1
|
Liu L, Fu S, Gu H, Li Y, Zhu G, Ai H, Li W. Platinum(IV)-Backboned Polymer Prodrug-Functionalized Manganese Oxide Nanoparticles for Enhanced Lung Cancer Chemoimmunotherapy via Amplifying Stimulator of Interferon Genes Activation. ACS NANO 2025; 19:2726-2741. [PMID: 39772457 DOI: 10.1021/acsnano.4c15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The stimulator of interferon genes (STING) pathway exhibits great potential in remodeling the immunosuppressive tumor microenvironment and initiating antitumor immunity. However, how to effectively activate STING and avoid undesired toxicity after systemic administration remains challenging. Herein, platinum(IV)-backboned polymer prodrug-coated manganese oxide nanoparticles (DHP/MnO2NP) with pH/redox dual responsive properties are developed to precisely release cisplatin and Mn2+ in the tumor microenvironment and synergistically amplify STING activation. In vitro, we demonstrate that DHP/MnO2NP can effectively induce tumor cell DNA damage and leak into the cytoplasm, cooperating with Mn2+ to promote STING activation and significantly upregulate the expression of proinflammatory cytokines. Additionally, DHP/MnO2NP can selectively release cisplatin and Mn2+ to mediate tumor killing while reducing toxicity to normal cells. In vivo, DHP/MnO2NP exerted increased therapeutic efficacy by inducing STING activation and initiating robust antitumor immunity. Specifically, DHP/MnO2NP effectively skewed tumor-associated macrophages toward a proinflammatory phenotype and upregulated the expression of proinflammatory cytokines in tumors by up to 99-fold relative to the control. And the infiltration of CD8+ T cells was also significantly increased. When STING signaling was blocked, the antitumor effects and immunostimulatory efficacy of DHP/MnO2NP were significantly inhibited. Moreover, DHP/MnO2NP possess the advantage of enhanced tumor homing and retention, resulting in stronger and longer-lasting anticancer effects. Overall, DHP/MnO2NP provide a potential platform for potentiating cancer chemoimmunotherapy and hold promise for precision treatment.
Collapse
Affiliation(s)
- Li Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Guonian Zhu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Shinde O, Boyer JA, Cambier S, VanPortfliet JJ, Sui X, Yadav GP, Viverette EG, Borgnia MJ, West AP, Zhang Q, Stetson DB, Li P. Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export. Immunity 2025; 58:59-73.e5. [PMID: 39765229 PMCID: PMC11735300 DOI: 10.1016/j.immuni.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response. However, the molecular basis of cGAMP export mediated by ABCC1 remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ABCC1 in a ligand-free state and a cGAMP-bound state. These structures reveal that ABCC1 forms a homodimer via its N-terminal transmembrane domain. The ligand-bound structure shows that cGAMP is recognized by a positively charged pocket. Mutagenesis and functional studies confirmed the roles of the ligand-binding pocket in cGAMP recognition and export. This study provides insights into the structure and function of ABCC1 as a cGAMP exporter and lays a foundation for future research targeting ABCC1 in infection and anti-cancer immunity.
Collapse
Affiliation(s)
- Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Cambier
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - Xuewu Sui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Gaya P Yadav
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Elizabeth G Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Lu Y, Li Z, Zhu X, Zeng Q, Liu S, Guan W. Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment. Int J Nanomedicine 2025; 20:181-197. [PMID: 39802380 PMCID: PMC11721825 DOI: 10.2147/ijn.s503780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons. Cyclic dinucleotides (CDNs), produced by cGAS sensing cytoplasmic abnormal DNA, are major intermediate activating molecules in the STING pathway. Nowadays, CDNs and their derivatives have widely worked as powerful STING agonists in tumor immunotherapy. However, their clinical translation is hindered by the negative electrical properties, sensitivity to hydrolytic enzymes, and systemic toxicity. Recently, various CDN delivery systems have made significant progress in addressing these issues, either through monotherapy or in combination with other treatment modalities. This review details recent advances in CDNs-based pharmaceutical development or delivery strategies for enriching CDNs at tumor sites and activating the STING pathway.
Collapse
Affiliation(s)
- Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Zhiyan Li
- Division of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qingwei Zeng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Romero A, Cumplido-Laso G, Fernández A, Moreno J, Canales J, Ferreira R, López-Gómez J, Ribeiro JM, Costas MJ, Cameselle JC. Free amino acids accelerate the time-dependent inactivation of rat liver nucleotide pyrophosphatase/phosphodiesterase Enpp3 elicited by EDTA. Amino Acids 2024; 57:1. [PMID: 39641818 PMCID: PMC11624235 DOI: 10.1007/s00726-024-03431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Nucleotide-pyrophosphatases/phosphodiesterases (NPP/PDE) are membrane or secreted Zn2+-metallohydrolases of nucleoside-5´-monophosphate derivatives. They hydrolyze, for instance, ATP and 4-nitrophenyl-dTMP, and belong to the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family that contains seven members (ENPP1-ENPP7). Earlier we had shown that an NPP/PDE activity solubilized and partially purified from rat liver membranes is inactivated by EDTA in a time-dependent fashion, an effect enhanced by glycine and blocked by the 4-nitrophenyl-dTMP. Here, we extended this observation to other free amino acids. Activity assays started after different incubation lengths with EDTA provided first-order, apparent inactivation constants (ki(ap)). With the exception of cysteine (a strong inhibitor) and histidine (itself evoking a time-dependent inactivation), free amino acids themselves did not affect activity but increased ki(ap). The results are compatible with a conformational change of NPP/PDE evoked by interaction with free amino acids. The enzyme preparation was analyzed to identify what ENPP family members were present. First, the hydrolytic activity on 2´,3´-cGAMP was assayed because until very recently ENPP1 was the only mammalian enzyme known to display it. 2´,3´-cGAMP hydrolase activity was clearly detected, but mass spectrometry data obtained by LC-MS/MS gave evidence that only rat Enpp3, Enpp4 and Enpp5 were present with low abundance. This finding coincided in time with a recent publication claiming that mouse Enpp3 hydrolyzes 2´,3´-cGAMP, and that Enpp1 and Enpp3 account for all the 2´,3´-cGAMP hydrolase activity in mice. So, our results are confirmatory of Enpp3 activity towards 2´,3´-cGAMP. Finally, the effect of amino acids could be relevant to NPP/PDE actions dependent on protein-protein interactions, like the known insulin-related effects of ENPP1 and possibly ENPP3.
Collapse
Grants
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- Universidad de Extremadura
Collapse
Affiliation(s)
- Ana Romero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Ascensión Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Javier Moreno
- Colegio María Inmaculada Ríos Rosas, c/Ríos Rosas 35, 28003, Madrid, Spain
| | - José Canales
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Rui Ferreira
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554, Evora, Portugal
| | - Juan López-Gómez
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Servicio Extremeño de Salud, 06006, Badajoz, Spain
| | - João Meireles Ribeiro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - María Jesús Costas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - José Carlos Cameselle
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
8
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
10
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Zhan S, Zhang Y, Cao T, Yang R, Wang Q, Huang L, Cui R, Yu J, Meng H, Wang Y, Zhang S, Zheng M, Wu X. Discovery of Imidazo[1,2- a]pyrazine Derivatives as Potent ENPP1 Inhibitors. J Med Chem 2024; 67:18317-18333. [PMID: 39357030 DOI: 10.1021/acs.jmedchem.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ENPP1 acts as a negative regulator of the cGAS-STING pathway through the hydrolysis of 2'3'-cGAMP. Inhibitors of ENPP1 are regarded as promising agents for stimulating the immune response in cancer immunotherapy. This study describes the identification and optimization of imidazo[1,2-a]pyrazine derivative 7 as a highly potent and selective ENPP1 inhibitor. Compound 7 demonstrated substantial inhibitory activity against ENPP1 with an IC50 value of 5.70 or 9.68 nM while showing weak inhibition against ENPP2 and ENPP3. Furthermore, compound 7 was shown to enhance the mRNA expression of cGAMP-induced STING pathway downstream target genes, such as IFNB1, CXCL10, and IL6. In vivo pharmacokinetic and antitumor studies showed promising results, with 7 not only exhibiting efficient pharmacokinetic properties but also enhancing the antitumor efficacy of the anti-PD-1 antibody. Treatment with 7 (80 mg/kg) combined with anti-PD-1 antibody achieved a tumor growth inhibition rate of 77.7% and improved survival in a murine model.
Collapse
Affiliation(s)
- Shiping Zhan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingying Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Ruirui Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lin Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Rongrong Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haifang Meng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yitian Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sulin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Huang C, Tong T, Ren L, Wang H. STING-Activating Small Molecular Therapeutics for Cancer Immunotherapy. Chembiochem 2024; 25:e202400255. [PMID: 38980259 DOI: 10.1002/cbic.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor (CAR) T cells have received clinical approval for monotherapy and combination treatment in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate a durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs), have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here, we review the current development of STING-activating therapeutics in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Chuhan Huang
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tianrui Tong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China
| |
Collapse
|
13
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
14
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
15
|
Ansh AJ, Stabach PR, Ciccone C, Cao W, De La Cruz EM, Sabbagh Y, Carpenter TO, Ferreira CR, Braddock DT. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024; 186:117136. [PMID: 38806089 PMCID: PMC11227391 DOI: 10.1016/j.bone.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.
Collapse
Affiliation(s)
- Anenya Jai Ansh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla Ciccone
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St., Suite 400, Boston, MA 02201, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Jiang X, Luo T, Yang K, Lee MJ, Liu J, Tillman L, Zhen W, Weichselbaum RR, Lin W. STING activation disrupts tumor vasculature to overcome the EPR limitation and increase drug deposition. SCIENCE ADVANCES 2024; 10:eado0082. [PMID: 39018400 PMCID: PMC466951 DOI: 10.1126/sciadv.ado0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The low success rate of cancer nanomedicines has raised debate on the role of the enhanced permeability and retention (EPR) effect on tumor deposition of nanotherapeutics. Here, we report a bifunctional nanoscale coordination polymer (NCP), oxaliplatin (OX)/2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), to overcome the EPR limitation through stimulator of interferon genes (STING) activation and enhance chemotherapeutic and STING agonist delivery for tumor eradication. OX/GA encapsulates GA and OX in the NCP to protect GA from enzymatic degradation and improve GA and OX pharmacokinetics. STING activation by OX/GA disrupts tumor vasculatures and increases intratumoral deposition of OX by 4.9-fold over monotherapy OX-NCP. OX/GA demonstrates exceptional antitumor effects with >95% tumor growth inhibition and high cure rates in subcutaneous, orthotopic, spontaneous, and metastatic tumor models. OX/GA induces immunogenic cell death of tumor cells and STING activation of innate immune cells to enhance antigen presentation. NCPs provide an excellent nanoplatform to overcome the EPR limitation for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Morten J. Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Jing Liu
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenyao Zhen
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
17
|
Leekha A, Saeedi A, Kumar M, Sefat KMSR, Martinez-Paniagua M, Meng H, Fathi M, Kulkarni R, Reichel K, Biswas S, Tsitoura D, Liu X, Cooper LJN, Sands CM, Das VE, Sebastian M, Hurst BL, Varadarajan N. An intranasal nanoparticle STING agonist protects against respiratory viruses in animal models. Nat Commun 2024; 15:6053. [PMID: 39025863 PMCID: PMC11258242 DOI: 10.1038/s41467-024-50234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
Respiratory viral infections cause morbidity and mortality worldwide. Despite the success of vaccines, vaccination efficacy is weakened by the rapid emergence of viral variants with immunoevasive properties. The development of an off-the-shelf, effective, and safe therapy against respiratory viral infections is thus desirable. Here, we develop NanoSTING, a nanoparticle formulation of the endogenous STING agonist, 2'-3' cGAMP, to function as an immune activator and demonstrate its safety in mice and rats. A single intranasal dose of NanoSTING protects against pathogenic strains of SARS-CoV-2 (alpha and delta VOC) in hamsters. In transmission experiments, NanoSTING reduces the transmission of SARS-CoV-2 Omicron VOC to naïve hamsters. NanoSTING also protects against oseltamivir-sensitive and oseltamivir-resistant strains of influenza in mice. Mechanistically, NanoSTING upregulates locoregional interferon-dependent and interferon-independent pathways in mice, hamsters, as well as non-human primates. Our results thus implicate NanoSTING as a broad-spectrum immune activator for controlling respiratory virus infection.
Collapse
Affiliation(s)
- Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Hui Meng
- College of Optometry, University of Houston, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | - Vallabh E Das
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
20
|
Yang J, Xu Z, Zheng W, Li Y, Wei Q, Yang L. Identification of the cytoplasmic DNA-Sensing cGAS-STING pathway-mediated gene signatures and molecular subtypes in prostate cancer. BMC Cancer 2024; 24:732. [PMID: 38877472 PMCID: PMC11179326 DOI: 10.1186/s12885-024-12492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Considering the age relevance of prostate cancer (PCa) and the involvement of the cGAS-STING pathway in aging and cancer, we aim to classify PCa into distinct molecular subtypes and identify key genes from the novel perspective of the cGAS-STING pathway. It is of significance to guide personalized intervention of cancer-targeting therapy based on genetic evidence. METHODS The 430 patients with PCa from the TCGA database were included. We integrated 29 key genes involved in cGAS-STING pathway and analyzed differentially expressed genes and biochemical recurrence (BCR)-free survival-related genes. The assessments of tumor stemness and heterogeneity and tumor microenvironment (TME) were conducted to reveal potential mechanisms. RESULTS PCa patients were classified into two distinct subtypes using AURKB, TREX1, and STAT6, and subtype 1 had a worse prognosis than subtype 2 (HR: 21.19, p < 0.001). The findings were validated in the MSKCC2010 cohort. Among subtype 1 and subtype 2, the top ten mutation genes were MUC5B, DNAH9, SLC5A10, ZNF462, USP31, SIPA1L3, PLEC, HRAS, MYOM1, and ITGB6. Gene set variation analysis revealed a high enrichment of the E2F target in subtype 1, and gene set enrichment analysis showed significant enrichment of base excision repair, cell cycle, and DNA replication in subtype 1. TME evaluation indicated that subtype 1 had a significantly higher level of T cells follicular helper and a lower level of plasma cells than subtype 2. CONCLUSIONS The molecular subtypes mediated by the cGAS-STING pathway and the genetic risk score may aid in identifying potentially high-risk PCa patients who may benefit from pharmacologic therapies targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Zihan Xu
- China Agricultural University, Beijing, 100083, China
| | - Weitao Zheng
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Yifan Li
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China.
| | - Lu Yang
- Department of Urology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, China.
| |
Collapse
|
21
|
Wang Y, Li S, Hu M, Yang Y, McCabe E, Zhang L, Withrow AM, Ting JPY, Liu R. Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways. NATURE NANOTECHNOLOGY 2024; 19:856-866. [PMID: 38480836 DOI: 10.1038/s41565-024-01624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/29/2024] [Indexed: 03/21/2024]
Abstract
The efficacy of STING (stimulator of interferon genes) agonists is due to various factors, primarily inefficient intracellular delivery, low/lack of endogenous STING expression in many tumours, and a complex balance between tumour control and progression. Here we report a universal STING mimic (uniSTING) based on a polymeric architecture. UniSTING activates STING signalling in a range of mouse and human cell types, independent of endogenous STING expression, and selectively stimulates tumour control IRF3/IFN-I pathways, but not tumour progression NF-κB pathways. Intratumoural or systemic injection of uniSTING-mRNA via lipid nanoparticles (LNPs) results in potent antitumour efficacy across established and advanced metastatic tumour models, including triple-negative breast cancer, lung cancer, melanoma and orthotopic/metastatic liver malignancies. Furthermore, uniSTING displays an effective antitumour response superior to 2'3'-cGAMP and ADU-S100. By favouring IRF3/IFN-I activity over the proinflammatory NF-κB signalling pathway, uniSTING promotes dendritic cell maturation and antigen-specific CD8+ T-cell responses. Extracellular vesicles released from uniSTING-treated tumour cells further sensitize dendritic cells via exosome-containing miRNAs that reduced the immunosuppressive Wnt2b, and a combination of LNP-uniSTING-mRNA with α-Wnt2b antibodies synergistically inhibits tumour growth and prolongs animal survival. Collectively, these results demonstrate the LNP-mediated delivery of uniSTING-mRNA as a strategy to overcome the current STING therapeutic barriers, particularly for the treatment of multiple cancer types in which STING is downregulated or absent.
Collapse
Affiliation(s)
- Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Ellie McCabe
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lillian Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M Withrow
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Yeboah SK, Sintim HO. PDE-stable 2'3'-cGAMP analogues, containing 5'-S-phosphorothioester linkage, as STING agonists. RSC Med Chem 2024; 15:1508-1514. [PMID: 38784462 PMCID: PMC11110794 DOI: 10.1039/d3md00593c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 05/25/2024] Open
Abstract
The stimulator of interferon genes (STING) has emerged as a promising target for cancer immunotherapy. 2'3'-cGAMP, a natural agonist of STING, shows anticancer activity via stimulation of immune cells but it is susceptible to degradation in vivo by hydrolytic enzymes. Consequently, the cyclic dinucleotide analogues that are being evaluated in the clinic as immunotherapies contain the hydrolytically stable phosphorothioate moiety, whereby the sulfur moiety is exo to the phosphate containing ring. The synthesis of these phosphorothioates however produces diastereomers, which presents separation challenges. An alternative phosphorothioate (referred to as endo-S-phosphorothioate) whereby the sulfur atom is endo to the cyclic phosphate ring (i.e. 5'-S-phosphorothioester linkage) would not have chirality at phosphorus and hence not pose diastereomer separation problems. Herein, we report the design and synthesis of novel 5'-endo-phosphorothioate substituted 2'3'cGAMP analogues that are hydrolytically stable towards both ectonucleotide phosphodiesterase I (ENPP1, a mammalian phosphodiesterase) and poxvirus immune nucleases (poxin, a phosphodiesterase in Poxvirus) but retains STING-TBK1-IRF activation, comparable to clinical candidate, ADU-S100 in THP1 monocytes.
Collapse
Affiliation(s)
- Simpa K Yeboah
- Department of Chemistry 560 Oval Drive West Lafayette Indiana 47907-2084 USA
- Institute for Drug Discovery, Purdue University 720 Clinic Drive West Lafayette IN 47907 USA
| | - Herman O Sintim
- Department of Chemistry 560 Oval Drive West Lafayette Indiana 47907-2084 USA
- Institute for Drug Discovery, Purdue University 720 Clinic Drive West Lafayette IN 47907 USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease West Lafayette IN 47907 USA
| |
Collapse
|
23
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Colangelo NW, Gerber NK, Vatner RE, Cooper BT. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front Pharmacol 2024; 15:1383000. [PMID: 38659582 PMCID: PMC11039815 DOI: 10.3389/fphar.2024.1383000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Naamit K. Gerber
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Ralph E. Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin T. Cooper
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
25
|
Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57:718-730. [PMID: 38599167 PMCID: PMC11013568 DOI: 10.1016/j.immuni.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.
Collapse
Affiliation(s)
- Steve Dvorkin
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah E Volkman
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Wenzl SJ, de Oliveira Mann CC. How enzyme-centered approaches are advancing research on cyclic oligo-nucleotides. FEBS Lett 2024; 598:839-863. [PMID: 38453162 DOI: 10.1002/1873-3468.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.
Collapse
Affiliation(s)
- Simon J Wenzl
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
27
|
Zhao X, Zheng R, Zhang B, Zhao Y, Xue W, Fang Y, Huang Y, Yin M. Sulfonated Perylene as Three-in-One STING Agonist for Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202318799. [PMID: 38230819 DOI: 10.1002/anie.202318799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
Activation of stimulator of interferon genes (STING) by cyclic dinucleotides (CDNs) has been considered as a powerful immunotherapy strategy. While promising, the clinical translation of CDNs is still overwhelmed by its limited biostability and the resulting systemic immunotoxicity. Being differentiating from current application of exogenous CDNs to address these challenges, we herein developed one perylene STING agonist PDIC-NS, which not only promotes the production of endogenous CDNs but also inhibits its hydrolysis. More significantly, PDIC-NS can well reach lung-selective enrichment, and thus mitigates the systemic immunotoxicity upon intravenous administration. As a result, PDIC-NS had realized remarkable in vivo antitumor activity, and backward verified on STING knock out mice. Overall, this study states that PDIC-NS can function as three-in-one small-molecule STING agonist characterized by promoting the content and biostability of endogenous CDNs as well as possessing good tissue specificity, and hence presents an innovative strategy and platform for tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Xuejie Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Bianbian Zhang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Wanli Xue
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yingfei Fang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen C, Sun X, Wu Q, Yuan X, Xie Z, Zhou J, Zhang H. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress and prospects. Eur J Med Chem 2024; 267:116211. [PMID: 38359537 DOI: 10.1016/j.ejmech.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.
Collapse
Affiliation(s)
- Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Lincheng Fang
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mingshun Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingfeng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
29
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
30
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
31
|
Zhang HJ, Ociepa M, Nassir M, Zheng B, Lewicki SA, Salmaso V, Baburi H, Nagel J, Mirza S, Bueschbell B, Al-Hroub H, Perzanowska O, Lin Z, Schmidt MA, Eastgate MD, Jacobson KA, Müller CE, Kowalska J, Jemielity J, Baran PS. Stereocontrolled access to thioisosteres of nucleoside di- and triphosphates. Nat Chem 2024; 16:249-258. [PMID: 37857844 DOI: 10.1038/s41557-023-01347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Michał Ociepa
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Molhm Nassir
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helay Baburi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Beatriz Bueschbell
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Olga Perzanowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ziqin Lin
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Michael A Schmidt
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Martin D Eastgate
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
32
|
Ma X, Li Y, Zhu H, Lu K, Huang Y, Li X, Han S, Ding H, Sun S. ENPP1 inhibits the transcription activity of the hepatitis B virus pregenomic promoter by upregulating the acetylation of LMNB1. Arch Virol 2024; 169:36. [PMID: 38265511 DOI: 10.1007/s00705-023-05949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024]
Abstract
Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.
Collapse
Affiliation(s)
- Xinping Ma
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- The department of infectious diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, 450003, Henan, China
| | - Huihui Zhu
- Department of Gastroenterology, School of Clinical Medicine, Henan Provincial People's Hospital, Henan University, Zhengzhou, 450003, Henan, China
| | - Kai Lu
- Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yingli Huang
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaofang Li
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Shuangyin Han
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
33
|
Ferreira CR, Carpenter TO, Braddock DT. ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency. ANNUAL REVIEW OF PATHOLOGY 2024; 19:507-540. [PMID: 37871131 PMCID: PMC11062289 DOI: 10.1146/annurev-pathmechdis-051222-121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas O Carpenter
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
34
|
Duangiad P, Nutho B, Chaijarasphong T, Morales NP, Pongtharangkul T, Hamachi I, Ojida A, Wongkongkatep J. Naturally occurring quercetin and myricetin as potent inhibitors for human ectonucleotide pyrophosphatase/phosphodiesterase 1. Sci Rep 2024; 14:125. [PMID: 38167594 PMCID: PMC10761680 DOI: 10.1038/s41598-023-50590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Ecto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was employed to screen for effective ENPP1 inhibitors among five representative flavonoids (quercetin, myricetin, morin, kaempferol, and quercetin-3-glucoside), five nucleosides (adenosine, guanosine, inosine, uridine, and cytidine), and five deoxynucleosides (2'- and 3'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxyinosine, and 2'-deoxyuridine). Conventional colorimetric, fluorescence, and bioluminescence assays revealed that ENPP1 was effectively inhibited by quercetin (Ki ~ 4 nM) and myricetin (Ki ~ 32 nM) when ATP was used as a substrate at pH 7.4. In silico analysis indicated that the presence of a chromone scaffold, particularly one containing a hydroxyl group at the 3' position on the B ring, may promote binding to the active site pocket of ENPP1 and enhance inhibition. This study demonstrated that the naturally derived quercetin and myricetin could effectively inhibit ENPP1 enzymatic activity and may offer health benefits in arthritis management.
Collapse
Affiliation(s)
- Peeradon Duangiad
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Noppawan Phumala Morales
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thunyarat Pongtharangkul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
35
|
Solomon PE, Bracken CJ, Carozza JA, Wang H, Young EP, Wellner A, Liu CC, Sweet-Cordero EA, Li L, Wells JA. Discovery of VH domains that allosterically inhibit ENPP1. Nat Chem Biol 2024; 20:30-41. [PMID: 37400538 PMCID: PMC10746542 DOI: 10.1038/s41589-023-01368-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.
Collapse
Affiliation(s)
- Paige E Solomon
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cartography Biosciences, South San Francisco, CA, USA
| | - Jacqueline A Carozza
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - Haoqing Wang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Macromolecular Structural Knowledge Center, Stanford University, Stanford, CA, USA
| | - Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alon Wellner
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Lu Y, You L, Li L, Kilgore JA, Liu S, Wang X, Dai Y, Wei Q, Shi H, Han L, Sun L, Chen ZJ, Zhang X, Williams NS, Chen C. Orthogonal Hydroxyl Functionalization of cGAMP Confers Metabolic Stability and Enables Antibody Conjugation. ACS CENTRAL SCIENCE 2023; 9:2298-2305. [PMID: 38161369 PMCID: PMC10755847 DOI: 10.1021/acscentsci.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.
Collapse
Affiliation(s)
- Yong Lu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lin You
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Liping Li
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Jessica A. Kilgore
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Shun Liu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xiaoyu Wang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Yuanwei Dai
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Qi Wei
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Heping Shi
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lei Han
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lijun Sun
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Zhijian J. Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xuewu Zhang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Noelle S. Williams
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Chuo Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| |
Collapse
|
37
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
38
|
Cho Y, Kang M, Ji SH, Jeong HJ, Jung JE, Oh DH, Park S, Park YY, Choi J, Kim S, Kim NJ, Lee DH, Park CS, Han SJ, Lee S, Choi J. Discovery of Orally Bioavailable Phthalazinone Analogues as an ENPP1 Inhibitor for STING-Mediated Cancer Immunotherapy. J Med Chem 2023; 66:15141-15170. [PMID: 37963811 DOI: 10.1021/acs.jmedchem.3c01061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A lack of the T cell-inflamed tumor microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs). Activation of stimulator of interferon genes (STING)-mediated innate immunity has emerged as a novel therapeutic approach in cancer therapy. 2',3'-Cyclic GMP-AMP (cGAMP) is a natural STING agonist; however, cGAMP is subjected to endogenous degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1). To improve the ICI response rate, we developed 29f, a novel ENPP1 inhibitor with phthalazin-1(2H)-one as the core scaffold. 29f inhibited the cGAMP hydrolysis by ENPP1 in vitro (IC50 = 68 nM) and enhanced the STING-mediated type I interferon response in both immune and tumor cells. 29f demonstrated excellent metabolic stability and bioavailability (F = 65%). Orally administered 29f promoted tumor growth inhibition in a CT26 syngeneic model and increased the anti-PD-L1 response. Furthermore, 29f-induced immunological memory prevented the tumor relapse against tumor rechallenge, suggesting the promising therapeutic potential of 29f.
Collapse
Affiliation(s)
- Yeonguk Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Miso Kang
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Su Hyun Ji
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hee Jin Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Eun Jung
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Do Hee Oh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sunyoung Park
- Txinno Bioscience Inc., Yongin 16942, Republic of Korea
| | - Yong-Yea Park
- Txinno Bioscience Inc., Yongin 16942, Republic of Korea
| | - Junghwan Choi
- Txinno Bioscience Inc., Yongin 16942, Republic of Korea
| | - Sungjoon Kim
- Txinno Bioscience Inc., Yongin 16942, Republic of Korea
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chan Sun Park
- Txinno Bioscience Inc., Yongin 16942, Republic of Korea
| | - Seo-Jung Han
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
39
|
Xie W, Lama L, Yang X, Kuryavyi V, Bhattacharya S, Nudelman I, Yang G, Ouerfelli O, Glickman JF, Jones RA, Tuschl T, Patel DJ. Arabinose- and xylose-modified analogs of 2',3'-cGAMP act as STING agonists. Cell Chem Biol 2023; 30:1366-1376.e7. [PMID: 37536341 PMCID: PMC10808274 DOI: 10.1016/j.chembiol.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
Stimulator of interferon genes (STING) agonists are promising candidates for vaccine adjuvants and antitumor immune stimulants. The most potent natural agonist of STING, 2',3'-cyclic GMP-AMP (2',3'-cGAMP), is subject to nuclease-mediated inherent metabolic instability, thereby placing limits on its clinical efficacy. Here, we report on a new class of chemically synthesized sugar-modified analogs of 2',3'-cGAMP containing arabinose and xylose sugar derivatives that bind mouse and human STING alleles with high affinity. The co-crystal structures demonstrate that such analogs act as 2',3'-cGAMP mimetics that induce the "closed" conformation of human STING. These analogs show significant resistance to hydrolysis mediated by ENPP1 and increased stability in human serum, while retaining similar potency as 2',3'-cGAMP at inducing IFN-β secretion from human THP1 cells. The arabinose- and xylose-modified 2',3'-cGAMP analogs open a new strategy for overcoming the inherent nuclease-mediated vulnerability of natural ribose cyclic nucleotides, with the additional benefit of high translational potential as cancer therapeutics and vaccine adjuvants.
Collapse
Affiliation(s)
- Wei Xie
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lodoe Lama
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ilona Nudelman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Roger A Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
40
|
Jekle A, Thatikonda SK, Jaisinghani R, Ren S, Kinkade A, Stevens SK, Stoycheva A, Rajwanshi VK, Williams C, Deval J, Mukherjee S, Zhang Q, Chanda S, Smith DB, Blatt LM, Symons JA, Gonzalvez F, Beigelman L. Tumor Regression upon Intratumoral and Subcutaneous Dosing of the STING Agonist ALG-031048 in Mouse Efficacy Models. Int J Mol Sci 2023; 24:16274. [PMID: 38003463 PMCID: PMC10671074 DOI: 10.3390/ijms242216274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Stimulator of interferon genes (STING) agonists have shown potent anti-tumor efficacy in various mouse tumor models and have the potential to overcome resistance to immune checkpoint inhibitors (ICI) by linking the innate and acquired immune systems. First-generation STING agonists are administered intratumorally; however, a systemic delivery route would greatly expand the clinical use of STING agonists. Biochemical and cell-based experiments, as well as syngeneic mouse efficacy models, were used to demonstrate the anti-tumoral activity of ALG-031048, a novel STING agonist. In vitro, ALG-031048 is highly stable in plasma and liver microsomes and is resistant to degradation via phosphodiesterases. The high stability in biological matrices translated to good cellular potency in a HEK 293 STING R232 reporter assay, efficient activation and maturation of primary human dendritic cells and monocytes, as well as long-lasting, antigen-specific anti-tumor activity in up to 90% of animals in the CT26 mouse colon carcinoma model. Significant reductions in tumor growth were observed in two syngeneic mouse tumor models following subcutaneous administration. Combinations of ALG-031048 and ICIs further enhanced the in vivo anti-tumor activity. This initial demonstration of anti-tumor activity after systemic administration of ALG-031048 warrants further investigation, while the combination of systemically administered ALG-031048 with ICIs offers an attractive approach to overcome key limitations of ICIs in the clinic.
Collapse
Affiliation(s)
- Andreas Jekle
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Santosh Kumar Thatikonda
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Ruchika Jaisinghani
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Suping Ren
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - April Kinkade
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Sarah K. Stevens
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Antitsa Stoycheva
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Vivek K. Rajwanshi
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Caroline Williams
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Jerome Deval
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Sucheta Mukherjee
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Qingling Zhang
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Sushmita Chanda
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - David B. Smith
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Lawrence M. Blatt
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | - Julian A. Symons
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| | | | - Leonid Beigelman
- Aligos Therapeutics, Inc., South San Francisco, CA 94080, USA (S.K.S.); (A.S.); (V.K.R.); (S.C.); (D.B.S.); (L.M.B.); (J.A.S.); (L.B.)
| |
Collapse
|
41
|
Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol Neurodegener 2023; 18:79. [PMID: 37941028 PMCID: PMC10634099 DOI: 10.1186/s13024-023-00672-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.
Collapse
Affiliation(s)
- Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Yang Y, Wang L, Peugnet-González I, Parada-Venegas D, Dijkstra G, Faber KN. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Front Immunol 2023; 14:1239142. [PMID: 37781354 PMCID: PMC10538549 DOI: 10.3389/fimmu.2023.1239142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Li Wang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivonne Peugnet-González
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela Parada-Venegas
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Chen K, Liao J, Patel DJ, Xie W. Advances in structure-guided mechanisms impacting on the cGAS-STING innate immune pathway. Adv Immunol 2023; 159:1-32. [PMID: 37996205 DOI: 10.1016/bs.ai.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The metazoan cGAS-STING innate immunity pathway is triggered in response to cytoplasmic double-stranded DNA (dsDNA), thereby providing host defense against microbial pathogens. This pathway also impacts on autoimmune diseases, cellular senescence and anti-tumor immunity. The cGAS-STING pathway was also observed in the bacterial antiviral immune response, known as the cyclic oligonucleotide (CDN)-based anti-phage signaling system (CBASS). This review highlights a structure-based mechanistic perspective of recent advances in metazoan and bacterial cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway.
Collapse
Affiliation(s)
- Kexin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
44
|
Lopez V, Schuh HJM, Mirza S, Vaaßen VJ, Schmidt MS, Sylvester K, Idris RM, Renn C, Schäkel L, Pelletier J, Sévigny J, Naggi A, Scheffler B, Lee SY, Bendas G, Müller CE. Heparins are potent inhibitors of ectonucleotide pyrophosphatase/phospho-diesterase-1 (NPP1) - a promising target for the immunotherapy of cancer. Front Immunol 2023; 14:1173634. [PMID: 37711611 PMCID: PMC10497752 DOI: 10.3389/fimmu.2023.1173634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Victoria J. Vaaßen
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Michael S. Schmidt
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Riham M. Idris
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Christian Renn
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Annamaria Naggi
- Institute for Chemical and Biochemical Research “G. Ronzoni”, Milan, Italy
| | - Björn Scheffler
- DKFZ Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner site, University Hospital Essen and German Cancer Research Center, Heidelberg, Germany
| | - Sang-Yong Lee
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
46
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
47
|
Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Arch Pharm Res 2023:10.1007/s12272-023-01452-3. [PMID: 37354378 DOI: 10.1007/s12272-023-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a DNA sensor that elicits a robust type I interferon response by recognizing ubiquitous danger-associated molecules. The cGAS/stimulator of interferon genes (cGAS/STING) is activated by endogenous DNA, including DNA released from mitochondria and extranuclear chromatin, as well as exogenous DNA derived from pathogenic microorganisms. cGAS/STING is positioned as a key axis of autoimmunity, the inflammatory response, and cancer progression, suggesting that the cGAS/STING signaling pathway represents an efficient therapeutic target. Based on the accumulated evidence, we present insights into the prevention and treatment of cGAS/STING-related chronic immune and inflammatory diseases. This review presents the current state of clinical and nonclinical development of modulators targeting cGAS/STING, providing useful information on the design of therapeutic strategies.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Minhyuk Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
48
|
Wang S, Böhnert V, Joseph AJ, Sudaryo V, Swinderman J, Yu FB, Lyu X, Skariah G, Subramanyam V, Gilbert LA, Goodarzi H, Lingyin L. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543353. [PMID: 37333273 PMCID: PMC10274658 DOI: 10.1101/2023.06.01.543353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
ENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling. In addition to cancer cells, stromal and immune cells in the tumor microenvironment (TME) also express ENPP1 that restrains their response to tumor-derived cGAMP. Enpp1 loss-of-function in both cancer cells and normal tissues slowed primary tumor initiation and growth and prevented metastasis in an extracellular cGAMP- and STING-dependent manner. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied total ENPP1 knockout, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Strikingly, we find that breast cancer patients with low ENPP1 expression have significantly higher immune infiltration and improved response to therapeutics impacting cancer immunity upstream or downstream of the cGAMP-STING pathway, like PARP inhibitors and anti-PD1. Altogether, selective inhibition of ENPP1's cGAMP hydrolase activity alleviates an innate immune checkpoint to boost cancer immunity and is therefore a promising therapeutic approach against breast cancer that may synergize with other cancer immunotherapies.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Volker Böhnert
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Alby J. Joseph
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Valentino Sudaryo
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Jason Swinderman
- Arc Institute, Palo Alto 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Gemini Skariah
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco 94143, USA
- UCSF Baker Computational Health Science Institute, University of California, San Francisco, 94143, USA
| | - Luke A. Gilbert
- Arc Institute, Palo Alto 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco 94143, USA
- UCSF Baker Computational Health Science Institute, University of California, San Francisco, 94143, USA
| | - Li Lingyin
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| |
Collapse
|
49
|
Fukuda K. Immune Regulation by Cytosolic DNA Sensors in the Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15072114. [PMID: 37046775 PMCID: PMC10093344 DOI: 10.3390/cancers15072114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
cGAS and AIM2 are CDSs that are activated in the presence of cytosolic dsDNA and are expressed in various cell types, including immune and tumor cells. The recognition of tumor-derived dsDNA by CDSs in the cytosol of tumor-infiltrating dendritic cells (TIDCs) activates the innate and acquired immunity, thereby enhancing anti-tumor immune responses. STING is the downstream signaling effector of cGAS that induces type I interferon (IFN) signaling. Owing to their ability to activate TIDCs, STING agonists have been intratumorally injected in several clinical trials to enhance the anti-tumor immune response elicited by immune checkpoint antibodies. However, they have shown minimal effect, suggesting the importance of optimizing the dose and route of administration for STING agonists and deciphering other immune pathways that contribute to anti-tumor immune responses. Recent studies have revealed that AIM2 activity induces pro-tumor growth through multiple parallel pathways, including inhibition of STING-type I IFN signaling. Thus, AIM2 could be a potential molecular target for cancer immunotherapies. This review summarizes the current research on the roles of cGAS, STING, and AIM2 in immune cells and tumor cells in the tumor microenvironment and discusses the future prospects of anti-tumor treatment approaches based on these molecules.
Collapse
Affiliation(s)
- Keitaro Fukuda
- RIKEN Center for Integrative Medical Sciences (IMS), Laboratory for Skin Homeostasis, Yokohama 230-0045, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
50
|
Kim J, Kim HS, Chung JH. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med 2023; 55:510-519. [PMID: 36964253 PMCID: PMC10037406 DOI: 10.1038/s12276-023-00965-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 03/26/2023] Open
Abstract
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jeonghan Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, 06591, South Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, 06591, South Korea
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|