonologists for early diagnosis, comprehensive care, and optimal patient outcomes in RA-ILD.
Collapse
MESH Headings
- Humans
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/immunology
- Comorbidity
- Lung/physiopathology
- Lung/immunology
- Lung Diseases, Interstitial/epidemiology
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/drug therapy
- Lung Diseases, Interstitial/immunology
- Lung Diseases, Interstitial/etiology
- Rheumatic Diseases/drug therapy
- Rheumatic Diseases/complications
- Rheumatic Diseases/immunology
- Rheumatic Diseases/epidemiology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/epidemiology
- Scleroderma, Systemic/immunology
Collapse
Affiliation(s)
- Yuliya Fedorchenko
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76018, Ukraine.
| | - Olena Zimba
- Department of Clinical Rheumatology and Immunology, University Hospital in Krakow, Krakow, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Yatsyshyn
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Bohdana Doskaliuk
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76018, Ukraine
| | - Liubomyr Zaiats
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76018, Ukraine
| | - Mykhailo Fedorchenko
- Department of Internal Medicine # 2 and nursing, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
13
|
Donald J, Bilasy SE, Yang C, El-Shamy A. Exploring the Complexities of Long COVID. Viruses 2024; 16:1060. [PMID: 39066223 PMCID: PMC11281588 DOI: 10.3390/v16071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Since the emergence of the SARS-CoV-2 virus in 2019, nearly 700 million COVID-19 cases and 7 million deaths have been reported globally. Despite most individuals recovering within four weeks, the Center for Disease Control (CDC) estimates that 7.5% to 41% develop post-acute infection syndrome (PAIS), known as 'Long COVID'. This review provides current statistics on Long COVID's prevalence, explores hypotheses concerning epidemiological factors, such as age, gender, comorbidities, initial COVID-19 severity, and vaccine interactions, and delves into potential mechanisms, including immune responses, viral persistence, and gut dysbiosis. Moreover, we conclude that women, advanced age, comorbidities, non-vaccination, and low socioeconomic status all appear to be risk factors. The reasons for these differences are still not fully understood and likely involve a complex relationship between social, genetic, hormonal, and other factors. Furthermore, individuals with Long COVID-19 seem more likely to endure economic hardship due to persistent symptoms. In summary, our findings further illustrate the multifaceted nature of Long COVID and underscore the importance of understanding the epidemiological factors and potential mechanisms needed to develop effective therapeutic strategies and interventions.
Collapse
Affiliation(s)
- Jackson Donald
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| | - Shymaa E. Bilasy
- College of Dental Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Catherine Yang
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| |
Collapse
|
14
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
15
|
Zheng Z, Peng F, Zhou Y. Biomarkers in idiopathic pulmonary fibrosis: Current insight and future direction. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:72-79. [PMID: 38962100 PMCID: PMC11221783 DOI: 10.1016/j.pccm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a dismal prognosis. Early diagnosis, accurate prognosis, and personalized therapeutic interventions are essential for improving patient outcomes. Biomarkers, as measurable indicators of biological processes or disease states, hold significant promise in IPF management. In recent years, there has been a growing interest in identifying and validating biomarkers for IPF, encompassing various molecular, imaging, and clinical approaches. This review provides an in-depth examination of the current landscape of IPF biomarker research, highlighting their potential applications in disease diagnosis, prognosis, and treatment response. Additionally, the challenges and future perspectives of biomarker integration into clinical practice for precision medicine in IPF are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fei Peng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Zhou
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Hussein ZA, Abu-Raghif AR, Tahseen NJ, Rashed KA, Shaker NS, Fawzi HA. Vinpocetine alleviated alveolar epithelial cells injury in experimental pulmonary fibrosis by targeting PPAR-γ/NLRP3/NF-κB and TGF-β1/Smad2/3 pathways. Sci Rep 2024; 14:11131. [PMID: 38750140 PMCID: PMC11096407 DOI: 10.1038/s41598-024-61269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-β1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zeena A Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed R Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Nibras J Tahseen
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | | | - Nada S Shaker
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
17
|
Lao Q, Wang X, Zhu G, Yuan H, Ma T, Wang N. A Chinese classical prescription Maimendong decoction in treatment of pulmonary fibrosis: an overview. Front Pharmacol 2024; 15:1329743. [PMID: 38783956 PMCID: PMC11112100 DOI: 10.3389/fphar.2024.1329743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive disease characterized by fibrosis and interstitial pneumonia. It has similar clinical symptoms to "Fei Bi" and "Fei Wei" as described in the traditional Chinese medicine (TCM) classic Jingui Yaolue written by Zhang Zhongjing in the Han Dynasty. This study explored the potential of Maimendong Decoction (MMDD). MMDD consists of Ophiopogon japonicus (L.f) (ophiopogonis), Pinellia ternata (Thunb.) Breit. (pinellia), Panax ginseng C. A. Mey. (ginseng), Glycyrrhiza uralensis Fisch. (glycyrrhiza), Zizi phus jujuba Mill. (jujuba), and Oryza sativa L. (oryza sativa), with the function of nourishing the lung and stomach, and reducing the effect of reverse qi. It has been used clinically for over two thousand years to treat conditions like "Fei Bi" and "Fei Wei". Previous research suggests that MMDD and its individual herbal extracts have anti-fibrotic effects. The main focus of MMDD in treating PF is to reduce inflammatory cytokines, inhibit pro-fibrotic factors and oxidative stress, promote differentiation and homing of bone marrow mesenchymal stem cells, and enhance cell autophagy activity. This review summarized the clinical applications, mechanisms, and pharmacological effects of MMDD in treating PF based on existing clinical applications and experimental research. It also discussed current issues and prospects, aiming to provide a reference for further research on the mechanism of PF, drug development, and clinical trials.
Collapse
Affiliation(s)
- Qiurong Lao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianbin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangqing Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haochen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Ma
- College of Rehabilitation Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Wang
- Research Department of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Pokhylko V, Cherniavska Y, Fishchuk L, Rossokha Z, Popova O, Vershyhora V, Ievseienkova O, Soloviova H, Zhuk L, Gorovenko N. Association of the C3953T (rs1143634) variant of the interleukin 1 beta gene with the features of a complicated course of COVID-19-associated pneumonia. Mol Biol Rep 2024; 51:630. [PMID: 38720147 DOI: 10.1007/s11033-024-09569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies. METHODS AND RESULTS The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC-65.8%, CT-28.2%, and TT-6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045). CONCLUSION Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.
Collapse
Affiliation(s)
| | | | - Liliia Fishchuk
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine.
| | - Zoia Rossokha
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Olena Popova
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Viktoriia Vershyhora
- SI "Reference-Center for Molecular Diagnostics of the Ministry of Public Health of Ukraine", Kyiv, Ukraine
| | - Olena Ievseienkova
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine
| | | | | | - Nataliia Gorovenko
- Department of Genetic Diagnostics, Institute of Genetic and Regenerative Medicine, SI "M.D. Strazhesko National Scientific Center of the NAMS of Ukraine", Kyiv, Ukraine
| |
Collapse
|
19
|
Bhattacharyya A, Khan R, Lee JY, Tassew G, Oskouian B, Allende ML, Proia RL, Yin X, Ortega JG, Bhattacharya M, Saba JD. Gene therapy with AAV9-SGPL1 in an animal model of lung fibrosis. J Pathol 2024; 263:22-31. [PMID: 38332723 PMCID: PMC10987276 DOI: 10.1002/path.6256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-β signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-β signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1β as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ranjha Khan
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joanna Y. Lee
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Gizachew Tassew
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Babak Oskouian
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Maria L. Allende
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoyang Yin
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Javier G. Ortega
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Julie D. Saba
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Chandran RR, Adams TS, Kabir I, Gallardo-Vara E, Kaminski N, Gomperts BN, Greif DM. Dedifferentiated early postnatal lung myofibroblasts redifferentiate in adult disease. Front Cell Dev Biol 2024; 12:1335061. [PMID: 38572485 PMCID: PMC10987733 DOI: 10.3389/fcell.2024.1335061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Alveolarization ensures sufficient lung surface area for gas exchange, and during bulk alveolarization in mice (postnatal day [P] 4.5-14.5), alpha-smooth muscle actin (SMA)+ myofibroblasts accumulate, secrete elastin, and lay down alveolar septum. Herein, we delineate the dynamics of the lineage of early postnatal SMA+ myofibroblasts during and after bulk alveolarization and in response to lung injury. SMA+ lung myofibroblasts first appear at ∼ P2.5 and proliferate robustly. Lineage tracing shows that, at P14.5 and over the next few days, the vast majority of SMA+ myofibroblasts downregulate smooth muscle cell markers and undergo apoptosis. Of note, ∼8% of these dedifferentiated cells and another ∼1% of SMA+ myofibroblasts persist to adulthood. Single cell RNA sequencing analysis of the persistent SMA- cells and SMA+ myofibroblasts in the adult lung reveals distinct gene expression profiles. For instance, dedifferentiated SMA- cells exhibit higher levels of tissue remodeling genes. Most interestingly, these dedifferentiated early postnatal myofibroblasts re-express SMA upon exposure of the adult lung to hypoxia or the pro-fibrotic drug bleomycin. However, unlike during alveolarization, these cells that re-express SMA do not proliferate with hypoxia. In sum, dedifferentiated early postnatal myofibroblasts are a previously undescribed cell type in the adult lung and redifferentiate in response to injury.
Collapse
Affiliation(s)
- Rachana R. Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Brigitte N. Gomperts
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Park E, Kim BY, Lee S, Son KH, Bang J, Hong SH, Lee JW, Uhm KO, Kwak HJ, Lim HJ. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116090. [PMID: 38364346 DOI: 10.1016/j.ecoenv.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1β, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.
Collapse
Affiliation(s)
- Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 215565, South Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Se Hyang Hong
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Hyun-Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin Univerisity, Seonbuk-Gu, Seoul 02707, South Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea.
| |
Collapse
|
22
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
23
|
Brown KH, Ghita-Pettigrew M, Kerr BN, Mohamed-Smith L, Walls GM, McGarry CK, Butterworth KT. Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics. Radiother Oncol 2024; 192:110106. [PMID: 38253201 DOI: 10.1016/j.radonc.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND PURPOSE Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK.
| | - Mihaela Ghita-Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Letitia Mohamed-Smith
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Gerard M Walls
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK; Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Conor K McGarry
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
24
|
Pillar A, Ali MK. IL-22 Binding Protein/IL-22 Axis in Regulating Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:335-337. [PMID: 38199431 DOI: 10.1016/j.ajpath.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Amber Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and The Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Md Khadem Ali
- Pre-Professional Health Academic Program, California State University East Bay, Hayward, California.
| |
Collapse
|
25
|
Jiang G, Liu W, Wang X, Wang Z, Song C, Chen R, He Z, Li H, Zheng M, Mao W. The causality between systemic inflammatory regulators and chronic respiratory diseases: A bidirectional Mendelian-randomization study. Cytokine 2024; 174:156470. [PMID: 38071841 DOI: 10.1016/j.cyto.2023.156470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
INTRODUCTION Accumulative evidence suggests the associations between systemic inflammatory regulators and chronic respiratory diseases (CRDs). However, the intrinsic causation remains implicit. Therefore, this study aimed to examine causative associations by mendelian randomization (MR) and to identify valuable active factors. METHODS Based on data from the GWAS database, we performed MR analyses of 41 serum cytokines from 8,293 Finnish and European descent cohorts from GBMI and UKBB for five major CRDs. We mainly applied inverse variance weighted regression, supplemented by MR-Egger regression, weighted median, maximum likelihood, weighted mode, and simple mode algorithms. Moreover, sensitivity analyses were conducted using Cochrane's Q test, MR-Egger intercept, MR-PRESSO Global test and MR-Steiger filtering. Eventually, the consistency of MR results was assessed by leave-one-out. RESULTS Our results suggest that 12 genetically predicted systemic inflammatory regulators probably participate in the progression of CRDs, including four risk factors (IL-1RA, IL-4, MIP-1A, PDGF-BB) and one protective factor (IL-6) in IPF, two protective factors (SCF, SDF-1A) in COPD, and two protective factors (SCF, SDF-1A) in asthma, two protective factors (GROA, IL-2RA) were also included in asthma, whereas only one factor (HGF) was protective against bronchiectasis. Additionally, two protective factors (FGF-BASIC, G-CSF) were identified in sarcoidosis. Sensitivity analyses showed no horizontal pleiotropy and significant heterogeneity. Finally, based on the findings of inverse MR analysis, no inverse causal association was uncovered, confirming the robustness of results. CONCLUSION Our study unearths potential associations between systemic inflammatory modulators and common CRDs, providing new insights for inflammation-mediated CRD prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xiaokun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zifeng Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Huixing Li
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Mingfeng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
26
|
de Almeida AR, Dantas AT, de Oliveira Gonçalves ME, Chêne C, Jeljeli M, Chouzenoux S, Thomas M, Cunha EGC, de Azevedo Valadares LD, de Melo Gomes JV, de Paula SKS, da Rocha Pitta MG, da Rocha Pitta I, de Melo Rêgo MJB, Pereira MC, Duarte ALBP, Abdalla DSP, Nicco C, Batteux F, da Rocha Pitta MG. PPARγ partial agonist LPSF/GQ-16 prevents dermal and pulmonary fibrosis in HOCl-induced systemic sclerosis (SSc) and modulates cytokine production in PBMC of SSc patients. Inflammopharmacology 2024; 32:433-446. [PMID: 37477795 DOI: 10.1007/s10787-023-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Thiazolidinediones (TZD) are synthetic molecules that have a range of biological effects, including antifibrotic and anti-inflammatory, and they may represent a promising therapeutic strategy for systemic sclerosis (SSc). The aim of this study was to investigate the immunomodulatory and antifibrotic properties of LPSF/GQ-16, a TZD derivative, in peripheral blood mononuclear cells (PBMC) from SSc patients and in a murine model of SSc HOCl-induced. The PBMC of 20 SSc patients were stimulated with phytohemagglutinin (PHA) and treated with LPSF/GQ-16 for 48 h, later cytokines in the culture supernatants were quantified by sandwich enzyme-linked immunosorbent assay (ELISA) or cytometric bead array (CBA). Experimental SSc was induced by intradermal injections of hypochlorous acid (HOCl) for 6 weeks. HOCl-induced SSc mice received daily treatment with LPSF/GQ-16 (30 mg/kg) through intraperitoneal injections during the same period. Immunological parameters were evaluated by flow cytometry and ELISA, and dermal and pulmonary fibrosis were evaluated by RT-qPCR, hydroxyproline dosage and histopathological analysis. In PBMC cultures, it was possible to observe that LPSF/GQ-16 modulated the secretion of cytokines IL-2 (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.001), IL-17A (p = 0.006), TNF (p < 0.001) and IFN-γ (p < 0.001). In addition, treatment with LPSF/GQ-16 in HOCl-induced SSc mice promoted a significant reduction in dermal thickening (p < 0.001), in the accumulation of collagen in the skin (p < 0.001), down-regulated the expression of fibrosis markers in the skin (Col1a1, α-Sma and Tgfβ1, p < 0.001 for all) and lungs (Il4 and Il13, p < 0.001 for both), as well as reduced activation of CD4 + T cells (p < 0.001), B cells (p < 0.001) and M2 macrophages (p < 0.001). In conclusion, LPSF/GQ-16 showed immunomodulatory and antifibrotic properties, demonstrating the therapeutic potential of this molecule for SSc.
Collapse
Affiliation(s)
- Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Andréa Tavares Dantas
- Serviço de Reumatologia, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria Eduarda de Oliveira Gonçalves
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Charlotte Chêne
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Mohamed Jeljeli
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Eudes Gustavo Constantino Cunha
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | | | - João Victor de Melo Gomes
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Simão Kalebe Silva de Paula
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Marina Galdino da Rocha Pitta
- Laboratório de Planejamento e Síntese de Fármacos, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratório de Planejamento e Síntese de Fármacos, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| | | | - Dulcineia Saes Parra Abdalla
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carole Nicco
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT SG), Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| |
Collapse
|
27
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
28
|
Jung Y, Yim NH, Lee SM, Cho WK, Cha MH, Ma JY. Anti-Fibrosis Effect of Panax ginseng and Inula japonica Formula in Human Pulmonary Fibroblasts. Nutrients 2024; 16:319. [PMID: 38276557 PMCID: PMC10819838 DOI: 10.3390/nu16020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-β1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-β1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Sang Myung Lee
- Division of Food and Pharmaceutical Technology, College of Health and Safety Science, Mokwon University, Daejeon 35349, Republic of Korea;
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Min Ho Cha
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| |
Collapse
|
29
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
30
|
Yeo HJ, Ha M, Shin DH, Lee HR, Kim YH, Cho WH. Development of a Novel Biomarker for the Progression of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2024; 25:599. [PMID: 38203769 PMCID: PMC10779374 DOI: 10.3390/ijms25010599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The progression of idiopathic pulmonary fibrosis (IPF) is diverse and unpredictable. We identified and validated a new biomarker for IPF progression. To identify a candidate gene to predict progression, we assessed differentially expressed genes in patients with advanced IPF compared with early IPF and controls in three lung sample cohorts. Candidate gene expression was confirmed using immunohistochemistry and Western blotting of lung tissue samples from an independent IPF clinical cohort. Biomarker potential was assessed using an enzyme-linked immunosorbent assay of serum samples from the retrospective validation cohort. We verified that the final candidate gene reflected the progression of IPF in a prospective validation cohort. In the RNA-seq comparative analysis of lung tissues, CD276, COL7A1, CTSB, GLI2, PIK3R2, PRAF2, IGF2BP3, and NUPR1 were up-regulated, and ADAMTS8 was down-regulated in the samples of advanced IPF. Only CTSB showed significant differences in expression based on Western blotting (n = 12; p < 0.001) and immunohistochemistry between the three groups of the independent IPF cohort. In the retrospective validation cohort (n = 78), serum CTSB levels were higher in the progressive group (n = 25) than in the control (n = 29, mean 7.37 ng/mL vs. 2.70 ng/mL, p < 0.001) and nonprogressive groups (n = 24, mean 7.37 ng/mL vs. 2.56 ng/mL, p < 0.001). In the prospective validation cohort (n = 129), serum CTSB levels were higher in the progressive group than in the nonprogressive group (mean 8.30 ng/mL vs. 3.00 ng/mL, p < 0.001). After adjusting for baseline FVC, we found that CTSB was independently associated with IPF progression (adjusted OR = 2.61, p < 0.001). Serum CTSB levels significantly predicted IPF progression (AUC = 0.944, p < 0.001). Serum CTSB level significantly distinguished the progression of IPF from the non-progression of IPF or healthy control.
Collapse
Affiliation(s)
- Hye Ju Yeo
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| | - Mihyang Ha
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan 46241, Republic of Korea;
- Department of Nuclear Medicine, Pusan National University Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Dong Hoon Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Rin Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| |
Collapse
|
31
|
Mahla RS. Extracellular vesicle pathogenic cues in systemic sclerosis: comment on the article by Mouawad et al. Arthritis Rheumatol 2024; 76:148-149. [PMID: 37651269 DOI: 10.1002/art.42684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
|
32
|
Kozawa S, Tejima K, Takagi S, Kuroda M, Nogami-Itoh M, Kitamura H, Niwa T, Ogura T, Natsume-Kitatani Y, Sato TN. Latent inter-organ mechanism of idiopathic pulmonary fibrosis unveiled by a generative computational approach. Sci Rep 2023; 13:21981. [PMID: 38081956 PMCID: PMC10713585 DOI: 10.1038/s41598-023-49281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease characterized by complex lung pathogenesis affecting approximately three million people worldwide. While the molecular and cellular details of the IPF mechanism is emerging, our current understanding is centered around the lung itself. On the other hand, many human diseases are the products of complex multi-organ interactions. Hence, we postulate that a dysfunctional crosstalk of the lung with other organs plays a causative role in the onset, progression and/or complications of IPF. In this study, we employed a generative computational approach to identify such inter-organ mechanism of IPF. This approach found unexpected molecular relatedness of IPF to neoplasm, diabetes, Alzheimer's disease, obesity, atherosclerosis, and arteriosclerosis. Furthermore, as a potential mechanism underlying this relatedness, we uncovered a putative molecular crosstalk system across the lung and the liver. In this inter-organ system, a secreted protein, kininogen 1, from hepatocytes in the liver interacts with its receptor, bradykinin receptor B1 in the lung. This ligand-receptor interaction across the liver and the lung leads to the activation of calmodulin pathways in the lung, leading to the activation of interleukin 6 and phosphoenolpyruvate carboxykinase 1 pathway across these organs. Importantly, we retrospectively identified several pre-clinical and clinical evidence supporting this inter-organ mechanism of IPF. In conclusion, such feedforward and feedback loop system across the lung and the liver provides a unique opportunity for the development of the treatment and/or diagnosis of IPF. Furthermore, the result illustrates a generative computational framework for machine-mediated synthesis of mechanisms that facilitates and complements the traditional experimental approaches in biomedical sciences.
Collapse
Affiliation(s)
- Satoshi Kozawa
- Karydo TherapeutiX, Inc., 2-2-2 Hikaridai, Seika-Cho, Soraku-Gun, Kyoto, 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Kengo Tejima
- Karydo TherapeutiX, Inc., 2-2-2 Hikaridai, Seika-Cho, Soraku-Gun, Kyoto, 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Shunki Takagi
- Karydo TherapeutiX, Inc., 2-2-2 Hikaridai, Seika-Cho, Soraku-Gun, Kyoto, 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Masataka Kuroda
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Mari Nogami-Itoh
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hideya Kitamura
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Takashi Niwa
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Yayoi Natsume-Kitatani
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Thomas N Sato
- Karydo TherapeutiX, Inc., 2-2-2 Hikaridai, Seika-Cho, Soraku-Gun, Kyoto, 619-0288, Japan.
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan.
- V-iCliniX Laboratory, Nara Medical University, Nara, Japan.
| |
Collapse
|
33
|
Park SJ, Ryu HW, Kim JH, Hahn HJ, Jang HJ, Ko SK, Oh SR, Lee HJ. Daphnetin Alleviates Bleomycin-Induced Pulmonary Fibrosis through Inhibition of Epithelial-to-Mesenchymal Transition and IL-17A. Cells 2023; 12:2795. [PMID: 38132116 PMCID: PMC10742308 DOI: 10.3390/cells12242795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there is no cure for IPF, the development of drugs with improved efficacy in the treatment of IPF is required. Daphnetin, a natural coumarin derivative, has immunosuppressive, anti-inflammatory, and antioxidant activities. However, its antifibrotic effects have not yet been elucidated. In this study, we investigated the antifibrotic effects of daphnetin on pulmonary fibrosis and the associated molecular mechanism. We examined the effects of daphnetin on splenocytes cultured in Th17 conditions, lung epithelial cells, and a mouse model of bleomycin (BLM)-induced pulmonary fibrosis. We identified that daphnetin inhibited IL-17A production in developing Th17 cells. We also found that daphnetin suppressed epithelial-to-mesenchymal transition (EMT) in TGF-β-treated BEAS2B cells through the regulation of AKT phosphorylation. In BLM-treated mice, the oral administration of daphnetin attenuated lung histopathology and improved lung mechanical functions. Our findings clearly demonstrated that daphnetin inhibited IL-17A and EMT both in vitro and in vivo, thereby protecting against BLM-induced pulmonary fibrosis. Taken together, these results suggest that daphnetin has potent therapeutic effects on lung fibrosis by modulating both Th17 differentiation and the TGF-β signaling pathway, and we thus expect daphnetin to be a drug candidate for the treatment of IPF.
Collapse
Affiliation(s)
- Soo-Jin Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
| | - Ji-Hyeong Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 34113, Republic of Korea;
| | - Hwa-Jeong Hahn
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
| | - Hyun-Jae Jang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
| | - Sung-Kyun Ko
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 34113, Republic of Korea;
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 34113, Republic of Korea;
| | - Hyun-Jun Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea; (S.-J.P.); (H.W.R.); (J.-H.K.); (H.-J.H.); (H.-J.J.)
- Department of Biomolecular Science, University of Science & Technology (UST), Daejeon 34113, Republic of Korea;
| |
Collapse
|
34
|
Li Y, Nan G, Hou X, Yan Y, Yang Y, Yang Y, Li K, Xiao Z. Non-peptidic immunoproteasome β5i-selective inhibitor as potential treatment for idiopathic pulmonary fibrosis: Virtual screening, hit evolution and lead identification. Eur J Med Chem 2023; 261:115856. [PMID: 37826934 DOI: 10.1016/j.ejmech.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The immunoproteasome has emerged as a potential therapeutic target for idiopathic pulmonary fibrosis (IPF). We report herein our efforts to discover novel non-peptidic immunoproteasome inhibitors as potential treatment for IPF. A structure-based virtual screening was initially performed and the hit compound VS-7 with an IC50 of 9.437 μM against β5i was identified. Hit evolution based on the interaction mode of VS-7 proceeded, and a potent β5i inhibitor 54 (IC50 = 8.463 nM) with favorable subunit-selective profiles was obtained. Compound 54 also imposed significant effects on the release of TNF-α and IL-6, the transcriptional activity of NF-κB, as well as TGF-β1 induced fibroblast proliferation, activation and collagen synthesis. Notably, when administered at 30 mg/kg in a bleomycin-induced IPF mouse model, compound 54 showed anti-fibrotic effects comparable to the clinical drug nintedanib. The results suggest that selective inhibition of immunoproteasome could be an effective approach to treat IPF.
Collapse
Affiliation(s)
- Yunxuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guanglei Nan
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xianxin Hou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yechao Yan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
35
|
Tsai CF, Chen YC, Li YZ, Wu CT, Chang PC, Yeh WL. Imperatorin ameliorates pulmonary fibrosis via GDF15 expression. Front Pharmacol 2023; 14:1292137. [PMID: 38111379 PMCID: PMC10725920 DOI: 10.3389/fphar.2023.1292137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background: Pulmonary fibrosis features in damaged pulmonary structure or over-produced extracellular matrix and impaired lung function, leading to respiratory failure and eventually death. Fibrotic lungs are characterized by the secretion of pro-fibrotic factors, transformation of fibroblasts to myofibroblasts, and accumulation of matrix proteins. Hypothesis/purpose: Imperatorin shows anti-inflammatory effects on alveolar macrophages against acute lung injury. We attempt to evaluate the properties of imperatorin on the basis of fibroblasts. Methods: In in vitro, zymosan was introduced to provoke pro-fibrotic responses in NIH/3T3 or MRC-5 pulmonary fibroblasts. Imperatorin was given for examining its effects against fibrosis. The mice were stimulated by bleomycin, and imperatorin was administered to evaluate the prophylactic potential in vivo. Results: The upregulated expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen protein due to zymosan introduction was decreased by imperatorin in fibroblasts. Zymosan induced the activity of transglutaminase 2 (TGase2) and lysyl oxidase (LOX), which was also inhibited by the administration of imperatorin. Imperatorin alone enhanced sirtuin 1 (SIRT1) activity and growth differentiation factor 15 (GDF15) secretion in fibroblasts via LKB1/AMPK/CREB pathways. In addition, GDF15 exerted a beneficial effect by reducing the protein expression of CTGF, α-SMA, and collagen and the activities of TGase and LOX. Moreover, orally administered imperatorin showed prophylactic effects on bleomycin-induced pulmonary fibrosis in mice. Conclusion: Imperatorin reduces fibrotic marker expression in fibroblasts and also increases GDF15 secretion via the LKB1/AMPK/CREB pathway, attenuating pro-fibrotic responses in vitro. Imperatorin also alleviates pulmonary fibrosis induced by bleomycin in vivo.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Ya-Zhen Li
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Al-Mutairy EA, Al Qattan S, Khalid M, Al-Enazi AA, Al-Saif MM, Imtiaz F, Ramzan K, Raveendran V, Alaiya A, Meyer BF, Atamas SP, Collison KS, Khabar KS, Hasday JD, Al-Mohanna F. Wild-type S100A3 and S100A13 restore calcium homeostasis and mitigate mitochondrial dysregulation in pulmonary fibrosis patient-derived cells. Front Cell Dev Biol 2023; 11:1282868. [PMID: 38099297 PMCID: PMC10720433 DOI: 10.3389/fcell.2023.1282868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with digenic S100A3 and S100A13 mutations exhibited an atypical and progressive interstitial pulmonary fibrosis, with impaired intracellular calcium homeostasis and mitochondrial dysfunction. Here we provide direct evidence of a causative effect of the mutation on receptor mediated calcium signaling and calcium store responses in control cells transfected with mutant S100A3 and mutant S100A13. We demonstrate that the mutations lead to increased mitochondrial mass and hyperpolarization, both of which were reversed by transfecting patient-derived cells with the wild type S100A3 and S100A13, or extracellular treatment with the recombinant proteins. In addition, we demonstrate increased secretion of inflammatory mediators in patient-derived cells and in control cells transfected with the mutant-encoding constructs. These findings indicate that treatment of patients' cells with recombinant S100A3 and S100A13 proteins is sufficient to normalize most of cellular responses, and may therefore suggest the use of these recombinant proteins in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Eid A. Al-Mutairy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Somaya Al Qattan
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Khalid
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Azizah A. Al-Enazi
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maher M. Al-Saif
- BioMolecular Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Vineesh Raveendran
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Stem Cell Therapy Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F. Meyer
- Clinical Genomics, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sergei P. Atamas
- University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S. Khabar
- BioMolecular Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jeffrey D. Hasday
- University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, Baltimore, MD, United States
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Sato S, Koyama K, Ogawa H, Murakami K, Imakura T, Yamashita Y, Kagawa K, Kawano H, Hara E, Nishioka Y. A novel BRD4 degrader, ARV-825, attenuates lung fibrosis through senolysis and antifibrotic effect. Respir Investig 2023; 61:781-792. [PMID: 37741093 DOI: 10.1016/j.resinv.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Recent studies suggest that cellular senescence is related to the pathogenesis of idiopathic pulmonary fibrosis. However, cellular senescence has yet to be targeted therapeutically in clinical practice. ARV825, a recently developed BRD4 degrader, has been reported as a novel senolytic drug. Conversely, it has also been reported that BRD4 regulates the pro-fibrotic gene expression of fibroblasts. Therefore, this study focuses on the senolytic and anti-fibrotic effects of ARV825 and evaluated these effects on lung fibrosis. METHODS Lung fibroblasts were induced to senescence through serial passage. The expression of senescence markers and pro-fibrotic markers were determined through quantitative PCR or immunoblot analysis. Lung fibrosis was induced in mice through intratracheal administration of bleomycin. Mice treated with ARV825 underwent histological analysis of lung fibrosis using the Ashcroft score. Total lung collagen was quantified through a hydroxyproline assay. Respiratory mechanics analysis was performed using the flexiVent system. RESULTS For senescent cells, ARV825 induced the expression of an apoptosis marker while reducing the expression of BRD4 and senescence markers. On the other hand, for early passage pre-senescent cells, ARV825 reduced the expression of collagen type 1 and α-smooth muscle actin. In an experimental mouse model of lung fibrosis, ARV825 attenuated lung fibrosis and improved lung function. Immunohistochemical staining revealed a significant decrease in the number of senescent alveolar type 2 cells in lung tissue due to ARV825 treatment. CONCLUSIONS These results suggest that ARV825 may impact the progressive and irreversible course of fibrotic lung diseases.
Collapse
Affiliation(s)
- Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kojin Murakami
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Imakura
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuya Yamashita
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kozo Kagawa
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Kawano
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
38
|
Hargarten JC, Anjum SH, Ssebambulidde K, Park YD, Vaughan MJ, Scott TL, Hammoud DA, Billioux BJ, Williamson PR. Tocilizumab as a Potential Adjunctive Therapy to Corticosteroids in Cryptococcal Post-infectious Inflammatory Response Syndrome (PIIRS): a Report of Two Cases. J Clin Immunol 2023; 43:2146-2155. [PMID: 37814084 DOI: 10.1007/s10875-023-01592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Non-HIV cryptococcal meningoencephalitis (CM) in previously healthy individuals is often complicated by a post-infectious inflammatory response syndrome (c-PIIRS) characterized by neurologic deterioration after appropriate antifungal therapy with sterilization of CSF fungal cultures. c-PIIRS results from an excessive inflammatory response to fungal antigens released during fungal lysis, mediated by IFN-γ, IL-6, and activated T-helper cells, leading to immune-mediated host damage that responds to pulse-corticosteroid taper therapy (PCT). Typically, oral steroids may take up to a year to taper, and occasionally, patients will be refractory to steroid therapy or may demonstrate high-risk lesions such as those involving intracranial arteries. Also, patients can have problematic side effects from prolonged corticosteroids. Hence, appropriate adjunctive agents are needed to reduce corticosteroid doses in the treatment of c-PIIRS. Due to a possible role of IL-6 in pathogenesis, IL-6 receptor blockade by tocilizumab may be useful in the treatment of c-PIIRS. METHODS Two previously healthy patients with non-HIV cPIIRS were seen at the NIH. Due to concerns for intracranial vascular rupture in an area of inflammation (Patient 1) and intractable symptoms on high-dose oral corticosteroids (Patient 2) with evidence of persistent CSF inflammation, patients were treated with 4-8 mg/kg tocilizumab every 2 weeks while maintained on a constant dose of prednisone. RESULTS Two patients exhibited rapid immunological improvement following treatment with tocilizumab. Patient 1 remained vascularly stable, and Patient 2 had near resolution of headaches with improvement in mental status as evidenced by improved MOCA score. The two had improved CSF inflammatory parameters and no significant side effects. Both CSF cultures remained negative throughout treatment. CONCLUSIONS Tocilizumab may be a safe adjunctive treatment for CM-related PIIRS suggesting further study.
Collapse
Affiliation(s)
- Jessica C Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Seher H Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Malcolm J Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
40
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
41
|
Riehl DR, Sharma A, Roewe J, Murke F, Ruppert C, Eming SA, Bopp T, Kleinert H, Radsak MP, Colucci G, Subramaniam S, Reinhardt C, Giebel B, Prinz I, Guenther A, Strand D, Gunzer M, Waisman A, Ward PA, Ruf W, Schäfer K, Bosmann M. Externalized histones fuel pulmonary fibrosis via a platelet-macrophage circuit of TGFβ1 and IL-27. Proc Natl Acad Sci U S A 2023; 120:e2215421120. [PMID: 37756334 PMCID: PMC10556605 DOI: 10.1073/pnas.2215421120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFβ and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFβ1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFβ1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFβ1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Dennis R. Riehl
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, Cologne50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne50931, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Markus P. Radsak
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Third Department of Medicine – Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Giuseppe Colucci
- Outer Corelab, Viollier AG, Allschwil4123, Switzerland
- Department of Hematology, University of Basel, Basel4031, Switzerland
| | - Saravanan Subramaniam
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz55131, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Immo Prinz
- Institute for Immunology, Hannover Medical School, Hannover30625, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen45122, Germany
- Leibniz-Institute for Analytical Sciences -ISAS- e.V., Dortmund44139, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor48109, MI
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| |
Collapse
|
42
|
Kramer D, Hilton R, Roman J. Pulmonary fibrosis and COVID-19. Am J Med Sci 2023; 366:245-253. [PMID: 37481205 DOI: 10.1016/j.amjms.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
The COVID-19 pandemic has caused the death of millions and many more have been infected worldwide. The causative virus, SARS-CoV-2, affects the lung where it elicits an aggressive inflammatory response leading to respiratory failure in severe cases. This infection has been linked to pulmonary fibrosis, a process characterized by fibroproliferation and the exaggerated deposition of collagen and other extracellular matrices. These events damage the lung architecture, especially its gas-exchanging units, leading to hypoxemic respiratory failure. The mechanisms by which the virus affects the lung remain incompletely understood, but it is postulated that after entering the airways, the virus binds to Angiotensin Converting Enzyme (ACE) receptors on the surface of epithelial cells, not only stimulating oxidative stress and inflammation, but also promoting the expression of soluble pro-fibrotic factors responsible for the accumulation of fibroblasts, their activation into myofibroblasts, and their unregulated expression of extracellular matrices. These events may trigger the rapid progression or exacerbation of underlying interstitial lung disorders or promote fibrosis in a previously healthy lung. Although the natural progression of such conditions cannot always be predicted, fibrosis may progress even after the virus has been eliminated or, in cases where it does not progress, may become irreversible, leading to long-standing symptoms like shortness of breath and exercise intolerance resulting from loss of lung function. Although COVID-19 related pulmonary fibrosis is not common, preventive measures like vaccination are encouraged, as they are expected to reduce infection or its severity, thereby decreasing the possibility of life-changing respiratory conditions such as pulmonary fibrosis.
Collapse
Affiliation(s)
- Daniel Kramer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert Hilton
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jesse Roman
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
43
|
Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol 2023; 325:C1046-C1057. [PMID: 37694283 PMCID: PMC10635664 DOI: 10.1152/ajpcell.00302.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Pulmonary fibrosis results from a plethora of abnormal pathogenetic events. In idiopathic pulmonary fibrosis (IPF), inhalational, environmental, or occupational exposures in genetically and epigenetically predisposed individuals trigger recurrent cycles of alveolar epithelial cell injury, activation of coagulation pathways, chemoattraction, and differentiation of monocytes into monocyte-derived alveolar macrophages (Mo-AMs). When these events happen intermittently and repeatedly throughout the individual's life cycle, the wound repair process becomes aberrant leading to bronchiolization of distal air spaces, fibroblast accumulation, extracellular matrix deposition, and loss of the alveolar-capillary architecture. The role of immune dysregulation in IPF pathogenesis and progression has been underscored in the past mainly after the disappointing results of immunosuppressant use in IPF patients; however, recent reports highlighting the prognostic and mechanistic roles of monocytes and Mo-AMs revived the interest in immune dysregulation in IPF. In this review, we will discuss the role of these cells in the onset and progression of IPF, as well as potential targeted therapies.
Collapse
Affiliation(s)
- Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
44
|
Dai J, Cai J, Zhang T, Pang M, Xu X, Bai J, Liu Y, Qin Y. Transcriptome and Metabolome Analyses Reveal the Mechanism of Corpus Luteum Cyst Formation in Pigs. Genes (Basel) 2023; 14:1848. [PMID: 37895197 PMCID: PMC10606659 DOI: 10.3390/genes14101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Corpus luteum cysts are a serious reproductive disorder that affects the reproductive performance of sows. In this study, transcriptome and metabolome datasets of porcine normal and cyst luteal granulosa cells were generated to explore the molecular mechanism of luteal cyst formation. We obtained 28.9 Gb of high-quality transcriptome data from luteum tissue samples and identified 1048 significantly differentially expressed genes between the cyst and normal corpus luteum samples. Most of the differentially expressed genes were involved in cancer and immune signaling pathways. Furthermore, 22,622 information-containing positive and negative ions were obtained through gas chromatography-mass spectrometry, and 1106 metabolites were successfully annotated. Important differentially abundant metabolites and pathways were identified, among which abnormal lipid and choline metabolism were involved in the formation of luteal cysts. The relationships between granulosa cells of luteal cysts and cancer, immune-related signaling pathways, and abnormalities of lipid and choline metabolism were elaborated, providing new entry points for studying the pathogenesis of porcine luteal cysts.
Collapse
Affiliation(s)
- Jiage Dai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
- College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Jiabao Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Taipeng Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Mingyue Pang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.D.); (J.C.); (M.P.); (X.X.); (J.B.); (Y.L.)
| |
Collapse
|
45
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
46
|
Yang DC, Hsu SW, Li JM, Oldham J, Chen CH. Spatial Decoding of Immune Cell Contribution to Fibroblastic Foci in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 208:728-731. [PMID: 37487177 PMCID: PMC10515576 DOI: 10.1164/rccm.202303-0372le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- David C. Yang
- Division of Pulmonary, Critical Care, and Sleep Medicine and
| | - Ssu-Wei Hsu
- Division of Pulmonary, Critical Care, and Sleep Medicine and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ji-Min Li
- Division of Pulmonary, Critical Care, and Sleep Medicine and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ching-Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| |
Collapse
|
47
|
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, Baker D. De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8. Nat Commun 2023; 14:5660. [PMID: 37704610 PMCID: PMC10500007 DOI: 10.1038/s41467-023-41272-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The RGD (Arg-Gly-Asp)-binding integrins αvβ6 and αvβ8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvβ6 and αvβ8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvβ6 and αvβ8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvβ6 and the αvβ8 integrins. In a lung fibrosis mouse model, the αvβ6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lei Shi
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Encodia Inc, 5785 Oberlin Drive, San Diego, CA, 92121, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
| | - Andres Fernandez
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John C Kraft
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Viet Q Le
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rebecca Viazzo Winegar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gerald Maxwell Cherf
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Dean Slocum
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - P Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Garrett E Casper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | | | - Jonard Corpuz Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Marcos C Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hua Bai
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Yakov Kipnis
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Audrey Olshefsky
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tanu Priya
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron M Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Max R Johnson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Suna Cheng
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - McKaela Smith
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Catherine Overed-Sayer
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Donna K Finch
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics Ltd, Cambridge, UK
| | - David Lowe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Evox Therapeutics Limited, Oxford Science Park, Medawar Centre, East Building, Robert Robinson Avenue, Oxford, OX4 4HG, England
| | - Asim K Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lance J Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
48
|
Kim DM, Baek SW, Park JM, Kim DS, Lee S, Lee JK, Park CG, Han DK. Multifunctional PDO Thread Coated with Mg(OH) 2/ZnO Nanoparticles and Asiaticoside for Improved Facial Lifting. Pharmaceutics 2023; 15:2220. [PMID: 37765189 PMCID: PMC10535954 DOI: 10.3390/pharmaceutics15092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
As interest in skin aesthetics increases, treatments to suppress aging are increasing. Among them, a facelift is the most effective procedure for improving wrinkles. However, side effects including inflammatory reactions occur due to the limitations of the PDO thread itself used during the procedure. In this paper, to improve the function of PDO thread, inorganic particles such as magnesium hydroxide (MH) and zinc oxide (ZO) and a biologically active agent, asiaticoside, were coated on the surface of PDO thread using ultrasonic coating technology. The coated thread exhibited excellent biocompatibility, promoted collagen synthesis, reduced inflammation, and stimulated angiogenesis in vitro and in vivo. The multifunctional PDO thread has shown promising potential for skin regeneration without inducing fibrosis. Such a practical coating system and the developed multifunctional PDO thread suggest new possibilities for developing safer and more effective materials in cosmetic and regenerative medicine to prevent aging and improve skin aesthetics.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| |
Collapse
|
49
|
Ananyeva LP, Garzanova LA, Koneva OA, Starovoytova MN, Desinova OV, Ovsyannikova OB, Shayakhmetova RU, Cherkasova MV, Aleksankin AP, Nasonov EL. Anti-topoisomerase 1 Antibody Level Changes after B Cell Depletion Therapy in Systemic Sclerosis. DOKL BIOCHEM BIOPHYS 2023; 511:212-218. [PMID: 37833608 PMCID: PMC10739332 DOI: 10.1134/s1607672923700266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 10/15/2023]
Abstract
The aim of our study was to assess the relationship between the changes of antinuclear autoantibodies (ANAs) and autoantibodies to topoisomerase 1 (anti-Topo 1) in systemic sclerosis (SSs) patients on rituximab (RTX) therapy. The prospective study included 88 patients (73 women) with a mean age of 47 (17-71) years. The mean disease duration was 5.9 ± 4.8 years. The mean follow-up period was more than 2 years (27 (12-42) months). We documented a statistically significant change in skin score, the disease activity index, improvement of pulmonary function and reduction of mean dose of prednisolone after RTX treatment. There was a significant decrease in the number of patients with high levels of ANA and overall decrease of the ANA and anti-Topo 1 levels. A moderate positive statistically significant correlation was found between ANA and anti-Topo 1 (r = 0.403). In the group of patients positive for anti-Topo 1 there were a more pronounced depletion of B lymphocytes, significantly higher increase in forced vital capacity and diffusion capacity, decrease in the disease activity index, compared with patients negative for anti-Topo 1. We observed the decline in the level of ANA and anti-Topo 1 in SSc patients after RTX therapy, and it was correlated by an improvement of the main outcome parameters of the disease. Therefore, anti-Topo 1 positivity could be considered as a predictor of a better response to RTX treatment, especially in SSc patients with hyperproduction of anti-Topo 1.
Collapse
Affiliation(s)
- L P Ananyeva
- Nasonova Research Institute of Rheumatology, Moscow, Russia.
| | - L A Garzanova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - O A Koneva
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | - O V Desinova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | | | - M V Cherkasova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - A P Aleksankin
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - E L Nasonov
- Nasonova Research Institute of Rheumatology, Moscow, Russia
- Sechenov First Moscow State Medical University of the Ministry of Health Care of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
50
|
López-Ayllón BD, de Lucas-Rius A, Mendoza-García L, García-García T, Fernández-Rodríguez R, Suárez-Cárdenas JM, Santos FM, Corrales F, Redondo N, Pedrucci F, Zaldívar-López S, Jiménez-Marín Á, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling. Front Immunol 2023; 14:1220306. [PMID: 37545510 PMCID: PMC10399023 DOI: 10.3389/fimmu.2023.1220306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Collapse
Affiliation(s)
- Blanca D. López-Ayllón
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Laura Mendoza-García
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Tránsito García-García
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - José M. Suárez-Cárdenas
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
- Unit of Infectious Diseases, University Hospital ‘12 de Octubre’, Institute for Health Research Hospital ‘12 de Octubre’ (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Federica Pedrucci
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Juan J. Garrido
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|