1
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Luo M, Chen Y, Yin X, Li J. Cribriform-morular Thyroid Carcinoma Arising in a Medulloblastoma Survivor: Two Metachronous Tumors Shared with the Activation of the Wnt Signaling Pathway. Int J Surg Pathol 2024; 32:1531-1536. [PMID: 38377966 DOI: 10.1177/10668969241231971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Wnt signaling pathway activation is involved in the pathogenesis of a series of malignant tumors and is characterized by the nuclear accumulation of β-catenin protein. The occurrence of two or more Wnt pathway-associated tumors in a single individual is uncommon and generally attributed to inherited cancer syndrome, especially familial adenomatous polyposis (FAP). Herein, we presented a rare case of a child who suffered from the occurrence of Wnt-activated medulloblastoma and cribriform-morular thyroid carcinoma (CMTC) within a 9-year interval. She had no history of FAP and harbored an unexpected somatic mutation of the APC gene in the CMTC tumor. The potential agents involved in the pathogenesis of the two molecular-linked tumors other than FAP were discussed in this report.
Collapse
Affiliation(s)
- Minghua Luo
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yaoli Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiaomin Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jian Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Hemstrom W, Grummer JA, Luikart G, Christie MR. Next-generation data filtering in the genomics era. Nat Rev Genet 2024; 25:750-767. [PMID: 38877133 DOI: 10.1038/s41576-024-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering - removing sequencing bases, reads, genetic variants and/or individuals from a dataset - to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy-Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima's D value, population differentiation (FST), nucleotide diversity (π) and effective population size (Ne).
Collapse
Affiliation(s)
- William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Jared A Grummer
- Flathead Lake Biological Station, Wildlife Biology Program and Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Wildlife Biology Program and Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Su KJ, Qiu C, Greenbaum J, Zhang X, Liu A, Liu Y, Luo Z, Mungasavalli Gnanesh SS, Tian Q, Zhao LJ, Shen H, Deng HW. Genomic structural variations link multiple genes to bone mineral density in a multi-ethnic cohort study: Louisiana osteoporosis study. J Bone Miner Res 2024; 39:1474-1485. [PMID: 39167757 PMCID: PMC11425707 DOI: 10.1093/jbmr/zjae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Osteoporosis, characterized by low BMD, is a highly heritable metabolic bone disorder. Although single nucleotide variations (SNVs) have been extensively studied, they explain only a fraction of BMD heritability. Although genomic structural variations (SVs) are large-scale genomic alterations that contribute to genetic diversity in shaping phenotypic variations, the role of SVs in osteoporosis susceptibility remains poorly understood. This study aims to identify and prioritize genes that harbor BMD-related SVs. We performed whole genome sequencing on 4982 subjects from the Louisiana Osteoporosis Study. To obtain high-confidence SVs, the detection of SVs was performed using an ensemble approach. The SVs were tested for association with BMD variation at the hip (HIP), femoral neck (FNK), and lumbar spine (SPN), respectively. Additionally, we conducted co-occurrence analysis using multi-omics approaches to prioritize the identified genes based on their functional importance. Stratification was employed to explore the sex- and ethnicity-specific effects. We identified significant SV-BMD associations: 125 for FNK-BMD, 99 for SPN-BMD, and 83 for HIP-BMD. We observed SVs that were commonly associated with both FNK and HIP BMDs in our combined and stratified analyses. These SVs explain 13.3% to 19.1% of BMD variation. Novel bone-related genes emerged, including LINC02370, ZNF family genes, and ZDHHC family genes. Additionally, FMN2, carrying BMD-related deletions, showed associations with FNK or HIP BMDs, with sex-specific effects. The co-occurrence analysis prioritized an RNA gene LINC00494 and ZNF family genes positively associated with BMDs at different skeletal sites. Two potential causal genes, IBSP and SPP1, for osteoporosis were also identified. Our study uncovers new insights into genetic factors influencing BMD through SV analysis. We highlight BMD-related SVs, revealing a mix of shared and specific genetic influences across skeletal sites and gender or ethnicity. These findings suggest potential roles in osteoporosis pathophysiology, opening avenues for further research and therapeutic targets.
Collapse
Affiliation(s)
- Kuan-Jui Su
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Chuan Qiu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Jonathan Greenbaum
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Xiao Zhang
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Anqi Liu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Yong Liu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Zhe Luo
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Shashank Sajjan Mungasavalli Gnanesh
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Qing Tian
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Lan-Juan Zhao
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Hui Shen
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Hong-Wen Deng
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| |
Collapse
|
5
|
Corradi Z, Dhaenens CM, Grunewald O, Kocabaş IS, Meunier I, Banfi S, Karali M, Cremers FPM, Hitti-Malin RJ. Novel and Recurrent Copy Number Variants in ABCA4-Associated Retinopathy. Int J Mol Sci 2024; 25:5940. [PMID: 38892127 PMCID: PMC11173210 DOI: 10.3390/ijms25115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Olivier Grunewald
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Ipek Selen Kocabaş
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Isabelle Meunier
- Institute des Neurosciences de Montpellier, INSERM, Université de Montpellier, F-34295 Montpellier, France
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Gallego Villarejo L, Gerding WM, Bachmann L, Hardt LHI, Bormann S, Nguyen HP, Müller T. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells 2024; 13:507. [PMID: 38534351 PMCID: PMC10969360 DOI: 10.3390/cells13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Genome editing, notably CRISPR (cluster regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), has revolutionized genetic engineering allowing for precise targeted modifications. This technique's combination with human induced pluripotent stem cells (hiPSCs) is a particularly valuable tool in cerebral organoid (CO) research. In this study, CRISPR/Cas9-generated fluorescently labeled hiPSCs exhibited no significant morphological or growth rate differences compared with unedited controls. However, genomic aberrations during gene editing necessitate efficient genome integrity assessment methods. Optical genome mapping, a high-resolution genome-wide technique, revealed genomic alterations, including chromosomal copy number gain and losses affecting numerous genes. Despite these genomic alterations, hiPSCs retain their pluripotency and capacity to generate COs without major phenotypic changes but one edited cell line showed potential neuroectodermal differentiation impairment. Thus, this study highlights optical genome mapping in assessing genome integrity in CRISPR/Cas9-edited hiPSCs emphasizing the need for comprehensive integration of genomic and morphological analysis to ensure the robustness of hiPSC-based models in cerebral organoid research.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (W.M.G.); (H.P.N.)
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Luzie H. I. Hardt
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Stefan Bormann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; (L.B.); (L.H.I.H.); (S.B.)
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (W.M.G.); (H.P.N.)
| | - Thorsten Müller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany;
| |
Collapse
|
7
|
Budurlean L, Tukaramrao DB, Zhang L, Dovat S, Broach J. Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection. J Pers Med 2024; 14:291. [PMID: 38541033 PMCID: PMC10971281 DOI: 10.3390/jpm14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.
Collapse
Affiliation(s)
- Laura Budurlean
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Lijun Zhang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sinisa Dovat
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - James Broach
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Barseghyan H, Eisenreich D, Lindt E, Wendlandt M, Scharf F, Benet-Pages A, Sendelbach K, Neuhann T, Abicht A, Holinski-Feder E, Koehler U. Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes (Basel) 2024; 15:342. [PMID: 38540401 PMCID: PMC10970541 DOI: 10.3390/genes15030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the SON gene due to a balanced reciprocal translocation; (2) disruption of the NBEA gene due to an inverted insertion; (3) disruption of the TSC2 gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | | | - Evgenia Lindt
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| | - Martin Wendlandt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17489 Greifswald, Germany
| | | | | | | | | | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Udo Koehler
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| |
Collapse
|
9
|
Volpe E, Corda L, Tommaso ED, Pelliccia F, Ottalevi R, Licastro D, Guarracino A, Capulli M, Formenti G, Tassone E, Giunta S. The complete diploid reference genome of RPE-1 identifies human phased epigenetic landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565049. [PMID: 38168337 PMCID: PMC10760208 DOI: 10.1101/2023.11.01.565049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.
Collapse
Affiliation(s)
- Emilia Volpe
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luca Corda
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Di Tommaso
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franca Pelliccia
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Ottalevi
- Department of Bioinformatic, Dante Genomics Corp Inc., 667 Madison Avenue, New York, NY 10065 USA and S.s.17, 67100, L’Aquila, Italy
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giulio Formenti
- The Rockefeller University, 1230 York Avenue, 10065 New York, USA
| | - Evelyne Tassone
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Giunta
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
LoTempio J, Delot E, Vilain E. Benchmarking long-read genome sequence alignment tools for human genomics applications. PeerJ 2023; 11:e16515. [PMID: 38130927 PMCID: PMC10734412 DOI: 10.7717/peerj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background The utility of long-read genome sequencing platforms has been shown in many fields including whole genome assembly, metagenomics, and amplicon sequencing. Less clear is the applicability of long reads to reference-guided human genomics, which is the foundation of genomic medicine. Here, we benchmark available platform-agnostic alignment tools on datasets from nanopore and single-molecule real-time platforms to understand their suitability in producing a genome representation. Results For this study, we leveraged publicly-available data from sample NA12878 generated on Oxford Nanopore and sample NA24385 on Pacific Biosciences platforms. We employed state of the art sequence alignment tools including GraphMap2, long-read aligner (LRA), Minimap2, CoNvex Gap-cost alignMents for Long Reads (NGMLR), and Winnowmap2. Minimap2 and Winnowmap2 were computationally lightweight enough for use at scale, while GraphMap2 was not. NGMLR took a long time and required many resources, but produced alignments each time. LRA was fast, but only worked on Pacific Biosciences data. Each tool widely disagreed on which reads to leave unaligned, affecting the end genome coverage and the number of discoverable breakpoints. No alignment tool independently resolved all large structural variants (1,001-100,000 base pairs) present in the Database of Genome Variants (DGV) for sample NA12878 or the truthset for NA24385. Conclusions These results suggest a combined approach is needed for LRS alignments for human genomics. Specifically, leveraging alignments from three tools will be more effective in generating a complete picture of genomic variability. It should be best practice to use an analysis pipeline that generates alignments with both Minimap2 and Winnowmap2 as they are lightweight and yield different views of the genome. Depending on the question at hand, the data available, and the time constraints, NGMLR and LRA are good options for a third tool. If computational resources and time are not a factor for a given case or experiment, NGMLR will provide another view, and another chance to resolve a case. LRA, while fast, did not work on the nanopore data for our cluster, but PacBio results were promising in that those computations completed faster than Minimap2. Due to its significant burden on computational resources and slow run time, Graphmap2 is not an ideal tool for exploration of a whole human genome generated on a long-read sequencing platform.
Collapse
Affiliation(s)
- Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| | - Emmanuele Delot
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States of America
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, United States of America
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| |
Collapse
|
11
|
Barseghyan H, Pang AWC, Clifford B, Serrano MA, Chaubey A, Hastie AR. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes (Basel) 2023; 14:1868. [PMID: 37895217 PMCID: PMC10667989 DOI: 10.3390/genes14101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA
- Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Benjamin Clifford
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | | | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| |
Collapse
|
12
|
Monero-Paredes M, Feliu-Maldonado R, Carrasquillo-Carrion K, Gonzalez P, Rogozin IB, Roche-Lima A, Duconge J. Non-Random Enrichment of Single-Nucleotide Polymorphisms Associated with Clopidogrel Resistance within Risk Loci Linked to the Severity of Underlying Cardiovascular Diseases: The Role of Admixture. Genes (Basel) 2023; 14:1813. [PMID: 37761953 PMCID: PMC10531115 DOI: 10.3390/genes14091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested. This study aimed to assess the possible interaction between genetic biomarkers linked to CVDs and those associated with clopidogrel resistance among admixed Caribbean Hispanics. We identified 50 SNPs significantly associated with CVDs in previous genome-wide association studies (GWASs). These SNPs were combined with another ten SNPs related to clopidogrel resistance in Caribbean Hispanics. We developed Python scripts to determine whether SNPs related to CVDs are in close proximity to those associated with the clopidogrel response. The average and individual local ancestry (LAI) within each locus were inferred, and 60 random SNPs with their corresponding LAIs were generated for enrichment estimation purposes. Our results showed no CVD-linked SNPs in close proximity to those associated with the clopidogrel response among Caribbean Hispanics. Consequently, no genetic loci with a dual predictive role for the risk of CVD severity and clopidogrel resistance were found in this population. Native American ancestry was the most enriched within the risk loci linked to CVDs in this population. The non-random enrichment of disease susceptibility loci with drug-response SNPs is a new frontier in Precision Medicine that needs further attention.
Collapse
Affiliation(s)
- Mariangeli Monero-Paredes
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (M.M.-P.); (P.G.)
| | - Roberto Feliu-Maldonado
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Kelvin Carrasquillo-Carrion
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Pablo Gonzalez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (M.M.-P.); (P.G.)
| | - Igor B. Rogozin
- Computational Biology Branch, National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Rockville Pike MSC 3830, Bethesda, MD 20894, USA;
| | - Abiel Roche-Lima
- Research Centers in Minority Institutions Program, Center for Collaborative Research in Health Disparities, Academic Affairs Deanship, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (R.F.-M.); (K.C.-C.); (A.R.-L.)
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
13
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Kumpula TA, Vorimo S, Mattila TT, O’Gorman L, Astuti G, Tervasmäki A, Koivuluoma S, Mattila TM, Grip M, Winqvist R, Kuismin O, Moilanen J, Hoischen A, Gilissen C, Mantere T, Pylkäs K. Exome sequencing identified rare recurrent copy number variants and hereditary breast cancer susceptibility. PLoS Genet 2023; 19:e1010889. [PMID: 37578974 PMCID: PMC10449128 DOI: 10.1371/journal.pgen.1010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.
Collapse
Affiliation(s)
- Timo A. Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taneli T. Mattila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Luke O’Gorman
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh Astuti
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M. Mattila
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Nordlab, Oulu, Finland
| |
Collapse
|
15
|
Rodriguez OL, Safonova Y, Silver CA, Shields K, Gibson WS, Kos JT, Tieri D, Ke H, Jackson KJL, Boyd SD, Smith ML, Marasco WA, Watson CT. Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire. Nat Commun 2023; 14:4419. [PMID: 37479682 PMCID: PMC10362067 DOI: 10.1038/s41467-023-40070-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Variation in the antibody response has been linked to differential outcomes in disease, and suboptimal vaccine and therapeutic responsiveness, the determinants of which have not been fully elucidated. Countering models that presume antibodies are generated largely by stochastic processes, we demonstrate that polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the naive and antigen-experienced antibody repertoire, indicating that genetics predisposes individuals to mount qualitatively and quantitatively different antibody responses. We pair recently developed long-read genomic sequencing methods with antibody repertoire profiling to comprehensively resolve IGH genetic variation, including novel structural variants, single nucleotide variants, and genes and alleles. We show that IGH germline variants determine the presence and frequency of antibody genes in the expressed repertoire, including those enriched in functional elements linked to V(D)J recombination, and overlapping disease-associated variants. These results illuminate the power of leveraging IGH genetics to better understand the regulation, function, and dynamics of the antibody response in disease.
Collapse
Affiliation(s)
- Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Catherine A Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - William S Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
16
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
17
|
Yilmaz F, Gurusamy U, Mosley TJ, Hallast P, Kim K, Mostovoy Y, Purcell RH, Shaikh TH, Zwick ME, Kwok PY, Lee C, Mulle JG. High level of complexity and global diversity of the 3q29 locus revealed by optical mapping and long-read sequencing. Genome Med 2023; 15:35. [PMID: 37165454 PMCID: PMC10170684 DOI: 10.1186/s13073-023-01184-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND High sequence identity between segmental duplications (SDs) can facilitate copy number variants (CNVs) via non-allelic homologous recombination (NAHR). These CNVs are one of the fundamental causes of genomic disorders such as the 3q29 deletion syndrome (del3q29S). There are 21 protein-coding genes lost or gained as a result of such recurrent 1.6-Mbp deletions or duplications, respectively, in the 3q29 locus. While NAHR plays a role in CNV occurrence, the factors that increase the risk of NAHR at this particular locus are not well understood. METHODS We employed an optical genome mapping technique to characterize the 3q29 locus in 161 unaffected individuals, 16 probands with del3q29S and their parents, and 2 probands with the 3q29 duplication syndrome (dup3q29S). Long-read sequencing-based haplotype resolved de novo assemblies from 44 unaffected individuals, and 1 trio was used for orthogonal validation of haplotypes and deletion breakpoints. RESULTS In total, we discovered 34 haplotypes, of which 19 were novel haplotypes. Among these 19 novel haplotypes, 18 were detected in unaffected individuals, while 1 novel haplotype was detected on the parent-of-origin chromosome of a proband with the del3q29S. Phased assemblies from 44 unaffected individuals enabled the orthogonal validation of 20 haplotypes. In 89% (16/18) of the probands, breakpoints were confined to paralogous copies of a 20-kbp segment within the 3q29 SDs. In one del3q29S proband, the breakpoint was confined to a 374-bp region using long-read sequencing. Furthermore, we categorized del3q29S cases into three classes and dup3q29S cases into two classes based on breakpoints. Finally, we found no evidence of inversions in parent-of-origin chromosomes. CONCLUSIONS We have generated the most comprehensive haplotype map for the 3q29 locus using unaffected individuals, probands with del3q29S or dup3q29S, and available parents, and also determined the deletion breakpoint to be within a 374-bp region in one proband with del3q29S. These results should provide a better understanding of the underlying genetic architecture that contributes to the etiology of del3q29S and dup3q29S.
Collapse
Affiliation(s)
- Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Umamaheswaran Gurusamy
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Trenell J Mosley
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Kwondo Kim
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Yulia Mostovoy
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Ryan H Purcell
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, 13123 E 16Th Ave, Aurora, CO, 80045, USA
| | - Michael E Zwick
- Department of Genetics, Rutgers University-New Brunswick, Rutgers University, Piscataway, New Brunswick, NJ, 08901, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Dermatology, UCSF School of Medicine, 1701 Divisadero Street, San Francisco, CA, 94115, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, 671 Hoes Lane, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
18
|
Gong Y, Li Y, Liu X, Ma Y, Jiang L. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023; 14:73. [PMID: 37143156 PMCID: PMC10161434 DOI: 10.1186/s40104-023-00860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
As large-scale genomic studies have progressed, it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level. While domestic animals tend to have complex routes of origin and migration, suggesting a possible omission of some population-specific sequences in the current reference genome. Conversely, the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals (core genome) and is also able to display sequence information unique to each individual (variable genome). The progress of pangenome research in humans, plants and domestic animals has proved that the missing genetic components and the identification of large structural variants (SVs) can be explored through pangenomic studies. Many individual specific sequences have been shown to be related to biological adaptability, phenotype and important economic traits. The maturity of technologies and methods such as third-generation sequencing, Telomere-to-telomere genomes, graphic genomes, and reference-free assembly will further promote the development of pangenome. In the future, pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals, providing better insights into animal domestication, evolution and breeding. In this review, we mainly discuss how pangenome analysis reveals genetic variations in domestic animals (sheep, cattle, pigs, chickens) and their impacts on phenotypes and how this can contribute to the understanding of species diversity. Additionally, we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
Collapse
Affiliation(s)
- Ying Gong
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yefang Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xuexue Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, France
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
19
|
Lovšin N. Copy Number Variation and Osteoporosis. Curr Osteoporos Rep 2023; 21:167-172. [PMID: 36795294 PMCID: PMC10105686 DOI: 10.1007/s11914-023-00773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on copy number variations and susceptibility to osteoporosis. RECENT FINDINGS Osteoporosis is highly influenced by genetic factors, including copy number variations (CNVs). The development and accessibility of whole genome sequencing methods has accelerated the study of CNVs and osteoporosis. Recent findings include mutations in novel genes and validation of previously known pathogenic CNVs in monogenic skeletal diseases. Identification of CNVs in genes previously associated with osteoporosis (e.g. RUNX2, COL1A2, and PLS3) has confirmed their importance in bone remodelling. This process has been associated also with the ETV1-DGKB, AGBL2, ATM, and GPR68 genes, identified by comparative genomic hybridisation microarray studies. Importantly, studies in patients with bone pathologies have associated bone disease with the long non-coding RNA LINC01260 and enhancer sequences residing in the HDAC9 gene. Further functional investigation of genetic loci harbouring CNVs associated with skeletal phenotypes will reveal their role as molecular drivers of osteoporosis.
Collapse
Affiliation(s)
- Nika Lovšin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Zhou Y, Yu Z, Chebotarov D, Chougule K, Lu Z, Rivera LF, Kathiresan N, Al-Bader N, Mohammed N, Alsantely A, Mussurova S, Santos J, Thimma M, Troukhan M, Fornasiero A, Green CD, Copetti D, Kudrna D, Llaca V, Lorieux M, Zuccolo A, Ware D, McNally K, Zhang J, Wing RA. Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice. Nat Commun 2023; 14:1567. [PMID: 36944612 PMCID: PMC10030860 DOI: 10.1038/s41467-023-37004-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.
Collapse
Affiliation(s)
- Yong Zhou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Luis F Rivera
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noor Al-Bader
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nahed Mohammed
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aseel Alsantely
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - João Santos
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Manjula Thimma
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alice Fornasiero
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Carl D Green
- Information Technology Department, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dario Copetti
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David Kudrna
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Mathias Lorieux
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Andrea Zuccolo
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, Ithaca, NY, 14853, USA.
| | - Kenneth McNally
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| | - Jianwei Zhang
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rod A Wing
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| |
Collapse
|
21
|
Steiner HE, Carrion KC, Giles JB, Lima AR, Yee K, Sun X, Cavallari LH, Perera MA, Duconge J, Karnes JH. Local Ancestry-Informed Candidate Pathway Analysis of Warfarin Stable Dose in Latino Populations. Clin Pharmacol Ther 2023; 113:680-691. [PMID: 36321873 PMCID: PMC9957812 DOI: 10.1002/cpt.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Accuracy of warfarin dose prediction algorithms may be improved by including data from diverse populations in genetic studies of dose variability. Here, we surveyed single nucleotide polymorphisms in vitamin K-related genetic pathways for association with warfarin dose requirements in two admixed Latino populations in standard-principal component adjusted and contemporary-local ancestry adjusted regression models. A total of five variants from vitamin K-related genes/pathways were associated with warfarin dose in both cohorts (P < 0.0125) in standard models. Local ancestry-adjusted analysis unveiled 35 associated variants with absolute effects ranging from β = 9.04 ( ±2.23) to 39.18 ( ±10.89) per ancestral allele in the discovery cohort and β = 6.47 (± 2.02) to 17.82 (± 6.83) in the replication cohort. Importantly, we demonstrate the technical validity of the Tractor model in cohorts with admixed ancestry from three founder populations and bring attention to the technical hurdles obstructing the inclusion of diverse, especially admixed, populations in pharmacogenomic research.
Collapse
Affiliation(s)
- Heidi E Steiner
- Data Science Institute, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
| | - Kelvin Carrasquillo Carrion
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jason B Giles
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
| | - Abiel Roche Lima
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Kevin Yee
- Banner University Medical Center-Tucson, Tucson, Arizona, USA
| | - Xiaoxiao Sun
- Department of Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, University of Puerto Rico School of Pharmacy, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
23
|
Shieh JTC. Genomic technologies to improve variation identification in undiagnosed diseases. Pediatr Neonatol 2023; 64 Suppl 1:S18-S21. [PMID: 36428199 DOI: 10.1016/j.pedneo.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Human genome variation has increasingly posed challenges and opportunities for patients, medical providers, and an increasing group of stakeholders including advocacy groups, disadvantaged communities, public health experts, and scientists. Here, advances in genomic sequencing and mapping technologies are discussed with particular attention to the increasing ability to detect personal and population genome variation and the potential for accurate integration of variation into health and disease-related care. Genome mapping, one technique used to create genome map scaffolds, has now been combined with long read sequencing. New technologies have led to improved variation detection, including cryptic structural variation and diverse variants with different degrees of disease association. Combined with advances in automated and medical interpretations, variation detection is increasingly being applied in healthcare. These advances promise to make disease diagnostics more rapid, and potentially more accessible, to those with medical needs. Consequentially, the need for medical genetics and genomics experts is increasing. Here, the opportunities and potential challenges for application of genome-scale variation detection in disease are examined. (<300 words).
Collapse
Affiliation(s)
- Joseph T C Shieh
- University of California San Francisco, Division of Medical Genetics, Department of Pediatrics, Institute for Human Genetics, Benioff Children's Hospital, University of California San Francisco, California, USA.
| |
Collapse
|
24
|
The Genetics of Intellectual Disability. Brain Sci 2023; 13:brainsci13020231. [PMID: 36831774 PMCID: PMC9953898 DOI: 10.3390/brainsci13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
Collapse
|
25
|
Ding X, Han J, Van Winkle LS, Zhang QY. Detection of Transgene Location in the CYP2A13/2B6/2F1-transgenic Mouse Model using Optical Genome Mapping Technology. Drug Metab Dispos 2023; 51:46-53. [PMID: 36273825 PMCID: PMC9832375 DOI: 10.1124/dmd.122.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/14/2023] Open
Abstract
Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - John Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Laura S Van Winkle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| |
Collapse
|
26
|
Söylev A, Çokoglu SS, Koptekin D, Alkan C, Somel M. CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data. PLoS Comput Biol 2022; 18:e1010788. [PMID: 36516232 PMCID: PMC9873172 DOI: 10.1371/journal.pcbi.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/24/2023] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.
Collapse
Affiliation(s)
- Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (AS); (MS)
| | | | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
- * E-mail: (AS); (MS)
| |
Collapse
|
27
|
Pokrovac I, Pezer Ž. Recent advances and current challenges in population genomics of structural variation in animals and plants. Front Genet 2022; 13:1060898. [PMID: 36523759 PMCID: PMC9745067 DOI: 10.3389/fgene.2022.1060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 05/02/2024] Open
Abstract
The field of population genomics has seen a surge of studies on genomic structural variation over the past two decades. These studies witnessed that structural variation is taxonomically ubiquitous and represent a dominant form of genetic variation within species. Recent advances in technology, especially the development of long-read sequencing platforms, have enabled the discovery of structural variants (SVs) in previously inaccessible genomic regions which unlocked additional structural variation for population studies and revealed that more SVs contribute to evolution than previously perceived. An increasing number of studies suggest that SVs of all types and sizes may have a large effect on phenotype and consequently major impact on rapid adaptation, population divergence, and speciation. However, the functional effect of the vast majority of SVs is unknown and the field generally lacks evidence on the phenotypic consequences of most SVs that are suggested to have adaptive potential. Non-human genomes are heavily under-represented in population-scale studies of SVs. We argue that more research on other species is needed to objectively estimate the contribution of SVs to evolution. We discuss technical challenges associated with SV detection and outline the most recent advances towards more representative reference genomes, which opens a new era in population-scale studies of structural variation.
Collapse
Affiliation(s)
| | - Željka Pezer
- Laboratory for Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
28
|
Vervoort L, Vermeesch JR. The 22q11.2 Low Copy Repeats. Genes (Basel) 2022; 13:2101. [PMID: 36421776 PMCID: PMC9690962 DOI: 10.3390/genes13112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 07/22/2023] Open
Abstract
LCR22s are among the most complex loci in the human genome and are susceptible to nonallelic homologous recombination. This can lead to a variety of genomic disorders, including deletions, duplications, and translocations, of which the 22q11.2 deletion syndrome is the most common in humans. Interrogating these phenomena is difficult due to the high complexity of the LCR22s and the inaccurate representation of the LCRs across different reference genomes. Optical mapping techniques, which provide long-range chromosomal maps, could be used to unravel the complex duplicon structure. These techniques have already uncovered the hypervariability of the LCR22-A haplotype in the human population. Although optical LCR22 mapping is a major step forward, long-read sequencing approaches will be essential to reach nucleotide resolution of the LCR22s and map the crossover sites. Accurate maps and sequences are needed to pinpoint potential predisposing alleles and, most importantly, allow for genotype-phenotype studies exploring the role of the LCR22s in health and disease. In addition, this research might provide a paradigm for the study of other rare genomic disorders.
Collapse
|
29
|
Schuy J, Grochowski CM, Carvalho CMB, Lindstrand A. Complex genomic rearrangements: an underestimated cause of rare diseases. Trends Genet 2022; 38:1134-1146. [PMID: 35820967 PMCID: PMC9851044 DOI: 10.1016/j.tig.2022.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023]
Abstract
Complex genomic rearrangements (CGRs) are known contributors to disease but are often missed during routine genetic screening. Identifying CGRs requires (i) identifying copy number variants (CNVs) concurrently with inversions, (ii) phasing multiple breakpoint junctions incis, as well as (iii) detecting and resolving structural variants (SVs) within repeats. We demonstrate how combining cytogenetics and new sequencing methodologies is being successfully applied to gain insights into the genomic architecture of CGRs. In addition, we review CGR patterns and molecular features revealed by studying constitutional genomic disorders. These data offer invaluable lessons to individuals interested in investigating CGRs, evaluating their clinical relevance and frequency, as well as assessing their impact(s) on rare genetic diseases.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Pacific Northwest Research Institute, Seattle, WA, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
30
|
Talenti A, Powell J, Wragg D, Chepkwony M, Fisch A, Ferreira BR, Mercadante MEZ, Santos IM, Ezeasor CK, Obishakin ET, Muhanguzi D, Amanyire W, Silwamba I, Muma JB, Mainda G, Kelly RF, Toye P, Connelley T, Prendergast J. Optical mapping compendium of structural variants across global cattle breeds. Sci Data 2022; 9:618. [PMID: 36229544 PMCID: PMC9561109 DOI: 10.1038/s41597-022-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the difficulty of their accurate detection with standard sequencing approaches, their role in shaping important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The aim of this project was to use optical mapping to develop a high-quality database of structural variation across cattle breeds from different geographical regions, to enable further study of SVs in cattle. To do this we generated 100X Bionano optical mapping data for 18 cattle of nine different ancestries, three continents and both cattle sub-species. In total we identified 13,457 SVs, of which 1,200 putatively overlap coding regions. This resource provides a high-quality set of optical mapping-based SV calls that can be used across studies, from validating DNA sequencing-based SV calls to prioritising candidate functional variants in genetic association studies and expanding our understanding of the role of SVs in cattle evolution. Measurement(s) | Optical Mapping | Technology Type(s) | Optical Mapping | Factor Type(s) | Structural variants | Sample Characteristic - Organism | Bos taurus | Sample Characteristic - Location | United Kingdom • Kenya • Zambia • Uganda • Brazil • Nigeria |
Collapse
Affiliation(s)
- A Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.
| | - J Powell
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - D Wragg
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - M Chepkwony
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - A Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - B R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - M E Z Mercadante
- Institute of Animal Science, Agriculture Department of São Paulo Government, Sertãozinho, SP, 14.174-000, Brazil
| | - I M Santos
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - C K Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - E T Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria.,Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South Korea
| | - D Muhanguzi
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - W Amanyire
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - I Silwamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia.,Department of Laboratory and Diagnostics, Livestock Services Cooperative Society, P.O. BOX 32025, Lusaka, Zambia
| | - J B Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia
| | - G Mainda
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Central Veterinary Research Institute, P.O. Box 33980, Lusaka, Zambia
| | - R F Kelly
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - P Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - T Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| | - J Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
31
|
Yang Y, Hao W. Identification of a familial complex chromosomal rearrangement by optical genome mapping. Mol Cytogenet 2022; 15:41. [PMID: 36127686 PMCID: PMC9490972 DOI: 10.1186/s13039-022-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complex chromosomal rearrangements (CCRs) are rare chromosomal structural variations, containing a variety of rearrangements such as translocation, inversion and/or insertion. With the development of cytogenetic and molecular genetic techniques, some chromosomal rearrangements that were initially considered to be simple reciprocal translocations in the past might eventually involve more complex chromosomal rearrangements. CASE PRESENTATION In this case, a pregnant woman, who had a spontaneous abortion last year, had abnormal prenatal test results again in the second pregnancy. Applying a combination of genetic methods including karyotype analysis, chromosomal microarray analysis, fluorescence in situ hybridization and optical genome mapping confirmed that the pregnant woman was a carrier of a CCR involving three chromosomes and four breakpoints, and the CCR was paternal-origin. Her first and second pregnancy abnormalities were caused by chromosomal microdeletions and microduplications due to the malsegregations of the derivative chromosomes. CONCLUSIONS We presented a rare familial CCR involving three chromosomes and four breakpoints. This study provided precise and detailed information for the subsequent reproductive decision-making and genetic counselling of the patient.
Collapse
Affiliation(s)
- Yang Yang
- Prenatal Diagnosis Center, Hangzhou Maternity and Child Care Hospital, #369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China
| | - Wang Hao
- Prenatal Diagnosis Center, Hangzhou Maternity and Child Care Hospital, #369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China. .,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
34
|
Canaguier A, Guilbaud R, Denis E, Magdelenat G, Belser C, Istace B, Cruaud C, Wincker P, Le Paslier MC, Faivre-Rampant P, Barbe V. Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection. BMC Genomics 2022; 23:317. [PMID: 35448948 PMCID: PMC9026655 DOI: 10.1186/s12864-022-08499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). RESULTS We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. CONCLUSIONS Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.
Collapse
Affiliation(s)
- Aurélie Canaguier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Romane Guilbaud
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Erwan Denis
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Ghislaine Magdelenat
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marie-Christine Le Paslier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
35
|
Uppuluri L, Wang Y, Young E, Wong JS, Abid HZ, Xiao M. Multiplex structural variant detection by whole-genome mapping and nanopore sequencing. Sci Rep 2022; 12:6512. [PMID: 35444207 PMCID: PMC9021263 DOI: 10.1038/s41598-022-10483-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Identification of structural variants (SVs) breakpoints is important in studying mutations, mutagenic causes, and functional impacts. Next-generation sequencing and whole-genome optical mapping are extensively used in SV discovery and characterization. However, multiple platforms and computational approaches are needed for comprehensive analysis, making it resource-intensive and expensive. Here, we propose a strategy combining optical mapping and cas9-assisted targeted nanopore sequencing to analyze SVs. Optical mapping can economically and quickly detect SVs across a whole genome but does not provide sequence-level information or precisely resolve breakpoints. Furthermore, since only a subset of all SVs is known to affect biology, we attempted to type a subset of all SVs using targeted nanopore sequencing. Using our approach, we resolved the breakpoints of five deletions, five insertions, and an inversion, in a single experiment.
Collapse
Affiliation(s)
- Lahari Uppuluri
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.,Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA
| | - Yilin Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eleanor Young
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jessica S Wong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Heba Z Abid
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA. .,Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, Lindstadt H, Jamilloux V, Quesneville H, González J. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun 2022; 13:1948. [PMID: 35413957 PMCID: PMC9005704 DOI: 10.1038/s41467-022-29518-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generate 32 high-quality reference genomes for the well-known model species D. melanogaster and focus on the identification and analysis of transposable element variation as they are the most common type of structural variant. We show that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identify hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.
Collapse
Affiliation(s)
- Gabriel E Rech
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Santiago Radío
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Vivien Horvath
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Hannah Lindstadt
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | | | | | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain.
| |
Collapse
|
37
|
Smetana J, Brož P. National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes (Basel) 2022; 13:556. [PMID: 35328109 PMCID: PMC8953625 DOI: 10.3390/genes13030556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
Collapse
Affiliation(s)
- Jan Smetana
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Brož
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| |
Collapse
|
38
|
Wickland DP, Sherman ME, Radisky DC, Mansfield AS, Asmann YW. Lower Exome Sequencing Coverage of Ancestrally African Patients in The Cancer Genome Atlas. J Natl Cancer Inst 2022; 114:1192-1199. [PMID: 35299252 PMCID: PMC9360464 DOI: 10.1093/jnci/djac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 02/25/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the United States, cancer disproportionately impacts Black and African American individuals. Identifying genetic factors underlying cancer disparities has been an important research focus and requires data that are equitable in both quantity and quality across racial groups. It is widely recognized that DNA databases quantitatively underrepresent minorities. However, the differences in data quality between racial groups have not been well studied. METHODS We compared the qualities of germline and tumor exomes between ancestrally African and European patients in The Cancer Genome Atlas of 7 cancers with at least 50 self-reported Black patients in the context of sequencing depth, tumor purity, and qualities of germline variants and somatic mutations. RESULTS Germline and tumor exomes from ancestrally African patients were sequenced at statistically significantly lower depth in 6 out of the 7 cancers. For 3 cancers, most ancestrally European exomes were sequenced in early sample batches at higher depth, whereas ancestrally African exomes were concentrated in later batches and sequenced at much lower depth. For the other 3 cancers, the reasons of lower sequencing coverage of ancestrally African exomes remain unknown. Furthermore, even when the sequencing depths were comparable, African exomes had disproportionally higher percentages of positions with insufficient coverage, likely because of the known European bias in the human reference genome that impacted exome capture kit design. CONCLUSIONS Overall and positional lower sequencing depths of ancestrally African exomes in The Cancer Genome Atlas led to underdetection and lower quality of variants, highlighting the need to consider epidemiological factors for future genomics studies.
Collapse
Affiliation(s)
- Daniel P Wickland
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mark E Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yan W Asmann
- Correspondence to: Yan W. Asmann, PhD, Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA (e-mail: )
| |
Collapse
|
39
|
Liu Z, Roberts R, Mercer TR, Xu J, Sedlazeck FJ, Tong W. Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol 2022; 23:68. [PMID: 35241127 PMCID: PMC8892125 DOI: 10.1186/s13059-022-02636-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) are a major source of human genetic diversity and have been associated with different diseases and phenotypes. The detection of SVs is difficult, and a diverse range of detection methods and data analysis protocols has been developed. This difficulty and diversity make the detection of SVs for clinical applications challenging and requires a framework to ensure accuracy and reproducibility. Here, we discuss current developments in the diagnosis of SVs and propose a roadmap for the accurate and reproducible detection of SVs that includes case studies provided from the FDA-led SEquencing Quality Control Phase II (SEQC-II) and other consortium efforts.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge, SK10 4TG, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
40
|
Sahajpal NS, Jill Lai CY, Hastie A, Mondal AK, Dehkordi SR, van der Made CI, Fedrigo O, Al-Ajli F, Jalnapurkar S, Byrska-Bishop M, Kanagal-Shamanna R, Levy B, Schieck M, Illig T, Bacanu SA, Chou JS, Randolph AG, Rojiani AM, Zody MC, Brownstein CA, Beggs AH, Bafna V, Jarvis ED, Hoischen A, Chaubey A, Kolhe R. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. iScience 2022; 25:103760. [PMID: 35036860 PMCID: PMC8744399 DOI: 10.1016/j.isci.2022.103760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Alex Hastie
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | - Siavash Raeisi Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Farooq Al-Ajli
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Sawan Jalnapurkar
- Department of Medicine, Medical College of Georgia, Augusta University, GA 30912, USA
| | | | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York 10032, USA
| | - Maximilian Schieck
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Thomas Illig
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
- Hannover Unified Biobank (HUB), Hannover 30625, Germany
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Janet S. Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Anesthesia and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | |
Collapse
|
41
|
Luo J, Liu L, Chen L, Xu X, Wang Y, Wei B, Ju C, Wang X, Huang L, Zeng W, Miao X, Sang L, Huang D, Pan G, Peng G, Chen Z, Zhao Z, Yang C, Cui W, Jiang W, Xu J, Li SC, He J. Over-shedding of donor-derived cell-free DNA at immune-related regions into plasma of lung transplant recipient. Clin Transl Med 2022; 12:e622. [PMID: 35020272 PMCID: PMC8754174 DOI: 10.1002/ctm2.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jiaqi Luo
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liping Liu
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of The Translational Medicine LaboratoryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingxi Chen
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Xin Xu
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yanfei Wang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Bing Wei
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chunrong Ju
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineDepartment of lung transplantationThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xuedong Wang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Liyan Huang
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of The Translational Medicine LaboratoryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenchuang Zeng
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of The Translational Medicine LaboratoryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xinyao Miao
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Ling Sang
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Critical Care MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Danxia Huang
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guangze Pan
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Guilin Peng
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhuxing Chen
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of The Translational Medicine LaboratoryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zicheng Zhao
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Chao Yang
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Cardiac SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Weixue Cui
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Jinjin Xu
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Jianxing He
- National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
42
|
Genetic and epigenetic processes linked to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Mukherjee K, Dole-Muinos D, Ajayi A, Rossi M, Prosperi M, Boucher C. Finding Overlapping Rmaps via Clustering. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34890332 DOI: 10.1109/tcbb.2021.3132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical mapping has been largely automated, and first produces single molecule restriction maps, called Rmaps, which are assembled to generate genome wide optical maps. Since the location and orientation of each Rmap is unknown, the first problem in the analysis of this data is finding related Rmaps, i.e., pairs of Rmaps that share the same orientation and have significant overlap in their genomic location. Although heuristics for identifying related Rmaps exist, they all require quantization of the data which leads to a loss in the precision. In this paper, we propose a Gaussian mixture modelling clustering based method, which we refer to as O, that finds overlapping Rmaps without quantization. Using both simulated and real datasets, we show that OMclust substantially improves the precision (from 48.3% to 73.3%) over the state-of-the art methods while also reducing CPU time and memory consumption. Further, we integrated OMclust into the error correction methods (Elmeri and Comet) to demonstrate the increase in the performance of these methods. When OMclust was combined with Comet to error correct Rmap data generated from human DNA, it was able to error correct close to 3x more Ramps, and reduced the CPU time by more than 35x.
Collapse
|
44
|
Dhande IS, Braun MC, Doris PA. Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies. Hypertension 2021; 78:1689-1700. [PMID: 34757770 PMCID: PMC8577298 DOI: 10.1161/hypertensionaha.121.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.
Collapse
Affiliation(s)
- Isha S. Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston (M.C.B.)
| | - Peter A. Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| |
Collapse
|
45
|
Long-read technologies identify a hidden inverted duplication in a family with choroideremia. HGG ADVANCES 2021; 2:100046. [PMID: 35047838 PMCID: PMC8756506 DOI: 10.1016/j.xhgg.2021.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases.
Collapse
|
46
|
Shieh JT, Penon-Portmann M, Wong KHY, Levy-Sakin M, Verghese M, Slavotinek A, Gallagher RC, Mendelsohn BA, Tenney J, Beleford D, Perry H, Chow SK, Sharo AG, Brenner SE, Qi Z, Yu J, Klein OD, Martin D, Kwok PY, Boffelli D. Application of full-genome analysis to diagnose rare monogenic disorders. NPJ Genom Med 2021; 6:77. [PMID: 34556655 PMCID: PMC8460793 DOI: 10.1038/s41525-021-00241-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Current genetic tests for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. .,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | - Monica Penon-Portmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Verghese
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Renata C Gallagher
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tenney
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Daniah Beleford
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Hazel Perry
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew G Sharo
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - David Martin
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
47
|
Wong JS, Jadhav T, Young E, Wang Y, Xiao M. Characterization of full-length LINE-1 insertions in 154 genomes. Genomics 2021; 113:3804-3810. [PMID: 34534648 DOI: 10.1016/j.ygeno.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Long interspersed nuclear elements (LINEs) are retrotransposons that contribute to genetic variation in the human genome. LINE-1 elements in larger-scale studies are challenging to identify using sequencing technologies due to cost and scalability. We developed an approach using optical mapping for detection of full-length LINE-1 insertions and 10× sequencing for confirmation. We found 51 true positive full-length LINE-1 insertions, of which 4 are novel insertions, in NA12878. Repeating our analysis on a larger sample set representing 26 populations, we identified 329 full-length LINE-1 elements, of which 123 are novel. 24.8% of these 329 LINE-1 insertions were shared amongst all 5 superpopulations (AFR, AMR, EUR, EAS, SAS). The African superpopulation has a higher percentage of population-specific LINE-1 insertions than any other superpopulation. These data indicate that our approach can provide high-speed, cost-effective, and increased accuracy for LINE-1 detection. These data also provide an insight into variations of LINE-1 elements between different populations.
Collapse
Affiliation(s)
- Jessica S Wong
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Tanaya Jadhav
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Eleanor Young
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Yilin Wang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America; Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
48
|
Xia L, Wang Z, Wu X, Zeng T, Luo W, Hu X, Ni Y, Che G, Liu L, Zhang W, Xie D, Li W. Multiplatform discovery and regulatory function analysis of structural variations in non-small cell lung carcinoma. Cell Rep 2021; 36:109660. [PMID: 34496260 DOI: 10.1016/j.celrep.2021.109660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC), the most common form of lung cancer, is the leading cause of cancer-related death worldwide. We perform whole-genome sequencing (WGS) on samples from 43 primary patients with NSCLC and matched normal samples and analyze their matched open chromatin data and transcriptome data. Our results indicate that next-generation sequencing (NGS) and the Bionano Genomics (BNG) platform should be viewed as complementary technologies in terms of structural variations detection. By creating a framework integrating these two platforms, we detect high-technical-confidence somatic structural variations (SVs) in NSCLC cases, which could aid in the efficient investigation of new candidate oncogenes, such as TRIO and SESTD1. Our findings highlight the impact of somatic SVs on NSCLC oncogenesis and lay a foundation for exploring associations among somatic SVs, gene expression, and regulatory networks in patients with NSCLC.
Collapse
Affiliation(s)
- Lin Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Zhoufeng Wang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinyue Wu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Tianfu Zeng
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Wenxin Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinlei Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Yinyun Ni
- Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the Second Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| | - Weimin Li
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
49
|
Mostovoy Y, Yilmaz F, Chow SK, Chu C, Lin C, Geiger EA, Meeks NJL, Chatfield KC, Coughlin CR, Surti U, Kwok PY, Shaikh TH. Genomic regions associated with microdeletion/microduplication syndromes exhibit extreme diversity of structural variation. Genetics 2021; 217:6066166. [PMID: 33724415 DOI: 10.1093/genetics/iyaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams-Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Feyza Yilmaz
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.,Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Catherine Chu
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Chin Lin
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Pediatrics, Section of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA.,Department of Dermatology, UCSF School of Medicine, San Francisco, CA 94143, USA.,Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
50
|
Délot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet 2021; 22:588-602. [PMID: 34083777 PMCID: PMC10598994 DOI: 10.1038/s41576-021-00365-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/05/2023]
Abstract
Despite being collectively among the most frequent congenital developmental conditions worldwide, differences of sex development (DSD) lack recognition and research funding. As a result, what constitutes optimal management remains uncertain. Identification of the individual conditions under the DSD umbrella is challenging and molecular genetic diagnosis is frequently not achieved, which has psychosocial and health-related repercussions for patients and their families. New genomic approaches have the potential to resolve this impasse through better detection of protein-coding variants and ascertainment of under-recognized aetiology, such as mosaic, structural, non-coding or epigenetic variants. Ultimately, it is hoped that better outcomes data, improved understanding of the molecular causes and greater public awareness will bring an end to the stigma often associated with DSD.
Collapse
Affiliation(s)
- Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|