1
|
Peters FD, Rahman T, Zhang H, Wan LQ. Energetic scaling behavior of patterned epithelium. J Biomech 2024; 176:112342. [PMID: 39342903 DOI: 10.1016/j.jbiomech.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Cellular monolayers display various degrees of coordinated motion ranging from the small scale of just a few cells to large multi-cellular scales. This collective migration carries important physical cues for creating proper tissue morphology. Previous studies have demonstrated that the energetics of the epithelial monolayer show a linear variation with time in conjunction with an arrest in monolayer motion after confluency. However, little is known about how the energetics of monolayer development are affected by confined geometries. Here, we demonstrate that micropatterned epithelial monolayers display a non-linear change in energetic variables, which coincides with the large-scale coordination of migration. This non-linear scaling behavior was further seen to be associated with the biased alignment of cells and cell-cell adhesion. These findings provide a new understanding of how developing epithelia may be impacted by different conditions in vivo.
Collapse
Affiliation(s)
- Frank D Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
2
|
Lin Y, Silverman-Dultz A, Bailey M, Cohen DJ. SCRATCH: A programmable, open-hardware, benchtop robot that automatically scratches cultured tissues to investigate cell migration, healing, and tissue sculpting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609782. [PMID: 39314419 PMCID: PMC11418959 DOI: 10.1101/2024.08.27.609782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite the widespread popularity of the 'scratch assay', where a pipette is dragged through cultured tissue to create an injury gap to study cell migration and healing, the manual nature of the assay carries significant drawbacks. So much of the process depends on individual manual technique, which can complicate quantification, reduce throughput, and limit the versatility and reproducibility of the approach. Here, we present a truly open-source, low-cost, accessible, and robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, we demonstrate how scratching can be programmed to precisely remove areas of tissue to sculpt arbitrary tissue and wound shapes, as well as enable truly complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay, and opens up new possibilities in complex tissue engineering and cell biological assays for realistic wound healing and migration research.
Collapse
Affiliation(s)
- Yubin Lin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08540
| | | | - Madeline Bailey
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08540
| |
Collapse
|
3
|
Saporito S, Panzetta V, Netti PA. Time and space modulation of substrate curvature to regulate cell mechanical identity. Acta Biomater 2024; 186:300-315. [PMID: 39127326 DOI: 10.1016/j.actbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Recently, a variety of microenvironmental biophysical stimuli have been proved to play a crucial role in regulating cell functions. Among them, morpho-physical cues, like curvature, are emerging as key regulators of cellular behavior. Changes in substrate curvature have been shown to impact the arrangement of Focal Adhesions (FAs), influencing the direction and intensity of cytoskeleton generated forces and resulting in an overall alteration of cell mechanical identity. In their native environment, cells encounter varying degrees of substrate curvature, and in specific organs, they are exposed to dynamic changes of curvature due to periodic tissue deformation. However, the mechanism by which cells perceive substrate curvature remains poorly understood. To this aim, a micro-pneumatic device was designed and implemented. This device enables the controlled application of substrate curvature, both statically and dynamically. Employing a combined experimental and simulative approach, human adipose-derived stem cells were exposed to controlled curvature intensity and frequency. During this exposure, measurements were taken on FAs extension and orientation, cytoskeleton organization and cellular/nuclear alignment. The data clearly indicated a significant influence of the substrate curvature on cell adhesion processes. These findings contribute to a better understanding of the mechanisms through which cells perceive and respond to substrate curvature signals. STATEMENT OF SIGNIFICANCE: This work is our contribution to the comprehension of substrate curvature's function as a crucial regulator of cell adhesion at the scale of focal adhesions and cell mechanical identity. In recent years, a large body of knowledge is continuously growing providing comprehension of the role of various microenvironmental biophysical stimuli in regulating cell functions. Nevertheless, little is known about the role of substrate curvature, in particular, when cells are exposed to this stimulus in a dynamic manner. To address the role of substrate curvature on cellular behavior, a micro-pneumatic device was designed and implemented. This device enables the controlled application of substrate curvature, both statically and dynamically. The experiment data made it abundantly evident that the substrate curvature had a major impact on the mechanisms involved in cell adhesion.
Collapse
Affiliation(s)
- Stefania Saporito
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy; Interdisciplinary research Center on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy; Interdisciplinary research Center on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Nguyen ML, Demri N, Lapin B, Di Federico F, Gropplero G, Cayrac F, Hennig K, Gomes ER, Wilhelm C, Roman W, Descroix S. Studying the impact of geometrical and cellular cues on myogenesis with a skeletal muscle-on-chip. LAB ON A CHIP 2024; 24:4147-4160. [PMID: 39072529 DOI: 10.1039/d4lc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the skeletal muscle tissue, cells are organized following an anisotropic architecture, which is both required during myogenesis when muscle precursor cells fuse to generate myotubes and for its contractile function. To build an in vitro skeletal muscle tissue, it is therefore essential to develop methods to organize cells in an anisotropic fashion, which can be particularly challenging, especially in 3D. In this study, we present a versatile muscle-on-chip system with adjustable collagen hollow tubes that can be seeded with muscle precursor cells. The collagen acts both as a tube-shaped hollow mold and as an extracellular matrix scaffold that can house other cell types for co-culture. We found that the diameter of the channel affects the organization of the muscle cells and that proper myogenesis was obtained at a diameter of 75 μm. In these conditions, muscle precursor cells fused into long myotubes aligned along these collagen channels, resulting in a fascicle-like structure. These myotubes exhibited actin striations and upregulation of multiple myogenic genes, reflecting their maturation. Moreover, we showed that our chip allowed muscle tissue culture and maturation over a month, with the possibility of fibroblast co-culture embedding in the collagen matrix.
Collapse
Affiliation(s)
- M-L Nguyen
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - N Demri
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - B Lapin
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Di Federico
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - G Gropplero
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Cayrac
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - K Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - C Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - W Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - S Descroix
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| |
Collapse
|
5
|
Kou H, Han Q, Zhang H, Xu C, Liao L, Hou Y, Wang H, Zhang J. Impact of changes in collagen construction and molecular state on integrin - binding properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1523-1536. [PMID: 38574261 DOI: 10.1080/09205063.2024.2338004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2β1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2β1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2β1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.
Collapse
Affiliation(s)
- Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qingqiu Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huihui Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Liao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Raab M, Christodoulou E, Krishnankutty R, Gradinaru A, Walker AD, Olaizola P, Younger NT, Lyons AM, Jarman EJ, Gournopanos K, von Kriegsheim A, Waddell SH, Boulter L. Van Gogh-like 2 is essential for the architectural patterning of the mammalian biliary tree. J Hepatol 2024; 81:108-119. [PMID: 38460794 DOI: 10.1016/j.jhep.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFβ signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.
Collapse
Affiliation(s)
- Michaela Raab
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Andreea Gradinaru
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Paula Olaizola
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | - Edward Joseph Jarman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | | | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK; Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK.
| |
Collapse
|
7
|
Lapin B, Gropplero G, Vandensteen J, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599137. [PMID: 38948811 PMCID: PMC11212944 DOI: 10.1101/2024.06.18.599137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
- Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| |
Collapse
|
8
|
Sadhu RK, Luciano M, Xi W, Martinez-Torres C, Schröder M, Blum C, Tarantola M, Villa S, Penič S, Iglič A, Beta C, Steinbock O, Bodenschatz E, Ladoux B, Gabriele S, Gov NS. A minimal physical model for curvotaxis driven by curved protein complexes at the cell's leading edge. Proc Natl Acad Sci U S A 2024; 121:e2306818121. [PMID: 38489386 PMCID: PMC10963004 DOI: 10.1073/pnas.2306818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Marine Luciano
- Department of Biochemistry, University of Geneva, Geneva4 CH-1211, Switzerland
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Wang Xi
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | | | - Marcel Schröder
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Christoph Blum
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Marco Tarantola
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Stefano Villa
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana1000, Slovenia
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam14476, Germany
- Nano Life Science Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Eberhard Bodenschatz
- Department of Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| | - Benoît Ladoux
- Universite Paris Cite, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, Center of Innovation and Research in Materials and Polymers, University of Mons, MonsB-7000, Belgium
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
9
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biomaterials reprogram collective cell migration and cell cycling by forcing homeostatic conditions. Cell Rep 2024; 43:113743. [PMID: 38358889 DOI: 10.1016/j.celrep.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Cells attach to the world through either cell-extracellular matrix adhesion or cell-cell adhesion, and traditional biomaterials imitate the matrix for integrin-based adhesion. However, materials incorporating cadherin proteins that mimic cell-cell adhesion offer an alternative to program cell behavior and integrate into living tissues. We investigated how cadherin substrates affect collective cell migration and cell cycling in epithelia. Our approach involved biomaterials with matrix proteins on one-half and E-cadherin proteins on the other, forming a "Janus" interface across which we grew a single sheet of cells. Tissue regions over the matrix side exhibited normal collective dynamics, but an abrupt behavior shift occurred across the Janus boundary onto the E-cadherin side, where cells attached to the substrate via E-cadherin adhesions, resulting in stalled migration and slowing of the cell cycle. E-cadherin surfaces disrupted long-range mechanical coordination and nearly doubled the length of the G0/G1 phase of the cell cycle, linked to the lack of integrin focal adhesions on the E-cadherin surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Luciano M, Versaevel M, Kalukula Y, Gabriele S. Mechanoresponse of Curved Epithelial Monolayers Lining Bowl-Shaped 3D Microwells. Adv Healthc Mater 2024; 13:e2203377. [PMID: 37820698 DOI: 10.1002/adhm.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 10/13/2023]
Abstract
The optimal functioning of many organs relies on the curved architecture of their epithelial tissues. However, the mechanoresponse of epithelia to changes in curvature remains misunderstood. Here, bowl-shaped microwells in hydrogels are designed via photopolymerization to faithfully replicate the shape and dimensions of lobular structures. Leveraging these hydrogel-based microwells, curved epithelial monolayers are engineered, and how in-plane and Gaussian curvatures at the microwell entrance influence epithelial behavior is investigated. Cells and nuclei around the microwell edge display a more pronounced centripetal orientation as the in-plane curvature decreases, and enhanced cell straightness and speed. Moreover, cells reorganize their actin cytoskeleton by forming a supracellular actin cable at the microwell edge, with its size becoming more pronounced as the in-plane curvature decreases. The Gaussian curvature at the microwell entrance enhances the maturation of the supracellular actin cable architecture and leads to a vertical orientation of nuclei toward the bottom of the microwell. Increasing Gaussian curvature results in flattened and elongated nuclear morphologies characterized by highly compacted chromatin states. This approach provides better understanding of the mechanoresponse of curved epithelial monolayers curvatures lining lobular structures. In addition, bowl-shaped microwells offer a powerful platform to study curvature-dependent mechanotransduction pathways in anatomically relevant 3D structures.
Collapse
Affiliation(s)
- Marine Luciano
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Marie Versaevel
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Yohalie Kalukula
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| |
Collapse
|
11
|
Wang Z, Servio P, Rey AD. Geometry-structure models for liquid crystal interfaces, drops and membranes: wrinkling, shape selection and dissipative shape evolution. SOFT MATTER 2023. [PMID: 38031449 DOI: 10.1039/d3sm01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We review our recent contributions to anisotropic soft matter models for liquid crystal interfaces, drops and membranes, emphasizing validations with experimental and biological data, and with related theory and simulation literature. The presentation aims to illustrate and characterize the rich output and future opportunities of using a methodology based on the liquid crystal-membrane shape equation applied to static and dynamic pattern formation phenomena. The geometry of static and kinetic shapes is usually described with dimensional curvatures that co-mingle shape and curvedness. In this review, we systematically show how the application of a novel decoupled shape-curvedness framework to practical and ubiquitous soft matter phenomena, such as the shape of drops and tactoids and bending of evolving membranes, leads to deeper quantitative insights than when using traditional dimensional mean and Gaussian curvatures. The review focuses only on (1) statics of wrinkling and shape selection in liquid crystal interfaces and membranes; (2) kinetics and dissipative dynamics of shape evolution in membranes; and (3) computational methods for shape selection and shape evolution; due to various limitations other important topics are excluded. Finally, the outlook follows a similar structure. The main results include: (1) single and multiple wavelength corrugations in liquid crystal interfaces appear naturally in the presence of surface splay and bend orientation distortions with scaling laws governed by ratios of anchoring-to-isotropic tension energy; adding membrane elasticity to liquid crystal anchoring generates multiple scales wrinkling as in tulips; drops of liquid crystals encapsulates in membranes can adopt, according to the ratios of anchoring/tension/bending, families of shapes as multilobal, tactoidal, and serrated as observed in biological cells. (2) Mapping the liquid crystal director to a membrane unit normal. The dissipative shape evolution model with irreversible thermodynamics for flows dominated by bending rates, yields new insights. The model explains the kinetic stability of cylinders, while spheres and saddles are attractors. The model also adds to the evolving understanding of outer hair cells in the inner ear. (3) Computational soft matter geometry includes solving shape equations, trajectories on energy and orientation landscapes, and shape-curvedness evolutions on entropy production landscape with efficient numerical methods and adaptive approaches.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Phillip Servio
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| |
Collapse
|
12
|
Zheng J, Guo Y, Shi C, Yang S, Xu W, Ma X. Differential Ire1 determines loser cell fate in tumor-suppressive cell competition. Cell Rep 2023; 42:113303. [PMID: 37924514 DOI: 10.1016/j.celrep.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
Tumor-suppressive cell competition (TSCC) is a conserved surveillance mechanism in which neighboring cells actively eliminate oncogenic cells. Despite overwhelming studies showing that the unfolded protein response (UPR) is dysregulated in various tumors, it remains debatable whether the UPR restrains or promotes tumorigenesis. Here, using Drosophila eye epithelium as a model, we uncover a surprising decisive role of the Ire1 branch of the UPR in regulating cell polarity gene scribble (scrib) loss-induced TSCC. Both mutation and hyperactivation of Ire1 accelerate elimination of scrib clones via inducing apoptosis and autophagy, respectively. Unexpectedly, relative Ire1 activity is also crucial for determining loser cell fate, as dysregulating Ire1 signaling in the surrounding healthy cells reversed the "loser" status of scrib clones by decreasing their apoptosis. Furthermore, we show that Ire1 is required for cell competition in mammalian cells. Together, these findings provide molecular insights into scrib-mediated TSCC and highlight Ire1 as a key determinant of loser cell fate.
Collapse
Affiliation(s)
- Jiadong Zheng
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yifan Guo
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Changyi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shuai Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Xianjue Ma
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
13
|
Valdés Gómez A, Sevilla FJ. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies. Phys Rev E 2023; 108:054117. [PMID: 38115432 DOI: 10.1103/physreve.108.054117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
We analyze fractional Brownian motion and scaled Brownian motion on the two-dimensional sphere S^{2}. We find that the intrinsic long-time correlations that characterize fractional Brownian motion collude with the specific dynamics (navigation strategies) carried out on the surface giving rise to rich transport properties. We focus our study on two classes of navigation strategies: one induced by a specific set of coordinates chosen for S^{2} (we have chosen the spherical ones in the present analysis), for which we find that contrary to what occurs in the absence of such long-time correlations, nonequilibrium stationary distributions are attained. These results resemble those reported in confined flat spaces in one and two dimensions [Guggenberger et al. New J. Phys. 21, 022002 (2019)1367-263010.1088/1367-2630/ab075f; Vojta et al. Phys. Rev. E 102, 032108 (2020)2470-004510.1103/PhysRevE.102.032108]; however, in the case analyzed here, there are no boundaries that affect the motion on the sphere. In contrast, when the navigation strategy chosen corresponds to a frame of reference moving with the particle (a Frenet-Serret reference system), then the equilibrium distribution on the sphere is recovered in the long-time limit. For both navigation strategies, the relaxation times toward the stationary distribution depend on the particular value of the Hurst parameter. We also show that on S^{2}, scaled Brownian motion, distinguished by a time-dependent diffusion coefficient with a power-scaling, is independent of the navigation strategy finding a good agreement between the analytical calculations obtained from the solution of a time-dependent diffusion equation on S^{2}, and the numerical results obtained from our numerical method to generate ensemble of trajectories.
Collapse
Affiliation(s)
- Adriano Valdés Gómez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Alcaldía Coyoacán, C.P. 04510 Ciudad Universitaria, Ciudad de México, México
- BBVA AI Factory México
| | - Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
14
|
Menin L, Weber J, Villa S, Martini E, Maspero E, Niño CA, Cancila V, Poli A, Maiuri P, Palamidessi A, Frittoli E, Bianchi F, Tripodo C, Walters KJ, Giavazzi F, Scita G, Polo S. A planar polarized MYO6-DOCK7-RAC1 axis promotes tissue fluidification in mammary epithelia. Cell Rep 2023; 42:113001. [PMID: 37590133 PMCID: PMC10530600 DOI: 10.1016/j.celrep.2023.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing, and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodium cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a MYO6-DOCK7 axis essential for spatially restricting RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative-mode motion in otherwise solid and static carcinoma cell collectives.
Collapse
Affiliation(s)
- Luca Menin
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Janine Weber
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Emanuele Martini
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Carlos A Niño
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Human Pathology Section, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Alessandro Poli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Human Pathology Section, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Giorgio Scita
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy.
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Lee YL, Mathur J, Walter C, Zmuda H, Pathak A. Matrix obstructions cause multiscale disruption in collective epithelial migration by suppressing leader cell function. Mol Biol Cell 2023; 34:ar94. [PMID: 37379202 PMCID: PMC10398892 DOI: 10.1091/mbc.e22-06-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Hannah Zmuda
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
16
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biointerfaces reprogram collective cell migration and cell cycling by forcing homeostatic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550505. [PMID: 37546933 PMCID: PMC10402016 DOI: 10.1101/2023.07.25.550505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells attach to the world around them in two ways-cell:extracellular-matrix adhesion and cell:cell adhesion-and conventional biomaterials are made to resemble the matrix to encourage integrin-based cell adhesion. However, interest is growing for cell-mimetic interfaces that mimic cell-cell interactions using cadherin proteins, as this offers a new way to program cell behavior and design synthetic implants and objects that can integrate directly into living tissues. Here, we explore how these cadherin-based materials affect collective cell behaviors, focusing specifically on collective migration and cell cycle regulation in cm-scale epithelia. We built culture substrates where half of the culture area was functionalized with matrix proteins and the contiguous half was functionalized with E-cadherin proteins, and we grew large epithelia across this 'Janus' interface. Parts of the tissues in contact with the matrix side of the Janus interface exhibited normal collective dynamics, but an abrupt shift in behaviors happened immediately across the Janus boundary onto the E-cadherin side, where cells formed hybrid E-cadherin junctions with the substrate, migration effectively froze in place, and cell-cycling significantly decreased. E-cadherin materials suppressed long-range mechanical correlations in the tissue and mechanical information reflected off the substrate interface. These effects could not be explained by conventional density, shape index, or contact inhibition explanations. E-cadherin surfaces nearly doubled the length of the G0/G1 phase of the cell cycle, which we ultimately connected to the exclusion of matrix focal adhesions induced by the E-cadherin culture surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA, 08544
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA, 08544
| |
Collapse
|
17
|
Lin WJ, Pathak A. Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536258. [PMID: 37090663 PMCID: PMC10120636 DOI: 10.1101/2023.04.10.536258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.
Collapse
|
18
|
Brandstätter T, Brückner DB, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nat Commun 2023; 14:1643. [PMID: 36964141 PMCID: PMC10039078 DOI: 10.1038/s41467-023-37054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Collapse
Affiliation(s)
- Tom Brandstätter
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - David B Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Zhang H, Xu H, Sun W, Fang X, Qin P, Huang J, Fang J, Lin F, Xiong C. Purse-string contraction guides mechanical gradient-dictated heterogeneous migration of epithelial monolayer. Acta Biomater 2023; 159:38-48. [PMID: 36708850 DOI: 10.1016/j.actbio.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.
Collapse
Affiliation(s)
- Haihui Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peiwu Qin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Callens SJP, Fan D, van Hengel IAJ, Minneboo M, Díaz-Payno PJ, Stevens MM, Fratila-Apachitei LE, Zadpoor AA. Emergent collective organization of bone cells in complex curvature fields. Nat Commun 2023; 14:855. [PMID: 36869036 PMCID: PMC9984480 DOI: 10.1038/s41467-023-36436-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands. .,Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Daniel Fan
- Department of Precision and Microsystems Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Ingmar A J van Hengel
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands.,Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
21
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
22
|
Li K, Lv C, Feng XQ. Curvature-dependent adhesion of vesicles. Phys Rev E 2023; 107:024405. [PMID: 36932565 DOI: 10.1103/physreve.107.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
The morphology and motion behavior of a cell are highly influenced by its external biological, chemical, and physical stimuli, and geometric confinement. In this paper, it is revealed that the mean curvature of the substrate significantly influences the adhesion of vesicles. By employing the variational method and investigating the Helfrich free energy, the configuration of axisymmetric vesicles adhered to curved spherical substrates is obtained theoretically. Moreover, numerical simulations based on the finite element method are also carried out to investigate the adhesion of vesicles on curved substrates with complex shapes. It is found that for a fixed area of a vesicle, its total free energy depends mainly on the mean curvature of the adhesion region but is insensitive to the specific shape of the substrate, and the total free energy monotonically decreases with the increase in the mean curvature. In addition, possible biological significances of the curvature-dependent adhesion, such as the shape of the cell and antibiofouling, are discussed. This study may deepen our understanding of the underlying mechanisms of adhesion in cellular activities.
Collapse
Affiliation(s)
- Kun Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Hutterer FP, Buchmann B, Engelbrecht LK, Bausch AR. Collective cell migration during human mammary gland organoid morphogenesis. BIOPHYSICS REVIEWS 2022; 3:041401. [PMID: 38505519 PMCID: PMC10903482 DOI: 10.1063/5.0089767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/07/2022] [Indexed: 03/21/2024]
Abstract
Organ morphogenesis is driven by cellular migration patterns, which become accessible for observation in organoid cultures. We demonstrate here that mammary gland organoids cultured from human primary cells, exhibit oscillatory and collective migration patterns during their development into highly branched structures, as well as persistent rotational motion within the developed alveoli. Using high-resolution live-cell imaging, we observed cellular movement over the course of several days and subsequently characterized the underlying migration pattern by means of optical flow algorithms. Confined by the surrounding collagen matrix, characteristic correlated back-and-forth movements emerge due to a mismatch between branch invasion and cell migration speeds throughout the branch invasion phase. In contrast, alveolar cells exhibit continuous movement in the same direction. By modulating cell-cell adhesions, we identified collective migration as a prerequisite for sustaining these migration patterns both during the branching elongation process and after alveolus maturation.
Collapse
Affiliation(s)
- Franz P. Hutterer
- Lehrstuhl für Biophysik E27, Center for Protein Assemplies (CPA) and Center of Organoid Systems (COS), Technical University Munich (TUM), Garching, Germany
| | - Benedikt Buchmann
- Lehrstuhl für Biophysik E27, Center for Protein Assemplies (CPA) and Center of Organoid Systems (COS), Technical University Munich (TUM), Garching, Germany
| | - Lisa K. Engelbrecht
- Lehrstuhl für Biophysik E27, Center for Protein Assemplies (CPA) and Center of Organoid Systems (COS), Technical University Munich (TUM), Garching, Germany
| | - Andreas R. Bausch
- Lehrstuhl für Biophysik E27, Center for Protein Assemplies (CPA) and Center of Organoid Systems (COS), Technical University Munich (TUM), Garching, Germany
| |
Collapse
|
24
|
Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d’Alessandro J, Janel S, Douanier A, Delaval B, Lafont F, Lim CT, Delacour D, Prost J, Xi W, Ladoux B. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. SCIENCE ADVANCES 2022; 8:eabn5406. [PMID: 36103541 PMCID: PMC9473582 DOI: 10.1126/sciadv.abn5406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.
Collapse
Affiliation(s)
- Alexandros Glentis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Wang Xi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
25
|
Sentoku M, Iida K, Hashimoto H, Yasuda K. Dominant geometrical factors of collective cell migration in flexible 3D gelatin tube structures. BIOPHYSICAL REPORTS 2022; 2:100063. [PMID: 36425328 PMCID: PMC9680702 DOI: 10.1016/j.bpr.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Collective cell migration is a dynamic and interactive behavior of cell cohorts essential for diverse physiological developments in living organisms. Recent studies have revealed the importance of three-dimensional (3D) topographical confinements to regulate the migration modes of cell cohorts in tubular confinement. However, conventional in vitro assays fail to observe cells' behavior in response to 3D structural changes, which is necessary for examining the geometric regulation factors of collective migration. Here, we introduce a newly developed assay for fabricating flexible 3D structures of capillary microtunnels to examine the behavior of vascular endothelial cells (ECs) as they progress through the successive transition across wide or narrow tube structures. The microtunnels with altered diameters were formed inside gelatin-gel blocks by photo-thermal etching with micrometer-sized spot heating of the focused infrared laser absorption. The ECs migrated and spread two-dimensionally on the inner surface of gelatin capillary microtunnels as a monolayer instead of filling the entire capillary. In the straight cylindrical topographical constraint, leading ECs exhibited no apparent diameter dependence for the maximum peak migration velocity. However, widening the diameter in the narrow-wide structures caused a decrease in migration velocity following in direct proportion to the diameter increase ratio, whereas narrowing the diameter in wide-narrow microtunnels increased the speed without obvious correlation between velocity change and diameter change. The results demonstrated the ability of the newly developed flexible 3D gelatin tube structures for collective cell migration, and the findings provide insights into the dominant geometric factor of the emerging migratory modes for endothelial migration as asymmetric fluid flow-like behavior in the borderless cylindrical cell sheets.
Collapse
Affiliation(s)
- Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kento Iida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Hiromichi Hashimoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
26
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Wang XH, Liu Y, Kang B, Xu JJ, Chen HY. Cell mechanics and energetic costs of collective cell migration under confined microchannels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Shigeta K, Fukuyama T, Takahashi R, Beppu K, Tanaka A, Maeda YT. Collective motion of epithelial cells along a wrinkled 3D-buckled hydrogel. RSC Adv 2022; 12:20174-20181. [PMID: 35919621 PMCID: PMC9274378 DOI: 10.1039/d2ra01768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Epithelial cells migrate autonomously by aligning and inducing a collective motion. Controlling the collective motion of epithelial cells in geometrically confined environments is important for understanding physiological processes such as wound healing and self-organized morphogenesis. However, collective migration under a three-dimensional (3D) curved surface resembling living epithelial tissue has not yet been explored. In this study, we investigated the collective motion of a 3D-buckled polyacrylamide (PAAm) gel that mimics the shape of folds and wrinkles of epithelial tissue to understand the geometric effects of collective motion. We found that the velocity correlation in the space near the hydrogel boundary showed a periodic change that correlated with the wrinkled folding of the hydrogel pattern. Furthermore, the characteristic length of the velocity correlation increased proportionally with the wavelength of wrinkled folding. These observations indicated that the hydrogel pattern could steer the collective motion of epithelial cells over long distances. Our study also suggests that the wrinkled design of the hydrogel is a versatile platform for studying the geometric effect of a curved surface on complex epithelial cell dynamics.
Collapse
Affiliation(s)
- Kazuyuki Shigeta
- Department of Physics, Graduate School of Science, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Tatsuya Fukuyama
- Department of Physics, Graduate School of Science, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Riku Takahashi
- NTT Basic Research Laboratories, Bio-Medical Informatics Research Center, NTT Corporation 3-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0198 Japan
| | - Kazusa Beppu
- Department of Physics, Graduate School of Science, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Aya Tanaka
- NTT Basic Research Laboratories, Bio-Medical Informatics Research Center, NTT Corporation 3-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0198 Japan
| | - Yusuke T Maeda
- Department of Physics, Graduate School of Science, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
29
|
Zhang DQ, Li ZY, Li B. Self-rotation regulates interface evolution in biphasic active matter through taming defect dynamics. Phys Rev E 2022; 105:064607. [PMID: 35854599 DOI: 10.1103/physreve.105.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chirality can endow nonequilibrium active matter with unique features and functions. Here, we explore the chiral dynamics in biphasic active nematics composed of self-rotating units that continuously inject energy and angular momentum at the microscale. We show that the self-rotation of units can regularize the boundaries between two phases, rendering sinusoidal-like interfaces, which allow lateral wave propagation and are characterized by chains of ordered antiferromagnetic cross-interface flow vortices. Through the spontaneous coordination of counter-rotating units across the interfaces, topological defects excited by activity are sorted spatiotemporally, where positive defects are locally trapped at the interfaces but, unexpectedly, are transported laterally in a unidirectional rather than wavy mode, whereas inertial negative defects remain spinning in the bulks. Our findings reveal that individual chirality could be harnessed to modulate interfacial morphodynamics in active systems and suggest a potential approach toward controlling topological defects for programmable microfluidics and logic operations.
Collapse
Affiliation(s)
- De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Tomba C, Luchnikov V, Barberi L, Blanch-Mercader C, Roux A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Dev Cell 2022; 57:1257-1270.e5. [PMID: 35568030 PMCID: PMC9165930 DOI: 10.1016/j.devcel.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction. Rapid inward and outward epithelial rolling triggers cell volume increase Epithelial folding induces a mechano-osmotic feedback loop that involvs ion channels Cell volume regulation in curved tissues involves actin, membrane tension, and mTORC2
Collapse
Affiliation(s)
- Caterina Tomba
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| | - Valeriy Luchnikov
- Université de Haute Alsace, CNRS, IS2M UMR 7361, 15, rue Jean Starcky, Mulhouse 68100, France
| | - Luca Barberi
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| |
Collapse
|
31
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
32
|
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège RM, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials 2022; 282:121380. [DOI: 10.1016/j.biomaterials.2022.121380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
33
|
Ghosh B, Nishida K, Chandrala L, Mahmud S, Thapa S, Swaby C, Chen S, Khosla AA, Katz J, Sidhaye VK. Epithelial plasticity in COPD results in cellular unjamming due to an increase in polymerized actin. J Cell Sci 2022; 135:jcs258513. [PMID: 35118497 PMCID: PMC8919336 DOI: 10.1242/jcs.258513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Atulya Aman Khosla
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| |
Collapse
|
34
|
Fang C, Yao J, Zhang Y, Lin Y. Active chemo-mechanical feedbacks dictate the collective migration of cells on patterned surfaces. Biophys J 2022; 121:1266-1275. [PMID: 35183521 PMCID: PMC9034249 DOI: 10.1016/j.bpj.2022.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Recent evidence has demonstrated that, when cultured on micro-patterned surfaces, living cells can move in a coordinated manner and form distinct migration patterns, including flowing chain, suspended propagating bridge, rotating vortex, etc. However, the fundamental question of exactly how and why cells migrate in these fashions remains elusive. Here, we present a theoretical investigation to show that the tight interplay between internal cellular activities, such as chemo-mechanical feedbacks and polarization, and external geometrical constraints are behind these intriguing experimental observations. In particular, on narrow strip patterns, strongly force-dependent cellular contractility and intercellular adhesion were found to be critical for reinforcing the leading edge of the migrating cell monolayer and eventually result in the formation of suspended cell bridges flying over nonadhesive regions. On the other hand, a weak force-contractility feedback led to the movement of cells like a flowing chain along the adhesive strip. Finally, we also showed that the random polarity forces generated in migrating cells are responsible for driving them into rotating vortices on strips with width above a threshold value (~10 times the size of the cell).
Collapse
|
35
|
Yeo T, She DT, Nai MH, Marcelo Valerio VL, Pan Y, Middha E, Lim CT, Liu B. Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS NANO 2021; 15:17412-17425. [PMID: 34767716 DOI: 10.1021/acsnano.1c03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phospholipid nanocarriers have been widely explored for theranostic and nanomedicine applications. These amphiphilic nanocarriers possess outstanding cargo encapsulation efficiency, high water dispersibility, and excellent biocompatibility, which render them promising for drug delivery and bioimaging applications. While the biological applications of phospholipid nanocarriers have been well documented, the fundamental aspects of the phospholipid-cell interactions beyond cytotoxicity have been less investigated. In particular, the effect of phospholipid nanocarriers on collective cell behaviors has not been elucidated. Herein, we evaluate the interactions of phospholipid nanocarriers possessing different functional groups and sizes with normal and cancerous immortalized breast epithelial cell sheets with varying metastatic potential. Specifically, we examine the impact of nanocarrier treatments on the collective migratory dynamics of these cell sheets. We observe that phospholipid nanocarriers induce differential collective cell migratory behaviors, where the migration speed of normal and cancerous breast epithelial cell sheets is retarded and accelerated, respectively. To a certain extent, the nanocarriers are able to alter the migration trajectory of the cancerous breast epithelial cells. Furthermore, phospholipid nanocarriers could modulate the stiffness of the nuclei, cytoplasm, and cell-cell junctions of the breast epithelial cell sheets, remodel their actin filament arrangement, and regulate the expressions of the actin-related proteins. We anticipate that this work will further shed light on nanomaterial-cell interactions and provide guidelines for rational and safer designs and applications of phospholipid nanocarriers for cancer theranostics and nanomedicine.
Collapse
Affiliation(s)
- Trifanny Yeo
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - David T She
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Von Luigi Marcelo Valerio
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
36
|
Jin Y, Liu L, Yu P, Lin F, Shi X, Guo J, Che B, Duan Y, Li J, Pan Y, Luo M, Deng L. Emergent Differential Organization of Airway Smooth Muscle Cells on Concave and Convex Tubular Surface. Front Mol Biosci 2021; 8:717771. [PMID: 34651014 PMCID: PMC8505749 DOI: 10.3389/fmolb.2021.717771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
Airway smooth muscle cells (ASMCs) exist in a form of helical winding bundles within the bronchial airway wall. Such tubular tissue provides cells with considerable curvature as a physical constraint, which is widely thought as an important determinant of cell behaviors. However, this process is difficult to mimic in the conventional planar cell culture system. Here, we report a method to develop chips with cell-scale tubular (concave and convex) surfaces from fused deposition modeling 3D printing to explore how ASMCs adapt to the cylindrical curvature for morphogenesis and function. Results showed that ASMCs self-organized into two distinctively different patterns of orientation on the concave and convex surfaces, eventually aligning either invariably perpendicular to the cylinder axis on the concave surface or curvature-dependently angled on the convex surface. Such oriented alignments of the ASMCs were maintained even when the cells were in dynamic movement during migration and spreading along the tubular surfaces. Furthermore, the ASMCs underwent a phenotype transition on the tubular (both concave and convex) surfaces, significantly reducing contractility as compared to ASMCs cultured on a flat surface, which was reflected in the changes of proliferation, migration and gene expression of contractile biomarkers. Taken together, our study revealed a curvature-induced pattern formation and functional modulation of ASMCs in vitro, which is not only important to better understanding airway smooth muscle pathophysiology, but may also be useful in the development of new techniques for airway disease diagnosis and therapy such as engineering airway tissues or organoids.
Collapse
Affiliation(s)
- Yang Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Peili Yu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Feng Lin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xiaohao Shi
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Bo Che
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yiyuan Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Li
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Linhong Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
37
|
Skamrahl M, Pang H, Ferle M, Gottwald J, Rübeling A, Maraspini R, Honigmann A, Oswald TA, Janshoff A. Tight Junction ZO Proteins Maintain Tissue Fluidity, Ensuring Efficient Collective Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100478. [PMID: 34382375 PMCID: PMC8498871 DOI: 10.1002/advs.202100478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Indexed: 06/01/2023]
Abstract
Tight junctions (TJs) are essential components of epithelial tissues connecting neighboring cells to provide protective barriers. While their general function to seal compartments is well understood, their role in collective cell migration is largely unexplored. Here, the importance of the TJ zonula occludens (ZO) proteins ZO1 and ZO2 for epithelial migration is investigated employing video microscopy in conjunction with velocimetry, segmentation, cell tracking, and atomic force microscopy/spectroscopy. The results indicate that ZO proteins are necessary for fast and coherent migration. In particular, ZO1 and 2 loss (dKD) induces actomyosin remodeling away from the central cortex towards the periphery of individual cells, resulting in altered viscoelastic properties. A tug-of-war emerges between two subpopulations of cells with distinct morphological and mechanical properties: 1) smaller and highly contractile cells with an outward bulging apical membrane, and 2) larger, flattened cells, which, due to tensile stress, display a higher proliferation rate. In response, the cell density increases, leading to crowding-induced jamming and more small cells over time. Co-cultures comprising wildtype and dKD cells migrate inefficiently due to phase separation based on differences in contractility rather than differential adhesion. This study shows that ZO proteins are necessary for efficient collective cell migration by maintaining tissue fluidity and controlling proliferation.
Collapse
Affiliation(s)
- Mark Skamrahl
- Institute of Physical ChemistryUniversity of GöttingenTammannstr. 6Göttingen37077Germany
| | - Hongtao Pang
- Institute of Physical ChemistryUniversity of GöttingenTammannstr. 6Göttingen37077Germany
| | - Maximilian Ferle
- Institute of Physical ChemistryUniversity of GöttingenTammannstr. 6Göttingen37077Germany
| | - Jannis Gottwald
- Institute of Physical ChemistryUniversity of GöttingenTammannstr. 6Göttingen37077Germany
| | - Angela Rübeling
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstr. 2Göttingen37077Germany
| | - Riccardo Maraspini
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 108Dresden01307Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 108Dresden01307Germany
| | - Tabea A. Oswald
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstr. 2Göttingen37077Germany
| | - Andreas Janshoff
- Institute of Physical ChemistryUniversity of GöttingenTammannstr. 6Göttingen37077Germany
| |
Collapse
|
38
|
Sentoku M, Hashimoto H, Iida K, Endo M, Yasuda K. Photothermal Agarose Microfabrication Technology for Collective Cell Migration Analysis. MICROMACHINES 2021; 12:1015. [PMID: 34577661 PMCID: PMC8467839 DOI: 10.3390/mi12091015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022]
Abstract
Agarose photothermal microfabrication technology is one of the micropatterning techniques that has the advantage of simple and flexible real-time fabrication even during the cultivation of cells. To examine the ability and limitation of the agarose microstructures, we investigated the collective epithelial cell migration behavior in two-dimensional agarose confined structures. Agarose microchannels from 10 to 211 micrometer width were fabricated with a spot heating of a focused 1480 nm wavelength infrared laser to the thin agarose layer coated on the cultivation dish after the cells occupied the reservoir. The collective cell migration velocity maintained constant regardless of their extension distance, whereas the width dependency of those velocities was maximized around 30 micrometer width and decreased both in the narrower and wider microchannels. The single-cell tracking revealed that the decrease of velocity in the narrower width was caused by the apparent increase of aspect ratio of cell shape (up to 8.9). In contrast, the decrease in the wider channels was mainly caused by the increase of the random walk-like behavior of component cells. The results confirmed the advantages of this method: (1) flexible fabrication without any pre-designing, (2) modification even during cultivation, and (3) the cells were confined in the agarose geometry.
Collapse
Affiliation(s)
- Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Hiromichi Hashimoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Kento Iida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Masaharu Endo
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| |
Collapse
|
39
|
Shim G, Devenport D, Cohen DJ. Overriding native cell coordination enhances external programming of collective cell migration. Proc Natl Acad Sci U S A 2021; 118:e2101352118. [PMID: 34272284 PMCID: PMC8307614 DOI: 10.1073/pnas.2101352118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
40
|
Yong X, Huang CK, Lim CT. An integrated platform to facilitate the calculation, validation and visualization of optical flow velocities in biological images. J R Soc Interface 2021; 18:20210248. [PMID: 34129786 DOI: 10.1098/rsif.2021.0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Optical flow algorithms have seen poor adoption in the biological community compared with particle image velocimetry for quantifying cellular dynamics because of the lack of proper validation and an intuitive user interface. To address these challenges, we present OpFlowLab, an integrated platform that integrates our motion estimation workflow. Using routines in our workflow, we demonstrate that optical flow algorithms are more accurate than PIV in simulated images of the movement of nuclei. Qualitative assessment with actual nucleus images further supported this finding. Additionally, we show that refinement of the optical flow velocities is possible with a simple object-matching procedure, opening up the possibility of obtaining reasonable velocity estimates under less ideal imaging conditions. To visualize velocity fields, we employ artificial tracers to allow for the drawing of pathlines. Through the adoption of OpFlowLab, we are confident that optical flow algorithms will allow for the exploration of dynamic biological systems in greater accuracy and detail.
Collapse
Affiliation(s)
- Xianbin Yong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Cheng-Kuang Huang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| |
Collapse
|
41
|
Myram S, Venzac B, Lapin B, Battistella A, Cayrac F, Cinquin B, Cavaniol C, Gropplero G, Bonnet I, Demolombe S, Descroix S, Coscoy S. A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases. Front Bioeng Biotechnol 2021; 9:624553. [PMID: 34124016 PMCID: PMC8188354 DOI: 10.3389/fbioe.2021.624553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 μm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.
Collapse
Affiliation(s)
- Sarah Myram
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bastien Venzac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Brice Lapin
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Fanny Cayrac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bertrand Cinquin
- Institut Pierre-Gilles de Gennes, IPGG Technology Platform, UMS 3750 CNRS, Paris, France
| | - Charles Cavaniol
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
- Fluigent SA, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sophie Demolombe
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
42
|
Gorji A, Toh PJY, Ong HT, Toh YC, Toyama Y, Kanchanawong P. Enhancement of Endothelialization by Topographical Features Is Mediated by PTP1B-Dependent Endothelial Adherens Junctions Remodeling. ACS Biomater Sci Eng 2021; 7:2661-2675. [PMID: 33942605 DOI: 10.1021/acsbiomaterials.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial Cells (ECs) form cohesive cellular lining of the vasculature and play essential roles in both developmental processes and pathological conditions. Collective migration and proliferation of endothelial cells (ECs) are key processes underlying endothelialization of vessels as well as vascular graft, but the complex interplay of mechanical and biochemical signals regulating these processes are still not fully elucidated. While surface topography and biochemical modifications have been used to enhance endothelialization in vitro, thus far such single-modality modifications have met with limited success. As combination therapy that utilizes multiple modalities has shown improvement in addressing various intractable and complex biomedical conditions, here, we explore a combined strategy that utilizes topographical features in conjunction with pharmacological perturbations. We characterized EC behaviors in response to micrometer-scale grating topography in concert with pharmacological perturbations of endothelial adherens junctions (EAJ) regulators. We found that the protein tyrosine phosphatase, PTP1B, serves as a potent regulator of EAJ stability, with PTP1B inhibition synergizing with grating topographies to modulate EAJ rearrangement, thereby augmenting global EC monolayer sheet orientation, proliferation, connectivity, and collective cell migration. Our data delineates the crosstalk between cell-ECM topography sensing and cell-cell junction integrity maintenance and suggests that the combined use of grating topography and PTP1B inhibitor could be a promising strategy for promoting collective EC migration and proliferation.
Collapse
Affiliation(s)
- Azita Gorji
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, Paris 75005, France
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore.,Institute for Health Innovation and Technology, National University of Singapore, 117599 Republic of Singapore.,The N.1 Institute for Health, National University of Singapore, 117456, Republic of Singapore.,NUS Tissue Engineering Programme, National University of Singapore, 117456, Republic of Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore
| |
Collapse
|
43
|
Yu J, Cai P, Zhang X, Zhao T, Liang L, Zhang S, Liu H, Chen X. Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS NANO 2021; 15:7618-7627. [PMID: 33844497 DOI: 10.1021/acsnano.1c01165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluid-to-solid phase transition in multicellular assembly is crucial in many developmental biological processes, such as embryogenesis and morphogenesis. However, biomechanical studies in this area are limited, and little is known about factors governing the transition and how cell behaviors are regulated. Due to different stresses present, cells could behave distinctively depending on the nature of tissue. Here we report a fluid-to-solid transition in geometrically confined multicellular assemblies. Under circular confinement, Madin-Darby canine kidney (MDCK) monolayers undergo spatiotemporally oscillatory motions that are strongly dependent on the confinement size and distance from the periphery of the monolayers. Nanomechanical mapping reveals that epithelial tensional stress and traction forces on the substrate are both dependent on confinement size. The oscillation pattern and cellular nanomechanics profile appear well correlated with stress fiber assembly and cell polarization. These experimental observations imply that the confinement size-dependent surface tension regulates actin fiber assembly, cellular force generation, and cell polarization. Our analyses further suggest a characteristic confinement size (approximates to MDCK's natural correlation length) below which surface tension is sufficiently high and triggers a fluid-to-solid transition of the monolayers. Our findings may shed light on the geometrical and nanomechanical control of tissue morphogenesis and growth.
Collapse
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaoqian Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
44
|
Ramírez-Garza OA, Méndez-Alcaraz JM, González-Mozuelos P. Effects of the curvature gradient on the distribution and diffusion of colloids confined to surfaces. Phys Chem Chem Phys 2021; 23:8661-8672. [PMID: 33876027 DOI: 10.1039/d0cp06474b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties and behavior of colloids confined to move on curved surfaces offer a fertile ground for analysis since the geometric constraints induce specific features that are not available in flat spaces. Given their pertinence for biological and physicochemical processes, both with potential useful applications, the development of the concepts and methodology necessary for a deeper understanding of these unconventional systems is indeed an essential pursuit. The present study discusses a general and rigorous algorithm for the implementation of Brownian dynamics simulations that solves underlying difficulties and shortcomings inherent to conventional first-order schemes. Still based on the Ermak-McCammon recipe, our approach complements it with the higher-order geodesical projections of the elementary jumps generated on the associated tangent plane. This strategy, which warrants the locally isotropic propagation of non-interacting particles, is tested with a model system of colloidal particles interacting through a screened Coulomb potential while confined to move on ellipsoidal surfaces. This allows us to measure the effects prompted by the curvature gradient on the static and dynamic properties of this system. The varying curvature thus induces energetically favorable configurations in which the particles maximize their Euclidean distancing by crowding the regions with the largest Gaussian curvature, while withdrawing from those with the lowest. In turn, these inhomogeneous distributions provoke the anisotropic self-diffusion of the confined colloids, which is examined by exploiting the pertinent geodesic radial coordinates. The proficient methods under consideration thus allows dealing with the rich and remarkable new phenomena generated by any distinctive surface geometry.
Collapse
Affiliation(s)
- O A Ramírez-Garza
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico.
| | | | | |
Collapse
|
45
|
Versaevel M, Alaimo L, Seveau V, Luciano M, Mohammed D, Bruyère C, Vercruysse E, Théodoly O, Gabriele S. Collective migration during a gap closure in a two-dimensional haptotactic model. Sci Rep 2021; 11:5811. [PMID: 33712641 PMCID: PMC7954790 DOI: 10.1038/s41598-021-84998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/19/2021] [Indexed: 01/11/2023] Open
Abstract
The ability of cells to respond to substrate-bound protein gradients is crucial for many physiological processes, such as immune response, neurogenesis and cancer cell migration. However, the difficulty to produce well-controlled protein gradients has long been a limitation to our understanding of collective cell migration in response to haptotaxis. Here we use a photopatterning technique to create circular, square and linear fibronectin (FN) gradients on two-dimensional (2D) culture substrates. We observed that epithelial cells spread preferentially on zones of higher FN density, creating rounded or elongated gaps within epithelial tissues over circular or linear FN gradients, respectively. Using time-lapse experiments, we demonstrated that the gap closure mechanism in a 2D haptotaxis model requires a significant increase of the leader cell area. In addition, we found that gap closures are slower on decreasing FN densities than on homogenous FN-coated substrate and that fresh closed gaps are characterized by a lower cell density. Interestingly, our results showed that cell proliferation increases in the closed gap region after maturation to restore the cell density, but that cell–cell adhesive junctions remain weaker in scarred epithelial zones. Taken together, our findings provide a better understanding of the wound healing process over protein gradients, which are reminiscent of haptotaxis.
Collapse
Affiliation(s)
- Marie Versaevel
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Valentine Seveau
- Adhesion and Inflammation Laboratory, INSERM U1067, UMR 7333, CNRS, 163 avenue de Luminy-Case 937, 13288, Marseille Cedex 09, France
| | - Marine Luciano
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Danahe Mohammed
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Olivier Théodoly
- Adhesion and Inflammation Laboratory, INSERM U1067, UMR 7333, CNRS, 163 avenue de Luminy-Case 937, 13288, Marseille Cedex 09, France
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| |
Collapse
|
46
|
Abstract
The physical microenvironment of cells plays a fundamental role in regulating cellular behavior and cell fate, especially in the context of cancer metastasis. For example, capillary deformation can destroy arrested circulating tumor cells while the dense extracellular matrix can form a physical barrier for invading cancer cells. Understanding how metastatic cancer cells overcome the challenges brought forth by physical confinement can help in developing better therapeutics that can put a stop to this migratory stage of the metastatic cascade. Numerous in vivo and in vitro assays have been developed to recapitulate the metastatic processes and study cancer cell migration in a confining microenvironment. In this review, we summarize some of the representative techniques and the exciting new findings. We critically review the advantages, as well as challenges associated with these tools and methodologies, and provide a guide on the applications that they are most suited for. We hope future efforts that push forward our current understanding on metastasis under confinement can lead to novel and more effective diagnostic and therapeutic strategies against this dreaded disease.
Collapse
Affiliation(s)
- Kuan Jiang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| |
Collapse
|
47
|
Gao J, Yang C, Li J, Liu S, Ao Z, Han D. Interfacial Curvature as a Potential Index for Prognosis of Colon Adenocarcinoma. Adv Biol (Weinh) 2021; 5:e1900277. [PMID: 33729697 DOI: 10.1002/adbi.201900277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/14/2020] [Indexed: 11/07/2022]
Abstract
Tumor invasion and metastasis are complex interfacial mechanical processes between the tumor and its surrounding tissue, with the interfacial curvature of tumor playing an important role in cancer progression. In this study, the potential role of interfacial curvature in the prognosis of patients with colon adenocarcinoma is investigated. The front edge interfacial curvature of adenocarcinoma from biopsies of patients in different tumor, lymph node, and metastasis (TNM) stages are calculated and compared, and prognosis assessment is conducted using Kaplan-Meier and Cox proportional hazards regression analyses. Results reveal that patients with larger interfacial curvature of adenocarcinoma are more likely to belong to higher TNM stages. Concomitantly, in the same TNM stage, patients with increased adenocarcinoma interfacial curvature show worse prognosis with higher recurrence and lower survival rates. Besides, interfacial curvature is an independent prognostic factor for cause-specific survival and relapse-free survival among all selected patients. Mechanical models of colon adenocarcinoma invasion and metastasis are established to better understand the close association between interfacial curvature and tumor progression. The results together with hematoxylin and eosin staining indicate that metastasis in stages T3N0M0 and T3N1M0 may be linked to large interfacial curvatures. Therefore, interfacial curvature may serve as a potential index for predicting prognosis in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Jingwei Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chongqing Yang
- Pathology Department, Beijing Hospital, Beijing, 100730, P. R. China
| | - Jianjun Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sidi Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Ao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Han
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
48
|
Hardoüin J, Laurent J, Lopez-Leon T, Ignés-Mullol J, Sagués F. Active microfluidic transport in two-dimensional handlebodies. SOFT MATTER 2020; 16:9230-9241. [PMID: 32926045 DOI: 10.1039/d0sm00610f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unlike traditional nematic liquid crystals, which adopt ordered equilibrium configurations compatible with the topological constraints imposed by the boundaries, active nematics are intrinsically disordered because of their self-sustained internal flows. Controlling the flow patterns of active nematics remains a limiting step towards their use as functional materials. Here we show that confining a tubulin-kinesin active nematic to a network of connected annular microfluidic channels enables controlled directional flows and autonomous transport. In single annular channels, for narrow widths, the typically chaotic streams transform into well-defined circulating flows, whose direction or handedness can be controlled by introducing asymmetric corrugations on the channel walls. The dynamics is altered when two or three annular channels are interconnected. These more complex topologies lead to scenarios of synchronization, anti-correlation, and frustration of the active flows, and to the stabilisation of high topological singularities in both the flow field and the orientational field of the material. Controlling textures and flows in these microfluidic platforms opens unexplored perspectives towards their application in biotechnology and materials science.
Collapse
Affiliation(s)
- Jérôme Hardoüin
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Justine Laurent
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Teresa Lopez-Leon
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Baptista D, Teixeira LM, Birgani ZT, van Riet S, Pasman T, Poot A, Stamatialis D, Rottier RJ, Hiemstra PS, Habibović P, van Blitterswijk C, Giselbrecht S, Truckenmüller R. 3D alveolar in vitro model based on epithelialized biomimetically curved culture membranes. Biomaterials 2020; 266:120436. [PMID: 33120199 DOI: 10.1016/j.biomaterials.2020.120436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
There is increasing evidence that surface curvature at a near-cell-scale influences cell behaviour. Epithelial or endothelial cells lining small acinar or tubular body lumens, as those of the alveoli or blood vessels, experience such highly curved surfaces. In contrast, the most commonly used culture substrates for in vitro modelling of these human tissue barriers, ion track-etched membranes, offer only flat surfaces. Here, we propose a more realistic culture environment for alveolar cells based on biomimetically curved track-etched membranes, preserving the mainly spherical geometry of the cells' native microenvironment. The curved membranes were created by a combination of three-dimensional (3D) micro film (thermo)forming and ion track technology. We could successfully demonstrate the formation, the growth and a first characterization of confluent layers of lung epithelial cell lines and primary alveolar epithelial cells on membranes shaped into an array of hemispherical microwells. Besides their application in submerged culture, we could also demonstrate the compatibility of the bioinspired membranes for air-exposed culture. We observed a distinct cellular response to membrane curvature. Cells (or cell layers) on the curved membranes reveal significant differences compared to cells on flat membranes concerning membrane epithelialization, areal cell density of the formed epithelial layers, their cross-sectional morphology, and proliferation and apoptosis rates, and the same tight barrier function as on the flat membranes. The presented 3D membrane technology might pave the way for more predictive barrier in vitro models in future.
Collapse
Affiliation(s)
- D Baptista
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - L Moreira Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Z Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S van Riet
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - T Pasman
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - A Poot
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - D Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - R J Rottier
- Department of Pediatric Surgery/Cell Biology, Erasmus (University) Medical Center - Sophia Children's Hospital, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - P Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - C van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - R Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
50
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|