1
|
Ambalavanan N, Cotten CM, Erickson SW, Mathur R, Torgerson D, Ballard PL. Genomic Differences between Spontaneous versus Indicated Extreme Preterm Birth. Am J Perinatol 2025; 42:238-249. [PMID: 38889886 PMCID: PMC11693484 DOI: 10.1055/a-2347-3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Extremely preterm infants are at high risk of neonatal mortality and morbidity. Extreme preterm birth (PTB) may result from spontaneous preterm labor or preterm premature rupture of membranes or may be indicated due to preeclampsia, eclampsia, hypertension, or other causes. Our objective was to identify single nucleotide polymorphisms (SNPs) and biological pathways associated with spontaneous versus indicated extreme PTB using the neonatal genome. STUDY DESIGN We evaluated 523 spontaneous births and 134 indicated births weighing 401 to 1,000 g at birth from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network's Genomics dataset by genome-wide association study (GWAS) and pathway analysis. The TOLSURF cohort was used to replicate the results. RESULTS In the NRN GWAS, no statistically significant results were found, although the Manhattan plot showed one almost significant peak (rs60854043 on chromosome 14 at p = 1.03E-07) along with many other modest peaks at p = 1-9E-06, for a total of 15 suggestive associations at this locus. In the NRN pathway analysis, multiple pathways were identified, with the most significant being "GO_mf:go_low_density_lipoprotein_particle_receptor_activity" at p = 1.14E-06. However, these results could not be replicated in the TOLSURF cohort. CONCLUSION Genomic differences are seen between infants born by spontaneous versus indicated extreme PTB. Due to the limited sample size, there is a need for larger studies. KEY POINTS · Genomic differences are seen between infants born by spontaneous versus indicated very PTB.. · Future studies with large sample sizes evaluating extreme PTB are necessary.. · Spontaneous PTB is more common than indicated extreme PTB..
Collapse
Affiliation(s)
| | | | | | - Ravi Mathur
- Genomics Research Center, RTI International, Research Triangle Park, NC
| | - Dara Torgerson
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Philip L. Ballard
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
2
|
Zhou Y, Luo Y, Lu Y, Lou H. Potential causal associations between perfluoroalkyl substances exposure and adverse pregnancy outcomes: A bidirectional two-sample mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117374. [PMID: 39615299 DOI: 10.1016/j.ecoenv.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Maternal exposure to per- and polyfluoroalkyl substances (PFASs) has been linked to adverse pregnancy outcomes (APOs). Nonetheless, the genetic causality underlying this association remains unknown. This research employed a bidirectional two-sample Mendelian randomization (MR) to investigate the potential causal associations between PFASs exposure and APOs risk. PFASs data were sourced from the GWAS Catalog, and APOs data were retrieved from the FinnGen consortium. Causal estimation primarily employed inverse variance weighting, with Cochran's Q test for instrumental variable heterogeneity, and MR-Egger, MR-PRESSO, and leave-one-out tests for sensitivity analyses. The possibility of reverse causality was investigated through reverse MR. MR evidence revealed a notable correlation between perfluorooctanoic acid (PFOA) and abruptio placentae (OR=1.498, P=0.026), as well as short gestation and low birth weight (OR=1.720, P=0.013). Exposure to perfluorooctanesulfonic acid (PFOS) increased the risk of preeclampsia or eclampsia (OR=1.128, P=0.030) and gestational hypertension (OR=1.076, P=0.049), but decreased the risk of premature rupture of membranes (OR=0.916, P=0.033). The results obtained were consistent across various sensitivity analyses. Reverse MR results was negative. These findings may provide a reference for prevention strategies and intervention measures for PFASs exposure and APOs, and provide a framework for studying the causal effects of environmental pollutant exposure and human diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijie Lu
- Wenzhou Medical University, Wenzhou, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Cohen JL, De Bie F, Viaene AN, O'Grady N, Rentas S, Coons B, Moon JK, Monson EE, Myers RA, Kalish JM, Flake AW. Extrauterine support of pre-term lambs achieves similar transcriptomic profiling to late pre-term lamb brains. Sci Rep 2024; 14:28840. [PMID: 39572605 PMCID: PMC11582712 DOI: 10.1038/s41598-024-79095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
Our group has developed an extra-uterine environment for newborn development (EXTEND) using an ovine model, that aims to mimic the womb to improve short and long-term health outcomes associated with prematurity. This study's objective was to determine the histologic and transcriptomic consequences of EXTEND on the brain. Histology and RNA-sequencing was conducted on brain tissue from three cohorts of lambs: control pre-term (106-107 days), control late pre-term (127 days), and EXTEND lambs who were born pre-term and supported on EXTEND until late pre-term age (125-128 days). Bioinformatic analysis determined differential gene expression among the three cohorts and across four different brain tissue sections: basal ganglia, cerebellum, hippocampus, and motor cortex. There were no clinically relevant histological differences between the control late pre-term and EXTEND ovine brain tissues. RNA-sequencing demonstrated that there was greater differential gene expression between the control pre-term lambs and EXTEND lambs than between the control late pre-term lambs and EXTEND lambs (Supplemental Figs. 1 and 2). Our study demonstrates that the use of EXTEND to support pre-term lambs until they reach late pre-term gestational age results in brain tissue gene expression that more closely resembles that of the lambs who reached late pre-term gestation within their maternal sheep's womb than that of the lambs who were born prematurely.
Collapse
Affiliation(s)
- Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, 905 S. Lasalle Street, Durham, NC, 27710, USA.
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Departments of Pediatrics and Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Felix De Bie
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Stefan Rentas
- Department of Pathology, Duke University, Durham, NC, USA
| | - Barbara Coons
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James K Moon
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric E Monson
- Center for Data and Visualization Sciences, Duke University Libraries, Durham, NC, USA
| | - Rachel A Myers
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jennifer M Kalish
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Departments of Pediatrics and Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alan W Flake
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Zhang Y, Yahia A, Sandin S, Åden U, Tammimies K. Prematurity and Genetic Liability for Autism Spectrum Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317613. [PMID: 39606368 PMCID: PMC11601743 DOI: 10.1101/2024.11.20.24317613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by diverse presentations and a strong genetic component. Environmental factors, such as prematurity, have also been linked to increased liability for ASD, though the interaction between genetic predisposition and prematurity remains unclear. This study aims to investigate the impact of genetic liability and preterm birth on ASD conditions. Methods We analyzed phenotype and genetic data from two large ASD cohorts, the Simons Foundation Powering Autism Research for Knowledge (SPARK) and Simons Simplex Collection (SSC), encompassing 78,559 individuals for phenotype analysis, 12,519 individuals with genome sequencing data, and 8,104 individuals with exome sequencing data. Statistical significance of differences in clinical measures were evaluated between individuals with different ASD and preterm status. We assessed the rare variants burden using generalized estimating equations (GEE) models and polygenic load using ASD-associated polygenic risk score (PRS). Furthermore, we developed a machine learning model to predict ASD in preterm children using phenotype and genetic features available at birth. Results Individuals with both preterm birth and ASD exhibit more severe phenotypic outcomes despite similar levels of genetic liability for ASD across the term and preterm groups. Notable, preterm ASD individuals showed an elevated rate of de novo variants identified in exome sequencing (GEE model with Poisson family, p-value = 0.005) in comparison to the non-ASD preterm group. Additionally, a GEE model showed that a higher ASD PRS, preterm birth, and male sex were positively associated with a higher predicted probability for ASD, reaching a probability close to 90%. Lastly, we developed a machine learning model using phenotype and genetic features available at birth with limited predictive power (AUROC = 0.65). Conclusions Preterm birth may exacerbate the multimorbidity present in ASD, which was not due to the ASD genetic factors. However, increased genetic factors may elevate the likelihood of a preterm child being diagnosed with ASD. Additionally, a polygenic load of ASD-associated variants had an additive role with preterm birth in the predicted probability for ASD, especially for boys. We propose that incorporating genetic assessment into neonatal care could benefit early ASD identification and intervention for preterm infants.
Collapse
Affiliation(s)
- Yali Zhang
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Ashraf Yahia
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Seaver Center for Research and Treatment at Mount Sinai, New York, USA
| | - Ulrika Åden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Neonatology, Division of Neonatal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Bioclinical sciences, Linköping University, Linköping, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
5
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Toivonen J, Arvas M, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. DINGO: increasing the power of locus discovery in maternal and fetal genome-wide association studies of perinatal traits. Nat Commun 2024; 15:9255. [PMID: 39461952 PMCID: PMC11513127 DOI: 10.1038/s41467-024-53495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Perinatal traits are influenced by fetal and maternal genomes. We investigate the performance of three strategies to detect loci in maternal and fetal genome-wide association studies (GWASs) of the same quantitative trait: (i) the traditional strategy of analysing maternal and fetal GWASs separately; (ii) a two-degree-of-freedom test which combines information from maternal and fetal GWASs; and (iii) a one-degree-of-freedom test where signals from maternal and fetal GWASs are meta-analysed together conditional on estimated sample overlap. We demonstrate that the optimal strategy depends on the extent of sample overlap, correlation between phenotypes, whether loci exhibit fetal and/or maternal effects, and whether these effects are directionally concordant. We apply our methods to summary statistics from a recent GWAS meta-analysis of birth weight. Both the two-degree-of-freedom and meta-analytic approaches increase the number of genetic loci for birth weight relative to separately analysing the scans. Our best strategy identifies an additional 62 loci compared to the most recently published meta-analysis of birth weight. We conclude that whilst the two-degree-of-freedom test may be useful for the analysis of certain perinatal phenotypes, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWASs only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | | | - Mikko Arvas
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Solé-Navais P, Juodakis J, Ytterberg K, Wu X, Bradfield JP, Vaudel M, LaBella AL, Helgeland Ø, Flatley C, Geller F, Finel M, Zhao M, Lazarus P, Hakonarson H, Magnus P, Andreassen OA, Njølstad PR, Grant SFA, Feenstra B, Muglia LJ, Johansson S, Zhang G, Jacobsson B. Genome-wide analyses of neonatal jaundice reveal a marked departure from adult bilirubin metabolism. Nat Commun 2024; 15:7550. [PMID: 39214992 PMCID: PMC11364559 DOI: 10.1038/s41467-024-51947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Jaundice affects almost all neonates in their first days of life and is caused by the accumulation of bilirubin. Although the core biochemistry of bilirubin metabolism is well understood, it is not clear why some neonates experience more severe jaundice and require treatment with phototherapy. Here, we present the first genome-wide association study of neonatal jaundice to date in nearly 30,000 parent-offspring trios from Norway (cases ≈ 2000). The alternate allele of a common missense variant affecting the sequence of UGT1A4 reduces the susceptibility to jaundice five-fold, which replicated in separate cohorts of neonates of African American and European ancestries. eQTL colocalization analyses indicate that the association may be driven by regulation of UGT1A1 in the intestines, but not in the liver. Our results reveal marked differences in the genetic variants involved in neonatal jaundice compared to those regulating bilirubin levels in adults, suggesting distinct genetic mechanisms for the same biological pathways.
Collapse
Affiliation(s)
- Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Julius Juodakis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Karin Ytterberg
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoping Wu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Copenhagen University Hospital Biobank Unit, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Quantinuum Research LLC, Wayne, PA, USA
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Abigail L LaBella
- Department of Bioinformatics and Genomics, College of Computing and Informatics, North Carolina Research Campus, University of North Carolina at Charlotte, Kannapolis, NC, USA
| | - Øyvind Helgeland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Christopher Flatley
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Copenhagen University Hospital Biobank Unit, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mengqi Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Copenhagen University Hospital Biobank Unit, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Louis J Muglia
- Office of the President, Burroughs Wellcome Fund, Research Triangle Park, NC, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ge Zhang
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
7
|
Ruan LC, Zhang Y, Su L, Zhu LX, Wang SL, Guo Q, Wan BG, Qiu SY, Hu S, Wei YP, Zheng QL. Causal effects of genetic birth weight and gestational age on adult esophageal diseases: Mendelian randomization study. World J Gastrointest Oncol 2024; 16:3055-3068. [PMID: 39072185 PMCID: PMC11271773 DOI: 10.4251/wjgo.v16.i7.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Few studies have investigated the association between gestational age, birth weight, and esophageal cancer risk; however, causality remains debated. We aimed to establish causal links between genetic gestational age and birth weight traits and gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), and esophageal adenocarcinoma (EA). Additionally, we explored if known risk factors mediate these links. AIM To analyze of the relationship between gestational age, birth weight and GERD, BE, and EA. METHODS Genetic data on gestational age and birth weight (n = 84689 and 143677) from the Early Growth Genetics Consortium and outcomes for GERD (n = 467253), BE (n = 56429), and EA (n = 21271) from genome-wide association study served as instrumental variables. Mendelian randomization (MR) and mediation analyses were conducted using MR-Egger, weighted median, and inverse variance weighted methods. Robustness was ensured through heterogeneity, pleiotropy tests, and sensitivity analyses. RESULTS Birth weight was negatively correlated with GERD and BE risk [odds ratio (OR) = 0.78; 95% confidence interval (CI): 0.69-0.8] and (OR = 0.75; 95%CI: 0.60-0.9), respectively, with no significant association with EA. No causal link was found between gestational age and outcomes. Birth weight was positively correlated with five risk factors: Educational attainment (OR = 1.15; 95%CI: 1.01-1.31), body mass index (OR = 1.06; 95%CI: 1.02-1.1), height (OR = 1.12; 95%CI: 1.06-1.19), weight (OR = 1.13; 95%CI: 1.10-1.1), and alcoholic drinks per week (OR = 1.03; 95%CI: 1.00-1.06). Mediation analysis showed educational attainment and height mediated the birth weight-BE link by 13.99% and 5.46%. CONCLUSION Our study supports the protective role of genetically predicted birth weight against GERD, BE, and EA, independent of gestational age and partially mediated by educational attainment and height.
Collapse
Affiliation(s)
- Lian-Cheng Ruan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lang Su
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling-Xiao Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Si-Lin Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bin-Gen Wan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sheng-Yu Qiu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Ping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiao-Ling Zheng
- Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
8
|
Srivastava AK, Monangi N, Ravichandran V, Solé-Navais P, Jacobsson B, Muglia LJ, Zhang G. Recent Advances in Genomic Studies of Gestational Duration and Preterm Birth. Clin Perinatol 2024; 51:313-329. [PMID: 38705643 PMCID: PMC11189662 DOI: 10.1016/j.clp.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Preterm birth (PTB) is the leading cause of infant mortality and morbidity. For several decades, extensive epidemiologic and genetic studies have highlighted the significant contribution of maternal and offspring genetic factors to PTB. This review discusses the challenges inherent in conventional genomic analyses of PTB and underscores the importance of adopting nonconventional approaches, such as analyzing the mother-child pair as a single analytical unit, to disentangle the intertwined maternal and fetal genetic influences. We elaborate on studies investigating PTB phenotypes through 3 levels of genetic analyses: single-variant, multi-variant, and genome-wide variants.
Collapse
Affiliation(s)
- Amit K Srivastava
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nagendra Monangi
- Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative; Division of Neonatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neonatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Box 100, Gothenburg 405 30, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Box 100, Gothenburg 405 30, Sweden; Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative; The Burroughs Wellcome Fund, 21 Tw Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative.
| |
Collapse
|
9
|
Schuermans A, Ardissino M, Nauffal V, Khurshid S, Pirruccello JP, Ellinor PT, Lewandowski AJ, Natarajan P, Honigberg MC. Genetically predicted gestational age and birth weight are associated with cardiac and pulmonary vascular remodelling in adulthood. Eur J Prev Cardiol 2024; 31:e49-e52. [PMID: 37694688 PMCID: PMC10925550 DOI: 10.1093/eurjpc/zwad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Art Schuermans
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Maddalena Ardissino
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Victor Nauffal
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shaan Khurshid
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Cardiology and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, 185 Cambridge St. CPZN 3.187, Boston, 02114 MA, USA
| | - Michael C Honigberg
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, 185 Cambridge St. CPZN 3.187, Boston, 02114 MA, USA
| |
Collapse
|
10
|
Kentistou KA, Lim BEM, Kaisinger LR, Steinthorsdottir V, Sharp LN, Patel KA, Tragante V, Hawkes G, Gardner EJ, Olafsdottir T, Wood AR, Zhao Y, Thorleifsson G, Day FR, Ozanne SE, Hattersley AT, O'Rahilly S, Stefansson K, Ong KK, Beaumont RN, Perry JRB, Freathy RM. Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305248. [PMID: 38633783 PMCID: PMC11023655 DOI: 10.1101/2024.04.03.24305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Brandon E M Lim
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Luke N Sharp
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Felix R Day
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John R B Perry
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
11
|
Huang J, Liu Y, Xu D, Chen M, Xie Q, Chen J, Xia L, Yu L, Wu Q, Li Z, Wang J, Tian L. Causal associations between Helicobacter pylori infection and pregnancy and neonatal outcomes: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1343499. [PMID: 38558850 PMCID: PMC10979540 DOI: 10.3389/fcimb.2024.1343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Background Observational studies have reported that Helicobacter pylori (H. pylori) infection is associated with a series of pregnancy and neonatal outcomes. However, the results have been inconsistent, and the causal effect is unknown. Methods A two-sample Mendelian randomization (MR) study was performed using summary-level statistics for anti-H. pylori IgG levels from the Avon Longitudinal Study of Parents and Children Cohort. Outcome data for pregnancy (miscarriage, preeclampsia-eclampsia, gestational diabetes mellitus, placental abruption, premature rupture of membranes, postpartum hemorrhage) and neonates (birthweight, gestational age, and preterm birth) were sourced from genome-wide association meta-analysis as well as the FinnGen and Early Growth Genetics Consortium. Causal estimates were calculated by five methods including inverse variance weighted (IVW). The heterogeneity of instrumental variables was quantified by Cochran's Q test, while sensitivity analyses were performed via MR-Egger, MR-PRESSO, and leave-one-out tests. Results IVW estimates suggested that genetically predicted anti-H. pylori IgG levels were significantly associated with increased risks of preeclampsia-eclampsia (odds ratio [OR] = 1.12, 95% confidence interval [CI] 1.01-1.24, P = 0.026) and premature rupture of membranes (OR = 1.17, 95% CI 1.05-1.30, P = 0.004). Similar results were obtained for preeclampsia-eclampsia from the MR-Egger method (OR = 1.32, 95% CI 1.06-1.64, P = 0.027) and for premature rupture of membranes from the weighted median method (OR = 1.22, 95% CI 1.06-1.41, P = 0.006). No significant causal effects were found for other outcomes. There was no obvious heterogeneity and horizontal pleiotropy across the MR analysis. Conclusion Our two-sample MR study demonstrated a causal relationship of H. pylori infection with preeclampsia-eclampsia and premature rupture of membranes. The findings confirm the epidemiological evidence on the adverse impact of H. pylori in pregnancy. Further studies are needed to elucidate the pathophysiological mechanisms and assess the effectiveness of pre-pregnancy screening and preventive eradication.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yuxin Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Dingfei Xu
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Mengyi Chen
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Jia Chen
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Leizhen Xia
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Lamei Yu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zengming Li
- Key Laboratory of Women’s Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lifeng Tian
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Liu C, Zhao Y, Liu J, Zhao Q. The causal effect of obesity on concomitant exotropia: A lifecourse Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37348. [PMID: 38428888 PMCID: PMC10906616 DOI: 10.1097/md.0000000000037348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity is now a significant global public health issue. Limited understanding exists regarding the association between obesity and concomitant exotropia. Our objective was to identify the causal relationship between lifecourse obesity, including birth weight, childhood body mass index (BMI), and adult BMI, and the risk of concomitant exotropia. We used a two-sample Mendelian randomization (MR) strategy to examine the causal relationship with inverse-variance weighted method as the primary MR analysis. We carried out sensitivity analyses to evaluate the accuracy and robustness of our findings. Also, we performed reverse-direction MR analysis to eliminate the possibility of reverse causality. Childhood BMI, as opposed to birth weight or adult BMI, had a significant impact on the risk of concomitant exotropia (odds ratio = 1.40, 95% confidence interval (CI): 1.08-1.81, P = .01). This significance persisted even after accounting for birth weight and adult BMI using multivariable MR analysis (odds ratio = 1.35, 95% CI: 1.04-1.75, P = .02). There was no significant heterogeneity or pleiotropy observed in sensitivity analyses (P > .05). Multivariable MR analysis further confirmed the absence of pleiotropic effects of some risk factors including prematurity, maternal smoking around birth and refractive error. Reverse causality did not affect the causal relationship (beta = -0.0244, 95% CI: -0.0545 to 0.0056, P = .11). Genetic predisposition to higher childhood BMI was found to be causally linked to an increased risk of concomitant exotropia.
Collapse
Affiliation(s)
- Changyang Liu
- Department of Ophthalmology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yaxin Zhao
- Department of Ophthalmology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Jiasu Liu
- Department of Ophthalmology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Qi Zhao
- Department of Ophthalmology, the Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 374] [Impact Index Per Article: 374.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
14
|
Reforma L, Greenberg S, Ledyard R, Burris H. Equitable Representation of Race, Ethnicity, and Ancestry Among Genomic Studies of Preterm Birth: A Systematic Review. Cureus 2024; 16:e53757. [PMID: 38465134 PMCID: PMC10921821 DOI: 10.7759/cureus.53757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
We conducted a systematic review of representation of race, ethnicity, and ancestry among genomic studies of preterm birth. Our data sources included CINHAL, EMBASE, MEDLINE (PubMed), and Scopus. Studies were included if they were human, genomic studies of preterm birth that analyzed greater than 1,000 genes and included race, ethnicity, and/or ancestry information. Two authors independently reviewed all abstracts and full-text manuscripts. Twelve studies were included. Ancestry was reported for 139,189 (93.6%) participants. Race was reported for 4,841 (3.3%) participants and ethnicity was reported for 7,154 (5.0%) participants. Of the 148,644 births represented in this systematic review, over 90% were reported to be of European ancestry, and race and ethnicity were not further described. When examining the smaller subset of individuals described by race alone, 2,444 individuals were identified as Black or African American and 1,853 were identified as White. Race, ethnicity, and ancestry were not reported in a uniform manner, which makes ascertainment of the genetic contribution to population differences in preterm birth inequities impossible. When reported as race, ethnicity and ancestry, Black or African American populations were under-represented among the studies in this review. Research of the genomics of preterm birth not only requires increased representation of populations that are disproportionately affected, but it also requires standardized reporting of race, ethnicity, and ancestry.
Collapse
Affiliation(s)
- Liberty Reforma
- Obstetrics and Gynecology, Boston Medical Center, Boston, USA
| | - Simone Greenberg
- School of Public Health, Columbia University College of Physicians and Surgeons, New York, USA
| | - Rachel Ledyard
- Biostatistics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Heather Burris
- Neonatology, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
15
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
16
|
Hughes ZH, Hughes LM, Khan SS. Genetic contributions to risk of adverse pregnancy outcomes. CURRENT CARDIOVASCULAR RISK REPORTS 2023; 17:185-193. [PMID: 38186860 PMCID: PMC10768680 DOI: 10.1007/s12170-023-00729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 01/09/2024]
Abstract
Purpose of Review Adverse pregnancy outcomes (APOs), including hypertensive disorders of pregnancy (HDP), low birthweight (LBW), and preterm birth (PTB), along with peripartum cardiomyopathy (PPCM) are associated with short- and long-term maternal and fetal cardiovascular risks. This review focuses on the genetic contributions to the risk of APOs and PPCM. Recent Findings The expansion of genome-wide association studies (GWAS) has led to better understanding of the biologic mechanisms underpinning APO, PPCM, and the predisposition to cardiovascular disease across the life course. Genetic loci known to be involved with the risk of hypertension (FTO, ZNF831) have been associated with the development of overall HDP and preeclampsia. Additionally, four loci significantly associated with type 2 diabetes have been associated with GDM (CDKAL1, MTNR1B, TCF7L2, CDK2NA-CDKN2B). Variants in loci known to affect genes coding for proteins involved in immune cell function and placental health (EBF1, EEFSEC, AGTR2, 2q13) have been implicated in the development of PTB and future cardiovascular risks for both the mother and the offspring. Genetic similarities in rare variants between PPCM and dilated cardiomyopathy have been described suggesting shared pathophysiologic origins as well as predisposition for future risk of heart failure, highlighting the need for the development PPCM genetic counseling guidelines. Summary Genetics may inform mechanisms, risk, and counseling for individuals after an APO or PPCM. Through recent advances in genetic techniques and analytic approaches, new insights into the underlying biologic mechanisms and genetic variants leading to these risks have been discovered.
Collapse
Affiliation(s)
- Zachary H. Hughes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, UA
| | - Lydia M. Hughes
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, UA
| | - Sadiya S. Khan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Hou L, Li Y, Kang L, Li X, Li H, Xue F. The long-term mediation role of cytokines on the causal pathway from maternal gestational age to offspring eye diseases: Lifecourse-Network Mendelian randomization. Int Immunopharmacol 2023; 122:110667. [PMID: 37487263 DOI: 10.1016/j.intimp.2023.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gestational duration has a significant impact on eye diseases. A large number of evidences suggest that cytokines are associated with gestational duration and eye diseases. However, the causal relationships among cytokines, maternal gestational impairment and offspring eye diseases remain unclear. METHODS We performed lifecourse-network Mendelian randomization (MR) to explore the causal relationships between maternal gestational duration (from the Early Growth Genetics (EGG) Consortium and the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) study, N = 84,689), neonatal/adult cytokines (from the NHGRI-EBI Catalog, N = 764/4,618), and adult eye diseases (from FinnGen consotium, N = 309,154) using summary-level data from large genome-wide association studies. Multiplicative random effects inverse variance weighted (IVW) and multivariable-IVW methods were the main analysis methods, and the other 15 pleiotropy-robust methods, weak IV-robust methods, and outliers-robust methods were used as auxiliary methods. RESULTS Maternal gestational age (early preterm birth, preterm birth, gestational duration, and post-term birth) had a causal relationship with 42 eye diseases. Four neonatal cytokines, Tumor Necrosis Factor-α(TNF-α), IL10, GROA, and CTACK, as well as four adult cytokines, CTACK, IL10, IL12p70 and IL6 are mediators in the causal relationships between early preterm birth and preterm birth in eight eye diseases. However, after adjusting for these mediators, a null direct causal effect of early preterm birth and preterm birth on eight eye diseases was found. In addition, there was no mediator in the causal relationship between gestational duration and post-term birth to eye diseases. CONCLUSION The effects of maternal gestational duration on offspring eye diseases through cytokines are long-term and life-course effects.
Collapse
Affiliation(s)
- Lei Hou
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Yunxia Li
- Department of Neonatology, Jinan Children's Hospital, Jinan, Shandong 250022, China; Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Lili Kang
- Department of Neonatology, Jinan Children's Hospital, Jinan, Shandong 250022, China; Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Xiaoying Li
- Department of Neonatology, Jinan Children's Hospital, Jinan, Shandong 250022, China; Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China.
| | - Hongkai Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, China.
| |
Collapse
|
18
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. Direct and INdirect effects analysis of Genetic lOci (DINGO): A software package to increase the power of locus discovery in GWAS meta-analyses of perinatal phenotypes and traits influenced by indirect genetic effects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294446. [PMID: 37693475 PMCID: PMC10491281 DOI: 10.1101/2023.08.22.23294446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Perinatal traits are influenced by genetic variants from both fetal and maternal genomes. Genome-wide association studies (GWAS) of these phenotypes have typically involved separate fetal and maternal scans, however, this approach may be inefficient as it does not utilize the information shared across the individual GWAS. In this manuscript we investigate the performance of three strategies to detect loci in maternal and fetal GWAS of the same trait: (i) the traditional strategy of analysing maternal and fetal GWAS separately; (ii) a novel two degree of freedom test which combines information from maternal and fetal GWAS; and (iii) a novel one degree of freedom test where signals from maternal and fetal GWAS are meta-analysed together conditional on the estimated sample overlap. We demonstrate through a combination of analytical formulae and data simulation that the optimal strategy depends on the extent of sample overlap/relatedness between the maternal and fetal GWAS, the correlation between own and offspring phenotypes, whether loci jointly exhibit fetal and maternal effects, and if so, whether these effects are directionally concordant. We apply our methods to summary results statistics from a recent GWAS meta-analysis of birth weight from deCODE, the UK Biobank and the Early Growth Genetics (EGG) consortium. Both the two degree of freedom (213 loci) and meta-analytic approach (226 loci) dramatically increase the number of robustly associated genetic loci for birth weight relative to separately analysing the scans (183 loci). Our best strategy identifies an additional 62 novel loci compared to the most recent published meta-analysis of birth weight and implicates both known and new biological pathways in the aetiology of the trait. We implement our methods in the online DINGO (Direct and INdirect effects analysis of Genetic lOci) software package, which allows users to perform one and/or two degree of freedom tests easily and computationally efficiently across the genome. We conclude that whilst the novel two degree of freedom test may be particularly useful for the analysis of certain perinatal phenotypes where many loci exhibit discordant maternal and fetal genetic effects, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWAS only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| |
Collapse
|
19
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
20
|
Schuermans A, Nakao T, Ruan Y, Koyama S, Yu Z, Uddin MM, Haidermota S, Hornsby W, Lewandowski AJ, Bick AG, Niroula A, Jaiswal S, Ebert BL, Natarajan P, Honigberg MC. Birth Weight Is Associated With Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Outcomes in Adulthood. J Am Heart Assoc 2023; 12:e030220. [PMID: 37345823 PMCID: PMC10356089 DOI: 10.1161/jaha.123.030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Background High and low birth weight are independently associated with increased cardiovascular disease risk in adulthood. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic cells with preleukemic somatic mutations, predicts incident cardiovascular disease independent of traditional cardiovascular risk factors. Whether birth weight predicts development of CHIP later in life is unknown. Methods and Results A total of 221 047 adults enrolled in the UK Biobank with whole exome sequences and self-reported birth weight were analyzed. Of those, 22 030 (11.5%) had low (<2.5 kg) and 29 292 (14.7%) high birth weight (>4.0 kg). CHIP prevalence was higher among participants with low (6.0%, P=0.049) and high (6.3%, P<0.001) versus normal birth weight (5.7%, ref.). Multivariable-adjusted logistic regression analyses demonstrated that each 1-kg increase in birth weight was associated with a 3% increased risk of CHIP (odds ratio, 1.03 [95% CI, 1.00-1.06]; P=0.04), driven by a stronger association observed between birth weight and DNMT3A CHIP (odds ratio, 1.04 per 1-kg increase [95% CI, 1.01-1.08]; P=0.02). Mendelian randomization analyses supported a causal relationship of longer gestational age at delivery with DNMT3A CHIP. Multivariable Cox regression demonstrated that CHIP was independently and additively associated with incident cardiovascular disease or death across birth weight groups, with highest absolute risks in those with CHIP plus high or low birth weight. Conclusions Higher birth weight is associated with increased risk of developing CHIP in midlife, especially DNMT3A CHIP. These findings identify a novel risk factor for CHIP and provide insights into the relationships among early-life environment, CHIP, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Cardiovascular SciencesKU LeuvenLeuvenBelgium
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s HospitalBostonMAUSA
| | - Yunfeng Ruan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Satoshi Koyama
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sara Haidermota
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Adam J. Lewandowski
- Cardiovascular Clinical Research Facility, Division of Cardiovascular MedicineUniversity of OxfordUnited Kingdom
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Laboratory MedicineLund UniversitySweden
| | - Siddhartha Jaiswal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Benjamin L. Ebert
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
21
|
Juodakis J, Ytterberg K, Flatley C, Sole-Navais P, Jacobsson B. Time-varying effects are common in genetic control of gestational duration. Hum Mol Genet 2023; 32:2399-2407. [PMID: 37195282 PMCID: PMC10321382 DOI: 10.1093/hmg/ddad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Preterm birth is a major burden to neonatal health worldwide, determined in part by genetics. Recently, studies discovered several genes associated with this trait or its continuous equivalent-gestational duration. However, their effect timing, and thus clinical importance, is still unclear. Here, we use genotyping data of 31 000 births from the Norwegian Mother, Father and Child cohort (MoBa) to investigate different models of the genetic pregnancy 'clock'. We conduct genome-wide association studies using gestational duration or preterm birth, replicating known maternal associations and finding one new fetal variant. We illustrate how the interpretation of these results is complicated by the loss of power when dichotomizing. Using flexible survival models, we resolve this complexity and find that many of the known loci have time-varying effects, often stronger early in pregnancy. The overall polygenic control of birth timing appears to be shared in the term and preterm, but not very preterm, periods and exploratory results suggest involvement of the major histocompatibility complex genes in the latter. These findings show that the known gestational duration loci are clinically relevant and should help design further experimental studies.
Collapse
Affiliation(s)
- Julius Juodakis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg 416 50, Sweden
| | - Karin Ytterberg
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg 416 50, Sweden
| | - Christopher Flatley
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg 416 50, Sweden
| | - Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg 416 50, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg 416 50, Sweden
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo 0456, Norway
| |
Collapse
|
22
|
Solé-Navais P, Flatley C, Steinthorsdottir V, Vaudel M, Juodakis J, Chen J, Laisk T, LaBella AL, Westergaard D, Bacelis J, Brumpton B, Skotte L, Borges MC, Helgeland Ø, Mahajan A, Wielscher M, Lin F, Briggs C, Wang CA, Moen GH, Beaumont RN, Bradfield JP, Abraham A, Thorleifsson G, Gabrielsen ME, Ostrowski SR, Modzelewska D, Nohr EA, Hypponen E, Srivastava A, Talbot O, Allard C, Williams SM, Menon R, Shields BM, Sveinbjornsson G, Xu H, Melbye M, Lowe W, Bouchard L, Oken E, Pedersen OB, Gudbjartsson DF, Erikstrup C, Sørensen E, Lie RT, Teramo K, Hallman M, Juliusdottir T, Hakonarson H, Ullum H, Hattersley AT, Sletner L, Merialdi M, Rifas-Shiman SL, Steingrimsdottir T, Scholtens D, Power C, West J, Nyegaard M, Capra JA, Skogholt AH, Magnus P, Andreassen OA, Thorsteinsdottir U, Grant SFA, Qvigstad E, Pennell CE, Hivert MF, Hayes GM, Jarvelin MR, McCarthy MI, Lawlor DA, Nielsen HS, Mägi R, Rokas A, Hveem K, Stefansson K, Feenstra B, Njolstad P, Muglia LJ, Freathy RM, Johansson S, Zhang G, Jacobsson B. Genetic effects on the timing of parturition and links to fetal birth weight. Nat Genet 2023; 55:559-567. [PMID: 37012456 PMCID: PMC10101852 DOI: 10.1038/s41588-023-01343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
Collapse
Affiliation(s)
- Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
| | - Christopher Flatley
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | | | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Julius Juodakis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Jonas Bacelis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Maria C Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frederick Lin
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Briggs
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gunn-Helen Moen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Australia
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Abin Abraham
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominika Modzelewska
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Elina Hypponen
- Australian Centre for Precision Health, Uni Clinical & Health Sciences, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amit Srivastava
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Octavious Talbot
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Allard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Huan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mads Melbye
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - William Lowe
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Saguenay, Québec, Canada
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ole B Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Kari Teramo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Mario Merialdi
- Maternal Newborn Health Innovations, PBC, Geneva, Switzerland
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Denise Scholtens
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Power
- Population, Policy, Practice. Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jane West
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, USA
| | - Anne H Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Struan F A Grant
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey M Hayes
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Linnanmaa, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Henriette S Nielsen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals Rigshospitalet & Hvidovre Hospital, Hvidovre, Denmark
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Pål Njolstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel M Freathy
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
23
|
Guo X, Tang P, Hou C, Liu Y, Li R. Impaired pulmonary function mediates the impact of preterm birth on later-life stroke: a 2-step, multivariable Mendelian randomization study. Epidemiol Health 2023; 45:e2023031. [PMID: 36915271 PMCID: PMC10586927 DOI: 10.4178/epih.e2023031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Observational studies have suggested an association between preterm birth and stroke in late adulthood, but it remains unclear whether the association is causal. The purpose of this study was to evaluate the causal effects of gestational age on stroke and to determine the pathophysiological mechanisms underlying the causal associations. METHODS Two-sample Mendelian randomization (MR) was performed to assess the causal effects of fetal gestational duration, early preterm birth (EPB), preterm birth, or postterm birth on stroke and its subtypes. Two-step Mendelian randomization (TSMR) and multivariable Mendelian randomization (MVMR) were additionally used to determine the role of common stroke risk factors, including cardiovascular diseases, hypertension, pulmonary impairment, inflammation, and metabolic diseases, in mediating the causal associations between gestational age and stroke and its subtypes. RESULTS Genetically predicted EPB increased the risk of cardioembolic stroke (CES; odds ratio [OR], 1.115; 95% confidence interval [CI], 1.036 to 1.200; p=0.004) and large artery stroke (LAS; OR, 1.131; 95% CI, 1.031 to 1.241; p=0.009). The TSMR results showed that EPB was associated with a lower forced expiratory volume in the first second and forced vital capacity ratio (FEV1/FVC) (β=-0.020; 95% CI, -0.035 to -0.005; p=0.009), which increased the risk of CES and LAS. Further MVMR analysis showed that the associations between EPB and stroke disappeared after adjustment for FEV1/FVC. CONCLUSIONS Our data demonstrate that EPB is causally associated with an elevated risk of CES and LAS, and that pulmonary dysfunction mediates the causal impact of EPB on CES and LAS.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Yue Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
24
|
Dauengauer-Kirlienė S, Domarkienė I, Pilypienė I, Žukauskaitė G, Kučinskas V, Matulevičienė A. Causes of preterm birth: Genetic factors in preterm birth and preterm infant phenotypes. J Obstet Gynaecol Res 2023; 49:781-793. [PMID: 36519629 DOI: 10.1111/jog.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
AIM The aim is to provide an overview of recent research on genetic factors that influence preterm birth in the context of neonatal phenotypic assessment. METHODS This is a nonsystematic review of the recent scientific literature. RESULTS Maternal and fetal genetic diversity and rare genome variants are linked with crucial immune response sites. In addition, more frequent in preterm neonates, de novo variants may lead to attention deficits, hyperactivity, autism spectrum disorders, and infertility of both sexes later in life. Environmental factors may also greatly burden fetal, and consequently, neonatal development and neurodevelopment through a failure in the fetal epigenome reprogramming process and even influence the initiation of spontaneous preterm pregnancy termination. Minimally invasive analysis of the transcription factors associated with preterm birth helps elucidate labor mechanisms and predict its timing. We also provide valuable summaries of genomic and transcriptomic factors that contribute to preterm birth. CONCLUSIONS Investigation of the human genome, epigenome, and transcriptome helps to identify molecular mechanisms linked with preterm delivery and premature newborn clinical appearance in early and late neonatal life and even predict developmental outcomes. Further studies are needed to fully understand the implications of genetic changes in preterm births. These data could be used to develop targeted interventions aimed at selecting the most effective individual treatment and rehabilitation plan.
Collapse
Affiliation(s)
- Svetlana Dauengauer-Kirlienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Domarkienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Pilypienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabrielė Žukauskaitė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
25
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1764] [Impact Index Per Article: 882.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
26
|
Li S, Yan B, Li TKT, Lu J, Gu Y, Tan Y, Gong F, Lam TW, Xie P, Wang Y, Lin G, Luo R. Ultra-low-coverage genome-wide association study-insights into gestational age using 17,844 embryo samples with preimplantation genetic testing. Genome Med 2023; 15:10. [PMID: 36788602 PMCID: PMC9926832 DOI: 10.1186/s13073-023-01158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Very low-coverage (0.1 to 1×) whole genome sequencing (WGS) has become a promising and affordable approach to discover genomic variants of human populations for genome-wide association study (GWAS). To support genetic screening using preimplantation genetic testing (PGT) in a large population, the sequencing coverage goes below 0.1× to an ultra-low level. However, the feasibility and effectiveness of ultra-low-coverage WGS (ulcWGS) for GWAS remains undetermined. METHODS We built a pipeline to carry out analysis of ulcWGS data for GWAS. To examine its effectiveness, we benchmarked the accuracy of genotype imputation at the combination of different coverages below 0.1× and sample sizes from 2000 to 16,000, using 17,844 embryo PGT samples with approximately 0.04× average coverage and the standard Chinese sample HG005 with known genotypes. We then applied the imputed genotypes of 1744 transferred embryos who have gestational ages and complete follow-up records to GWAS. RESULTS The accuracy of genotype imputation under ultra-low coverage can be improved by increasing the sample size and applying a set of filters. From 1744 born embryos, we identified 11 genomic risk loci associated with gestational ages and 166 genes mapped to these loci according to positional, expression quantitative trait locus, and chromatin interaction strategies. Among these mapped genes, CRHBP, ICAM1, and OXTR were more frequently reported as preterm birth related. By joint analysis of gene expression data from previous studies, we constructed interrelationships of mainly CRHBP, ICAM1, PLAGL1, DNMT1, CNTLN, DKK1, and EGR2 with preterm birth, infant disease, and breast cancer. CONCLUSIONS This study not only demonstrates that ulcWGS could achieve relatively high accuracy of adequate genotype imputation and is capable of GWAS, but also provides insights into the associations between gestational age and genetic variations of the fetal embryos from Chinese population.
Collapse
Affiliation(s)
- Shumin Li
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Bin Yan
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Thomas K. T. Li
- grid.415550.00000 0004 1764 4144Department of Obstetrics & Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jianliang Lu
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Yifan Gu
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Yueqiu Tan
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Fei Gong
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Tak-Wah Lam
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Yuexuan Wang
- Department of Computer Science, The University of Hong Kong, Hong Kong, China. .,College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008, Hunan, China. .,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Kyathanahalli C, Snedden M, Hirsch E. Is human labor at term an inflammatory condition?†. Biol Reprod 2023; 108:23-40. [PMID: 36173900 PMCID: PMC10060716 DOI: 10.1093/biolre/ioac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Parturition at term in normal pregnancy follows a predictable sequence of events. There is some evidence that a state of inflammation prevails in the reproductive tissues during labor at term, but it is uncertain whether this phenomenon is the initiating signal for parturition. The absence of a clear temporal sequence of inflammatory events prior to labor casts doubt on the concept that normal human labor at term is primarily the result of an inflammatory cascade. This review examines evidence linking parturition and inflammation in order to address whether inflammation is a cause of labor, a consequence of labor, or a separate but related phenomenon. Finally, we identify and suggest ways to reconcile inconsistencies regarding definitions of labor onset in published research, which may contribute to the variability in conclusions regarding the genesis and maintenance of parturition. A more thorough understanding of the processes underlying normal parturition at term may lead to novel insights regarding abnormal labor, including spontaneous preterm labor, preterm premature rupture of the fetal membranes, and dysfunctional labor, and the role of inflammation in each.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Changalidis AI, Maksiutenko EM, Barbitoff YA, Tkachenko AA, Vashukova ES, Pachuliia OV, Nasykhova YA, Glotov AS. Aggregation of Genome-Wide Association Data from FinnGen and UK Biobank Replicates Multiple Risk Loci for Pregnancy Complications. Genes (Basel) 2022; 13:genes13122255. [PMID: 36553520 PMCID: PMC9777867 DOI: 10.3390/genes13122255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Complications endangering mother or fetus affect around one in seven pregnant women. Investigation of the genetic susceptibility to such diseases is of high importance for better understanding of the disease biology as well as for prediction of individual risk. In this study, we collected and analyzed GWAS summary statistics from the FinnGen cohort and UK Biobank for 24 pregnancy complications. In FinnGen, we identified 11 loci associated with pregnancy hypertension, excessive vomiting, and gestational diabetes. When UK Biobank and FinnGen data were combined, we discovered six loci reaching genome-wide significance in the meta-analysis. These include rs35954793 in FGF5 (p=6.1×10-9), rs10882398 in PLCE1 (p=8.9×10-9), and rs167479 in RGL3 (p=5.2×10-9) for pregnancy hypertension, rs10830963 in MTNR1B (p=4.5×10-41) and rs36090025 in TCF7L2 (p=3.4×10-15) for gestational diabetes, and rs2963457 in the EBF1 locus (p=6.5×10-9) for preterm birth. In addition to the identified genome-wide associations, we also replicated 14 out of 40 previously reported GWAS markers for pregnancy complications, including four more preeclampsia-related variants. Finally, annotation of the GWAS results identified a causal relationship between gene expression in the cervix and gestational hypertension, as well as both known and previously uncharacterized genetic correlations between pregnancy complications and other traits. These results suggest new prospects for research into the etiology and pathogenesis of pregnancy complications, as well as early risk prediction for these disorders.
Collapse
Affiliation(s)
- Anton I. Changalidis
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Faculty of Software Engineering and Computer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Dpt. of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Dpt. of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (Y.A.B.); (A.S.G.)
| | - Alexander A. Tkachenko
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Elena S. Vashukova
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Olga V. Pachuliia
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Correspondence: (Y.A.B.); (A.S.G.)
| |
Collapse
|
29
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
30
|
Jain VG, Monangi N, Zhang G, Muglia LJ. Genetics, epigenetics, and transcriptomics of preterm birth. Am J Reprod Immunol 2022; 88:e13600. [PMID: 35818963 PMCID: PMC9509423 DOI: 10.1111/aji.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth contributes significantly to neonatal mortality and morbidity. Despite its global significance, there has only been limited progress in preventing preterm birth. Spontaneous preterm birth (sPTB) results from a wide variety of pathological processes. Although many non-genetic risk factors influence the timing of gestation and labor, compelling evidence supports the role of substantial genetic and epigenetic influences and their interactions with the environment contributing to sPTB. To investigate a common and complex disease such as sPTB, various approaches such as genome-wide association studies, whole-exome sequencing, transcriptomics, and integrative approaches combining these with other 'omics studies have been used. However, many of these studies were typically small or focused on a single ethnicity or geographic region with limited data, particularly in populations at high risk for sPTB, or lacked a robust replication. These studies found many genes involved in the inflammation and immunity-related pathways that may affect sPTB. Recent studies also suggest the role of epigenetic modifications of gene expression by the environmental signals as a potential contributor to the risk of sPTB. Future genetic studies of sPTB should continue to consider the contributions of both maternal and fetal genomes as well as their interaction with the environment.
Collapse
Affiliation(s)
- Viral G. Jain
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nagendra Monangi
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ge Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Louis J. Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| |
Collapse
|
31
|
Yao Y, Li C, Meng P, Cheng B, Cheng S, Liu L, Yang X, Jia Y, Wen Y, Zhang F. An atlas of genetic correlations between gestational age and common psychiatric disorders. Autism Res 2022; 15:1008-1017. [PMID: 35384380 DOI: 10.1002/aur.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
We aim to systematically explore the potential genetic correlations between five major psychiatric disorders and gestational ages. Genome-wide association study (GWAS) summary datasets of attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) in discovery were downloaded from the Psychiatric GWAS Consortium (PGC) website. Suggestive (Raw p < 0.05) genetic associations in the discovery phrase were further replicated in independent GWASs which downloaded from PGC, the FinnGen study or Integrative Psychiatric Research (iPSYCH) website. GWASs of gestational duration, preterm and post-term birth were derived from previous studies of infants from the Early Growth Genetics (EGG) Consortium, the iPSYCH study, and the Genomic and Proteomic Network for Preterm Birth Research (GPN). We calculated genetic correlations using linkage disequilibrium score (LDSC) regression. Mendelian randomization (MR) analyses were performed to investigate the causal effects. We identified four suggestive genetic correlations between psychiatric disorders and gestational age factors in discovery LDSC and two replicated in a confirmation LDSC: gestational duration and ADHD (rg = -0.1405, FDR p = 0.0406), post-term birth and SCZ (rg = -0.2003, FDR p = 0.0042). We also observed causal effect of post-term birth on SCZ by MR (PWeighted median = 0.037, PInverse variance weighted = 0.007). Our analysis suggested no significant evidence of horizontal pleiotropy and heterogeneity. This study showed the genetic correlation evidences between gestational age phenotypes and psychiatric disorders, providing novel clues for understanding the pathogenic factors of common psychiatric disorders. LAY SUMMARY: Whereas gestational age factors were reported to be associated with psychiatric disorders, the genetic relationship and causality remain to be revealed. The present study reported the first large-scale genetic correlations investigation of the associations between gestational age phenotypes and psychiatric disorders. Results indicate causal relationships between post-term birth and schizophrenia (SCZ), as well as suggestive genetic correlations between gestational duration and attention deficit/hyperactivity disorder (ADHD). This study provided novel clues for understanding the pathogenic factors of common psychiatric disorders.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Association between plasma proteome and childhood neurodevelopmental disorders: A two-sample Mendelian randomization analysis. EBioMedicine 2022; 78:103948. [PMID: 35306338 PMCID: PMC8933670 DOI: 10.1016/j.ebiom.2022.103948] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Background Childhood neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and Tourette syndrome (TS), comprise a major cause of health-related disabilities in children. However, biomarkers towards pathogenesis or novel drug targets are still limited. Our study aims to provide a comprehensive investigation of the causal effects of the plasma proteome on ASD, ADHD, and TS using the two-sample Mendelian Randomization (MR) approach. Methods Genetic associations with 2994 plasma proteins were selected as exposures and genome-wide association data of ASD, ADHD, TS were utilized as outcomes. MR analyses were carried out using the inverse-variance weighted method, and the MR-Egger and weighted median methods were used for sensitivity analysis. Findings Using single-nucleotide polymorphisms as instruments, the study suggested increased levels of MAPKAPK3 (OR: 1.09; 95% CI: 1.05–1.13; P = 1.43 × 10−6) and MRPL33 (OR: 1.07; 95% CI: 1.04–1.11; P = 5.37 × 10−6) were causally associated with a higher risk of ASD, and increased MANBA level was associated with a lower risk of ADHD (OR: 0.91; 95% CI: 0.88–0.95; P = 8.97 × 10−6). The causal associations were robust in sensitivity analysis, leave-one-out analysis and Multivariable MR, and no pleiotropy was observed. No significant risk protein was identified for TS. Interpretation The study findings support the idea that the MAPK/ERK signaling pathway and mitochondrial dysfunction are involved in the pathogenesis of ASD, while a deficiency in beta-mannosidase might play a role in the development of ADHD.
Collapse
|
33
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2834] [Impact Index Per Article: 944.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
34
|
Preterm Labor, a Syndrome Attributed to the Combination of External and Internal Factors. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Denault WRP, Gjessing HK, Juodakis J, Jacobsson B, Jugessur A. Wavelet Screening: a novel approach to analyzing GWAS data. BMC Bioinformatics 2021; 22:484. [PMID: 34620077 PMCID: PMC8499521 DOI: 10.1186/s12859-021-04356-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Traditional methods for single-variant genome-wide association study (GWAS) incur a substantial multiple-testing burden because of the need to test for associations with a vast number of single-nucleotide polymorphisms (SNPs) simultaneously. Further, by ignoring more complex joint effects of nearby SNPs within a given region, these methods fail to consider the genomic context of an association with the outcome. Results To address these shortcomings, we present a more powerful method for GWAS, coined ‘Wavelet Screening’ (WS), that greatly reduces the number of tests to be performed. This is achieved through the use of a sliding-window approach based on wavelets to sequentially screen the entire genome for associations. Wavelets are oscillatory functions that are useful for analyzing the local frequency and time behavior of signals. The signals can then be divided into different scale components and analyzed separately. In the current setting, we consider a sequence of SNPs as a genetic signal, and for each screened region, we transform the genetic signal into the wavelet space. The null and alternative hypotheses are modeled using the posterior distribution of the wavelet coefficients. WS is enhanced by using additional information from the regression coefficients and by taking advantage of the pyramidal structure of wavelets. When faced with more complex genetic signals than single-SNP associations, we show via simulations that WS provides a substantial gain in power compared to both the traditional GWAS modeling and another popular regional association test called SNP-set (Sequence) Kernel Association Test (SKAT). To demonstrate feasibility, we applied WS to a large Norwegian cohort (N=8006) with genotypes and information available on gestational duration. Conclusions WS is a powerful and versatile approach to analyzing whole-genome data and lends itself easily to investigating various omics data types. Given its broader focus on the genomic context of an association, WS may provide additional insight into trait etiology by revealing genes and loci that might have been missed by previous efforts.
Collapse
Affiliation(s)
- William R P Denault
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway. .,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Julius Juodakis
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Huusko JM, Tiensuu H, Haapalainen AM, Pasanen A, Tissarinen P, Karjalainen MK, Zhang G, Christensen K, Ryckman KK, Jacobsson B, Murray JC, Kingsmore SF, Hallman M, Muglia LJ, Rämet M. Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth. Sci Rep 2021; 11:17115. [PMID: 34429451 PMCID: PMC8384995 DOI: 10.1038/s41598-021-96374-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal–fetal tolerance and promote labor.
Collapse
Affiliation(s)
- Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Kaare Christensen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kelli K Ryckman
- Department of Epidemiology, College of Public Health and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.,Burroughs Wellcome Fund, Research Triangle Park, NC, USA
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
37
|
Spontaneous preterm birth: the underpinnings in the maternal and fetal genomes. NPJ Genom Med 2021; 6:43. [PMID: 34103530 PMCID: PMC8187433 DOI: 10.1038/s41525-021-00209-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and health complications in infants. Elucidation of its genetic underpinnings can lead to improved understanding of the biological mechanisms and boost the development of methods to predict PTB. Although recent genome-based studies of both mother and fetus have identified several genetic loci which might be implicated in PTB, these results suffer from a lack of consistency across multiple studies and populations. Moreover, results of functional validation of most of these findings are unavailable. Since medically indicated preterm deliveries have well-known heterogeneous causes, we have reviewed only those studies which investigated spontaneous preterm birth (sPTB) and have attempted to suggest probable biological mechanisms by which the implicated genetic factors might result in sPTB. We expect our review to provide a panoramic view of the genetics of sPTB.
Collapse
|
38
|
Hong X, Surkan PJ, Zhang B, Keiser A, Ji Y, Ji H, Burd I, Bustamante-Helfrich B, Ogunwole SM, Tang WY, Liu L, Pearson C, Cerda S, Zuckerman B, Hao L, Wang X. Genome-wide association study identifies a novel maternal gene × stress interaction associated with spontaneous preterm birth. Pediatr Res 2021; 89:1549-1556. [PMID: 32726798 PMCID: PMC8400921 DOI: 10.1038/s41390-020-1093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maternal stress is potentially a modifiable risk factor for spontaneous preterm birth (sPTB). However, epidemiologic findings on the maternal stress-sPTB relationship have been inconsistent. METHODS To investigate whether the maternal stress-sPTB associations may be modified by genetic susceptibility, we performed genome-wide gene × stress interaction analyses in 1490 African-American women from the Boston Birth cohort who delivered term (n = 1033) or preterm (n = 457) infants. Genotyping was performed using Illumina HumanOmni 2.5 array. Replication was performed using data from the NICHD genomic and Proteomic Network (GPN) for PTB research. RESULTS rs35331017, a T-allele insertion/deletion polymorphism in the protein-tyrosine phosphatase receptor Type D (PTPRD) gene, was the top hit that interacted significantly with maternal lifetime stress on risk of sPTB (PG × E = 4.7 × 10-8). We revealed a dose-responsive association between degree of stress and risk of sPTB in mothers carrying the insertion/insertion genotype, but an inverse association was observed in mothers carrying the heterozygous or deletion/deletion genotypes. This interaction was replicated in African-American (PG × E = 0.088) and Caucasian mothers (PG × E = 0.023) from the GPN study. CONCLUSION We demonstrated a significant maternal PTPRD × stress interaction on sPTB risk. This finding, if further confirmed, may provide new insight into individual susceptibility to stress-induced sPTB. IMPACT This was the first preterm study to demonstrate a significant genome-wide gene-stress interaction in African Americans, specifically, PTPRD gene variants can interact with maternal perceived stress to affect risk of spontaneous preterm birth. The PTPRD × maternal stress interaction was demonstrated in African Americans and replicated in both African Americans and Caucasians from the GPN study. Our findings highlight the importance of considering genetic susceptibility in assessing the role of maternal stress on spontaneous preterm birth.
Collapse
Affiliation(s)
- Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Pamela J. Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Amaris Keiser
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Blandine Bustamante-Helfrich
- Department of Clinical and Applied Science Education (Pathology), University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX
| | - S. Michelle Ogunwole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Li Liu
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA
| | - Sandra Cerda
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, MA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA
| | - Lingxin Hao
- Department of Sociology, Johns Hopkins University, Baltimore, MD
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD,Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
39
|
Moen GH, Beaumont RN, Grarup N, Sommer C, Shields BM, Lawlor DA, Freathy RM, Evans DM, Warrington NM. Investigating the causal effect of maternal vitamin B12 and folate levels on offspring birthweight. Int J Epidemiol 2021; 50:179-189. [PMID: 33347560 PMCID: PMC7938507 DOI: 10.1093/ije/dyaa256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lower maternal serum vitamin B12 (B12) and folate levels have been associated with lower offspring birthweight, in observational studies. The aim of this study was to investigate whether this relationship is causal. METHODS We performed two-sample Mendelian randomization (MR) using summary data on associations between genotype-B12 (10 genetic variants) or genotype-folate (four genetic variants) levels from: a genome-wide association study of 45 576 individuals (sample 1); and both maternal- and fetal-specific genetic effects on offspring birthweight from the latest Early Growth Genetics consortium meta-analysis with 297 356 individuals reporting their own birthweight and 210 248 women reporting their offspring's birthweight (sample 2). We used the inverse variance weighted method, and sensitivity analyses to account for pleiotropy, in addition to excluding a potentially pleiotropic variant in the FUT2 gene for B12 levels. RESULTS We did not find evidence for a causal effect of maternal or fetal B12 levels on offspring birthweight. The results were consistent across the different methods. We found a positive causal effect of maternal folate levels on offspring birthweight [0.146 (0.065, 0.227), which corresponds to an increase in birthweight of 71 g per 1 standard deviation higher folate]. We found some evidence for a small inverse effect of fetal folate levels on their own birthweight [-0.051 (-0.100, -0.003)]. CONCLUSIONS Our results are consistent with evidence from randomized controlled trials that higher maternal folate levels increase offspring birthweight. We did not find evidence for a causal effect of B12 levels on offspring birthweight, suggesting previous observational studies may have been confounded.
Collapse
Affiliation(s)
- Gunn-Helen Moen
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
| | - Deborah A Lawlor
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol National Institute of Health Research Biomedical Research Centre, Bristol, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
40
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3314] [Impact Index Per Article: 828.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
41
|
Gaining a deeper understanding of social determinants of preterm birth by integrating multi-omics data. Pediatr Res 2021; 89:336-343. [PMID: 33188285 PMCID: PMC7898277 DOI: 10.1038/s41390-020-01266-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
In the US, high rates of preterm birth (PTB) and profound Black-White disparities in PTB have persisted for decades. This review focuses on the role of social determinants of health (SDH), with an emphasis on maternal stress, in PTB disparity and biological embedding. It covers: (1) PTB disparity in US Black women and possible contributors; (2) the role of SDH, highlighting maternal stress, in the persistent racial disparity of PTB; (3) epigenetics at the interface between genes and environment; (4) the role of the genome in modifying maternal stress-PTB associations; (5) recent advances in multi-omics studies of PTB; and (6) future perspectives on integrating multi-omics with SDH to elucidate the Black-White disparity in PTB. Available studies have indicated that neither environmental exposures nor genetics alone can adequately explain the Black-White PTB disparity. Preliminary yet promising findings of epigenetic and gene-environment interaction studies underscore the value of integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women. In an era of rapid advancements in biomedical sciences and technologies and a growing number of prospective birth cohort studies, we have unprecedented opportunities to advance this field and finally address the long history of health disparities in PTB. IMPACT: This review provides an overview of social determinants of health (SDH) with a focus on maternal stress and its role on Black-White disparity in preterm birth (PTB). It summarizes the available literature on the interplay of maternal stress with key biological layers (e.g., individual genome and epigenome in response to environmental stressors) and significant knowledge gaps. It offers perspectives that such knowledge may provide deeper insight into how SDH affects PTB and why some women are more vulnerable than others and underscores the critical need for integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women.
Collapse
|
42
|
Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife 2020; 9:e58343. [PMID: 33380346 PMCID: PMC7775106 DOI: 10.7554/elife.58343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Eutherian mammals have characteristic lengths of gestation that are key for reproductive success, but relatively little is known about the processes that determine the timing of parturition, the process of birth, and how they are coordinated with fetal developmental programs. This issue remains one of biology's great unsolved mysteries and has significant clinical relevance because preterm birth is the leading cause of infant and under 5 year old child mortality worldwide. Here, we consider the evolutionary influences and potential signaling mechanisms that maintain or end pregnancy in eutherian mammals and use this knowledge to formulate general theoretical evolutionary models. These models can be tested through evolutionary species comparisons, studies of experimental manipulation of gestation period and birth timing, and human clinical studies. Understanding how gestation time and parturition are determined will shed light on this fundamental biological process and improve human health through the development of therapies to prevent preterm birth.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, United States
| | - Ortal Tamam
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Abigail LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
| | - Louis Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
- Burroughs Wellcome Fund, Research Triangle Park, Durham, United States
| |
Collapse
|
43
|
Davies G, Jordan S, Thayer D, Tucker D, Humphreys I. Medicines prescribed for asthma, discontinuation and perinatal outcomes, including breastfeeding: A population cohort analysis. PLoS One 2020; 15:e0242489. [PMID: 33296383 PMCID: PMC7725302 DOI: 10.1371/journal.pone.0242489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To explore associations between exposures to medicines prescribed for asthma and their discontinuation in pregnancy and preterm birth [<37 or <32 weeks], SGA [<10th and <3rd centiles], and breastfeeding at 6-8 weeks. METHODS Design. A population-based cohort study. Setting. The Secure Anonymised Information Linkage [SAIL] databank in Wales, linking maternal primary care data with infant outcomes. Population. 107,573, 105,331, and 38,725 infants born 2000-2010 with information on premature birth, SGA and breastfeeding respectively, after exclusions. Exposures. maternal prescriptions for asthma medicines or their discontinuation in pregnancy. Methods. Odds ratios for adverse pregnancy outcomes were calculated for the exposed versus the unexposed population, adjusted for smoking, parity, age and socio-economic status. RESULTS Prescriptions for asthma, whether continued or discontinued during pregnancy, were associated with birth at<32 weeks' gestation, SGA <10th centile, and no breastfeeding (aOR 1.33 [1.10-1.61], 1.10 [1.03-1.18], 0.93 [0.87-1.01]). Discontinuation of asthma medicines in pregnancy was associated with birth at<37 weeks' and <32 weeks' gestation (aOR 1.22 [1.06-1.41], 1.53 [1.11-2.10]). All medicines examined, except ICS and SABA prescribed alone, were associated with SGA <10th centile. CONCLUSIONS Prescription of asthma medicines before or during pregnancy was associated with higher prevalence of adverse perinatal outcomes, particularly if prescriptions were discontinued during pregnancy. Women discontinuing medicines during pregnancy could be identified from prescription records. The impact of targeting close monitoring and breastfeeding support warrants exploration.
Collapse
Affiliation(s)
- Gareth Davies
- Faculty of Health and Life Science, Swansea University, Swansea, United Kingdom
| | - Sue Jordan
- Faculty of Health and Life Science, Swansea University, Swansea, United Kingdom
| | - Daniel Thayer
- Faculty of Health and Life Science, Swansea University, Swansea, United Kingdom
| | | | - Ioan Humphreys
- Faculty of Health and Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
44
|
El Marroun H, Zou R, Leeuwenburg MF, Steegers EAP, Reiss IKM, Muetzel RL, Kushner SA, Tiemeier H. Association of Gestational Age at Birth With Brain Morphometry. JAMA Pediatr 2020; 174:1149-1158. [PMID: 32955580 PMCID: PMC7506610 DOI: 10.1001/jamapediatrics.2020.2991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Preterm and postterm births are associated with adverse neuropsychiatric outcomes. However, it remains unclear whether variation of gestational age within the 37- to 42-week range of term deliveries is associated with neurodevelopment. OBJECTIVE To investigate the association of gestational age at birth (GAB) with structural brain morphometry in children aged 10 years. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study included pregnant women living in Rotterdam, the Netherlands, with an expected delivery date between April 1, 2002, and January 31, 2006. The study evaluated 3079 singleton children with GAB ranging from 26.3 to 43.3 weeks and structural neuroimaging at 10 years of age from the Generation R Study, a longitudinal, population-based prospective birth cohort from early pregnancy onward in Rotterdam. Data analysis was performed from March 1, 2019, to February 28, 2020, and at the time of the revision based on reviewer suggestions. EXPOSURES The GAB was calculated based on ultrasonographic assessment of crown-rump length (<12 weeks 5 days) or biparietal diameter (≥12 weeks 5 days) in dedicated research centers. MAIN OUTCOMES AND MEASURES Brain structure, including global and regional brain volumes and surface-based cortical measures (thickness, surface area, and gyrification), was quantified by magnetic resonance imaging. RESULTS In the 3079 children (1546 [50.2%] female) evaluated at 10 years of age, GAB was linearly associated with global and regional brain volumes. Longer gestational duration was associated with larger brain volumes; for example, every 1-week-longer gestational duration corresponded to an additional 4.5 cm3/wk (95% CI, 2.7-6.3 cm3/wk) larger total brain volume. These associations persisted when the sample was restricted to children born at term (GAB of 37-42 weeks: 4.8 cm3/wk; 95% CI, 1.8-7.7 cm3/wk). No evidence of nonlinear associations between GA and brain morphometry was observed. CONCLUSIONS AND RELEVANCE In this cohort study, gestational duration was linearly associated with brain morphometry during childhood, including within the window of term delivery. These findings may have marked clinical importance, particularly given the prevalence of elective cesarean deliveries.
Collapse
Affiliation(s)
- Hanan El Marroun
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University, Rotterdam, the Netherlands
| | - Runyu Zou
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Michelle F. Leeuwenburg
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric A. P. Steegers
- Department of Obstetrics and Gynaecology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Irwin K. M. Reiss
- Department of Pediatrics, Division of Neonatology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
45
|
Sakabe NJ, Aneas I, Knoblauch N, Sobreira DR, Clark N, Paz C, Horth C, Ziffra R, Kaur H, Liu X, Anderson R, Morrison J, Cheung VC, Grotegut C, Reddy TE, Jacobsson B, Hallman M, Teramo K, Murtha A, Kessler J, Grobman W, Zhang G, Muglia LJ, Rana S, Lynch VJ, Crawford GE, Ober C, He X, Nóbrega MA. Transcriptome and regulatory maps of decidua-derived stromal cells inform gene discovery in preterm birth. SCIENCE ADVANCES 2020; 6:eabc8696. [PMID: 33268355 PMCID: PMC7710387 DOI: 10.1126/sciadv.abc8696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 05/29/2023]
Abstract
While a genetic component of preterm birth (PTB) has long been recognized and recently mapped by genome-wide association studies (GWASs), the molecular determinants underlying PTB remain elusive. This stems in part from an incomplete availability of functional genomic annotations in human cell types relevant to pregnancy and PTB. We generated transcriptome (RNA-seq), epigenome (ChIP-seq of H3K27ac, H3K4me1, and H3K4me3 histone modifications), open chromatin (ATAC-seq), and chromatin interaction (promoter capture Hi-C) annotations of cultured primary decidua-derived mesenchymal stromal/stem cells and in vitro differentiated decidual stromal cells and developed a computational framework to integrate these functional annotations with results from a GWAS of gestational duration in 56,384 women. Using these resources, we uncovered additional loci associated with gestational duration and target genes of associated loci. Our strategy illustrates how functional annotations in pregnancy-relevant cell types aid in the experimental follow-up of GWAS for PTB and, likely, other pregnancy-related conditions.
Collapse
Affiliation(s)
- Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Knoblauch
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Debora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Nicole Clark
- Department of Pediatrics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA
| | - Cristina Paz
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Cynthia Horth
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Ziffra
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Harjot Kaur
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Xiao Liu
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rebecca Anderson
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jean Morrison
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Virginia C Cheung
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chad Grotegut
- Department of Obstetrics and Gynecology, Duke University Health System, Durham, NC 27713, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, University of Gothenberg, Gothenberg, Sweden
- Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Mikko Hallman
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Kari Teramo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Amy Murtha
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Duke University School of Medicine, Durham, NC 27713, USA
| | - John Kessler
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William Grobman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ge Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louis J Muglia
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Sarosh Rana
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Gregory E Crawford
- Department of Pediatrics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Protein Concentrations of Thrombospondin-1, MIP-1β, and S100A8 Suggest the Reflection of a Pregnancy Clock in Mid-Trimester Amniotic Fluid. Reprod Sci 2020; 27:2146-2157. [PMID: 33026626 PMCID: PMC7593301 DOI: 10.1007/s43032-020-00229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022]
Abstract
The development of immunoassays enables more sophisticated studies of the associations between protein concentrations and pregnancy outcomes, allowing early biomarker identification that can improve neonatal outcomes. The aim of this study was to explore associations between selected mid-trimester amniotic fluid proteins and (1) overall gestational duration and (2) spontaneous preterm delivery. A prospective cohort study, including women undergoing mid-trimester transabdominal genetic amniocentesis, was performed in Gothenburg, Sweden, 2008-2016 (n = 1072). A panel of 27 proteins related to inflammation was analyzed using Meso-Scale multiplex technology. Concentrations were adjusted for gestational age at sampling, experimental factors, year of sampling, and covariates (maternal age at sampling, parity (nulliparous/multiparous), smoking at first prenatal visit, and in vitro fertilization). Cox regression analysis of the entire cohort was performed to explore possible associations between protein concentrations and gestational duration. This was followed by Cox regression analysis censored at 259 days or longer, to investigate whether associations were detectable in women with spontaneous preterm delivery (n = 47). Finally, linear regression models were performed to analyze associations between protein concentrations and gestational duration in women with spontaneous onset of labor at term (n = 784). HMG-1, IGFBP-1, IL-18, MIP-1α, MIP-1β, S100A8, and thrombospondin-1 were significantly associated with gestational duration at term, but not preterm. Increased concentrations of thrombospondin-1, MIP-1β, and S100A8, respectively, were significantly associated with decreased gestational duration after the Holm-Bonferroni correction in women with spontaneous onset of labor at term. This adds to the concept of a pregnancy clock, where our findings suggest that such a clock is also reflected in the amniotic fluid at early mid-trimester, but further research is needed to confirm this.
Collapse
|
47
|
Luo R, Mukherjee N, Chen S, Jiang Y, Arshad SH, Holloway JW, Hedman A, Gruzieva O, Andolf E, Pershagen G, Almqvist C, Karmaus WJ. Paternal DNA Methylation May Be Associated With Gestational Age at Birth. Epigenet Insights 2020; 13:2516865720930701. [PMID: 32964196 PMCID: PMC7488897 DOI: 10.1177/2516865720930701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022] Open
Abstract
Background: How epigenetic modifications of DNA are associated with gestational age at birth is not fully understood. We investigated potential effects of differential paternal DNA methylation (DNAm) on offspring gestational age at birth by conducting an epigenome-wide search for cytosine-phosphate-guanine (CpG) sites. Methods: Study participants in this study consist of male cohort members or partners of the F1-generation of the Isle of Wight Birth Cohort (IoWBC). DNAm levels in peripheral blood from F1-fathers (n = 92) collected around pregnancy of their spouses were analyzed using the Illumina 450K array. A 5-step statistical analysis was performed. First, a training-testing screening approach was applied to select CpG sites that are potentially associated with gestational age at birth. Second, functional enrichment analysis was employed to identify biological processes. Third, by centralizing on biologically informative genes, Cox proportional hazards models were used to assess the hazard ratios of individual paternal CpGs on gestational age adjusting for confounders. Fourth, to assess the validity of our results, we compared our CpG-gestational age correlations within a Born into Life Study in Sweden (n = 15). Finally, we investigated the correlation between the detected CpGs and differential gene expression in F2 cord blood in the IoWBC. Results: Analysis of DNAm of fathers collected around their partner’s pregnancy identified 216 CpG sites significantly associated with gestational age at birth. Functional enrichment pathways analyses of the annotated genes revealed 2 biological pathways significantly related to cell-cell membrane adhesion molecules. Differential methylation of 9 cell membrane adhesion pathway-related CpGs were significantly associated with gestational age at birth after adjustment for confounders. The replication sample showed correlation coefficients of 2 pathway-related CpGs with gestational age at birth within 95% confidence intervals of correlation coefficients in IoWBC. Finally, CpG sites of protocadherin (PCDH) gene clusters were associated with gene expression of PCDH in F2 cord blood. Conclusions: Our findings suggest that differential paternal DNAm may affect gestational age at birth through cell-cell membrane adhesion molecules. The results are novel but require future replication in a larger cohort.
Collapse
Affiliation(s)
- Rui Luo
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Newport, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Unit of Pediatric Allergy and Pulmonology at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Wilfried Jj Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
48
|
Zhang T, Kang Y, Li L, Zhou Y, Chen X, Zhuo Y, Li Z, Wang H, Niu Y, Ji W, Li S, Chen Y. Interspecies embryo transfer between rhesus and cynomolgus monkeys. J Genet Genomics 2020; 47:333-336. [PMID: 32873535 DOI: 10.1016/j.jgg.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Ting Zhang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Li Li
- Department of Pediatrics, The First People's Hospital of Yunnan Province and The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yin Zhou
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xinglong Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yan Zhuo
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zifan Li
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
49
|
Cunningham SJ, Feng L, Allen TK, Reddy TE. Functional Genomics of Healthy and Pathological Fetal Membranes. Front Physiol 2020; 11:687. [PMID: 32655414 PMCID: PMC7325962 DOI: 10.3389/fphys.2020.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Premature preterm rupture of membranes (PPROM), rupture of fetal membranes before 37 weeks of gestation, is the leading identifiable cause of spontaneous preterm births. Often there is no obvious cause that is identified in a patient who presents with PPROM. Identifying the upstream molecular events that lead to fetal membrane weakening presents potentially actionable mechanisms which could lead to the identification of at-risk patients and to the development of new therapeutic interventions. Functional genomic studies have transformed understanding of the role of gene regulation in diverse cells and tissues involved health and disease. Here, we review the results of those studies in the context of fetal membranes. We will highlight relevant results from major coordinated functional genomics efforts and from targeted studies focused on individual cell or tissue models. Studies comparing gene expression and DNA methylation between healthy and pathological fetal membranes have found differential regulation between labor and quiescent tissue as well as in preterm births, preeclampsia, and recurrent pregnancy loss. Whole genome and exome sequencing studies have identified common and rare fetal variants associated with preterm births. However, few fetal membrane tissue studies have modeled the response to stimuli relevant to pregnancy. Fetal membranes are readily adaptable to cell culture and relevant cellular phenotypes are readily observable. For these reasons, this is now an unrealized opportunity for genomic studies isolating the effect of cell signaling cascades and mapping the fetal membrane responses that lead to PPROM and other pregnancy complications.
Collapse
Affiliation(s)
- Sarah J Cunningham
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Terrence K Allen
- Department of Anesthesiology, Duke University Hospital, Durham, NC, United States
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| |
Collapse
|
50
|
Wong HS, Wadon M, Evans A, Kirov G, Modi N, O'Donovan MC, Thapar A. Contribution of de novo and inherited rare CNVs to very preterm birth. J Med Genet 2020; 57:552-557. [PMID: 32051258 DOI: 10.1136/jmedgenet-2019-106619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The genomic contribution to adverse health sequelae in babies born very preterm (<32 weeks' gestation) is unknown. We conducted an investigation of rare CNVs in infants born very preterm as part of a study to determine the feasibility and acceptability of a larger, well-powered genome-wide investigation in the UK, with follow-up using linked National Health Service records and DNA storage for additional research. METHODS We studied 488 parent-offspring trios. We performed genotyping using Illumina Infinium OmniExpress Arrays. CNV calling and quality control (QC) were undertaken using published protocols. We examined de novo CNVs in infants and the rate of known pathogenic variants in infants, mothers and fathers and compared these with published comparator data. We defined rare pathogenic CNVs as those consistently reported to be associated with clinical phenotypes. RESULTS We identified 14 de novo CNVs, representing a mutation rate of 2.9%, compared with 2.1% reported in control populations. The median size of these CNV was much higher than in comparator data (717 kb vs 255 kb). The rate of pathogenic CNVs was 4.3% in infants, 2.7% in mothers and 2% in fathers, compared with 2.3% in UK Biobank participants. CONCLUSION Our findings suggest that the rate of de novo CNVs, especially rare pathogenic CNVs, could be elevated in those born very preterm. However, we will need to conduct a much larger study to corroborate this conclusion.
Collapse
Affiliation(s)
- Hilary S Wong
- Department of Paediatrics, Cambridge University, Cambridge, UK
| | - Megan Wadon
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alexandra Evans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Neena Modi
- Section of Neonatal Medicine, Imperial College London, London, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|