1
|
Wang H, Ma G, Fan Z, Wang H, Xu X. Low temperature storage leads to advanced upregulation of typical virulence regulators, pyk and purR of enterotoxigenic Staphylococcus aureus cultured on chicken meat. Food Microbiol 2025; 128:104719. [PMID: 39952763 DOI: 10.1016/j.fm.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Staphylococcal enterotoxins have long been studied due to the food-borne illness caused and complex intracellular virulence regulation involved. Along with the popularized application of cold chain production of meat products, there is important significance to explore the influence of low temperature on enterotoxin genes expression correlated to regulators under meat cultivation. In this study, SEA and SEB type Staphylococcus aureus strains (designated Sa08 and Sa13 respectively) were cultivated on chicken meat at 8 and 25 °C, typical virulence regulators (agrA, saeS, srrB, rot, codY and icaA), enterotoxins (sea and seb) and metabolic factors (pyk and pyruvate, purR and xanthosine monophosphate) were monitored. As a result, cell density remained stable (104-105 CFU/g) at 8 °C with slight increase in 6 day, and there were drastic pyruvate accumulation along with storing days. Significant upregulation of typical virulence regulators, pyk, purR and seb occurred in post exponential phase at 25 °C (p < 0.001). Nevertheless, phenotypic indexes failed to correspond to transcriptional changes. Expression of seb depended on the upregulation of typical virulence regulators at 8 and 25 °C, and sea had independent expression profile different from typical virulence regulators at 8 °C. Comparing with 25 °C, consistent advanced upregulation of typical virulence regulators (except codY of Sa08), pyk and purR were observed both for Sa08 and Sa13 at 8 °C, and different strains exhibited varied early metabolic response but similar later metabolic status at 8 °C. These phenomena highlighted a concern that, enterotoxigenic S. aureus colonizing on chicken meat exhibited advanced upregulation of typical virulence regulators and close-related virulence at low temperature.
Collapse
Affiliation(s)
- Huawei Wang
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Guangxia Ma
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Zhenzhen Fan
- College of Food Science and Engineering, Qilu University of Technology, Shandong Institute of Science, Jinan, 250353, PR China
| | - Huhu Wang
- Key Laboratory of Meat Products Processing and Quality Control, MOA, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinglian Xu
- Key Laboratory of Meat Products Processing and Quality Control, MOA, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
2
|
Werth BJ, Zhang R, Barreras Beltran IA, Penewit K, Waalkes A, Holmes EA, Salipante SJ, Xu L. Simulated exposures of oritavancin in in vitro pharmacodynamic models select for methicillin-resistant Staphylococcus aureus with reduced susceptibility to oritavancin but minimal cross-resistance or seesaw effect with other antimicrobials. J Antimicrob Chemother 2025:dkaf042. [PMID: 39936452 DOI: 10.1093/jac/dkaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Dalbavancin exposures select for VAN and daptomycin cross-resistance in Staphylococcus aureus often by walK-related mutations. Oritavancin is another long-acting lipoglycopeptide, but its proclivity to select for cross-resistance is unknown. The objective of this study was to determine if post-distributional pharmacokinetic oritavancin exposures select for meaningful susceptibility changes in S. aureus. METHODS We simulated average post-distributional, free-drug exposures of oritavancin 1200 mg IV once (fCmax 11.2 µg/mL; β-elimination t1/2 13.4 h; γ-elimination t1/2 245 h) in an in vitro pharmacodynamic model for 28 days against five S. aureus including four MRSA. Samples were taken daily for colony enumeration and resistance screening. Susceptibility testing was repeated on isolates from resistance screening plates against oritavancin, vancomycin, daptomycin, dalbavancin and 6 beta-lactams with varying penicillin-binding protein affinities. RESULTS Tested oritavancin exposures were bactericidal against 5/5 strains for 2-17 days before regrowth of less-susceptible subpopulations occurred. Isolates with reduced susceptibility to oritavancin were detected as early as 5 days, but the MIC increased above the susceptibility breakpoint (>0.125 mg/L) in 4/5 strains eventually. Vancomycin and daptomycin MICs increased by 2- to 8-fold but did not exceed the susceptibility breakpoints in most isolates. β-lactam MICs were largely unchanged among the recovered isolates with reduced oritavancin susceptibility. Mutations were diverse but often involved purR with 13 unique variants identified among 4/5 strains. CONCLUSIONS Oritavancin-selected resistance was primarily associated with purR mutation and less frequently associated with cross-resistance and walK mutation than dalbavancin-selected resistance in similar strains and conditions. The reason for this is unclear but may stem from differences in the mechanism(s) and divergent mutational pathways.
Collapse
Affiliation(s)
- Brian J Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St., HSB H-375, Box 357630, Seattle, WA 98195-7630, USA
| | - Rutan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Ismael A Barreras Beltran
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St., HSB H-375, Box 357630, Seattle, WA 98195-7630, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Peng H, Rao Y, Shang W, Yang Y, Tan L, Liu L, Hu Z, Wang Y, Huang X, Liu H, Li M, Guo Z, Chen J, Yang Y, Wu J, Yuan W, Hu Q, Rao X. Vancomycin‐intermediate Staphylococcus aureus employs CcpA‐GlmS metabolism regulatory cascade to resist vancomycin. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
AbstractVancomycin (VAN)‐intermediate Staphylococcus aureus (VISA) is a critical cause of VAN treatment failure worldwide. Multiple genetic changes are reportedly associated with VISA formation, whereas VISA strains often present common phenotypes, such as reduced autolysis and thickened cell wall. However, how mutated genes lead to VISA common phenotypes remains unclear. Here, we show a metabolism regulatory cascade (CcpA‐GlmS), whereby mutated two‐component systems (TCSs) link to the common phenotypes of VISA. We found that ccpA deletion decreased VAN resistance in VISA strains with diverse genetic backgrounds. Metabolic alteration in VISA was associated with ccpA upregulation, which was directly controlled by TCSs WalKR and GraSR. RNA‐sequencing revealed the crucial roles of CcpA in changing the carbon flow and nitrogen flux of VISA to promote VAN resistance. A gate enzyme (GlmS) that drives carbon flow to the cell wall precursor biosynthesis was upregulated in VISA. CcpA directly controlled glmS expression. Blocking CcpA sensitized VISA strains to VAN treatment in vitro and in vivo. Overall, this work uncovers a link between the formation of VISA phenotypes and commonly mutated genes. Inhibition of CcpA‐GlmS cascade is a promising strategy to restore the therapeutic efficiency of VAN against VISA infections.
Collapse
Affiliation(s)
- Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao Hospital Army Medical University Chongqing China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Lu Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Mengyang Li
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| | - Zuwen Guo
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Juan Chen
- Department of Pharmacy, Xinqiao Hospital Army Medical University Chongqing China
| | - Yuhua Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine Guangzhou Medical University Guangzhou China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| |
Collapse
|
4
|
Wang Y, Guo W, Zhang K, Liu Z, Dai X, Qiao Z, Ding X, Zhao N, Xu F. Biomimetic Electrodynamic Metal-Organic Framework Nanosponges for Augmented Treatment of Biofilm Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408442. [PMID: 39422163 PMCID: PMC11633466 DOI: 10.1002/advs.202408442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous H2O2 and O2. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins. The prolonged circulation time of MOF@EV in vivo facilitates their accumulation at infection sites. More interestingly, MOF@EV can behave as nanosponges and effectively prevent host cells from binding to bacterial toxins, thereby reducing damage to cells. Subsequently, the MOF@EV nanosponges are discovered to work as electro-sensitizers, which is confirmed through both theoretical calculation and experimental verification. As a result, ROS is continuously produced under the electric field to achieve effective EDT-mediated bacterial eradication. Meanwhile, the treatment process of MOF@EV in vivo is visualized in mice infected with luciferase-expressing Staphylococcus aureus (S. aureus), and excellent biofilm eradication capacity and detoxification efficiency are demonstrated in a subcutaneous abscess model. This work provides a promising strategy for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yanmin Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000China
| | - Zhiwen Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaoguang Dai
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zhuangzhuang Qiao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Fu‐Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
5
|
Gaudreau A, Watson DW, Flannagan RS, Roy P, Shen C, Abdelmoneim A, Beavers WN, Gillies ER, El-Halfawy OM, Heinrichs DE. Mechanistic insights and in vivo efficacy of thiosemicarbazones against methicillin-resistant Staphylococcus aureus. J Biol Chem 2024; 300:107689. [PMID: 39159815 PMCID: PMC11492055 DOI: 10.1016/j.jbc.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Collapse
Affiliation(s)
- Avery Gaudreau
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - David W Watson
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Paroma Roy
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Chenfangfei Shen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA; Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
6
|
Benjamin KN, Goyal A, Nair RV, Endy D. Genome-wide transcription response of Staphylococcus epidermidis to heat shock and medically relevant glucose levels. Front Microbiol 2024; 15:1408796. [PMID: 39104585 PMCID: PMC11298487 DOI: 10.3389/fmicb.2024.1408796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Skin serves as both barrier and interface between body and environment. Skin microbes are intermediaries evolved to respond, transduce, or act in response to changing environmental or physiological conditions. We quantified genome-wide changes in gene expression levels for one abundant skin commensal, Staphylococcus epidermidis, in response to an internal physiological signal, glucose levels, and an external environmental signal, temperature. We found 85 of 2,354 genes change up to ~34-fold in response to medically relevant changes in glucose concentration (0-17 mM; adj p ≤0.05). We observed carbon catabolite repression in response to a range of glucose spikes, as well as upregulation of genes involved in glucose utilization in response to persistent glucose. We observed 366 differentially expressed genes in response to a physiologically relevant change in temperature (37-45°C; adj p ≤ 0.05) and an S. epidermidis heat-shock response that mostly resembles the heat-shock response of related staphylococcal species. DNA motif analysis revealed CtsR and CIRCE operator sequences arranged in tandem upstream of dnaK and groESL operons. We identified and curated 38 glucose-responsive genes as candidate ON or OFF switches for use in controlling synthetic genetic systems. Such systems might be used to instrument the in-situ skin microbiome or help control microbes bioengineered to serve as embedded diagnostics, monitoring, or treatment platforms.
Collapse
Affiliation(s)
| | - Aditi Goyal
- Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - Ramesh V. Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Drew Endy
- Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
Chen F, Zhao Q, Yang Z, Chen R, Pan H, Wang Y, Liu H, Cao Q, Gan J, Liu X, Zhang N, Yang CG, Liang H, Lan L. Citrate serves as a signal molecule to modulate carbon metabolism and iron homeostasis in Staphylococcus aureus. PLoS Pathog 2024; 20:e1012425. [PMID: 39078849 PMCID: PMC11315280 DOI: 10.1371/journal.ppat.1012425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.
Collapse
Affiliation(s)
- Feifei Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingmin Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiong Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Cao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Diving and Hyperbaric Medicine, Navy Medical Center, Naval Medical University, Shanghai, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Schürmann J, Fischer MA, Herzberg M, Reemtsma T, Strommenger B, Werner G, Schuster CF, Layer-Nicolaou F. The genes mgtE and spoVG are involved in zinc tolerance of Staphylococcus aureus. Appl Environ Microbiol 2024; 90:e0045324. [PMID: 38752746 PMCID: PMC11218649 DOI: 10.1128/aem.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 06/19/2024] Open
Abstract
Metals are essential for all living organisms, but the type of metal and its concentration determines its action. Even low concentrations of metals may have toxic effects on organisms and therefore exhibit antimicrobial activities. In this study, we investigate the evolutionary adaptation processes of Staphylococcus aureus to metals and common genes for metal tolerance. Laboratory and clinical isolates were treated with manganese, cobalt, zinc, or nickel metal salts to generate growth-adapted mutants. After growth in medium supplemented with zinc, whole-genome sequencing identified, among others, two genes, mgtE (SAUSA300_0910), a putative magnesium transporter and spoVG (SAUSA300_0475), a global transcriptional regulator, as hot spots for stress-induced single-nucleotide polymorphisms (SNPs). SNPs in mgtE were also detected in mutants treated with high levels of cobalt or nickel salts. To investigate the effect of these genes on metal tolerance, deletion mutants and complementation strains in an S. aureus USA300 LAC* laboratory strain were generated. Both, the mgtE and spoVG deletion strains were more tolerant to cobalt, manganese, and zinc. The mgtE mutant was also more tolerant to nickel exposure. Inductively coupled plasma mass spectrometry analysis demonstrated that the mgtE deletion mutant accumulated less intracellular zinc than the wild type, explaining increased tolerance. From these results, we conclude that mgtE gene inactivation increases zinc tolerance presumably due to reduced uptake of zinc. For the SpoVG mutant, no direct effect on the intracellular zinc concentration was detected, indicating toward different pathways to increase tolerance. Importantly, inactivation of these genes offers a growth advantage in environments containing certain metals, pointing toward a common tolerance mechanism. IMPORTANCE Staphylococcus aureus is an opportunistic pathogen causing tremendous public health burden and high mortality in invasive infections. Treatment is becoming increasingly difficult due to antimicrobial resistances. The use of metals in animal husbandry and aquaculture to reduce bacterial growth and subsequent acquisition of metal resistances has been shown to co-select for antimicrobial resistance. Therefore, understanding adaptive mechanisms that help S. aureus to survive metal exposure is essential. Using a screening approach, we were able to identify two genes encoding the transporter MgtE and the transcriptional regulator SpoVG, which conferred increased tolerance to specific metals such as zinc when inactivated. Further testing showed that the deletion of mgtE leads to reduced intracellular zinc levels, suggesting a role in zinc uptake. The accumulation of mutations in these genes when exposed to other metals suggests that inactivation of these genes could be a common mechanism for intrinsic tolerance to certain metals.
Collapse
Affiliation(s)
- Jacqueline Schürmann
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Martin A. Fischer
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Martin Herzberg
- Department Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Christopher F. Schuster
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer-Nicolaou
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
10
|
Xiong YQ, Li Y, Goncheva MI, Elsayed AM, Zhu F, Li L, Abdelhady W, Flannagan RS, Yeaman MR, Bayer AS, Heinrichs DE. The Purine Biosynthesis Repressor, PurR, Contributes to Vancomycin Susceptibility of Methicillin-resistant Staphylococcus aureus in Experimental Endocarditis. J Infect Dis 2024; 229:1648-1657. [PMID: 38297970 PMCID: PMC11175694 DOI: 10.1093/infdis/jiad577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is the most common cause of life-threatening endovascular infections, including infective endocarditis (IE). These infections, especially when caused by methicillin-resistant strains (MRSA), feature limited therapeutic options and high morbidity and mortality rates. METHODS Herein, we investigated the role of the purine biosynthesis repressor, PurR, in virulence factor expression and vancomycin (VAN) treatment outcomes in experimental IE due to MRSA. RESULTS The PurR-mediated repression of purine biosynthesis was confirmed by enhanced purF expression and production of an intermediate purine metabolite in purR mutant strain. In addition, enhanced expression of the transcriptional regulators, sigB and sarA, and their key downstream virulence genes (eg, fnbA, and hla) was demonstrated in the purR mutant in vitro and within infected cardiac vegetations. Furthermore, purR deficiency enhanced fnbA/fnbB transcription, translating to increased fibronectin adhesion versus the wild type and purR-complemented strains. Notably, the purR mutant was refractory to significant reduction in target tissues MRSA burden following VAN treatment in the IE model. CONCLUSIONS These findings suggest that the purine biosynthetic pathway intersects the coordination of virulence factor expression and in vivo persistence during VAN treatment, and may represent an avenue for novel antimicrobial development targeting MRSA.
Collapse
Affiliation(s)
- Yan Q Xiong
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- Department of Medicine, Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yi Li
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Ahmed M Elsayed
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Liang Li
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Wessam Abdelhady
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Michael R Yeaman
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- Department of Medicine, Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Medicine, Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
| | - Arnold S Bayer
- The Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- Department of Medicine, Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Bivona D, Bonomo C, Colombini L, Bonacci PG, Privitera GF, Caruso G, Caraci F, Santoro F, Musso N, Bongiorno D, Iannelli F, Stefani S. Generation and Characterization of Stable Small Colony Variants of USA300 Staphylococcus aureus in RAW 264.7 Murine Macrophages. Antibiotics (Basel) 2024; 13:264. [PMID: 38534699 DOI: 10.3390/antibiotics13030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Intracellular survival and immune evasion are typical features of staphylococcal infections. USA300 is a major clone of methicillin-resistant S. aureus (MRSA), a community- and hospital-acquired pathogen capable of disseminating throughout the body and evading the immune system. Carnosine is an endogenous dipeptide characterized by antioxidant and anti-inflammatory properties acting on the peripheral (macrophages) and tissue-resident (microglia) immune system. In this work, RAW 264.7 murine macrophages were infected with the USA300 ATCC BAA-1556 S. aureus strain and treated with 20 mM carnosine and/or 32 mg/L erythromycin. Stable small colony variant (SCV) formation on blood agar medium was obtained after 48 h of combined treatment. Whole genome sequencing of the BAA-1556 strain and its stable derivative SCVs when combining Illumina and nanopore technologies revealed three single nucleotide differences, including a nonsense mutation in the shikimate kinase gene aroK. Gene expression analysis showed a significant up-regulation of the uhpt and sdrE genes in the stable SCVs compared with the wild-type, likely involved in adaptation to the intracellular milieu.
Collapse
Affiliation(s)
- Dalida Bivona
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Carmelo Bonomo
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Paolo G Bonacci
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Grete F Privitera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Nicolò Musso
- Biochemical Section, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Dafne Bongiorno
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
13
|
Warsi OM, Upterworth LM, Breidenstein A, Lustig U, Mikkelsen K, Nagy T, Szatmari D, Ingmer H, Andersson DI. Staphylococcus aureus mutants resistant to the feed-additive monensin show increased virulence and altered purine metabolism. mBio 2024; 15:e0315523. [PMID: 38214510 PMCID: PMC10865815 DOI: 10.1128/mbio.03155-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Ionophores are antibacterial compounds that affect bacterial growth by changing intracellular concentrations of the essential cations, sodium and potassium. They are extensively used in animal husbandry to increase productivity and reduce infectious diseases, but our understanding of the potential for and effects of resistance development to ionophores is poorly known. Thus, given their widespread global usage, it is important to determine the potential negative consequences of ionophore use on human and animal health. In this study, we demonstrate that exposure to the ionophore monensin can select for resistant mutants in the human and animal pathogen Staphylococcus aureus, with a majority of the resistant mutants showing increased growth rates in vitro and/or in mice. Whole-genome sequencing and proteomic analysis of the resistant mutants show that the resistance phenotype is associated with de-repression of de novo purine synthesis, which could be achieved through mutations in different transcriptional regulators including mutations in the gene purR, the repressor of the purine de novo synthesis pathway. This study shows that mutants with reduced susceptibility to the ionophore monensin can be readily selected and highlights an unexplored link between ionophore resistance, purine metabolism, and fitness in pathogenic bacteria.IMPORTANCEThis study demonstrates a novel link between ionophore resistance, purine metabolism, and virulence/fitness in the key human and animal pathogen Staphylococcus aureus. The results show that mutants with reduced susceptibility to the commonly used ionophore monensin can be readily selected and that the reduced susceptibility observed is associated with an increased expression of the de novo purine synthesis pathway. This study increases our understanding of the impact of the use of animal feed additives on both human and veterinary medicine.
Collapse
Affiliation(s)
- Omar M. Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lina M. Upterworth
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Annika Breidenstein
- Department of Medical Chemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kasper Mikkelsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid Szatmari
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Heidarian S, Guliaev A, Nicoloff H, Hjort K, Andersson DI. High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. PLoS Biol 2024; 22:e3002457. [PMID: 38175839 PMCID: PMC10766187 DOI: 10.1371/journal.pbio.3002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.
Collapse
Affiliation(s)
- Sheida Heidarian
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Gao W, Gao X, Zhu L, Gao S, Sun R, Feng Z, Wu D, Liu Z, Zhu R, Jiao N. Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer. Gut Microbes 2023; 15:2245562. [PMID: 37635357 PMCID: PMC10464540 DOI: 10.1080/19490976.2023.2245562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Microbial signatures show remarkable potentials in predicting colorectal cancer (CRC). This study aimed to evaluate the diagnostic powers of multimodal microbial signatures, multi-kingdom species, genes, and single-nucleotide variants (SNVs) for detecting precancerous adenomas. We performed cross-cohort analyses on whole metagenome sequencing data of 750 samples via xMarkerFinder to identify adenoma-associated microbial multimodal signatures. Our data revealed that fungal species outperformed species from other kingdoms with an area under the ROC curve (AUC) of 0.71 in distinguishing adenomas from controls. The microbial SNVs, including dark SNVs with synonymous mutations, displayed the strongest diagnostic capability with an AUC value of 0.89, sensitivity of 0.79, specificity of 0.85, and Matthews correlation coefficient (MCC) of 0.74. SNV biomarkers also exhibited outstanding performances in three independent validation cohorts (AUCs = 0.83, 0.82, 0.76; sensitivity = 1.0, 0.72, 0.93; specificity = 0.67, 0.81, 0.67, MCCs = 0.69, 0.83, 0.72) with high disease specificity for adenoma. In further support of the above results, functional analyses revealed more frequent inter-kingdom associations between bacteria and fungi, and abnormalities in quorum sensing, purine and butanoate metabolism in adenoma, which were validated in a newly recruited cohort via qRT-PCR. Therefore, these data extend our understanding of adenoma-associated multimodal alterations in the gut microbiome and provide a rationale of microbial SNVs for the early detection of CRC.
Collapse
Affiliation(s)
- Wenxing Gao
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Xiang Gao
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, P. R. China
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Sheng Gao
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Ruicong Sun
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Zhongsheng Feng
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Ruixin Zhu
- Department of Gastroenterology, the Shanghai Tenth People’s Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
- Research Institute, GloriousMed Clinical Laboratory Co, Ltd, Shanghai, P. R. China
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| |
Collapse
|
17
|
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities. Microorganisms 2023; 11:2801. [PMID: 38004812 PMCID: PMC10673613 DOI: 10.3390/microorganisms11112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.
Collapse
Affiliation(s)
- Liting Xiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yajun Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| |
Collapse
|
18
|
Shi Z, Wang Y, Yan X, Ma X, Duan A, Hassan FU, Wang W, Deng T. Metagenomic and metabolomic analyses reveal the role of gut microbiome-associated metabolites in diarrhea calves. mSystems 2023; 8:e0058223. [PMID: 37615434 PMCID: PMC10654109 DOI: 10.1128/msystems.00582-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE Calf diarrhea is of great concern to the global dairy industry as it results in significant economic losses due to lower conception rates, reduced milk production, and early culling. Although there is evidence of an association between altered gut microbiota and diarrhea, remarkably little is known about the microbial and metabolic mechanisms underlying the link between gut microbiota dysbiosis and the occurrence of calf diarrhea. Here, we used fecal metagenomic and metabolomic analyses to demonstrate that gut microbiota-driven metabolic disorders of purine or arachidonic acid were associated with calf diarrhea. These altered gut microbiotas play vital roles in diarrhea pathogenesis and indicate that gut microbiota-targeted therapies could be useful for both prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Anqin Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
19
|
Maisat W, Yuki K. Volatile anesthetic isoflurane exposure facilitates Enterococcus biofilm infection. FASEB J 2023; 37:e23186. [PMID: 37665578 PMCID: PMC10495085 DOI: 10.1096/fj.202301128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
20
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O’Neill E, Fey PD, Cava F, Thomas VC, O’Gara JP. Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. PLoS Pathog 2023; 19:e1011536. [PMID: 37486930 PMCID: PMC10399904 DOI: 10.1371/journal.ppat.1011536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/03/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls β-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.
Collapse
Affiliation(s)
- Merve S. Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Laura A. Gallagher
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Emilio Bueno
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Aaron C. Nolan
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jongsam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaret Sladek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Eoghan O’Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
21
|
Kim J, Kim GL, Norambuena J, Boyd JM, Parker D. Impact of the pentose phosphate pathway on metabolism and pathogenesis of Staphylococcus aureus. PLoS Pathog 2023; 19:e1011531. [PMID: 37440594 PMCID: PMC10368262 DOI: 10.1371/journal.ppat.1011531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to significant disease through multiple routes of infection. We recently published a transposon sequencing (Tn-seq) screen in a mouse acute pneumonia model and identified a hypothetical gene (SAUSA300_1902, pgl) with similarity to a lactonase of Escherichia coli involved in the pentose phosphate pathway (PPP) that was conditionally essential. Limited studies have investigated the role of the PPP in physiology and pathogenesis of S. aureus. We show here that mutation of pgl significantly impacts ATP levels and respiration. RNA-seq analysis of the pgl mutant and parent strains identified compensatory changes in gene expression for glucose and gluconate as well as reductions in the pyrimidine biosynthesis locus. These differences were also evident through unbiased metabolomics studies and 13C labeling experiments that showed mutation of pgl led to reductions in pyrimidine metabolism including decreases in ribose-5P, UMP and GMP. These nucleotide reductions impacted the amount of extracellular DNA in biofilms and reduced biofilm formation. Mutation also limited the capacity of the strain to resist oxidant damage induced by hydrogen peroxide and paraquat and subsequent intracellular survival inside macrophages. Changes in wall teichoic acid impacted susceptibility to hydrogen peroxide. We demonstrated the importance of these changes on virulence in three different models of infection, covering respiratory, skin and septicemia, demonstrating the need for proper PPP function in all models. This work demonstrates the multifaceted role metabolism can play in multiple aspects of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
22
|
Leonard AC, Goncheva MI, Gilbert SE, Shareefdeen H, Petrie LE, Thompson LK, Khursigara CM, Heinrichs DE, Cox G. Autolysin-mediated peptidoglycan hydrolysis is required for the surface display of Staphylococcus aureus cell wall-anchored proteins. Proc Natl Acad Sci U S A 2023; 120:e2301414120. [PMID: 36920922 PMCID: PMC10041135 DOI: 10.1073/pnas.2301414120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.
Collapse
Affiliation(s)
- Allison C. Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, LondonONN6A 5C1, Canada
| | - Stephanie E. Gilbert
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Hiba Shareefdeen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Laurenne E. Petrie
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Laura K. Thompson
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, LondonONN6A 5C1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| |
Collapse
|
23
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O'Neill E, Fey PD, Cava F, Thomas VC, O'Gara JP. Metabolic reprogramming and flux to cell envelope precursors in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530734. [PMID: 36945400 PMCID: PMC10028837 DOI: 10.1101/2023.03.03.530734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the pgl mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to pgl was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the vraFG or graRS loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in β-lactam resistance, which will support efforts to identify new drug targets and reintroduce β-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other β-lactam resistant pathogens. Author summary High-level resistance to penicillin-type (β-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene pgl perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of β-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.
Collapse
|
24
|
Nolan AC, Zeden MS, Kviatkovski I, Campbell C, Urwin L, Corrigan RM, Gründling A, O’Gara JP. Purine Nucleosides Interfere with c-di-AMP Levels and Act as Adjuvants To Re-Sensitize MRSA To β-Lactam Antibiotics. mBio 2023; 14:e0247822. [PMID: 36507833 PMCID: PMC9973305 DOI: 10.1128/mbio.02478-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA β-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased β-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce β-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on β-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced β-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as β-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level β-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the β-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other β-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for β-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of β-lactams against MRSA and potentially other AMR pathogens.
Collapse
Affiliation(s)
- Aaron C. Nolan
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Merve S. Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Christopher Campbell
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Lucy Urwin
- The Florey Institute, School of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca M. Corrigan
- The Florey Institute, School of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
25
|
Transcriptome Analyses of Prophage in Mediating Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection. Genes (Basel) 2022; 13:genes13091527. [PMID: 36140695 PMCID: PMC9498598 DOI: 10.3390/genes13091527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant subset of S. aureus infections and correlate with exceptionally high mortality. We have recently demonstrated that the lysogenization of prophage ϕSA169 from a clinical persistent MRSA bacteremia isolate (300-169) into a clinical resolving bacteremia MRSA isolate (301-188) resulted in the acquisition of well-defined in vitro and in vivo phenotypic and genotypic profiles related to persistent outcome. However, the underlying mechanism(s) of this impact is unknown. In the current study, we explored the genetic mechanism that may contribute to the ϕSA169-correlated persistence using RNA sequencing. Transcriptomic analyses revealed that the most significant impacts of ϕSA169 were: (i) the enhancement of fatty acid biosynthesis and purine and pyrimidine metabolic pathways; (ii) the repression of galactose metabolism and phosphotransferase system (PTS); and (iii) the down-regulation of the mutual prophage genes in both 300-169 and 301-188 strains. In addition, the influence of different genetic backgrounds between 300-169 and 301-188 might also be involved in the persistent outcome. These findings may provide targets for future studies on the persistence of MRSA.
Collapse
|
26
|
Ren Z, Yu J, Du J, Zhang Y, Hamushan M, Jiang F, Zhang F, Wang B, Tang J, Shen H, Han P. A General Map of Transcriptional Expression of Virulence, Metabolism, and Biofilm Formation Adaptive Changes of Staphylococcus aureus When Exposed to Different Antimicrobials. Front Microbiol 2022; 13:825041. [PMID: 35783396 PMCID: PMC9247510 DOI: 10.3389/fmicb.2022.825041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation of Staphylococcus aureus is the major cause of implant-associated infections (IAIs). Antimicrobial treatment is one of the most effective therapeutic options for S. aureus infections. However, it can also lead to adaptive transcriptomic changes due to extreme selective pressure, which may increase the risk of antimicrobial resistance. To study the transcriptional changes in S. aureus upon exposure to antimicrobial agents, we obtained expression profiles of S. aureus treated with six antimicrobials (flucloxacillin, vancomycin, ciprofloxacin, clindamycin, erythromycin, and linezolid, n = 6 for each group). We also included an untreated control group (n = 8) downloaded from the Gene Expression Omnibus (GEO) database (GSE70043, GSE56100) for integrated bioinformatic analyses. We identified 82 (44 up, 38 down) and 53 (17 up, 36 down) differentially expressed genes (DEGs) in logarithmic and stationary phases, respectively. When exposed to different antimicrobial agents, we found that manganese import system genes and immune response gene sbi (immunoglobulin G-binding protein Sbi) were upregulated in S. aureus at all stages. During the logarithmic phase, we observed adaptive transcriptomic changes in S. aureus mainly in the stability of protein synthesis, adhesion, and biofilm formation. In the stationary phase, we observed a downregulation in genes related to amino biosynthesis, ATP synthesis, and DNA replication. We verified these results by qPCR. Importantly, these results could help our understanding of the molecular mechanisms underlying the proliferation and antimicrobial resistance of S. aureus.
Collapse
Affiliation(s)
- Zun Ren
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiafei Du
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yubo Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Musha Hamushan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Feiyang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jin Tang,
| | - Hao Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Orthopedics, Shanghai Sixth People’s Hospital Fujian, Jinjiang, China
- Hao Shen,
| | - Pei Han
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Pei Han,
| |
Collapse
|
27
|
Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ, Stinear TP, Howden BP. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 2022; 11:e77195. [PMID: 35699423 PMCID: PMC9270034 DOI: 10.7554/elife.77195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues and is exposed to new selective pressures, thus, potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation; however, a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation, we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.
Collapse
Affiliation(s)
- Stefano G Giulieri
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourneAustralia
| | - Romain Guérillot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Sebastian Duchene
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Diane Daniel
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Joshua S Davis
- Department of Infectious Diseases, John Hunter HospitalNewcastle, New South WalesAustralia
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
| | - Steven YC Tong
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of OxfordOxfordUnited Kingdom
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Benjamin P Howden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
28
|
Thymol Reduces agr-Mediated Virulence Factor Phenol-Soluble Modulin Production in Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8221622. [PMID: 35586806 PMCID: PMC9110180 DOI: 10.1155/2022/8221622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a major human bacterial pathogen that carries a large number of virulence factors. Many virulence factors of S. aureus are regulated by the accessory gene regulator (agr) quorum-sensing system. Phenol-soluble modulins (PSMs) are one of the agr-mediated virulence determinants known to play a significant role in S. aureus pathogenesis. In the present study, the efficacy of thymol to inhibit PSM production including δ-toxin in S. aureus was explored. We employed liquid chromatography-mass spectrometry (LC-MS) to quantify the PSMsα1-PSMα4, PSMβ1 and PSMβ2, and δ-toxin production from culture supernatants. We found that thymol at 0.5 MIC (128 μg/mL) significantly reduced the PSMα and δ-toxin production in S. aureus WKZ-1, WKZ-2, LAC USA300, and ATCC29213. Downregulation in transcription by quantitative real-time (qRT) PCR analysis of response regulator agrA and receptor histidine kinase agrC upon 0.5 MIC thymol treatment affirmed the results of LC-MS quantification of PSMs. In silico molecular docking analysis demonstrated the binding affinity of thymol with receptors AgrA and AgrC. Transmission electron microscopy images revealed no ultrastructural alterations (cell wall and membrane) in thymol-treated WKZ-1 and WKZ-2 S. aureus strains. Here, we demonstrated that thymol reduces various PSM production in S. aureus clinical isolates and reference strains with mass spectrometry.
Collapse
|
29
|
Ribosome Profiling Reveals Genome-Wide Cellular Translational Regulation in Lacticaseibacillus rhamnosus ATCC 53103 under Acid Stress. Foods 2022; 11:foods11101411. [PMID: 35626981 PMCID: PMC9140532 DOI: 10.3390/foods11101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
During fermentation and food processing, Lacticaseibacillus rhamnosus ATCC 53103 can encounter many adverse conditions, and acid stress is one of them. The purpose of the present study was to investigate the influence of acid stress on the global translational and transcriptional regulation of Lacticaseibacillus rhamnosus ATCC 53103. Two pH values (pH 6.0 vs. pH 5.0) were applied, the effects of which were studied via ribosome profiling and RNA sequencing assay. Under acid stress, many genes showed differential changes at the translational and transcriptional levels. A total of 10 genes showed different expression trends at the two levels. The expression of 337 genes—which mainly participated in the ABC transporters, amino acid metabolism, and ribosome functional group assembly pathways—was shown to be regulated only at the translational level. The translational efficiency of a few genes participating in the pyrimidine and amino acid metabolism pathways were upregulated. Ribosome occupancy data suggested that ribosomes accumulated remarkably in the elongation region of open reading frame regions under acid stress. This study provides new insights into Lacticaseibacillus rhamnosus ATCC 53103 gene expression under acid stress, and demonstrates that the bacterium can respond to acid stress with synergistic translational and transcriptional regulation mechanisms, improving the vitality of cells.
Collapse
|
30
|
Liu Q, Li D, Wang N, Guo G, Shi Y, Zou Q, Zhang X. Identification and Application of a Panel of Constitutive Promoters for Gene Overexpression in Staphylococcus aureus. Front Microbiol 2022; 13:818307. [PMID: 35295303 PMCID: PMC8918988 DOI: 10.3389/fmicb.2022.818307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a leading pathogen that is currently the most common cause of infection in hospitalized patients. An in-depth genetic analysis of S. aureus virulence genes contributing to pathogenesis is needed to develop novel antimicrobial therapies. However, tools for genetic manipulation in S. aureus are limited, particularly those for gene expression. Here, 38 highly expressed genes were identified in S. aureus USA300_FPR3757 via RNA-seq. Promoter regions from 30 of these genes were successfully cloned, of which 20 promoters exhibited a wide range of activity. By utilizing these active promoters, 20 S. aureus-Escherichia coli shuttle vectors were constructed and evaluated by expressing an egfp reporter gene. Expression of the egfp gene under the control of different promoters was confirmed and quantified by Western blotting and qPCR, which suggested that the activity of these promoters varied from 18 to 650% of the activity of PsarA, a widely used promoter for gene expression. In addition, our constructed vectors were verified to be highly compatible with gene expression in different S. aureus strains. Furthermore, these vectors were evaluated and used to overexpress two endogenous proteins in S. aureus, namely, catalase and the transcriptional repressor of purine biosynthesis (PurR). Meanwhile, the physiological functions and phenotypes of overexpressed PurR and catalase in S. aureus were validated. Altogether, this evidence indicates that our constructed vectors provide a wide range of promoter activity on gene expression in S. aureus. This set of vectors carrying different constitutive promoters developed here will provide a powerful tool for the direct analysis of target gene function in staphylococcal cells.
Collapse
Affiliation(s)
- Qiang Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Liu,
| | - Daiyu Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Xiaokai Zhang,
| |
Collapse
|
31
|
Choueiry F, Xu R, Zhu J. Adaptive Metabolism of Staphylococcus aureus Revealed by Untargeted Metabolomics. J Proteome Res 2022; 21:470-481. [PMID: 35043624 PMCID: PMC9199441 DOI: 10.1021/acs.jproteome.1c00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus (SA) is an opportunistic pathogen that can cause a wide spectrum of infections, from superficial skin inflammation to severe and potentially fatal and invasive diseases. Due to the many potential routes of infection, host-derived environmental signals (oxygen availability, nutrients, etc.) are vital for host colonization and thus contribute to SA's pathogenesis. To uncover the direct effects of environmental factors on SA metabolism, we performed a series of experiments in diverse culture environments and correlated our findings of SA's metabolic adaptation to some of the pathogen's known virulence factors. Untargeted metabolomics was conducted on a Thermo Q-Exactive high-resolution mass spectrometer. We detected 260 intracellular polar metabolites from our bacteria cultured under both aerobic and anaerobic conditions and in glucose- and dextrin-supplemented cultures. These metabolites were mapped to relevant metabolic pathways to elucidate the adaptive metabolic processes of both methicillin-sensitive SA (MSSA) and methicillin-resistant SA (MRSA). We also detected an increased expression of virulence genes agr-I and sea of MRSA supplemented with both glucose and dextrin by qPCR. With the metabolic data collected that may be associated with the adaptive growth and virulence of SA, our study could set up the foundations for future work to identify metabolic inhibitors/modulators to mitigate SA infections in different growth environments.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210,James Comprehensive Cancer Center, The Ohio State University, 400 W 12 th Ave, Columbus, OH, 43210,Corresponding author: Jiangjiang Zhu, Ph.D., , Tel: 614-685-2226
| |
Collapse
|
32
|
Goncheva MI, Chin D, Heinrichs DE. Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends Microbiol 2022; 30:793-804. [PMID: 35074276 DOI: 10.1016/j.tim.2021.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
Most free-living organisms require the synthesis and/or acquisition of purines and pyrimidines, which form the basis of nucleotides, to survive. In most bacteria, the nucleotides are synthesized de novo and the products are used in many cell functions, including DNA replication, energy storage, and as signaling molecules. Due to their central role in the metabolism of bacteria, both nucleotide biosynthesis pathways have strong links with the virulence of opportunistic and bona fide bacterial pathogens. Recent findings have established a new, shared link in the control of nucleotide biosynthesis and the production of virulence factors. Furthermore, targeting of these pathways forms the basis of interspecies competition and can provide an open source for new antimicrobial compounds. Here, we highlight the contribution of nucleotide biosynthesis to bacterial pathogenesis in a plethora of different diseases and speculate on how they can be targeted by intervention strategies.
Collapse
Affiliation(s)
- Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
33
|
Krishnakumar R, Ruffing AM. OperonSEQer: A set of machine-learning algorithms with threshold voting for detection of operon pairs using short-read RNA-sequencing data. PLoS Comput Biol 2022; 18:e1009731. [PMID: 34986143 PMCID: PMC8765615 DOI: 10.1371/journal.pcbi.1009731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Operon prediction in prokaryotes is critical not only for understanding the regulation of endogenous gene expression, but also for exogenous targeting of genes using newly developed tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics data to predict operons, based on the premise that contiguous genes in an operon will be expressed at similar levels. While promising results have been observed using these methods, most of them do not address uncertainty caused by technical variability between experiments, which is especially relevant when the amount of data available is small. In addition, many existing methods do not provide the flexibility to determine the stringency with which genes should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the same RNA molecule. We implement a voting system to allow users to choose the stringency of operon calls depending on whether your priority is high recall or high specificity. In addition, we provide the code so that users can retrain the algorithm and re-establish hyperparameters based on any data they choose, allowing for this method to be expanded as additional data is generated. We show that our approach detects operon pairs that are missed by current methods by comparing our predictions to publicly available long-read sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, flexibility, and adaptability. Bacteria and archaea, single-cell organisms collectively known as prokaryotes, live in all imaginable environments and comprise the majority of living organisms on this planet. Prokaryotes play a critical role in the homeostasis of multicellular organisms (such as animals and plants) and ecosystems. In addition, bacteria can be pathogenic and cause a variety of diseases in these same hosts and ecosystems. In short, understanding the biology and molecular functions of bacteria and archaea and devising mechanisms to engineer and optimize their properties are critical scientific endeavors with significant implications in healthcare, agriculture, manufacturing, and climate science among others. One major molecular difference between unicellular and multicellular organisms is the way they express genes–multicellular organisms make individual RNA molecules for each gene while, prokaryotes express operons (i.e., a group of genes coding functionally related proteins) in contiguous polycistronic RNA molecules. Understanding which genes exist within operons is critical for elucidating basic biology and for engineering organisms. In this work, we use a combination of statistical and machine learning-based methods to use next-generation sequencing data to predict operon structure across a range of prokaryotes. Our method provides an easily implemented, robust, accurate, and flexible way to determine operon structure in an organism-agnostic manner using readily available data.
Collapse
Affiliation(s)
- Raga Krishnakumar
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| | - Anne M. Ruffing
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| |
Collapse
|
34
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
35
|
Fan X, Bao T, Yi H, Zhang Z, Zhang K, Liu X, Lin X, Zhang Z, Feng Z. Ribosome Profiling and RNA Sequencing Reveal Genome-Wide Cellular Translation and Transcription Regulation Under Osmotic Stress in Lactobacillus rhamnosus ATCC 53103. Front Microbiol 2021; 12:781454. [PMID: 34899662 PMCID: PMC8656396 DOI: 10.3389/fmicb.2021.781454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
To determine whether osmotic pressure affects the translation efficiency of Lactobacillus rhamnosus, the ribosome profiling assay was performed to analyze the changes in translation efficiency in L. rhamnosus ATCC 53103. Under osmotic stress, differentially expressed genes (DEGs) involved in fatty acid biosynthesis and metabolism, ribosome, and purine metabolism pathways were co-regulated with consistent expression direction at translation and transcription levels. DEGs involved in the biosynthesis of phenylalanine, tyrosine, and tryptophan, and the phosphotransferase system pathways also were co-regulated at translation and transcription levels, while they showed opposite expression direction at two levels. Moreover, DEGs involved in the two-component system, amino acid metabolism, and pyruvate metabolism pathways were only regulated at the transcription level. And DEGs involved in fructose and mannose metabolism were only regulated at the translation level. The translation efficiency of DEGs involved in the biosynthesis of amino acids was downregulated while in quorum sensing and PTS pathways was upregulated. In addition, the ribosome footprints accumulated in open reading frame regions resulted in impaired translation initiation and elongation under osmotic stress. In summary, L. rhamnosus ATCC 53103 could respond to osmotic stress by translation regulation and control the balance between survival and growth of cells by transcription and translation.
Collapse
Affiliation(s)
- Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Tianyu Bao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Lin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
36
|
Growth and Stress Tolerance Comprise Independent Metabolic Strategies Critical for Staphylococcus aureus Infection. mBio 2021; 12:e0081421. [PMID: 34101490 PMCID: PMC8262855 DOI: 10.1128/mbio.00814-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to high morbidity and mortality. Although S. aureus produces many factors important for pathogenesis, few have been validated as playing a role in the pathogenesis of S. aureus pneumonia. To gain a better understanding of the genetic elements required for S. aureus pathogenesis in the airway, we performed an unbiased genome-wide transposon sequencing (Tn-seq) screen in a model of acute murine pneumonia. We identified 136 genes important for bacterial survival during infection, with a high proportion involved in metabolic processes. Phenotyping 80 individual deletion mutants through diverse in vitro and in vivo assays demonstrated that metabolism is linked to several processes, which include biofilm formation, growth, and resistance to host stressors. We further validated the importance of 23 mutations in pneumonia. Multivariate and principal-component analyses identified two key metabolic mechanisms enabling infection in the airway, growth (e.g., the ability to replicate and form biofilms) and resistance to host stresses. As deep validation of these hypotheses, we investigated the role of pyruvate carboxylase, which was important across multiple infection models and confirmed a connection between growth and resistance to host cell killing. Pathogenesis is conventionally understood in terms of the host-pathogen interactions that enable a pathogen to neutralize a host’s immune response. We demonstrate with the important bacterial pathogen S. aureus that microbial metabolism influences key traits important for in vivo infection, independent from host immunomodulation.
Collapse
|
37
|
Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence. Nat Commun 2021; 12:1887. [PMID: 33767207 PMCID: PMC7994395 DOI: 10.1038/s41467-021-22175-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production. Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals. Here, Chin et al. show that a coagulase-negative staphylococcus secretes 6-thioguanine, a purine analog that suppresses S. aureus growth and virulence by inhibiting de novo purine biosynthesis and toxin production.
Collapse
|
38
|
Alkam D, Jenjaroenpun P, Ramirez AM, Beenken KE, Spencer HJ, Smeltzer MS. The Increased Accumulation of Staphylococcus aureus Virulence Factors Is Maximized in a purR Mutant by the Increased Production of SarA and Decreased Production of Extracellular Proteases. Infect Immun 2021; 89:e00718-20. [PMID: 33468580 PMCID: PMC8090970 DOI: 10.1128/iai.00718-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
Mutation of purR was previously shown to enhance the virulence of Staphylococcus aureus in a murine sepsis model, and this cannot be fully explained by increased expression of genes within the purine biosynthesis pathway. Rather, the increased production of specific S. aureus virulence factors, including alpha toxin and the fibronectin-binding proteins, was shown to play an important role. Mutation of purR was also shown previously to result in increased abundance of SarA. Here, we demonstrate by transposon sequencing that mutation of purR in the USA300 strain LAC increases fitness in a biofilm while mutation of sarA has the opposite effect. Therefore, we assessed the impact of sarA on reported purR-associated phenotypes by characterizing isogenic purR, sarA, and sarA/purR mutants. The results confirmed that mutation of purR results in increased abundance of alpha toxin, protein A, the fibronectin-binding proteins, and SarA, decreased production of extracellular proteases, an increased capacity to form a biofilm, and increased virulence in an osteomyelitis model. Mutation of sarA had the opposite effects on all of these phenotypes and, other than bacterial burdens in the bone, all of the phenotypes of sarA/purR mutants were comparable to those of sarA mutants. Limiting the production of extracellular proteases reversed all of the phenotypes of sarA mutants and most of those of sarA/purR mutants. We conclude that a critical component defining the virulence of a purR mutant is the enhanced production of SarA, which limits protease production to an extent that promotes the accumulation of critical S. aureus virulence factors.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aura M Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
39
|
Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, Hong JI, Yeaman MR, Xiong YQ. The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. J Infect Dis 2021; 222:1188-1198. [PMID: 32333768 DOI: 10.1093/infdis/jiaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/02/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinical-therapeutic challenge. Of particular concern is antibiotic treatment failure in infections caused by MRSA that are "susceptible" to antibiotic in vitro. In the current study, we investigate specific purine biosynthetic pathways and stringent response mechanism(s) related to this life-threatening syndrome using genetic matched persistent and resolving MRSA clinical bacteremia isolates (PB and RB, respectively), and isogenic MRSA strain sets. We demonstrate that PB isolates (vs RB isolates) have significantly higher (p)ppGpp production, phenol-soluble-modulin expression, polymorphonuclear leukocyte lysis and survival, fibronectin/endothelial cell (EC) adherence, and EC damage. Importantly, an isogenic strain set, including JE2 parental, relP-mutant and relP-complemented strains, translated the above findings into significant outcome differences in an experimental endocarditis model. These observations indicate a significant regulation of purine biosynthesis on stringent response, and suggest the existence of a previously unknown adaptive genetic mechanism in persistent MRSA infection.
Collapse
Affiliation(s)
- Liang Li
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arnold S Bayer
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose Cheung
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lou Lu
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wessam Abdelhady
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Niles P Donegan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Michael R Yeaman
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yan Q Xiong
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA.,David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
40
|
Monk IR, Stinear TP. From cloning to mutant in 5 days: rapid allelic exchange in Staphylococcus aureus. Access Microbiol 2021; 3:000193. [PMID: 34151146 PMCID: PMC8209637 DOI: 10.1099/acmi.0.000193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 12/02/2022] Open
Abstract
In the last 10 years, the barriers preventing the uptake of foreign DNA by clinical Staphylococcus aureus isolates have been identified and powerful mutagenesis techniques such as allelic exchange are now possible in most genotypes. However, these targeted approaches can still be cumbersome, and the construction of unmarked deletions/point mutations may take many weeks or months. Here, we introduce a streamlined allelic exchange protocol using IMxxB Escherichia coli and the plasmid pIMAY-Z. With this optimized approach, a site-specific mutation can be introduced into S. aureus in 5 days, from the start of cloning to isolation of genomic DNA for confirmatory whole-genome sequencing. This streamlined protocol considerably reduces the time required to introduce a specific, unmarked mutation in S. aureus and should dramatically improve the scalability of gene-function studies.
Collapse
Affiliation(s)
- Ian R. Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
42
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
43
|
Kirsch VC, Fetzer C, Sieber SA. Global Inventory of ClpP- and ClpX-Regulated Proteins in Staphylococcus aureus. J Proteome Res 2020; 20:867-879. [PMID: 33210542 DOI: 10.1021/acs.jproteome.0c00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus represents an opportunistic pathogen, which utilizes elaborate quorum sensing mechanisms to precisely control the expression and secretion of virulence factors. Previous studies indicated a role of the ClpXP proteolytic system in controlling pathogenesis. While detailed transcriptome data for S. aureus ClpP and ClpX knockout mutants is available, corresponding studies on the proteome and secretome level are largely lacking. To globally decipher the functional roles of ClpP and ClpX, we utilized S. aureus genomic deletion mutants of the corresponding genes for in-depth proteomic liquid chromatography-mass spectrometry (LC-MS)/MS analysis. These studies were complemented by an inactive ClpP active-site mutant strain to monitor changes solely depending on the activity and not the presence of the protein. A comparison of these strains with the wildtype revealed, e.g., downregulation of virulence, purine/pyrimidine biosynthesis, iron uptake, and stress response. Correspondingly, the integration of metabolomics data showed a reduction in the subset of purine and pyrimidine metabolite levels. Interestingly, a comparison between the ClpP knockout and ClpP S98A active-site mutant strains revealed characteristic differences. These results are not only of fundamental importance to understand the cellular role of ClpXP but also have implications for the development of novel virulence inhibitor classes.
Collapse
Affiliation(s)
- Volker C Kirsch
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
44
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
45
|
Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response. Proc Natl Acad Sci U S A 2020; 117:17228-17239. [PMID: 32616573 PMCID: PMC7382225 DOI: 10.1073/pnas.2008413117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus infections impose an immense burden on the healthcare system. To establish a successful infection in a hostile host environment, S. aureus must coordinate its gene expression to respond to a wide array of challenges. This balancing act is largely orchestrated by the transcriptional regulatory network. Here, we present a model of 29 independently modulated sets of genes that form the basis for a segment of the transcriptional regulatory network in clinical USA300 strains of S. aureus. Using this model, we demonstrate the concerted role of various cellular systems (e.g., metabolism, virulence, and stress response) underlying key physiological responses, including response during blood infection. The ability of Staphylococcus aureus to infect many different tissue sites is enabled, in part, by its transcriptional regulatory network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying independent component analysis to a compendium of 108 RNA-sequencing expression profiles from two S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the S. aureus transcriptome into 29 independently modulated sets of genes (i-modulons) that revealed: 1) High confidence associations between 21 i-modulons and known regulators; 2) an association between an i-modulon and σS, whose regulatory role was previously undefined; 3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR, and Vim-3; 4) the roles of three key transcription factors (CodY, Fur, and CcpA) in coordinating the metabolic and regulatory networks; and 5) a low-dimensional representation, involving the function of few transcription factors of changes in gene expression between two laboratory media (RPMI, cation adjust Mueller Hinton broth) and two physiological media (blood and serum). This representation of the TRN covers 842 genes representing 76% of the variance in gene expression that provides a quantitative reconstruction of transcriptional modules in S. aureus, and a platform enabling its full elucidation.
Collapse
|
46
|
Rudra P, Boyd JM. Metabolic control of virulence factor production in Staphylococcus aureus. Curr Opin Microbiol 2020; 55:81-87. [PMID: 32388086 DOI: 10.1016/j.mib.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
As investigators decipher the underlining mechanisms of Staphylococcus aureus pathogenesis, it is becoming apparent that perturbations in central metabolism alter virulence factor production and infection outcomes. It is also evident that S. aureus has the ability to metabolically adapt to improve colonization and overcome challenges imparted by the immune system. Altered metabolite pools modify virulence factor production suggesting that proper functioning of a core metabolic network is necessary for successful niche colonization and pathogenesis. Herein we discuss four examples of transcriptional regulators that monitor metabolic status. These regulatory systems sense perturbations in the metabolic network and respond by altering the transcription of genes utilized for central metabolism, energy generation and pathogenesis.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
47
|
De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant. Infect Immun 2020; 88:IAI.00104-20. [PMID: 32094249 PMCID: PMC7171247 DOI: 10.1128/iai.00104-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host.
Collapse
|
48
|
Distinct Subpopulations of Intravalvular Methicillin-Resistant Staphylococcus aureus with Variable Susceptibility to Daptomycin in Tricuspid Valve Endocarditis. Antimicrob Agents Chemother 2020; 64:AAC.01593-19. [PMID: 31932377 DOI: 10.1128/aac.01593-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022] Open
Abstract
We present a case of endocarditis wherein organisms cultured from different valve leaflets yielded different daptomycin susceptibilities from each other and from organisms obtained from peripheral blood culture. Genomic analyses showed mutations in mprF, purR, and agrA Pharmacokinetic simulations showed consistent activity of daptomycin plus beta-lactam against all subpopulations. This represents an opportunity to understand S. aureus evolution and fitness in vivo on daptomycin therapy and the role of beta-lactams to prevent the selection of daptomycin-resistant subpopulations.
Collapse
|
49
|
Multitasking Actors of Staphylococcus aureus Metabolism and Virulence. Trends Microbiol 2020; 28:6-9. [DOI: 10.1016/j.tim.2019.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
|
50
|
Ibberson CB, Whiteley M. The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection. mBio 2019; 10:e02774-19. [PMID: 31744924 PMCID: PMC6867902 DOI: 10.1128/mbio.02774-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Laboratory models have been invaluable for the field of microbiology for over 100 years and have provided key insights into core aspects of bacterial physiology such as regulation and metabolism. However, it is important to identify the extent to which these models recapitulate bacterial physiology within a human infection environment. Here, we performed transcriptomics (RNA-seq), focusing on the physiology of the prominent pathogen Staphylococcus aureusin situ in human cystic fibrosis (CF) infection. Through principal-component and hierarchal clustering analyses, we found remarkable conservation in S. aureus gene expression in the CF lung despite differences in the patient clinic, clinical status, age, and therapeutic regimen. We used a machine learning approach to identify an S. aureus transcriptomic signature of 32 genes that can reliably distinguish between S. aureus transcriptomes in the CF lung and in vitro The majority of these genes were involved in virulence and metabolism and were used to improve a common CF infection model. Collectively, these results advance our knowledge of S. aureus physiology during human CF lung infection and demonstrate how in vitro models can be improved to better capture bacterial physiology in infection.IMPORTANCE Although bacteria have been studied in infection for over 100 years, the majority of these studies have utilized laboratory and animal models that often have unknown relevance to the human infections they are meant to represent. A primary challenge has been to assess bacterial physiology in the human host. To address this challenge, we performed transcriptomics of S. aureus during human cystic fibrosis (CF) lung infection. Using a machine learning framework, we defined a "human CF lung transcriptome signature" that primarily included genes involved in metabolism and virulence. In addition, we were able to apply our findings to improve an in vitro model of CF infection. Understanding bacterial gene expression within human infection is a critical step toward the development of improved laboratory models and new therapeutics.
Collapse
Affiliation(s)
- Carolyn B Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|