1
|
Chen Z, Inague A, Kaushal K, Fazeli G, Schilling D, Xavier da Silva TN, Dos Santos AF, Cheytan T, Freitas FP, Yildiz U, Viviani LG, Lima RS, Pinz MP, Medeiros I, Iijima TS, Alegria TGP, Pereira da Silva R, Diniz LR, Weinzweig S, Klein-Seetharaman J, Trumpp A, Mañas A, Hondal R, Bartenhagen C, Fischer M, Shimada BK, Seale LA, Chillon TS, Fabiano M, Schomburg L, Schweizer U, Netto LE, Meotti FC, Dick TP, Alborzinia H, Miyamoto S, Friedmann Angeli JP. PRDX6 contributes to selenocysteine metabolism and ferroptosis resistance. Mol Cell 2024; 84:4645-4659.e9. [PMID: 39547224 DOI: 10.1016/j.molcel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (H2SePO3-), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY. Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the functional significance of this alternative route in human cancer cells, revealing a notable association between elevated expression of PRDX6 and human MYCN-amplified neuroblastoma subtype. Our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering further possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Zhiyi Chen
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Alex Inague
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Kamini Kaushal
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gholamreza Fazeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Danny Schilling
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thamara N Xavier da Silva
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Ancely Ferreira Dos Santos
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Tasneem Cheytan
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florencio Porto Freitas
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Umut Yildiz
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lucas Gasparello Viviani
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Rodrigo Santiago Lima
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Mikaela Peglow Pinz
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Isadora Medeiros
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Thais Satie Iijima
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Thiago Geronimo Pires Alegria
- Biosciences Institute, Department of Genetics and Evolutionary Biology, Universidade de São Paulo, 05508900 Sao Paulo, Brazil
| | - Railmara Pereira da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Larissa Regina Diniz
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Simon Weinzweig
- School of Molecular Sciences, Arizona State University, Phoenix, AZ 85281, USA
| | | | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Adriana Mañas
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Robert Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Briana K Shimada
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848, USA
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, CVK, Charité-Universtitätsmedizin Berlin, 10115 Berlin, Germany
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, CVK, Charité-Universtitätsmedizin Berlin, 10115 Berlin, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Luis E Netto
- Biosciences Institute, Department of Genetics and Evolutionary Biology, Universidade de São Paulo, 05508900 Sao Paulo, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, 05508000 Sao Paulo, Brazil.
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Wuerzburg, 97080 Wuerzburg, Germany.
| |
Collapse
|
2
|
Wang X, Ding J, Chen K, Hu H, Huang B, Shi G, Li S. Probing Selenium-Deficient Chicken Spleen Th1/Th17 Differentiation Based on Selenoprotein W Targeting of PKM2/HIF1α. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24808-24822. [PMID: 39441563 DOI: 10.1021/acs.jafc.4c04795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Selenium regulates the differentiation and function of immune cells mainly through selenoproteins. Selenoprotein W (SelW) has been shown to mitigate inflammatory bowel disease in mice by modulating the differentiation of helper T (CD4+ T) cell. Previous studies by our team have underscored SelW's critical role in safeguarding chicken spleens and splenic lymphocytes against inflammatory injury. However, research examining SelW's involvement in regulating CD4+ T cell differentiation in avian spleens remains scarce. Therefore, the selenium-deficient chicken model was constructed in this study. It was found that the spleen of selenium-deficient chickens showed significant inflammatory damage, accompanied by decreased SelW expression, diminished antioxidant capacity, heightened glycolysis, and an elevated count of Th1/Th17 cells. To elucidate the specific mechanism of SelW regulating Th1/Th17 cell differentiation, this study used molecular docking technology, fluorescence colocalization, and co-immunoprecipitation and initially confirmed the targeting relationship between SelW and pyruvate kinase M2 (PKM2). Subsequently, an in vitro model of SelW overexpression, knockdown, and TEPP-46 (PKM2 tetramer activator) cotreatment of chicken primary splenic lymphocytes was replicated. Our findings revealed that selenium deficiency triggers oxidative stress and promotes PKM2 nuclear translocation via SelW downregulation, which stabilizes HIF1α transcription in the nucleus, enhancing glycolysis and skewing chicken splenic CD4+ T cells toward the Th1/Th17 phenotype. Our study, for the first time, demonstrates the existence of an interaction between SelW and PKM2 in poultry, emphasizing SelW's paramount significance in CD4+ T cell differentiation, providing fresh perspectives on the contributions of selenoproteins to T cell biology and immune processes.
Collapse
Affiliation(s)
- Xixi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haodong Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Huang
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
4
|
O’Shaughnessy S, Finlay DK. Oxidative stress in gut T H17 cells makes mice susceptible to bacterial infection. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00049. [PMID: 39544255 PMCID: PMC11559963 DOI: 10.1097/in9.0000000000000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
A recent paper published in Cell Metabolism in August 2024 by Dirk Brenner's laboratory highlights the importance of effectively managing reactive oxygen species (ROS) in gut TH17 T cells for minimizing the damage caused by intestinal bacterial infection. This commentary will discuss the control of cellular ROS by glutathione and the emerging understanding that neutralizing ROS in immune cells is essential for the individualized functions of different immune subsets. In the case of this study, managing ROS within TH17 cells in the gut was shown to be essential to sustain the production of IL22 cytokine to maintain gut homeostasis in response to bacterial infection.
Collapse
Affiliation(s)
- Simon O’Shaughnessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences, Trinity College Dublin, Ireland
| |
Collapse
|
5
|
Minuti A, Trainito A, Gugliandolo A, Anchesi I, Chiricosta L, Iori R, Mazzon E, Calabrò M. Bioactivated Glucoraphanin Modulates Genes Involved in Necroptosis on Motor-Neuron-like Nsc-34: A Transcriptomic Study. Antioxidants (Basel) 2024; 13:1111. [PMID: 39334770 PMCID: PMC11428517 DOI: 10.3390/antiox13091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Research on bioactive compounds has grown recently due to their health benefits and limited adverse effects, particularly in reducing the risk of chronic diseases, including neurodegenerative conditions. According to these observations, this study investigates the activity of sulforaphane (RS-GRA) on an in vitro model of differentiated NSC-34 cells. We performed a transcriptomic analysis at various time points (24 h, 48 h, and 72 h) and RS-GRA concentrations (1 µM, 5 µM, and 10 µM) to identify molecular pathways influenced by this compound and the effects of dosage and prolonged exposure. We found 39 differentially expressed genes consistently up- or downregulated across all conditions. Notably, Nfe2l2, Slc1a5, Slc7a11, Slc6a9, Slc6a5, Sod1, and Sod2 genes were consistently upregulated, while Ripk1, Glul, Ripk3, and Mlkl genes were downregulated. Pathway perturbation analysis showed that the overall dysregulation of these genes results in a significant increase in redox pathway activity (adjusted p-value 1.11 × 10-3) and a significant inhibition of the necroptosis pathway (adjusted p-value 4.64 × 10-3). These findings suggest RS-GRA's potential as an adjuvant in neurodegenerative disease treatment, as both increased redox activity and necroptosis inhibition may be beneficial in this context. Furthermore, our data suggest two possible administration strategies, namely an acute approach with higher dosages and a chronic approach with lower dosages.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Alessandra Trainito
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Renato Iori
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
6
|
Zhang Z, Yang Y, Chen Y, Su J, Du W. Malic enzyme 2 maintains metabolic state and anti-tumor immunity of CD8 + T cells. Mol Cell 2024; 84:3354-3370.e7. [PMID: 39151423 DOI: 10.1016/j.molcel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.
Collapse
Affiliation(s)
- Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanting Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jingyu Su
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
7
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Lorenzini T, Faigle W, Ruder J, Docampo MJ, Opitz L, Martin R. Alterations of Thymus-Derived Tregs in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200251. [PMID: 38838284 PMCID: PMC11160584 DOI: 10.1212/nxi.0000000000200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis. We aimed to study alterations of regulatory T cells (Tregs), which likely also contribute to the disease, but their involvement is less clear. METHODS By combining multiple experimental approaches, we examined the Treg compartments in 41 patients with relapsing-remitting MS and 17 healthy donors. RESULTS Patients with MS showed a reduced frequency of CD4+ T cells and Foxp3+ Tregs and age-dependent alterations of Treg subsets. Treg suppressive function was compromised in patients, who were treated with natalizumab, while it was unaffected in untreated and anti-CD20-treated patients. The changes in natalizumab-treated patients included increased proinflammatory cytokines and an altered transcriptome in thymus-derived (t)-Tregs, but not in peripheral (p)-Tregs. DISCUSSION Treg dysfunction in patients with MS might be related to an altered transcriptome of t-Tregs and a proinflammatory environment. Our findings contribute to a better understanding of Tregs and their subtypes in MS.
Collapse
Affiliation(s)
- Tiziana Lorenzini
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Faigle
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Ruder
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - María José Docampo
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Opitz
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Wang S, Yuan S, Hu H, Zhang J, Cao K, Wang Y, Liu Y. Reactions of Cisplatin with Thioredoxin-1 Regulate Intracellular Redox Homeostasis. Inorg Chem 2024; 63:11779-11787. [PMID: 38850241 DOI: 10.1021/acs.inorgchem.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used anticancer drug. In addition to inducing DNA damage, increased levels of reactive oxygen species (ROS) play a significant role in cisplatin-induced cell death. Thioredoxin-1 (Trx1), a redox regulatory protein that can scavenge ROS, has been found to eliminate cisplatin-induced ROS, while elevated Trx1 levels are associated with cisplatin resistance. However, it is unknown whether the effect of Trx1 on the cellular response to cisplatin is due to its direct reaction and how this reaction influences the activity of Trx1. In this work, we performed detailed studies of the reaction between Trx1 and cisplatin. Trx1 is highly reactive to cisplatin, and the catalytic motif of Trx1 (CGPC) is the primary binding site of cisplatin. Trx1 can bind up to 6 platinum moieties, resulting in the structural alteration and oligomerization of Trx1 depending on the degree of platination. Platination of Trx1 inhibits its interaction with ASK1, a Trx1-binding protein that regulates cell apoptosis. Furthermore, the reaction with cisplatin suppresses drug-induced ROS generation, which could be associated with drug resistance. This study provides more insight into the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Shenghu Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Siming Yuan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongze Hu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kaiming Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yangzhong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Williams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Shinohara ML, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of a TLR9 agonist in autochthonous murine sarcomas. JCI Insight 2024; 9:e178767. [PMID: 39133651 PMCID: PMC11383182 DOI: 10.1172/jci.insight.178767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024] Open
Abstract
Radiation therapy (RT) is frequently used to treat cancers, including soft-tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to RT in transplanted tumors, but the mechanisms of this enhancement remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft-tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and 2 doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to CpG+RT, we performed bulk RNA-Seq, single-cell RNA-Seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and IFN-γ. CpG+RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG+RT, TCR clonality analysis suggests an increase in clonal T cell dominance. Collectively, these findings demonstrate that CpG+RT significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft-tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexander L Lazarides
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jonathon E Himes
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Kimberly E Roche
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Jennifer L Modliszewski
- QuantBio LLC, Durham, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara R Selitsky
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Mari L Shinohara
- Department of Integrative Immunology
- Department of Molecular Genetics and Microbiology, and
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology and
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Athaillah F, Hambal M, Vanda H, Frengki F, Sari WE. In vitro and in silico study on the seeds of Veitchia merrillii on trematode worms. Vet World 2024; 17:1336-1347. [PMID: 39077451 PMCID: PMC11283613 DOI: 10.14202/vetworld.2024.1336-1347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim The potential of plants as anthelmintics is very large, but there is still very little research conducted in the search for effective, safe, easily obtained, and affordable anthelmintic candidates. Palem putri (Veitchia merrillii) is an ornamental plant that is interesting to study because it is included in the areca nut group which is reported to have strong abilities as anthelmintics. The study aims to evaluate the anthelmintic efficacy of Veitchia merrillii against trematode worms such as Paramphistomum spp. and Fasciola hepatica. Materials and Methods This research employs both in vitro and computational techniques. An anthelmintic in vitro test was carried out on Paramphistomum spp. worms at concentrations of 10%, 25%, and 40% (gr/v), assessing mortality index as the observable outcome, followed by a histopathological investigation of the deceased worms for tissue and cellular damage evaluation. Seventeen compounds from V. merrillii seeds were studied in silico for their anthelmintic activity against F. hepatica worms using the quantitative structure-activity relationship technique, molecular docking, and Lipinski's rule analysis for orally administered medication. Results About 25% and 40% extracts of V. merrillii damaged the tegument organs in the worms. Seventeen compounds in V. merrillii seed extract, on average, yielded a higher anthelmintic index on F. hepatica than praziquantel. Eleven of the 17 compounds exhibit stronger affinity than praziquantel, with routine and gallic acid being the top two ligands (∆Gbinding values: -11.65 kcal/mol and -11.07 kcal/mol, respectively). According to Lipinski's rule analysis, only routine compounds cannot be orally administered. Conclusion The seeds of V. merrilli have potential as an anthelmintic agent for Paramphistomum spp. at concentrations of 25%-40% (gr/v).
Collapse
Affiliation(s)
- Farida Athaillah
- Department of Parasitology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| | - Muhammad Hambal
- Department of Parasitology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| | - Heni Vanda
- Department of Pharmacology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| | - Frengki Frengki
- Department of Pharmacology, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| | - Wahyu Eka Sari
- Department of Biochemistry, Faculty of Medicine Veterinary, Syiah Kuala University, Banda Aceh, Indonesia
| |
Collapse
|
12
|
Prasad CB, Oo A, Liu Y, Qiu Z, Zhong Y, Li N, Singh D, Xin X, Cho YJ, Li Z, Zhang X, Yan C, Zheng Q, Wang QE, Guo D, Kim B, Zhang J. The thioredoxin system determines CHK1 inhibitor sensitivity via redox-mediated regulation of ribonucleotide reductase activity. Nat Commun 2024; 15:4667. [PMID: 38821952 PMCID: PMC11143221 DOI: 10.1038/s41467-024-48076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.
Collapse
Affiliation(s)
- Chandra Bhushan Prasad
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Adrian Oo
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yujie Liu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Na Li
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deepika Singh
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiwen Xin
- The Ohio State University, Columbus, OH, 43210, USA
| | - Young-Jae Cho
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Junran Zhang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Terzoli S, Marzano P, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Balin S, Calvi M, Carletti A, Cancellara A, Coianiz N, Franzese S, Frigo A, Voza A, Calcaterra F, Di Vito C, Della Bella S, Mikulak J, Mavilio D. Expansion of memory Vδ2 T cells following SARS-CoV-2 vaccination revealed by temporal single-cell transcriptomics. NPJ Vaccines 2024; 9:63. [PMID: 38509155 PMCID: PMC10954735 DOI: 10.1038/s41541-024-00853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
γδ T cells provide rapid cellular immunity against pathogens. Here, we conducted matched single-cell RNA-sequencing and γδ-TCR-sequencing to delineate the molecular changes in γδ T cells during a longitudinal study following mRNA SARS-CoV-2 vaccination. While the first dose of vaccine primes Vδ2 T cells, it is the second administration that significantly boosts their immune response. Specifically, the second vaccination uncovers memory features of Vδ2 T cells, shaped by the induction of AP-1 family transcription factors and characterized by a convergent central memory signature, clonal expansion, and an enhanced effector potential. This temporally distinct effector response of Vδ2 T cells was also confirmed in vitro upon stimulation with SARS-CoV-2 spike-peptides. Indeed, the second challenge triggers a significantly higher production of IFNγ by Vδ2 T cells. Collectively, our findings suggest that mRNA SARS-CoV-2 vaccination might benefit from the establishment of long-lasting central memory Vδ2 T cells to confer protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michela Calvi
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Assunta Cancellara
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Alessandro Frigo
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
15
|
Patwardhan RS, Gohil D, Singh B, Kumar BK, Purohit V, Thoh M, Checker R, Gardi N, Gota V, Kutala VK, Patwardhan S, Sharma D, Sandur SK. Mitochondrial-targeted curcumin inhibits T-cell activation via Nrf2 and inhibits graft-versus-host-disease in a mouse model. Phytother Res 2024; 38:1555-1573. [PMID: 38281735 DOI: 10.1002/ptr.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.
Collapse
Affiliation(s)
| | - Dievya Gohil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Binita K Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Nilesh Gardi
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vijay Kumar Kutala
- Department of Biochemistry, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
16
|
Wang Y. Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1. Immunohorizons 2024; 8:198-213. [PMID: 38392560 PMCID: PMC10916360 DOI: 10.4049/immunohorizons.2400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, IA City, IA
| |
Collapse
|
17
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Wiliams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Mari Shinohara, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of the TLR9 agonist CpG to stimulate CD8 T cells in an autochthonous mouse model of sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573968. [PMID: 38260522 PMCID: PMC10802286 DOI: 10.1101/2024.01.03.573968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radiation therapy is frequently used to treat cancers including soft tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to radiation therapy (RT) in transplanted tumors, but the mechanism(s) remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and two doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to RT + CpG, we performed bulk RNA-seq, single-cell RNA-seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and interferon-γ. CpG + RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG + RT, TCR clonality analysis suggests an increase in clonal T-cell dominance. Collectively, these findings demonstrate that RT + CpG significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Collin L. Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nerissa T. Wiliams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jonathan E. Himes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | - Mari Shinohara
- Department of Immunology, Duke University, Durham, NC, USA
| | - Amy J. Wisdom
- Department of Radiation Oncology, Harvard University, Cambridge, MA, USA
| | - Everett J. Moding
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Wang Y. Erdr1 orchestrates macrophage polarization and determines cell fate via dynamic interplay with YAP1 and Mid1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557960. [PMID: 37781614 PMCID: PMC10541097 DOI: 10.1101/2023.09.17.557960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely distributed, extremely conserved secreted factor found in both humans and mice. Erdr1 is highly linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, it has emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in T cells and NK cell function, its role in macrophage remains unclear. This study aims to explore the function and mechanism of Erdr1 in IL-1β production in macrophages. Data manifest Erdr1 could play an inhibition role in IL-1β production, which also has been reported by previous research. What significance is we discovered Erdr1 can promote IL-1β production which is associated with Erdr1 dose and cell density. We observed that Erdr1 was inhibited in pro-inflammatory (M1) macrophages but was upregulated in anti-inflammatory (M2) macrophages compared to naive macrophages. We hypothesized that Erdr1 dual drives and modulates IL-1β production by binding with distinct adaptors via concentration change. Mechanistically, we demonstrated that Erdr1 dual regulates IL-1β production by dynamic interaction with YAP1 and Mid1 by distinct domains. Erdr1-YAP1 interplay mediates macrophage M2 polarization by promoting an anti-inflammatory response, enhancing catabolic metabolism, and leading to sterile cell death. Whereas, Erdr1-Mid1 interplay mediates macrophage M1 polarization by initiating a pro-inflammatory response, facilitating anabolic metabolism, and causing inflammatory cell death. This study highlights Erdr1 orchestrates macrophage polarization and determines cell date by regulating YAP1 through non-classical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA (Current)
| |
Collapse
|
19
|
Kirchmair A, Nemati N, Lamberti G, Trefny M, Krogsdam A, Siller A, Hörtnagl P, Schumacher P, Sopper S, Sandbichler A, Zippelius A, Ghesquière B, Trajanoski Z. 13C tracer analysis reveals the landscape of metabolic checkpoints in human CD8 + T cell differentiation and exhaustion. Front Immunol 2023; 14:1267816. [PMID: 37928527 PMCID: PMC10620935 DOI: 10.3389/fimmu.2023.1267816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Naïve T cells remain in an actively maintained state of quiescence until activation by antigenic signals, upon which they start to proliferate and generate effector cells to initiate a functional immune response. Metabolic reprogramming is essential to meet the biosynthetic demands of the differentiation process, and failure to do so can promote the development of hypofunctional exhausted T cells. Methods Here we used 13C metabolomics and transcriptomics to study the metabolism of CD8+ T cells in their complete course of differentiation from naïve over stem-like memory to effector cells and in exhaustion-inducing conditions. Results The quiescence of naïve T cells was evident in a profound suppression of glucose oxidation and a decreased expression of ENO1, downstream of which no glycolytic flux was detectable. Moreover, TCA cycle activity was low in naïve T cells and associated with a downregulation of SDH subunits. Upon stimulation and exit from quiescence, the initiation of cell growth and proliferation was accompanied by differential expression of metabolic enzymes and metabolic reprogramming towards aerobic glycolysis with high rates of nutrient uptake, respiration and lactate production. High flux in anabolic pathways imposed a strain on NADH homeostasis, which coincided with engagement of the proline cycle for mitochondrial redox shuttling. With acquisition of effector functions, cells increasingly relied on glycolysis as opposed to oxidative phosphorylation, which was, however, not linked to changes in mitochondrial abundance. In exhaustion, decreased effector function concurred with a reduction in mitochondrial metabolism, glycolysis and amino acid import, and an upregulation of quiescence-associated genes, TXNIP and KLF2, and the T cell suppressive metabolites succinate and itaconate. Discussion Overall, these results identify multiple metabolic features that regulate quiescence, proliferation and effector function, but also exhaustion of CD8+ T cells during differentiation. Thus, targeting these metabolic checkpoints may be a promising therapeutic strategy for both prevention of exhaustion and promotion of stemness of anti-tumor T cells.
Collapse
Affiliation(s)
- Alexander Kirchmair
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Niloofar Nemati
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giorgia Lamberti
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcel Trefny
- Department of Biomedicine, Cancer Immunology, University and University Hospital of Basel, Basel, Switzerland
| | - Anne Krogsdam
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- NGS Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Petra Schumacher
- Core Facility FACS Sorting, University Clinic for Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Core Facility FACS Sorting, University Clinic for Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alfred Zippelius
- Department of Biomedicine, Cancer Immunology, University and University Hospital of Basel, Basel, Switzerland
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Lee EY, Dai Z, Jaiswal A, Wang EHC, Anandasabapathy N, Christiano AM. Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing. Proc Natl Acad Sci U S A 2023; 120:e2305764120. [PMID: 37428932 PMCID: PMC10629527 DOI: 10.1073/pnas.2305764120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Alopecia areata (AA) is among the most prevalent autoimmune diseases, but the development of innovative therapeutic strategies has lagged due to an incomplete understanding of the immunological underpinnings of disease. Here, we performed single-cell RNA sequencing (scRNAseq) of skin-infiltrating immune cells from the graft-induced C3H/HeJ mouse model of AA, coupled with antibody-based depletion to interrogate the functional role of specific cell types in AA in vivo. Since AA is predominantly T cell-mediated, we focused on dissecting lymphocyte function in AA. Both our scRNAseq and functional studies established CD8+ T cells as the primary disease-driving cell type in AA. Only the depletion of CD8+ T cells, but not CD4+ T cells, NK, B, or γδ T cells, was sufficient to prevent and reverse AA. Selective depletion of regulatory T cells (Treg) showed that Treg are protective against AA in C3H/HeJ mice, suggesting that failure of Treg-mediated immunosuppression is not a major disease mechanism in AA. Focused analyses of CD8+ T cells revealed five subsets, whose heterogeneity is defined by an "effectorness gradient" of interrelated transcriptional states that culminate in increased effector function and tissue residency. scRNAseq of human AA skin showed that CD8+ T cells in human AA follow a similar trajectory, underscoring that shared mechanisms drive disease in both murine and human AA. Our study represents a comprehensive, systematic interrogation of lymphocyte heterogeneity in AA and uncovers a novel framework for AA-associated CD8+ T cells with implications for the design of future therapeutics.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Medical Scientist Training Program, Columbia University, New York, NY10032
| | - Zhenpeng Dai
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Abhinav Jaiswal
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
21
|
Souza PVL, Hou LY, Sun H, Poeker L, Lehman M, Bahadar H, Domingues-Junior AP, Dard A, Bariat L, Reichheld JP, Silveira JAG, Fernie AR, Timm S, Geigenberger P, Daloso DM. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO 2. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267089 DOI: 10.1111/pce.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Collapse
Affiliation(s)
- Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Hu Sun
- University of Rostock, Rostock, Germany
| | - Louis Poeker
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Lehman
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Humaira Bahadar
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
22
|
Leonard ER, Marques ES, Roy MA, Conlin SM, Ranjan R, Timme-Laragy AR. Dietary exposure to the food preservative tert-Butylhydroquinone (tBHQ) impairs zebrafish (Danio rerio) survival, growth, organ development, and gene expression in Nrf2a-dependent and independent ways. Food Chem Toxicol 2023; 176:113788. [PMID: 37075880 PMCID: PMC10213143 DOI: 10.1016/j.fct.2023.113788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Tert-Butylhydroquinone (tBHQ), a preservative used to prevent oxidative deterioration of oil, fat, and meat products, has been linked to both chemoprotective and adverse effects. This study investigates the impact of dietary tBHQ consumption on survival, growth parameters, organ development, and gene expression in zebrafish (Danio rerio). As tBHQ activates the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2a), a zebrafish line with a mutation in the DNA-binding domain of Nrf2a was used to identify Nrf2a-dependent vs independent effects. Homozygous Nrf2a wildtype (wt) and mutant (m) larvae were fed a diet containing 5% tBHQ or a control diet. Survival and growth parameters were assessed at 15 days and at 5 months, and samples were collected for RNA sequencing at 5 months. Dietary exposure to tBHQ throughout the larval and juvenile periods negatively impacted growth and survival. RNA-seq analysis found differentially expressed genes related to growth and development and upregulation of several immune system-related pathways. The findings herein demonstrate that dietary tBHQ exposure may impair growth and survival in both Nrf2a dependent and independent manners.
Collapse
Affiliation(s)
- Emily R Leonard
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
24
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
25
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
26
|
Muri J, Kopf M. The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol 2023; 53:e2249948. [PMID: 36285367 PMCID: PMC10100330 DOI: 10.1002/eji.202249948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
The thioredoxin (TRX) system is an important contributor to cellular redox balance and regulates cell growth, apoptosis, gene expression, and antioxidant defense in nearly all living cells. Oxidative stress, the imbalance between reactive oxygen species (ROS) and antioxidants, can lead to cell death and tissue damage, thereby contributing to aging and to the development of several diseases, including cardiovascular and allergic diseases, diabetes, and neurological disorders. Targeting its activity is also considered as a promising strategy in the treatment of cancer. Over the past years, immunologists have established an essential function of TRX for activation, proliferation, and responses in T cells, B cells, and macrophages. Upon activation, immune cells rearrange their redox system and activate the TRX pathway to promote proliferation through sustainment of nucleotide biosynthesis, and to support inflammatory responses in myeloid cells by allowing NF-κB and NLRP3 inflammasome responses. Consequently, targeting the TRX system may therapeutically be exploited to inhibit immune responses in inflammatory conditions. In this review, we summarize recent insights revealing key roles of the TRX pathway in immune cells in health and disease, and lessons learnt for cancer therapy.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
28
|
Anti-Inflammatory Effect of Dimethyl Fumarate Associates with the Inhibition of Thioredoxin Reductase 1 in RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010107. [PMID: 36615301 PMCID: PMC9822326 DOI: 10.3390/molecules28010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Macrophages secrete a variety of pro-inflammatory cytokines in response to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) but abnormal release of cytokines unfortunately promotes cytokine storms. Dimethyl fumarate (DMF), an FDA-approved drug for multiple sclerosis (MS) treatment, has been found as an effective therapeutic agent for resolution. In this study, the anti-inflammatory effect of DMF was found to correlate to selenoprotein thioredoxin reductase 1 (TXNRD1). DMF irreversibly modified the Sec498 residue and C-terminal catalytic cysteine residues of TXNRD1 in a time- and dose-dependent manner. In LPS-stimulated RAW 264.7 cells, cellular TXNRD activity was increased through up-regulation of the protein level and DMF inhibited TXNRD activity and the nitric oxide (NO) production of RAW 264.7 cells. Meanwhile, the inhibition of TXNRD1 by DMF would contribute to the redox regulation of inflammation and promote the nuclear factor erythroid 2-related factor 2 (NRF2) activation. Notably, inhibition of cellular TXNRD1 by auranofin or TRi-1 showed anti-inflammatory effect in RAW 264.7 cells. This finding demonstrated that targeting TXNRD1 is a potential mechanism of using immunometabolites for dousing inflammation in response to pathogens and highlights the potential of TXNRD1 inhibitors in immune regulation.
Collapse
|
29
|
Balta E, Janzen N, Kirchgessner H, Toufaki V, Orlik C, Liang J, Lairikyengbam D, Abken H, Niesler B, Müller-Decker K, Ruppert T, Samstag Y. Expression of TRX1 optimizes the antitumor functions of human CAR T cells and confers resistance to a pro-oxidative tumor microenvironment. Front Immunol 2022; 13:1063313. [PMID: 36591284 PMCID: PMC9794734 DOI: 10.3389/fimmu.2022.1063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Use of chimeric antigen receptor (CAR) T cells to treat B cell lymphoma and leukemia has been remarkably successful. Unfortunately, the therapeutic efficacy of CAR T cells against solid tumors is very limited, with immunosuppression by the pro-oxidative tumor microenvironment (TME) a major contributing factor. High levels of reactive oxygen species are well-tolerated by tumor cells due to their elevated expression of antioxidant proteins; however, this is not the case for T cells, which consequently become hypo-responsive. The aim of this study was to improve CAR T cell efficacy in solid tumors by empowering the antioxidant capacity of CAR T cells against the pro-oxidative TME. To this end, HER2-specific human CAR T cells stably expressing two antioxidant systems: thioredoxin-1 (TRX1), and glutaredoxin-1 (GRX1) were generated and characterized. Thereafter, antitumor functions of CAR T cells were evaluated under control or pro-oxidative conditions. To provide insights into the role of antioxidant systems, gene expression profiles as well as global protein oxidation were analyzed. Our results highlight that TRX1 is pivotal for T cell redox homeostasis. TRX1 expression allows CAR T cells to retain their cytolytic immune synapse formation, cytokine release, proliferation, and tumor cell-killing properties under pro-oxidative conditions. Evaluation of differentially expressed genes and the first comprehensive redoxosome analysis of T cells by mass spectrometry further clarified the underlying mechanisms. Taken together, enhancement of the key antioxidant TRX1 in human T cells opens possibilities to increase the efficacy of CAR T cell treatment against solid tumors.
Collapse
Affiliation(s)
- Emre Balta
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany,*Correspondence: Emre Balta, ; Yvonne Samstag,
| | - Nina Janzen
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henning Kirchgessner
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vasiliki Toufaki
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Orlik
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jie Liang
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Divya Lairikyengbam
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany,Counter Core Facility, Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section of Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany,*Correspondence: Emre Balta, ; Yvonne Samstag,
| |
Collapse
|
30
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
31
|
Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Exp Hematol Oncol 2022; 11:83. [PMID: 36316713 PMCID: PMC9624023 DOI: 10.1186/s40164-022-00329-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.
Collapse
Affiliation(s)
- Shaima Jabbar
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Nagaraj K, Sarfstein R, Laron Z, Werner H. Long-Term IGF1 Stimulation Leads to Cellular Senescence via Functional Interaction with the Thioredoxin-Interacting Protein, TXNIP. Cells 2022; 11:cells11203260. [PMID: 36291127 PMCID: PMC9601129 DOI: 10.3390/cells11203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
The growth hormone (GH)–insulin-like growth factor-1 (IGF1) signaling pathway plays a major role in orchestrating cellular interactions, metabolism, growth and aging. Studies from worms to mice showed that downregulated activity of the GH/IGF1 pathway could be beneficial for the extension of lifespan. Laron syndrome (LS) is an inherited autosomal recessive disorder caused by molecular defects of the GH receptor (GHR) gene, leading to congenital IGF1 deficiency. Life-long exposure to minute endogenous IGF1 levels in LS is associated with low stature as well as other endocrine and metabolic deficits. Epidemiological surveys reported that patients with LS have a reduced risk of developing cancer. Studies conducted on LS-derived lymphoblastoid cells led to the identification of a novel link between IGF1 and thioredoxin-interacting protein (TXNIP), a multifunctional mitochondrial protein. TXNIP is highly expressed in LS patients and plays a critical role in cellular redox regulation by thioredoxin. Given that IGF1 affects the levels of TXNIP under various stress conditions, including high glucose and oxidative stress, we hypothesized that the IGF1–TXNIP axis plays an essential role in helping maintain a physiological balance in cellular homeostasis. In this study, we show that TXNIP is vital for the cell fate choice when cells are challenged by various stress signals. Furthermore, prolonged IGF1 treatment leads to the establishment of a premature senescence phenotype characterized by a unique senescence network signature. Combined IGF1/TXNIP-induced premature senescence can be associated with a typical secretory inflammatory phenotype that is mediated by STAT3/IL-1A signaling. Finally, these mechanistic insights might help with the understanding of basic aspects of IGF1-related pathologies in the clinical setting.
Collapse
Affiliation(s)
- Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-6408542; Fax: +972-3-6405055
| |
Collapse
|
33
|
Liu L, Liu H, Huang X, Liu X, Zheng C. A High-Throughput and Uniform Amplification Method for Cell Spheroids. MICROMACHINES 2022; 13:1645. [PMID: 36296003 PMCID: PMC9607487 DOI: 10.3390/mi13101645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cell culture is an important life science technology. Compared with the traditional two-dimensional cell culture, three-dimensional cell culture can simulate the natural environment and structure specificity of cell growth in vivo. As such, it has become a research hotspot. The existing three-dimensional cell culture techniques include the hanging drop method, spinner flask method, etc., making it difficult to ensure uniform morphology of the obtained cell spheroids while performing high-throughput. Here, we report a method for amplifying cell spheroids with the advantages of quickly enlarging the culture scale and obtaining cell spheroids with uniform morphology and a survival rate of over 95%. Technically, it is easy to operate and convenient to change substances. These results indicate that this method has the potential to become a promising approach for cell-cell, cell-stroma, cell-organ mutual interaction research, tissue engineering, and anti-cancer drug screening.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Haixia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Department of Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
34
|
Fan Z, Jia W, Du A, Shi L. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Res Int 2022; 159:111666. [DOI: 10.1016/j.foodres.2022.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
|
35
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
36
|
Machcinska S, Walendzik K, Kopcewicz M, Wisniewska J, Rokka A, Pääkkönen M, Slowinska M, Gawronska-Kozak B. Hypoxia reveals a new function of Foxn1 in the keratinocyte antioxidant defense system. FASEB J 2022; 36:e22436. [PMID: 35792861 DOI: 10.1096/fj.202200249rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023]
Abstract
Skin exposed to environmental threats, including injuries and oxidative stress, develops an efficient but not fully recognized system of repair and antioxidant protection. Here, using mass spectrometry analysis (LC-MS/MS), followed by in vitro and in vivo experiments, we provided evidence that Foxn1 in keratinocytes regulates elements of the electron transport chain and participates in the thioredoxin system (Txn2, Txnrd3, and Srxn1) induction, particularly in a hypoxic environment. We first showed that Foxn1 in keratinocytes upregulates glutathione thioredoxin reductase 3 (Txnrd3) protein expression, and high levels of Txnrd3 mRNA were detected in injured skin of Foxn1+/+ mice. We also showed that Foxn1 strongly downregulated the Ccn2 protein expression, participating in epidermal reconstruction after injury. An in vitro assay revealed that Foxn1 controls keratinocyte migration, stimulating it under normoxia and suppressing it under hypoxia. Keratinocytes overexpressing Foxn1 and exposed to hypoxia displayed a reduced ability to promote angiogenesis by downregulating Vegfa expression. In conclusion, this study showed a new mechanism in which Foxn1, along with hypoxia, participates in the activation of antioxidant defense and controls the functional properties of keratinocytes.
Collapse
Affiliation(s)
- Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mariola Slowinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
37
|
Selenocysteine Machinery Primarily Supports TXNRD1 and GPX4 Functions and Together They Are Functionally Linked with SCD and PRDX6. Biomolecules 2022; 12:biom12081049. [PMID: 36008942 PMCID: PMC9405853 DOI: 10.3390/biom12081049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/23/2023] Open
Abstract
The human genome has 25 genes coding for selenocysteine (Sec)-containing proteins, whose synthesis is supported by specialized Sec machinery proteins. Here, we carried out an analysis of the co-essentiality network to identify functional partners of selenoproteins and Sec machinery. One outstanding cluster included all seven known Sec machinery proteins and two critical selenoproteins, GPX4 and TXNRD1. Additionally, these nine genes were further positively associated with PRDX6 and negatively with SCD, linking the latter two genes to the essential role of selenium. We analyzed the essentiality scores of gene knockouts in this cluster across one thousand cancer cell lines and found that Sec metabolism genes are strongly selective for a subset of primary tissues, suggesting that certain cancer cell lineages are particularly dependent on selenium. A separate outstanding cluster included selenophosphate synthetase SEPHS1, which was linked to a group of transcription factors, whereas the remaining selenoproteins were linked neither to these clusters nor among themselves. The data suggest that key components of Sec machinery have already been identified and that their primary role is to support the functions of GPX4 and TXNRD1, with further functional links to PRDX6 and SCD.
Collapse
|
38
|
Zhang M, Lin X, Yang Z, Li X, Zhou Z, Love PE, Huang J, Zhao B. Metabolic regulation of T cell development. Front Immunol 2022; 13:946119. [PMID: 35958585 PMCID: PMC9357944 DOI: 10.3389/fimmu.2022.946119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
T cell development in the thymus is tightly controlled by complex regulatory mechanisms at multiple checkpoints. Currently, many studies have focused on the transcriptional and posttranslational control of the intrathymic journey of T-cell precursors. However, over the last few years, compelling evidence has highlighted cell metabolism as a critical regulator in this process. Different thymocyte subsets are directed by distinct metabolic pathways and signaling networks to match the specific functional requirements of the stage. Here, we epitomize these metabolic alterations during the development of a T cell and review several recent works that provide insights into equilibrating metabolic quiescence and activation programs. Ultimately, understanding the interplay between cellular metabolism and T cell developmental programs may offer an opportunity to selectively regulate T cell subset functions and to provide potential novel therapeutic approaches to modulate autoimmunity.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| |
Collapse
|
39
|
Guo Y, Sun D, Zhang Y, Yu X, Fang Y, Lv C, Zhang Q, Zhu Y, Qiao S, Xia Y, Wei Z, Dai Y. The neuropeptide cortistatin attenuates Th17 cell response through inhibition of glycolysis via GHSR1. Int Immunopharmacol 2022; 108:108843. [DOI: 10.1016/j.intimp.2022.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
|
40
|
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Antioxidants (Basel) 2022; 11:antiox11071291. [PMID: 35883782 PMCID: PMC9312246 DOI: 10.3390/antiox11071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing.
Collapse
|
41
|
Huang J, Li Z, Hu Y, Li Z, Xie Y, Huang H, Chen Q, Chen G, Zhu W, Chen Y, Su W, Chen X, Liang D. Melatonin, an endogenous hormone, modulates Th17 cells via the reactive-oxygen species/TXNIP/HIF-1α axis to alleviate autoimmune uveitis. J Neuroinflammation 2022; 19:124. [PMID: 35624485 PMCID: PMC9145533 DOI: 10.1186/s12974-022-02477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. Methods EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1–20 (IRBP1–20). Melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the disease progression. T lymphocytes accumulation and the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR, respectively. T helper 1 (Th1), T helper 17 (Th17), and regulatory T (Treg) cells were detected via flow cytometry for both in vivo and in vitro experiments. Reactive-oxygen species (ROS) from CD4 + T cells was tested via flow cytometry. The expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α) proteins were quantified via western blot. Results Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells by suppressing their transcription factors and potentiated Treg cells. In vitro studies corroborated that melatonin restrained the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. Conclusions Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02477-z.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
42
|
Patwardhan RS, Sharma D, Sandur SK. Thioredoxin reductase: An emerging pharmacologic target for radiosensitization of cancer. Transl Oncol 2022; 17:101341. [PMID: 35078017 PMCID: PMC8790659 DOI: 10.1016/j.tranon.2022.101341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel agents are required to increase the radiosensitivity of cancer and improve the outcome of radiotherapy. Thioredoxin (Trx) and thioredoxin reductase (TrxR) reduce the oxidized cysteine thiols in several proteins, which regulate cellular redox, survival, proliferation, DNA synthesis, transcription factor activity and apoptosis. TrxR is essential for maintaining a conducive redox state for tumor growth, survival and resistance to therapy. Therefore, it is an appealing pharmacological target for the radiosensitization of tumors. Ionizing radiation (IR) is known to cause cytotoxicity through ROS, oxidative stress and DNA damage. Inhibition of thioredoxin system augments IR induced oxidative stress and potentiates cytotoxic effects. However, TrxR also regulates several critical cellular processes in normal cells. Here, we highlight the pre-clinical research and pharmacological studies to surmise possible utility of different TrxR inhibitors for radiosensitization. This review provides a succinct perspective on the role of TrxR inhibitors during the radiotherapy of cancer.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
43
|
Muri J, Corak B, Matsushita M, Baes M, Kopf M. Peroxisomes Are Critical for the Development and Maintenance of B1 and Marginal Zone B Cells but Dispensable for Follicular B Cells and T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:839-850. [PMID: 35074867 DOI: 10.4049/jimmunol.2100518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Basak Corak
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Mai Matsushita
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
44
|
Pedrosa LFC, Barros ANAB, Leite-Lais L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin Nutr ESPEN 2022; 47:9-27. [PMID: 35063248 PMCID: PMC8571905 DOI: 10.1016/j.clnesp.2021.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
The pathogenicity of the current coronavirus disease (COVID-19) shows postulates that optimal status of essential nutrients is crucial in supporting both the early viraemic and later hyperinflammatory phases of COVID-19. Micronutrients such as vitamin C, D, zinc, and selenium play roles in antioxidant, anti-inflammatory, antithrombotic, antiviral, and immuno-modulatory functions and are useful in both innate and adaptive immunity. The purpose of this review is to provide a high-level summary of evidence on clinical outcomes associated with nutritional risk of these micronutrients observed in patients with COVID-19. A literature search was performed on PubMed and Google Scholar to obtain findings of cross-sectional and experimental studies in humans. The search resulted in a total of 1212 reports including all nutrients, but only 85 were included according to the eligibility criteria. Despite the diversity of studies and the lack of randomized clinical trials and prospective cohorts, there is evidence of the potential protective and therapeutic roles of vitamin C, D, zinc, and selenium in COVID-19. The findings summarized in this review will contribute to guide interventions in clinical practice or in future clinical studies.
Collapse
Affiliation(s)
- Lucia F C Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
| | - Acsa N A B Barros
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
45
|
Vazquez J, Chavarria M, Chasman DA, Schwartz RW, Tyler CT, Lopez G, Fisher RC, Ong IM, Stanic AK. Multiomic analysis reveals decidual-specific transcriptional programing of MAIT cells. Am J Reprod Immunol 2021; 86:e13495. [PMID: 34411378 PMCID: PMC8720468 DOI: 10.1111/aji.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Mucosal-Associated Invariant T (MAIT) cells have been recently identified at the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in pregnancy remains poorly understood. METHOD OF STUDY We employed a multiomic approach to address this question. Mononuclear cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. In a separate study, both decidual and matched peripheral MAIT cells were analyzed using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene expression analysis. Lastly, decidual MAIT cells were stimulated with E.coli and expression of MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function. RESULTS First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, coupled with scRNA-seq gene expression analysis, highlighted transcriptional programming differences between decidual and matched peripheral MAIT cells at a single cell resolution. Transcription factor expression analysis further highlighted transcriptional differences between decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are skewed towards IFNγ and TNFα production upon stimulation, with E.coli leading to IFNγ production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT cells, is expressed by decidual APCs. CONCLUSION MAIT cells are present in the decidua basalis and obtain a unique gene expression profile. The presence of MR1 on APCs coupled with in vitro activation by E.coli suggests that MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
| | | | - Deborah A. Chasman
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | | | | | | | - Irene M. Ong
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
- University of Wisconsin Carbone Comprehensive Cancer Center
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
46
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
47
|
Abstract
The cytosolic selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1), and to some extent mitochondrial TrxR2 (TXNRD2), can be inhibited by a wide range of electrophilic compounds. Many such compounds also yield cytotoxicity toward cancer cells in culture or in mouse models, and most compounds are likely to irreversibly modify the easily accessible selenocysteine residue in TrxR1, thereby inhibiting its normal activity to reduce cytosolic thioredoxin (Trx1, TXN) and other substrates of the enzyme. This leads to an oxidative challenge. In some cases, the inhibited forms of TrxR1 are not catalytically inert and are instead converted to prooxidant NADPH oxidases, named SecTRAPs, thus further aggravating the oxidative stress, particularly in cells expressing higher levels of the enzyme. In this review, the possible molecular and cellular consequences of these effects are discussed in relation to cancer therapy, with a focus on outstanding questions that should be addressed if targeted TrxR1 inhibition is to be further developed for therapeutic use. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; .,Department of Selenoprotein Research, National Institute of Oncology, Budapest 1122, Hungary
| |
Collapse
|
48
|
Huang LJ, Mao XT, Li YY, Liu DD, Fan KQ, Liu RB, Wu TT, Wang HL, Zhang Y, Yang B, Ye CQ, Zhong JY, Chai RJ, Cao Q, Jin J. Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn's disease. Immunity 2021; 54:1728-1744.e7. [PMID: 34343498 DOI: 10.1016/j.immuni.2021.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.
Collapse
Affiliation(s)
- Ling-Jie Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Xin-Tao Mao
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Dan-Dan Liu
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke-Qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Rong-Bei Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Bing Yang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Cun-Qi Ye
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiang-Yan Zhong
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ren-Jie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China.
| | - Jin Jin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Epigallocatechin Gallate Alleviates Down-Regulation of Thioredoxin in Ischemic Brain Damage and Glutamate-Exposed Neuron. Neurochem Res 2021; 46:3035-3049. [PMID: 34327632 DOI: 10.1007/s11064-021-03403-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Epigallocatechin gallate (EGCG) is one of polyphenol that is abundant in green tea. It has anti-oxidative activity and exerts neuroprotective effects in ischemic brain damage. Ischemic conditions induce oxidative stress and result in cell death. Thioredoxin is a small redox protein that plays an important role in the regulation of oxidation and reduction. This study was designed to investigate the regulation of thioredoxin by EGCG in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in male Sprague-Dawley rats. The EGCG (50 mg/kg) or was administered before MCAO surgical operation. Neurological behavior test, reactive oxygen species (ROS), and lipid peroxidation (LPO) measurement were performed 24 h after MCAO. The cerebral cortex was isolated for further experiments. EGCG alleviated MCAO-induced neurological deficits and increases in ROS and LPO levels. EGCG also ameliorated the decrease in thioredoxin expression by MCAO. This finding was confirmed using various techniques such as Western blot analysis, reverse transcription PCR, and immunofluorescence staining. Results of immunoprecipitation showed that MCAO decreases the interaction between apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin, while EGCG treatment attenuates this decrease. EGCG also attenuated decrease of cell viability and thioredoxin expression in glutamate-exposed neuron in a dose-dependent manner. It alleviated the increase of caspase-3 by glutamate exposure. However, this effect of EGCG on caspase-3 change was weakened in thioredoxin siRNA-transfected neurons. These findings suggest that EGCG exerts a neuroprotective effect by regulating thioredoxin expression and modulating ASK1 and thioredoxin binding in ischemic brain damage.
Collapse
|
50
|
Lundberg AK, Chung RWS, Zeijlon L, Fernström G, Jonasson L. Oxidative stress response in regulatory and conventional T cells: a comparison between patients with chronic coronary syndrome and healthy subjects. J Transl Med 2021; 19:241. [PMID: 34082767 PMCID: PMC8173731 DOI: 10.1186/s12967-021-02906-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Inflammation and oxidative stress form a vicious circle in atherosclerosis. Oxidative stress can have detrimental effects on T cells. A unique subset of CD4+ T cells, known as regulatory T (Treg) cells, has been associated with atheroprotective effects. Reduced numbers of Treg cells is a consistent finding in patients with chronic coronary syndrome (CCS). However, it is unclear to what extent these cells are sensitive to oxidative stress. In this pilot study, we tested the hypothesis that oxidative stress might be a potential contributor to the Treg cell deficit in CCS patients. Methods Thirty patients with CCS and 24 healthy controls were included. Treg (CD4+CD25+CD127−) and conventional T (CD4+CD25−, Tconv) cells were isolated and treated with increasing doses of H2O2. Intracellular ROS levels and cell death were measured after 2 and 18 h, respectively. The expression of antioxidant genes was measured in freshly isolated Treg and Tconv cells. Also, total antioxidant capacity (TAC) was measured in fresh peripheral blood mononuclear cells, and oxidized (ox) LDL/LDL ratios were determined in plasma. Results At all doses of H2O2, Treg cells accumulated more ROS and exhibited higher rates of death than their Tconv counterparts, p < 0.0001. Treg cells also expressed higher levels of antioxidant genes, including thioredoxin and thioredoxin reductase-1 (p < 0.0001), though without any differences between CCS patients and controls. Tconv cells from CCS patients were, on the other hand, more sensitive to oxidative stress ex vivo and expressed more thioredoxin reductase-1 than Tconv cells from controls, p < 0.05. Also, TAC levels were lower in patients, 0.97 vs 1.53 UAE/100 µg, p = 0.001, while oxLDL/LDL ratios were higher, 29 vs 22, p = 0.006. Conclusion Treg cells isolated from either CCS patients or healthy controls were all highly sensitive to oxidative stress ex vivo. There were signs of oxidant-antioxidant imbalance in CCS patients and we thus assume that oxidative stress may play a role in the reduction of Treg cells in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02906-2.
Collapse
Affiliation(s)
- Anna K Lundberg
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Rosanna W S Chung
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Louise Zeijlon
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Gustav Fernström
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Lena Jonasson
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden. .,Department of Cardiology, Linköping University Hospital, 581 85, Linköping, Sweden.
| |
Collapse
|