1
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IATM, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A T M Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute , Chevy Chase, MD, USA
| |
Collapse
|
2
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
5
|
Cannon L, Fehrman S, Pinzone M, Weissman S, O'Doherty U. Machine Learning Bolsters Evidence That D1, Nef, and Tat Influence HIV Reservoir Dynamics. Pathog Immun 2024; 8:37-58. [PMID: 38292079 PMCID: PMC10827039 DOI: 10.20411/pai.v8i2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background The primary hurdle to curing HIV is due to the establishment of a reservoir early in infection. In an effort to find new treatment strategies, we and others have focused on understanding the selection pressures exerted on the reservoir by studying how proviral sequences change over time. Methods To gain insights into the dynamics of the HIV reservoir we analyzed longitudinal near full-length sequences from 7 people living with HIV between 1 and 20 years following the initiation of antiretroviral treatment. We used this data to employ Bayesian mixed effects models to characterize the decay of the reservoir using single-phase and multiphasic decay models based on near full-length sequencing. In addition, we developed a machine-learning approach utilizing logistic regression to identify elements within the HIV genome most associated with proviral decay and persistence. By systematically analyzing proviruses that are deleted for a specific element, we gain insights into their role in reservoir contraction and expansion. Results Our analyses indicate that biphasic decay models of intact reservoir dynamics were better than single-phase models with a stronger statistical fit. Based on the biphasic decay pattern of the intact reservoir, we estimated the half-lives of the first and second phases of decay to be 18.2 (17.3 to 19.2, 95%CI) and 433 (227 to 6400, 95%CI) months, respectively.In contrast, the dynamics of defective proviruses differed favoring neither model definitively, with an estimated half-life of 87.3 (78.1 to 98.8, 95% CI) months during the first phase of the biphasic model. Machine-learning analysis of HIV genomes at the nucleotide level revealed that the presence of the splice donor site D1 was the principal genomic element associated with contraction. This role of D1 was then validated in an in vitro system. Using the same approach, we additionally found supporting evidence that HIV nef may confer a protective advantage for latently infected T cells while tat was associated with clonal expansion. Conclusions The nature of intact reservoir decay suggests that the long-lived HIV reservoir contains at least 2 distinct compartments. The first compartment decays faster than the second compartment. Our machine-learning analysis of HIV proviral sequences reveals specific genomic elements are associated with contraction while others are associated with persistence and expansion. Together, these opposing forces shape the reservoir over time.
Collapse
Affiliation(s)
- LaMont Cannon
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Sophia Fehrman
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Marilia Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. mBio 2023; 14:e0241723. [PMID: 37971267 PMCID: PMC10746175 DOI: 10.1128/mbio.02417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Merelli I, Beretta S, Cesana D, Gennari A, Benedicenti F, Spinozzi G, Cesini D, Montini E, D’Agostino D, Calabria A. InCliniGene enables high-throughput and comprehensive in vivo clonal tracking toward clinical genomics data integration. Database (Oxford) 2023; 2023:baad069. [PMID: 37935583 PMCID: PMC10630073 DOI: 10.1093/database/baad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
High-throughput clonal tracking in patients under hematopoietic stem cell gene therapy with integrating vector is instrumental in assessing bio-safety and efficacy. Monitoring the fate of millions of transplanted clones and their progeny across differentiation and proliferation over time leverages the identification of the vector integration sites, used as surrogates of clonal identity. Although γ-tracking retroviral insertion sites (γ-TRIS) is the state-of-the-art algorithm for clonal identification, the computational drawbacks in the tracking algorithm, based on a combinatorial all-versus-all strategy, limit its use in clinical studies with several thousands of samples per patient. We developed the first clonal tracking graph database, InCliniGene (https://github.com/calabrialab/InCliniGene), that imports the output files of γ-TRIS and generates the graph of clones (nodes) connected by arches if two nodes share common genomic features as defined by the γ-TRIS rules. Embedding both clonal data and their connections in the graph, InCliniGene can track all clones longitudinally over samples through data queries that fully explore the graph. This approach resulted in being highly accurate and scalable. We validated InCliniGene using an in vitro dataset, specifically designed to mimic clinical cases, and tested the accuracy and precision. InCliniGene allows extensive use of γ-TRIS in large gene therapy clinical applications and naturally realizes the full data integration of molecular and genomics data, clinical and treatment measurements and genomic annotations. Further extensions of InCliniGene with data federation and with application programming interface will support data mining toward precision, personalized and predictive medicine in gene therapy. Database URL: https://github.com/calabrialab/InCliniGene.
Collapse
Affiliation(s)
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Alessandro Gennari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniele Cesini
- Centro Nazionale Analisi Fotogrammi (CNAF), Istituto Nazionale di Fisica Nucleare, Viale Carlo Berti Pichat 6/2, Bologna 40127, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Daniele D’Agostino
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Viale Causa 13, Genoa 16145, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, Segrate (MI) 20054, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| |
Collapse
|
8
|
Botha JC, Demirov D, Gordijn C, Katusiime MG, Bale MJ, Wu X, Wells D, Hughes SH, Cotton MF, Mellors JW, Kearney MF, van Zyl GU. The largest HIV-1-infected T cell clones in children on long-term combination antiretroviral therapy contain solo LTRs. mBio 2023; 14:e0111623. [PMID: 37530525 PMCID: PMC10470503 DOI: 10.1128/mbio.01116-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) suppresses viral replication but does not cure HIV infection because a reservoir of infectious (intact) HIV proviruses persists in long-lived CD4+T cells. However, a large majority (>95%) of HIV-infected cells that persist on effective cART carry defective (non-infectious) proviruses. Defective proviruses consisting of only a single LTR (solo long terminal repeat) are commonly found as endogenous retroviruses in many animal species, but the frequency of solo-LTR HIV proviruses has not been well defined. Here we show that, in five pediatric donors whose viremia was suppressed on cART for at least 5 years, the proviruses in the nine largest clones of HIV-infected cells were solo LTRs. The sizes of five of these clones were assayed longitudinally by integration site-specific quantitative PCR. Minor waxing and waning of the clones was observed, suggesting that these clones are generally stable over time. Our findings show that solo LTRs comprise a large fraction of the proviruses in infected cell clones that persist in children on long-term cART. IMPORTANCE This work highlights that severely deleted HIV-1 proviruses comprise a significant proportion of the proviral landscape and are often overlooked.
Collapse
Affiliation(s)
| | - Dimiter Demirov
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Mary Grace Katusiime
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiaolin Wu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daria Wells
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
9
|
Chatterjee D, Zhang Y, Ngassaki-Yoka CD, Dutilleul A, Khalfi S, Hernalsteens O, Wiche Salinas TR, Dias J, Chen H, Smail Y, Goulet JP, Bell B, Routy JP, Van Lint C, Ancuta P. Identification of aryl hydrocarbon receptor as a barrier to HIV-1 infection and outgrowth in CD4 + T cells. Cell Rep 2023; 42:112634. [PMID: 37310858 PMCID: PMC10592455 DOI: 10.1016/j.celrep.2023.112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) regulates Th17-polarized CD4+ T cell functions, but its role in HIV-1 replication/outgrowth remains unknown. Genetic (CRISPR-Cas9) and pharmacological inhibition reveal AhR as a barrier to HIV-1 replication in T cell receptor (TCR)-activated CD4+ T cells in vitro. In single-round vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection, AhR blockade increases the efficacy of early/late reverse transcription and subsequently facilitated integration/translation. Moreover, AhR blockade boosts viral outgrowth in CD4+ T cells of people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Finally, RNA sequencing reveals genes/pathways downregulated by AhR blockade in CD4+ T cells of ART-treated PLWH, including HIV-1 interactors and gut-homing molecules with AhR-responsive elements in their promoters. Among them, HIC1, a repressor of Tat-mediated HIV-1 transcription and a tissue-residency master regulator, is identified by chromatin immunoprecipitation as a direct AhR target. Thus, AhR governs a T cell transcriptional program controlling viral replication/outgrowth and tissue residency/recirculation, supporting the use of AhR inhibitors in "shock and kill" HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yuwei Zhang
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christ-Dominique Ngassaki-Yoka
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Antoine Dutilleul
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Soumia Khalfi
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Olivier Hernalsteens
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Tomas Raul Wiche Salinas
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jonathan Dias
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yasmine Smail
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Brendan Bell
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé and Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H3H 2R9, Canada; Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest & The Research Institute of the University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
10
|
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, Genescà M, Grau-Expósito J, Duran-Castells C, Rogenmoser S, Böttcher R, Jungfleisch J, Oliva B, Martinez JP, Li M, David M, Yamagishi M, Ruiz-Riol M, Brander C, Tsunetsugu-Yokota Y, Buzon MJ, Díez J, Meyerhans A. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 2023; 6:487. [PMID: 37165099 PMCID: PMC10172343 DOI: 10.1038/s42003-023-04841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Katarína Frazão Smutná
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Florencia E Alonso
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kerstin Geiger
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Selina Rogenmoser
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - René Böttcher
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer Jungfleisch
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andreas Meyerhans
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536611. [PMID: 37090500 PMCID: PMC10120704 DOI: 10.1101/2023.04.12.536611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
| | | | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Experimental Medicine Program, University of British Columbia, Vancouver, BC
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby BC
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| |
Collapse
|
12
|
Yagyu S, Nakazawa Y. piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol 2023; 28:736-747. [PMID: 36859566 DOI: 10.1007/s10147-023-02319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Since the introduction of the use of chimeric antigen receptor T-cell therapy (CAR-T therapy) dramatically changed the therapeutic strategy for B cell tumors, various CAR-T cell products have been developed and applied to myeloid and solid tumors. Although viral vectors have been widely used to produce genetically engineered T cells, advances in genetic engineering have led to the development of methods for producing non-viral, gene-modified CAR-T cells. Recent progress has revealed that non-viral CAR-T cells have a significant impact not only on the simplicity of the production process and the accessibility of non-viral vectors but also on the function of the cells themselves. In this review, we focus on piggyBac-transposon-based CAR-T cells among non-viral, gene-modified CAR-T cells and discuss their characteristics, preclinical development, and recent clinical applications.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Innovative Research and Liaison Organization, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan.
| | - Yozo Nakazawa
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
13
|
Shah R, Gallardo CM, Jung YH, Clock B, Dixon JR, McFadden WM, Majumder K, Pintel DJ, Corces VG, Torbett BE, Tedbury PR, Sarafianos SG. Activation of HIV-1 proviruses increases downstream chromatin accessibility. iScience 2022; 25:105490. [PMID: 36505924 PMCID: PMC9732416 DOI: 10.1016/j.isci.2022.105490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.
Collapse
Affiliation(s)
- Raven Shah
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Christian M. Gallardo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yoonhee H. Jung
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | - Ben Clock
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Moffit JS, Blanset DL, Lynch JL, MacLachlan TK, Meyer KE, Ponce R, Whiteley LO. Regulatory Consideration for the Nonclinical Safety Assessment of Gene Therapies. Hum Gene Ther 2022; 33:1126-1141. [PMID: 35994386 PMCID: PMC9700330 DOI: 10.1089/hum.2022.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/06/2023] Open
Abstract
The nonclinical safety assessments for gene therapies are evolving, leveraging over 20 years of experimental and clinical experience. Despite the growing experience with these therapeutics, there are no approved harmonized global regulatory documents for developing gene therapies with only the ICH (International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use) S12 guidance on nonclinical biodistribution currently under discussion. Several health authorities have issued guidance over the last 15 years on the nonclinical safety aspects for gene therapy products, but many of the recommendations are limited to high-level concepts on nonclinical safety aspects or altogether silent on key topics. Historically, this approach was appropriately vague given our relatively small dataset of nonclinical experience, where a comprehensive and detailed regulatory guidance approach was unlikely to be appropriate to address all scenarios. However, harmonization of key considerations and assumptions can provide a consistent basis for developing the appropriate nonclinical safety development plans for individual programs, reducing uncertainty across regulatory regions and unnecessary animal use. Several key areas of nonclinical safety testing are nearing maturation for a harmonized approach, including species selection, certain aspects of study design, study duration, and unintended genomic integration risks. Furthermore, several emerging topics are unaddressed in current regulatory guidance for gene therapy products, which will become key areas of differentiation for the next generation of therapeutics. These topics include redosing, juvenile/pediatric safety, and reproductive/developmental safety testing, where relevant experience from other modalities can be applied. The rationale and potential study design considerations for these topics will be proposed, acknowledging that certain aspects of gene therapy development are not considered appropriate for harmonization. This article provides an overview of the current nonclinical safety regulatory landscape, summarizes typical nonclinical safety study designs, highlights areas of uncertainty, and discusses emerging topics that warrant consideration. Specific recommendations and perspectives are provided to inform future regulatory discussions and harmonization efforts.
Collapse
Affiliation(s)
| | | | - Jessica L. Lynch
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
15
|
Lichterfeld M, Gao C, Yu XG. An ordeal that does not heal: understanding barriers to a cure for HIV-1 infection. Trends Immunol 2022; 43:608-616. [PMID: 35905706 PMCID: PMC9346997 DOI: 10.1016/j.it.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/23/2022]
Abstract
With more than 38 million people living with HIV-1 (PLWH) worldwide, developing a cure for HIV-1 remains a major global health priority. Lifelong persistence of HIV-1 is frequently attributed to a pool of stable, transcriptionally silent HIV-1 proviruses, which are unaffected by currently available antiretroviral therapy (ART) or host immune activity. In this opinion article, we propose a more dynamic interpretation of HIV-1 reservoir cell biology and argue that HIV-1 proviruses frequently display residual viral transcriptional activity, making them vulnerable to longitudinal immune-mediated selection processes. Such mechanisms may, over extended periods of ART, induce an attenuated viral reservoir profile characterized by intact proviruses preferentially integrated into heterochromatin locations. We suggest that intensifying and accelerating naturally occurring selection mechanisms might represent a promising strategy for finding a potential cure for HIV-1 infection.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol 2022; 43:617-629. [PMID: 35817699 PMCID: PMC9429957 DOI: 10.1016/j.it.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.
Collapse
Affiliation(s)
- Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
17
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
19
|
Lee MYH, Khoury G, Olshansky M, Sonza S, Carter GP, McMahon J, Stinear TP, Turner SJ, Lewin SR, Purcell DFJ. Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Front Cell Infect Microbiol 2022; 12:855290. [PMID: 35573784 PMCID: PMC9096486 DOI: 10.3389/fcimb.2022.855290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Latent HIV-1 provirus in infected individuals on suppressive therapy does not always remain transcriptionally silent. Both HIV-1 LTR and human gene promoter derived transcriptional events can contribute HIV-1 sequences to the mRNA produced in the cell. In addition, chimeric cellular:HIV mRNA can arise through readthrough transcription and aberrant splicing. Using target enrichment coupled to the Illumina Mi-Seq and PacBio RS II platforms, we show that 3’ LTR activation is frequent in latently infected cells from both the CCL19-induced primary cell model of HIV-1 latency as well as ex vivo samples. In both systems of latent HIV-1 infection, we detected several chimeric species that were generated via activation of a cryptic splice donor site in the 5’ LTR of HIV-1. Aberrant splicing involving the major HIV-1 splice donor sites, SD1 and SD4 disrupts post-transcriptional processing of the gene in which HIV-1 is integrated. In the primary cell model of HIV-1 latency, Tat-encoding sequences are incorporated into the chimeric mRNA transcripts through the use of SD4. Our study unravels clues to the characteristics of HIV-1 integrants that promote formation of chimeric cellular:HIV mRNA and improves the understanding of the HIV-1 RNA footprint in latently infected cells.
Collapse
Affiliation(s)
- Michelle Y-H Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- *Correspondence: Damian F. J. Purcell,
| |
Collapse
|
20
|
Extensive characterization of HIV-1 reservoirs reveals links to plasma viremia before and during analytical treatment interruption. Cell Rep 2022; 39:110739. [PMID: 35476994 PMCID: PMC9745684 DOI: 10.1016/j.celrep.2022.110739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 reservoir is composed of cells harboring latent proviruses that have the potential to contribute to viremia upon antiretroviral treatment (ART) interruption. While this reservoir is known to be maintained by clonal expansion of infected cells, the contribution of these cell clones to residual viremia and viral rebound remains underexplored. Here, we conducted an extensive analysis on four ART-treated individuals who underwent an analytical treatment interruption (ATI), characterizing the proviral genomes and associated integration sites of large infected clones and phylogenetically linking these to plasma viremia. We show discrepancies between different assays in their ability to assess clonal expansion. Furthermore, we demonstrate that proviruses could phylogenetically be linked to plasma virus obtained before or during an ATI. This study highlights a role for HIV-infected cell clones in the maintenance of the replication-competent reservoir and suggests that infected cell clones can directly contribute to rebound viremia upon ATI.
Collapse
|
21
|
Christian ML, Dapp MJ, Scharffenberger SC, Jones H, Song C, Frenkel LM, Krumm A, Mullins JI, Rawlings DJ. CRISPR/Cas9-Mediated Insertion of HIV Long Terminal Repeat within BACH2 Promotes Expansion of T Regulatory-like Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1700-1710. [PMID: 35264460 PMCID: PMC8976747 DOI: 10.4049/jimmunol.2100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
One key barrier to curative therapies for HIV is the limited understanding of HIV persistence. HIV provirus integration sites (ISs) within BACH2 are common, and almost all sites mapped to date are located upstream of the start codon in the same transcriptional orientation as the gene. These unique features suggest the possibility of insertional mutagenesis at this location. Using CRISPR/Cas9-based homology-directed repair in primary human CD4+ T cells, we directly modeled the effects of HIV integration within BACH2 Integration of the HIV long terminal repeat (LTR) and major splice donor increased BACH2 mRNA and protein levels, altered gene expression, and promoted selective outgrowth of an activated, proliferative, and T regulatory-like cell population. In contrast, introduction of the HIV-LTR alone or an HIV-LTR-major splice donor construct into STAT5B, a second common HIV IS, had no functional impact. Thus, HIV LTR-driven BACH2 expression modulates T cell programming and leads to cellular outgrowth and unique phenotypic changes, findings that support a direct role for IS-dependent HIV-1 persistence.
Collapse
Affiliation(s)
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | | | - Hank Jones
- Seattle Children's Research Institute, Seattle, WA
| | - Chaozhong Song
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | - Lisa M Frenkel
- Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA
- Department of Global Health, University of Washington, School of Medicine, Seattle, WA
| | - Anthony Krumm
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA;
- Department of Global Health, University of Washington, School of Medicine, Seattle, WA
- Department of Medicine, University of Washington, School of Medicine, Seattle, WA; and
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA;
- Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
- Department of Immunology, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
22
|
Einkauf KB, Osborn MR, Gao C, Sun W, Sun X, Lian X, Parsons EM, Gladkov GT, Seiger KW, Blackmer JE, Jiang C, Yukl SA, Rosenberg ES, Yu XG, Lichterfeld M. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 2022; 185:266-282.e15. [PMID: 35026153 PMCID: PMC8809251 DOI: 10.1016/j.cell.2021.12.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
Abstract
HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.
Collapse
Affiliation(s)
- Kevin B Einkauf
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew R Osborn
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, Hangzhou Normal University, Zhejiang, P.R. China
| | - Xiaodong Lian
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth M Parsons
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Kyra W Seiger
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jane E Blackmer
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Steven A Yukl
- San Francisco VA Medical Center, University of California at San Francisco, San Francisco, CA 94121, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
24
|
Crespo-Bermejo C, de Arellano ER, Lara-Aguilar V, Valle-Millares D, Gómez-Lus ML, Madrid R, Martín-Carbonero L, Briz V. Persistent low-Level viremia in persons living with HIV undertreatment: An unresolved status. Virulence 2021; 12:2919-2931. [PMID: 34874239 PMCID: PMC8654475 DOI: 10.1080/21505594.2021.2004743] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) allows suppressed viremia to reach less than 50 copies/mL in most treated persons living with HIV (PLWH). However, the existence of PLWH that show events of persistent low-level viremia (pLLV) between 50 and 1000 copies/mL and with different virological consequences have been observed. PLLV has been associated with higher virological failure (VF), viral genotype resistance, adherence difficulties and AIDS events. Moreover, some reports show that pLLV status can lead to residual immune activation and inflammation, with an increased risk of immunovirological failure and a pro-inflammatory cytokine level which can lead to a higher occurrence of non-AIDS defining events (NADEs) and other adverse clinical outcomes. Until now, however, published data have shown controversial results that hinder understanding of the true cause(s) and origin(s) of this phenomenon. Molecular mechanisms related to viral reservoir size and clonal expansion have been suggested as the possible origin of pLLV. This review aims to assess recent findings to provide a global view of the role of pLLV in PLWH and the impact this status may cause on the clinical progression of these patients.
Collapse
Affiliation(s)
- Celia Crespo-Bermejo
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Violeta Lara-Aguilar
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Mª Luisa Gómez-Lus
- Departamento de Medicina- Área de Microbiología. Facultad de Medicina. Universidad Complutense, Madrid, Spain
| | - Ricardo Madrid
- Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain.,Department of Genetics, Physiology and Microbiology. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Luz Martín-Carbonero
- Unidad de Vih. Servicio de Medicina Interna. Hospital Universitario La Paz. Instituto de Investigación Sanitaria Hospital de La Paz (Idipaz), Madrid, Spain
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| |
Collapse
|
25
|
Siliciano JD, Siliciano RF. In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:271-294. [PMID: 34736342 DOI: 10.1146/annurev-pathol-050520-112001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
26
|
Micklethwaite KP, Gowrishankar K, Gloss BS, Li Z, Street JA, Moezzi L, Mach MA, Sutrave G, Clancy LE, Bishop DC, Louie RHY, Cai C, Foox J, MacKay M, Sedlazeck FJ, Blombery P, Mason CE, Luciani F, Gottlieb DJ, Blyth E. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 2021; 138:1391-1405. [PMID: 33974080 PMCID: PMC8532197 DOI: 10.1182/blood.2021010858] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022] Open
Abstract
We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma. Screening of other patients led to the detection, in an asymptomatic patient, of a second CAR T-cell tumor in thoracic para-aortic lymph nodes. Analysis of the first lymphoma showed a high transgene copy number, but no insertion into typical oncogenes. There were also structural changes such as altered genomic copy number and point mutations unrelated to the insertion sites. Transcriptome analysis showed transgene promoter-driven upregulation of transcription of surrounding regions despite insulator sequences surrounding the transgene. However, marked global changes in transcription predominantly correlated with gene copy number rather than insertion sites. In both patients, the CAR T-cell-derived lymphoma progressed and 1 patient died. We describe the first 2 cases of malignant lymphoma derived from CAR gene-modified T cells. Although CAR T cells have an enviable record of safety to date, our results emphasize the need for caution and regular follow-up of CAR T recipients, especially when novel methods of gene transfer are used to create genetically modified immune therapies. This trial was registered at www.anzctr.org.au as ACTRN12617001579381.
Collapse
MESH Headings
- Aged
- DNA Transposable Elements
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/therapy
- Lymphoma/etiology
- Lymphoma/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/therapy
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- T-Lymphocytes/metabolism
- Transcriptome
- Transgenes
Collapse
Affiliation(s)
- Kenneth P Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kavitha Gowrishankar
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ziduo Li
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Janine A Street
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Leili Moezzi
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Melanie A Mach
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gaurav Sutrave
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Leighton E Clancy
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - David C Bishop
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Raymond H Y Louie
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - Curtis Cai
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - Jonathan Foox
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
| | - Matthew MacKay
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, College of Medicine, Baylor University, Houston, TX
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher E Mason
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY
- The Feil Family Brain and Mind Research Institute, New York, NY; and
- The WorldQuant Initiative for Quantitative Prediction, New York, NY
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney. NSW, Australia
| | - David J Gottlieb
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Yeh YHJ, Yang K, Razmi A, Ho YC. The Clonal Expansion Dynamics of the HIV-1 Reservoir: Mechanisms of Integration Site-Dependent Proliferation and HIV-1 Persistence. Viruses 2021; 13:1858. [PMID: 34578439 PMCID: PMC8473165 DOI: 10.3390/v13091858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases. HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
| | | | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA; (Y.-H.J.Y.); (K.Y.); (A.R.)
| |
Collapse
|
28
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Pasternak AO, Berkhout B. The Splice of Life: Does RNA Processing Have a Role in HIV-1 Persistence? Viruses 2021; 13:v13091751. [PMID: 34578332 PMCID: PMC8471011 DOI: 10.3390/v13091751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 replication but does not eradicate the virus. Persistence of HIV-1 latent reservoirs in ART-treated individuals is considered the main obstacle to achieving an HIV-1 cure. However, these HIV-1 reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. HIV-1 latency is regulated at the transcriptional and at multiple post-transcriptional levels. Here, we review recent insights into the possible contribution of viral RNA processing to the persistence of HIV-1 reservoirs, and discuss the clinical implications of persistence of viral RNA species in ART-treated individuals.
Collapse
|
30
|
|
31
|
Insights from Clonal Expansion and HIV Persistence in Perinatal Infections. mBio 2021; 12:e0098321. [PMID: 34425702 PMCID: PMC8406253 DOI: 10.1128/mbio.00983-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The latent HIV reservoir forms early in the course of infection and is maintained for life despite effective antiretroviral treatment (ART), including early treatment. Perinatal HIV infection presents a unique opportunity to limit seeding of the reservoir through early ART. However, a greater understanding of the persistence of the integrated proviruses is needed for targeting the residual proviruses that form barriers to cure. A study was performed by Bale and Katusiime et al. (M. J. Bale, M. G. Katusiime, D. Wells, X. Wu, et al., mBio 12:e00568-21, 2021, https://doi.org/10.1128/mBio.00568-21) using in-depth integration site analysis in 11 children before ART and after up to nine years of ART. They have identified early development of long-lived proviruses, although the replication competence is unknown. A small fraction of cells bearing integrated proviruses clonally expand early during infection and persist. Integration in the oncogenes STAT5B and BACH2 were also found; these findings confirm the early development of clonal proliferation in perinatal HIV infection despite early effective ART, with a propensity for oncogenes.
Collapse
|
32
|
Bedwell GJ, Jang S, Li W, Singh PK, Engelman AN. rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration in vitro and in vivo. Nucleic Acids Res 2021; 49:7330-7346. [PMID: 34165568 PMCID: PMC8287940 DOI: 10.1093/nar/gkab514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Liu R, Yeh YHJ, Varabyou A, Collora JA, Sherrill-Mix S, Talbot CC, Mehta S, Albrecht K, Hao H, Zhang H, Pollack RA, Beg SA, Calvi RM, Hu J, Durand CM, Ambinder RF, Hoh R, Deeks SG, Chiarella J, Spudich S, Douek DC, Bushman FD, Pertea M, Ho YC. Single-cell transcriptional landscapes reveal HIV-1-driven aberrant host gene transcription as a potential therapeutic target. Sci Transl Med 2021; 12:12/543/eaaz0802. [PMID: 32404504 DOI: 10.1126/scitranslmed.aaz0802] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Understanding HIV-1-host interactions can identify the cellular environment supporting HIV-1 reactivation and mechanisms of clonal expansion. We developed HIV-1 SortSeq to isolate rare HIV-1-infected cells from virally suppressed, HIV-1-infected individuals upon early latency reversal. Single-cell transcriptome analysis of HIV-1 SortSeq+ cells revealed enrichment of nonsense-mediated RNA decay and viral transcription pathways. HIV-1 SortSeq+ cells up-regulated cellular factors that can support HIV-1 transcription (IMPDH1 and JAK1) or promote cellular survival (IL2 and IKBKB). HIV-1-host RNA landscape analysis at the integration site revealed that HIV-1 drives high aberrant host gene transcription downstream, but not upstream, of the integration site through HIV-1-to-host aberrant splicing, in which HIV-1 RNA splices into the host RNA and aberrantly drives host RNA transcription. HIV-1-induced aberrant transcription was driven by the HIV-1 promoter as shown by CRISPR-dCas9-mediated HIV-1-specific activation and could be suppressed by CRISPR-dCas9-mediated inhibition of HIV-1 5' long terminal repeat. Overall, we identified cellular factors supporting HIV-1 reactivation and HIV-1-driven aberrant host gene transcription as potential therapeutic targets to disrupt HIV-1 persistence.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Yang-Hui Jimmy Yeh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ales Varabyou
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06519, USA
| | - Kristen Albrecht
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haiping Hao
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ross A Pollack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachela M Calvi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jianfei Hu
- Vaccine Research Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard F Ambinder
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94110, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mihaela Pertea
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
34
|
Cole B, Lambrechts L, Gantner P, Noppe Y, Bonine N, Witkowski W, Chen L, Palmer S, Mullins JI, Chomont N, Pardons M, Vandekerckhove L. In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia. Nat Commun 2021; 12:3727. [PMID: 34140517 PMCID: PMC8211655 DOI: 10.1038/s41467-021-24080-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Clonal expansion of HIV-infected cells contributes to the long-term persistence of the HIV reservoir in ART-suppressed individuals. However, the contribution from cell clones that harbor inducible proviruses to plasma viremia is poorly understood. Here, we describe a single-cell approach to simultaneously sequence the TCR, integration sites and proviral genomes from translation-competent reservoir cells, called STIP-Seq. By applying this approach to blood samples from eight participants, we show that the translation-competent reservoir mainly consists of proviruses with short deletions at the 5'-end of the genome, often involving the major splice donor site. TCR and integration site sequencing reveal that cell clones with predicted pathogen-specificity can harbor inducible proviruses integrated into cancer-related genes. Furthermore, we find several matches between proviruses retrieved with STIP-Seq and plasma viruses obtained during ART and upon treatment interruption, suggesting that STIP-Seq can capture clones that are responsible for low-level viremia or viral rebound.
Collapse
Affiliation(s)
- Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Noah Bonine
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
35
|
Katusiime MG, Van Zyl GU, Cotton MF, Kearney MF. HIV-1 Persistence in Children during Suppressive ART. Viruses 2021; 13:v13061134. [PMID: 34204740 PMCID: PMC8231535 DOI: 10.3390/v13061134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| | - Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service Tygerberg, Cape Town 8000, South Africa;
| | - Mark F. Cotton
- Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Center for Research with Ubuntu, Stellenbosch University, Cape Town 7505, South Africa;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
36
|
Martin GE, Sen DR, Pace M, Robinson N, Meyerowitz J, Adland E, Thornhill JP, Jones M, Ogbe A, Parolini L, Olejniczak N, Zacharopoulou P, Brown H, Willberg CB, Nwokolo N, Fox J, Fidler S, Haining WN, Frater J. Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy. Front Immunol 2021; 12:647688. [PMID: 34149690 PMCID: PMC8213372 DOI: 10.3389/fimmu.2021.647688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
T cell dysfunction occurs early following HIV infection, impacting the emergence of non-AIDS morbidities and limiting curative efforts. ART initiated during primary HIV infection (PHI) can reverse this dysfunction, but the extent of recovery is unknown. We studied 66 HIV-infected individuals treated from early PHI with up to three years of ART. Compared with HIV-uninfected controls, CD4 and CD8 T cells from early HIV infection were characterised by T cell activation and increased expression of the immune checkpoint receptors (ICRs) PD1, Tim-3 and TIGIT. Three years of ART lead to partial – but not complete – normalisation of ICR expression, the dynamics of which varied for individual ICRs. For HIV-specific cells, epigenetic profiling of tetramer-sorted CD8 T cells revealed that epigenetic features of exhaustion typically seen in chronic HIV infection were already present early in PHI, and that ART initiation during PHI resulted in only a partial shift of the epigenome to one with more favourable memory characteristics. These findings suggest that although ART initiation during PHI results in significant immune reconstitution, there may be only partial resolution of HIV-related phenotypic and epigenetic changes.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Debattama R Sen
- Department of Immunology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' National Health Service (NHS) Trust, London, United Kingdom.,King's College National Institute of Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College NIHR Biomedical Research Centre, London, United Kingdom
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Discovery Oncology and Immunology, Merck Research Laboratories, Boston, MA, United States
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
37
|
Integration in oncogenes plays only a minor role in determining the in vivo distribution of HIV integration sites before or during suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009141. [PMID: 33826675 PMCID: PMC8055010 DOI: 10.1371/journal.ppat.1009141] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist. In HIV-infected individuals, a small fraction of the infected cells persist and divide. This reservoir persists during fully suppressive ART and can rekindle the infection if ART is discontinued. Because the number of possible sites of HIV DNA integration is very large, each infected cell, and all of its descendants, can be identified by the site where the provirus is integrated (IS). To understand the selective forces that determine the fates of infected cells in vivo, we compared the distribution of HIV IS in freshly-infected cells to cells from HIV-infected donors sampled both before and during ART. We found that, as previously reported, integration favors highly-expressed genes. However, over time, the fraction of cells with proviruses integrated in highly-expressed genes decreases, implying that they grow less well. There are exceptions to this broad negative selection. When a provirus is integrated in a specific region in one of seven genes, the proviruses affect the expression of the target gene, promoting growth and/or survival of the cell. Although this effect is striking, it is only a minor component of the forces that promote the growth and survival of the population of infected cells during ART.
Collapse
|
38
|
Artesi M, Hahaut V, Cole B, Lambrechts L, Ashrafi F, Marçais A, Hermine O, Griebel P, Arsic N, van der Meer F, Burny A, Bron D, Bianchi E, Delvenne P, Bours V, Charlier C, Georges M, Vandekerckhove L, Van den Broeke A, Durkin K. PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biol 2021; 22:97. [PMID: 33823910 PMCID: PMC8025556 DOI: 10.1186/s13059-021-02307-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.
Collapse
Affiliation(s)
- Maria Artesi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Vincent Hahaut
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Fereshteh Ashrafi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ambroise Marçais
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine: Ecosystem and Public Health, Calgary, AB Canada
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Human Genetics, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Keith Durkin
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| |
Collapse
|
39
|
Janssens J, Bruggemans A, Christ F, Debyser Z. Towards a Functional Cure of HIV-1: Insight Into the Chromatin Landscape of the Provirus. Front Microbiol 2021; 12:636642. [PMID: 33868195 PMCID: PMC8044952 DOI: 10.3389/fmicb.2021.636642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Despite potent combination antiretroviral therapy, HIV-1 infection persists due to irreversible integration of the virus in long-living cells of the immune system. The main focus of HIV-1 cure strategies has been on HIV-1 eradication, yet without great success so far. Therefore, HIV-1 remission or a functional cure, whereby the virus is silenced rather than eradicated, is considered as an alternative strategy. Elite controllers, individuals who spontaneously control HIV-1, may point us the way toward a functional HIV-1 cure. In order to achieve such a cure, a profound understanding of the mechanisms controlling HIV-1 expression and silencing is needed. In recent years, evidence has grown that the site of integration as well as the chromatin landscape surrounding the integration site affects the transcriptional state of the provirus. Still, at present, the impact of integration site selection on the establishment and maintenance of the HIV-1 reservoirs remains poorly understood. The discovery of LEDGF/p75 as a binding partner of HIV-1 integrase has led to a better understanding of integration site selection. LEDGF/p75 is one of the important determinants of integration site selection and targets integration toward active genes. In this review, we will provide an overview of the most important determinants of integration site selection. Secondly, we will discuss the chromatin landscape at the integration site and its implications on HIV-1 gene expression and silencing. Finally, we will discuss how interventions that affect integration site selection or modifications of the chromatin could yield a functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Cheng LC, Kao TJ, Phan NN, Chiao CC, Yen MC, Chen CF, Hung JH, Jiang JZ, Sun Z, Wang CY, Hsu HP. Novel signaling pathways regulate SARS-CoV and SARS-CoV-2 infectious disease. Medicine (Baltimore) 2021; 100:e24321. [PMID: 33607766 PMCID: PMC7899890 DOI: 10.1097/md.0000000000024321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li-Chin Cheng
- Division of Colorectal Surgery, Department of Surgery, Chi-Mei Medical Center
| | - Tzu-Jen Kao
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh (NTT) University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai, People's Republic of China
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, the Permanente Medical Group, Berkeley, CA, USA
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
41
|
Yeh YHJ, Jenike KM, Calvi RM, Chiarella J, Hoh R, Deeks SG, Ho YC. Filgotinib suppresses HIV-1-driven gene transcription by inhibiting HIV-1 splicing and T cell activation. J Clin Invest 2021; 130:4969-4984. [PMID: 32573496 DOI: 10.1172/jci137371] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy, HIV-1-infected cells continue to produce viral antigens and induce chronic immune exhaustion. We propose to identify HIV-1-suppressing agents that can inhibit HIV-1 reactivation and reduce HIV-1-induced immune activation. Using a newly developed dual-reporter system and a high-throughput drug screen, we identified FDA-approved drugs that can suppress HIV-1 reactivation in both cell line models and CD4+ T cells from virally suppressed HIV-1-infected individuals. We identified 11 cellular pathways required for HIV-1 reactivation as druggable targets. Using differential expression analysis, gene set enrichment analysis, and exon-intron landscape analysis, we examined the impact of drug treatment on the cellular environment at a genome-wide level. We identified what we believe to be a new function of a JAK inhibitor, filgotinib, that suppresses HIV-1 splicing. First, filgotinib preferentially suppresses spliced HIV-1 RNA transcription. Second, filgotinib suppresses HIV-1-driven aberrant cancer-related gene expression at the integration site. Third, we found that filgotinib suppresses HIV-1 transcription by inhibiting T cell activation and by modulating RNA splicing. Finally, we found that filgotinib treatment reduces the proliferation of HIV-1-infected cells. Overall, the combination of a drug screen and transcriptome analysis provides systematic understanding of cellular targets required for HIV-1 reactivation and drug candidates that may reduce HIV-1-related immune activation.
Collapse
Affiliation(s)
- Yang-Hui Jimmy Yeh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katharine M Jenike
- Human Genetics PhD Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachela M Calvi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Abstract
In vivo clonal expansion of HIV-infected T cells is an important mechanism of viral persistence. In some cases, clonal expansion is driven by HIV proviral DNA integrated into one of a handful of genes. To investigate this phenomenon in vitro, we infected primary CD4+ T cells with an HIV construct expressing GFP and, after nearly 2 mo of culture and multiple rounds of activation, analyzed the resulting integration site distribution. In each of three replicates from each of two donors, we detected large clusters of integration sites with multiple breakpoints, implying clonal selection. These clusters all mapped to a narrow region within the STAT3 gene. The presence of hybrid transcripts splicing HIV to STAT3 sequences supports a model of LTR-driven STAT3 overexpression as a driver of preferential growth. Thus, HIV integration patterns linked to selective T cell outgrowth can be reproduced in cell culture. The single report of an HIV provirus in a case of AIDS-associated B-cell lymphoma with an HIV provirus in the same part of STAT3 also has implications for HIV-induced malignancy.
Collapse
|
44
|
Transcriptional behavior of the HIV-1 promoter in context of the BACH2 prominent proviral integration gene. Virus Res 2020; 293:198260. [PMID: 33316352 DOI: 10.1016/j.virusres.2020.198260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
Chronic infection with human immunodeficiency virus (HIV)-1 is characterized by accumulation of proviral sequences in the genome of target cells. Integration of viral DNA in patients on long-term antiretroviral therapy selectively persists at preferential loci, suggesting site-specific crosstalk of viral sequences and human genes. This crosstalk likely contributes to chronic HIV disease through modulation of host immune pathways and emergence of clonal infected cell populations. To systematically interrogate such effects, we undertook genome engineering to generate Jurkat cell models that replicate integration of HIV-1 long terminal repeat (LTR) sequences at the BTB and CNC Homolog 2 (BACH2) integration locus. This locus is a prominent HIV-1 integration gene in chronic infection, found in 30 % of long-term treated patients with mapped proviral integrations. Using five clonal models carrying an LTR-driven reporter at different BACH2 intergenic regions, we here show that LTR transcriptional activity is repressed in BACH2 regions associated with proviral-DNA integrations in vivo but not in a control region. Our data indicates that this repression is in part epigenetically regulated, particularly through DNA methylation. Importantly, we demonstrate that transcriptional activity of the LTR is independent of BACH2 gene transcription and vice versa in our models. This suggests no transcriptional interference of endogenous and HIV-1 promoters. Taken together, our study provides first insights into how activity of HIV-1 LTR sequences is regulated at the BACH2 locus as prominent example for a recurrently-detected integration gene in chronic infection. Given the importance of integration-site dependent virus/host crosstalk for chronic HIV disease, our findings for the BACH2 locus have potential implications for future therapeutic strategies.
Collapse
|
45
|
Inderbitzin A, Kok YL, Jörimann L, Kelley A, Neumann K, Heinzer D, Cathomen T, Metzner KJ. HIV-1 promoter is gradually silenced when integrated into BACH2 in Jurkat T-cells. PeerJ 2020; 8:e10321. [PMID: 33282555 PMCID: PMC7694569 DOI: 10.7717/peerj.10321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The persistence of the latent HIV-1 reservoir is a major obstacle to curing HIV-1 infection. HIV-1 integrates into the cellular genome and some targeted genomic loci are frequently detected in clonally expanded latently HIV-1 infected cells, for instance, the gene BTB domain and CNC homology 2 (BACH2). METHODS We investigated HIV-1 promoter activity after integration into specific sites in BACH2 in Jurkat T-cells. The HIV-1-based vector LTatCL[M] contains two fluorophores: (1) Cerulean, which reports the activity of the HIV-1 promoter and (2) mCherry driven by a constitutive promotor and flanked by genetic insulators. This vector was inserted into introns 2 and 5 of BACH2 of Jurkat T-cells via CRISPR/Cas9 technology in the same and convergent transcriptional orientation of BACH2, and into the genomic safe harbour AAVS1. Single cell clones representing active (Cerulean+/mCherry+) and inactive (Cerulean-/mCherry+) HIV-1 promoters were characterised. RESULTS Upon targeted integration of the 5.3 kb vector LTatCL[M] into BACH2, the HIV-1 promoter was gradually silenced as reflected by the decrease in Cerulean expression over a period of 162 days. Silenced HIV-1 promoters could be reactivated by TNF-α and Romidepsin. This observation was independent of the targeted intron and the transcriptional orientation. BACH2 mRNA and protein expression was not impaired by mono-allelic integration of LTatCL[M]. CONCLUSION Successful targeted integration of the HIV-1-based vector LTatCL[M] allows longitudinal analyses of HIV-1 promoter activity.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Yik Lim Kok
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Audrey Kelley
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Daniel Heinzer
- Institute for Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, Matera G, Cabiati B, Buracchi C, Borleri G, Fazio G, Zaninelli S, Tettamanti S, Cesana S, Colombo V, Quaroni M, Cazzaniga G, Rovelli A, Biagi E, Galimberti S, Calabria A, Benedicenti F, Montini E, Ferrari S, Introna M, Balduzzi A, Valsecchi MG, Dastoli G, Rambaldi A, Biondi A. Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest 2020; 130:6021-6033. [PMID: 32780725 PMCID: PMC7598053 DOI: 10.1172/jci138473] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDChimeric antigen receptor (CAR) T cell immunotherapy has resulted in complete remission (CR) and durable response in highly refractory patients. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability.METHODSWe report the early results of a phase I/II trial in B cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into cytokine-induced killer (CIK) cells.RESULTSThe cellular product was produced successfully for all patients from the donor peripheral blood (PB) and consisted mostly of CD3+ lymphocytes with 43% CAR expression. Four pediatric and 9 adult patients were infused with a single dose of CAR T cells. Toxicities reported were 2 grade I and 1 grade II cytokine-release syndrome (CRS) cases at the highest dose in the absence of graft-versus-host disease (GVHD), neurotoxicity, or dose-limiting toxicities. Six out of 7 patients receiving the highest doses achieved CR and CR with incomplete blood count recovery (CRi) at day 28. Five out of 6 patients in CR were also minimal residual disease negative (MRD-). Robust expansion was achieved in the majority of the patients. CAR T cells were measurable by transgene copy PCR up to 10 months. Integration site analysis showed a positive safety profile and highly polyclonal repertoire in vitro and at early time points after infusion.CONCLUSIONSB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Antileukemic activity was achieved without severe toxicities.TRIAL REGISTRATIONClinicalTrials.gov NCT03389035.FUNDINGThis study was supported by grants from the Fondazione AIRC per la Ricerca sul Cancro (AIRC); Cancer Research UK (CRUK); the Fundación Científica de la Asociación Española Contra el Cáncer (FC AECC); Ministero Della Salute; Fondazione Regionale per la Ricerca Biomedica (FRRB).
Collapse
Affiliation(s)
- Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Giuseppe Gaipa
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Federico Lussana
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Belotti
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
- Department of Pediatrics, University of Milano–Bicocca, Milan, Italy
| | - Giuseppe Gritti
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Sara Napolitano
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Giada Matera
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Benedetta Cabiati
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Chiara Buracchi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Gianmaria Borleri
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Grazia Fazio
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | | | - Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Stefania Cesana
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Michele Quaroni
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Attilio Rovelli
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Ettore Biagi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano–Bicocca, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)/IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ferrari
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Martino Introna
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
- USS Centro di Terapia Cellulare “G. Lanzani,” Bergamo, Italy
| | - Adriana Balduzzi
- Department of Pediatrics, University of Milano–Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano–Bicocca, Milan, Italy
| | - Giuseppe Dastoli
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
- Laboratorio di Terapia Cellulare e Genica Stefano Verri, ASST-Monza, Ospedale San Gerardo, Monza, Italy
- Clinica Pediatrica, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| |
Collapse
|
47
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
49
|
Cells producing residual viremia during antiretroviral treatment appear to contribute to rebound viremia following interruption of treatment. PLoS Pathog 2020; 16:e1008791. [PMID: 32841299 PMCID: PMC7473585 DOI: 10.1371/journal.ppat.1008791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/04/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
During antiretroviral therapy (ART) that suppresses HIV replication to below the limit-of-quantification, virions produced during ART can be detected at low frequencies in the plasma, termed residual viremia (RV). We hypothesized that a reservoir of HIV-infected cells actively produce and release virions during ART that are potentially infectious, and that following ART-interruption, these virions can complete full-cycles of replication and contribute to rebound viremia. Therefore, we studied the dynamics of RV sequence variants in 3 participants who initiated ART after ~3 years of infection and were ART-suppressed for >6 years prior to self-initiated ART-interruptions. Longitudinal RV C2V5env sequences were compared to sequences from pre-ART plasma, supernatants of quantitative viral outgrowth assays (QVOA) of cells collected during ART, post-ART-interruption plasma, and ART-re-suppression plasma. Identical, “putatively clonal,” RV sequences comprised 8–84% of sequences from each timepoint. The majority of RV sequences were genetically similar to those from plasma collected just prior to ART-initiation, but as the duration of ART-suppression increased, an increasing proportion of RV variants were similar to sequences from earlier in infection. Identical sequences were detected in RV over a median of 3 years (range: 0.3–8.2) of ART-suppression. RV sequences were identical to pre-ART plasma viruses (5%), infectious viruses induced in QVOA (4%) and rebound viruses (5%) (total n = 21/154 (14%) across the 3 participants). RV sequences identical to ART-interruption “rebound” sequences were detected 0.1–7.4 years prior to ART-interruption. RV variant prevalence and persistence were not associated with detection of the variant among rebound sequences. Shortly after ART-re-suppression, variants that had been replicating during ART-interruptions were detected as RV (n = 5). These studies show a dynamic, virion-producing HIV reservoir that contributes to rekindling infection upon ART-interruption. The persistence of identical RV variants over years suggests that a subpopulation of HIV-infected clones frequently or continuously produce virions that may resist immune clearance; this suggests that cure strategies should target this active as well as latent reservoirs. HIV-infected individuals receiving effective antiretroviral treatment (ART) produce virions detected in the blood at very low levels, termed residual viremia (RV). To understand the significance of RV as related to the persistence of HIV infection, we characterized the dynamics of RV sequence variants among plasma viruses over nearly a decade of ART and assessed whether RV contributed to rekindling viremia upon ART-interruption. The HIV reservoir producing RV appeared to be “seeded” at various times before ART-initiation. Identical RV sequences likely produced by a clonal cell population, varied over time, with unique sequence variants persisting over a median of 3 years. A subset of RV variants (14%) were identical to viruses found in pre-ART plasma, infectious viruses induced from cultured CD4+ T blood lymphocytes collected during ART, or in rebound plasma during ART-interruption. The persistence of unique RV variants over years, infers that the clones of HIV-infected cells producing these virions resist immune clearance or a subset of these clones are activated on a rolling basis, and that novel treatment strategies are needed to target this active reservoir that contributes to viral rebound.
Collapse
|
50
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|