1
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
2
|
Morgan HJN, Delfino HBP, Schavinski AZ, Malone SA, Charoy C, Reis NG, Assis AP, Lautherbach N, Silveira WA, Heck LC, Guton D, Domingos AI, Kettelhut IC, Montminy M, Navegantes LCC. Hepatic noradrenergic innervation acts via CREB/CRTC2 to activate gluconeogenesis during cold. Metabolism 2024; 157:155940. [PMID: 38878857 DOI: 10.1016/j.metabol.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND AIM Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.
Collapse
Affiliation(s)
- Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Heitor B P Delfino
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Z Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel A Malone
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | | | - Natany G Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P Assis
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilian A Silveira
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Lilian C Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dan Guton
- The Francis Crick Institute, London, UK
| | - Ana I Domingos
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | - Isis C Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Cicuéndez B, Pérez-García J, Folgueira C. A Combination of a Dopamine Receptor 2 Agonist and a Kappa Opioid Receptor Antagonist Synergistically Reduces Weight in Diet-Induced Obese Rodents. Nutrients 2024; 16:424. [PMID: 38337707 PMCID: PMC10857008 DOI: 10.3390/nu16030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, are crucial. In this study, we examined the effect on body weight of two drugs: bromocriptine (BC), a D2R receptor agonist, and PF-04455242, a selective κ opioid receptor (KOR) antagonist. Using diet-induced obese (DIO) rats, we aimed to ascertain whether the administration of BC and PF-04455242, independently or in combination, could enhance body weight loss. Furthermore, the present work demonstrates that the peripheral coadministration of BC and PF-04455242 enhances the reduction of weight in DIO rats and leads to a decrease in adiposity in a food-intake-independent manner. These effects were based on heightened energy expenditure, particularly through the activation of brown adipose tissue (BAT) thermogenesis. Overall, our findings indicate that the combination of BC and PF-04455242 effectively induces body weight loss through increased energy expenditure by increasing thermogenic activity and highlight the importance of the combined use of drugs to combat obesity.
Collapse
Affiliation(s)
| | | | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (B.C.); (J.P.-G.)
| |
Collapse
|
4
|
Dragano NRV, Milbank E, Haddad-Tóvolli R, Garrido-Gil P, Nóvoa E, Fondevilla MF, Capelli V, Zanesco AM, Solon C, Morari J, Pires L, Estevez-Salguero Á, Beiroa D, González-García I, Barca-Mayo O, Diéguez C, Nogueiras R, Labandeira-García JL, Rexen Ulven E, Ulven T, Claret M, Velloso LA, López M. Hypothalamic free fatty acid receptor-1 regulates whole-body energy balance. Mol Metab 2024; 79:101840. [PMID: 38036170 PMCID: PMC10784317 DOI: 10.1016/j.molmet.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil.
| | - Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Garrido-Gil
- Department of Morphological Sciences, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Enfermedades Neurodegenerativas (CIBERNED), 28029, Santiago de Compostela, Spain
| | - Eva Nóvoa
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Marcos F Fondevilla
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Valentina Capelli
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ariane Maria Zanesco
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Leticia Pires
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ánxela Estevez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Daniel Beiroa
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Olga Barca-Mayo
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ruben Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - José L Labandeira-García
- Department of Morphological Sciences, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Enfermedades Neurodegenerativas (CIBERNED), 28029, Santiago de Compostela, Spain
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 08036, Spain; Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Licio A Velloso
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
5
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Shao J, Fei Y, Xiao J, Wang L, Zou S, Yang J. The role of miRNA-144-3p/Oprk1/KOR in nicotine dependence and nicotine withdrawal in male rats. Nicotine Tob Res 2023; 25:1856-1864. [PMID: 37455648 PMCID: PMC10664084 DOI: 10.1093/ntr/ntad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.
Collapse
Affiliation(s)
- Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Yanxia Fei
- Department of Anesthesiology, Women’s Hospital, School of Medicine Zhejiang University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Shuangfa Zou
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| |
Collapse
|
7
|
Luengo-Mateos M, González-Vila A, Vicente Dragano NR, Ohinska N, Silveira-Loureiro M, González-Domínguez M, Estévez-Salguero Á, Novelle-Rodríguez P, López M, Barca-Mayo O. Hypothalamic astrocytic-BMAL1 regulates energy homeostasis in a sex-dependent manner. Cell Rep 2023; 42:112949. [PMID: 37542717 DOI: 10.1016/j.celrep.2023.112949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nathalia Romanelli Vicente Dragano
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Nataliia Ohinska
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - María Silveira-Loureiro
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paula Novelle-Rodríguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Cone AL, Wu KK, Kravitz AV, Norris AJ. Kappa opioid receptor activation increases thermogenic energy expenditure which drives increased feeding. iScience 2023; 26:107241. [PMID: 37485355 PMCID: PMC10362357 DOI: 10.1016/j.isci.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Opioid receptors, including the kappa opioid receptor (KOR), exert control over thermoregulation and feeding behavior. Notably, activation of KOR stimulates food intake, leading to postulation that KOR signaling plays a central role in managing energy intake. KOR has also been proposed as a target for treating obesity. Herein, we report studies examining how roles for KOR signaling in regulating thermogenesis, feeding, and energy balance may be interrelated using pharmacological interventions, genetic tools, quantitative thermal imaging, and metabolic profiling. Our findings demonstrate that activation of KOR in the central nervous system causes increased energy expenditure via brown adipose tissue activation. Importantly, pharmacologic, or genetic inhibition of brown adipose tissue thermogenesis prevented the elevated food intake triggered by KOR activation. Furthermore, our data reveal that KOR-mediated thermogenesis elevation is reversibly disrupted by chronic high-fat diet, implicating KOR signaling as a potential mediator in high-fat diet-induced weight gain.
Collapse
Affiliation(s)
- Aaron L. Cone
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenny K. Wu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexxai V. Kravitz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron J. Norris
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Falk S, Petersen J, Svendsen C, Romero-Leguizamón CR, Jørgensen SH, Krauth N, Ludwig MQ, Lundø K, Roostalu U, Skovbjerg G, Nielsen DAG, Ejdrup AL, Pers TH, Dmytriyeva O, Hecksher-Sørensen J, Gether U, Kohlmeier KA, Clemmensen C. GLP-1 and nicotine combination therapy engages hypothalamic and mesolimbic pathways to reverse obesity. Cell Rep 2023:112466. [PMID: 37148870 DOI: 10.1016/j.celrep.2023.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice. Co-treatment with nicotine and liraglutide gives rise to neuronal activity in multiple brain regions, and we demonstrate that GLP-1R agonism increases excitability of hypothalamic proopiomelanocortin (POMC) neurons and dopaminergic neurons in the ventral tegmental area (VTA). Further, using a genetically encoded dopamine sensor, we reveal that liraglutide suppresses nicotine-induced dopamine release in the nucleus accumbens in freely behaving mice. These data support the pursuit of GLP-1R-based therapies for nicotine dependence and encourage further evaluation of combined treatment with GLP-1R agonists and nicotinic receptor agonists for weight loss.
Collapse
Affiliation(s)
- Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Heide Jørgensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Gubra, Hørsholm, Denmark
| | - Duy Anh Gurskov Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aske Lykke Ejdrup
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol (Lausanne) 2023; 14:1114767. [PMID: 36875450 PMCID: PMC9978510 DOI: 10.3389/fendo.2023.1114767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | |
Collapse
|
11
|
Milbank E, Dragano N, Vidal-Gómez X, Rivas-Limeres V, Garrido-Gil P, Wertheimer M, Recoquillon S, Pata MP, Labandeira-Garcia JL, Diéguez C, Nogueiras R, Martínez MC, Andriantsitohaina R, López M. Small extracellular vesicle targeting of hypothalamic AMPKα1 promotes weight loss in leptin receptor deficient mice. Metabolism 2023; 139:155350. [PMID: 36423694 DOI: 10.1016/j.metabol.2022.155350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Leptin receptor (LEPR) deficiency promotes severe obesity and metabolic disorders. However, the current therapeutic options against this syndrome are scarce. METHODS db/db mice and their wildtypes were systemically treated with neuronal-targeted small extracellular vesicles (sEVs) harboring a plasmid encoding a dominant negative mutant of AMP-activated protein kinase alpha 1 (AMPKα1-DN) driven by steroidogenic factor 1 (SF1) promoter; this approach allowed to modulate AMPK activity, specifically in SF1 cells of the ventromedial nucleus of the hypothalamus (VMH). Animals were metabolically phenotyped. RESULTS db/db mice intravenously injected with SF1-AMPKα1-DN loaded sEVs showed a marked feeding-independent weight loss and decreased adiposity, associated with increased sympathetic tone, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). CONCLUSION Overall, this evidence indicates that specific modulation of hypothalamic AMPK using a sEV-based technology may be a suitable strategy against genetic forms of obesity, such as LEPR deficiency.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Nathalia Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Xavi Vidal-Gómez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Verónica Rivas-Limeres
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - María P Pata
- Biostatech Advice, Training and Innovation in Biostatistics, S.L., Santiago de Compostela 15782, Spain
| | - José Luis Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - M Carmen Martínez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France.
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
12
|
Fan L, Chen H, Liu Y, Hou H, Hu Q. ERK signaling is required for nicotine-induced conditional place preference by regulating neuroplasticity genes expression in male mice. Pharmacol Biochem Behav 2023; 222:173510. [PMID: 36565790 DOI: 10.1016/j.pbb.2022.173510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Nicotine is an addictive compound that interacts with nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA), inducing a release of dopamine in the nucleus accumbens (NAc). When neurons undergo repeated exposure to nicotine, several adaptive changes in neuroplasticity occur. Activation of nAChRs involves numerous intracellular signaling cascades that likely contribute to neuroplasticity and ultimately the establishment of nicotine addiction. Nevertheless, the molecular mechanisms underlying this adaptation remain unclear. To explore the effects of nicotine on neuroplasticity, a stable nicotine-induced conditioned place preference (CPP) model was constructed by intravenous injection in mice. Using a PCR array, we observed significant changes in the expression of synaptic plasticity-related genes in the VTA (16 mRNAs) and NAc (40 mRNAs). When mice were pre-treated with PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, more gene expression changes in the VTA (53 mRNAs) and NAc (60 mRNAs) were found. Moreover, PD98059 pre-treatment blocked the increased p-ERK/ERK and p-CREB/CREB ratios and decreased the expression of synaptic plasticity-related proteins such as SAP102, PSD95, synaptophysin, and BDNF, these changes might contribute to preventing the establishment of nicotine-induced CPP. Furthermore, neurons from the VTA and NAc of nicotine CPP mice had an increased dendritic spine density and complexity of dendritic morphology by Golgi staining. PD98059 also blocked this dynamic. These results demonstrate that repeated exposure to nicotine may remold the expression of neuroplasticity-related genes by activating the ERK signaling pathway in the VTA and NAc, and is related to the establishment of nicotine-induced CPP.
Collapse
Affiliation(s)
- Lei Fan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, PR China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
13
|
Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, Rodríguez-Díaz A, Capelli V, Barca-Mayo O, Nogueiras R, Mittag J, Diéguez C, López M. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol 2022; 13:1017381. [PMID: 36467699 PMCID: PMC9716276 DOI: 10.3389/fphys.2022.1017381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 08/07/2023] Open
Abstract
Thyroid hormones (THs) play a major role regulating energy balance and brown adipose tissue (BAT) thermogenesis, as well as body temperature, as shown in hyperthyroid patients. However, the current landscape of preclinical thyroid hormone models is complex. For example, while rats become catabolic after TH administration, mice gain weight; so, these differences in species need to be analyzed in detail and specially whether temperature could be a factor. Here, we aimed to investigate the effect of environmental temperature on those actions. Rats were subcutaneously treated with L-thyroxine (T4) or stereotaxically within the ventromedial nucleus of the hypothalamus (VMH) with triiodothyronine (T3) and housed at 23°C, 4°C or 30°C; energy balance, BAT thermogenesis and AMP-activated protein kinase (AMPK) in the VMH were analyzed. Our data showed that the effect of both systemic T4 of central T3 on energy balance and BAT thermogenesis was dependent upon environmental temperature. This evidence is of interest in the design of experimental settings highlighting the species-specific metabolic actions of THs, and in understanding its physiological role in the adaptation to temperature.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Verónica Rivas-Limeres
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Alberto Sols Biomedical Research Institute (CSIC-UAM), Madrid, Spain
| | - Amanda Rodríguez-Díaz
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Olga Barca-Mayo
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Lübeck, Germany
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
14
|
González-García I, Freire-Agulleiro Ó, Nakaya N, Ortega FJ, Garrido-Gil P, Liñares-Pose L, Fernø J, Labandeira-Garcia JL, Diéguez C, Sultana A, Tomarev SI, Fernández-Real JM, López M. Olfactomedin 2 deficiency protects against diet-induced obesity. Metabolism 2022; 129:155122. [PMID: 35026233 PMCID: PMC9449885 DOI: 10.1016/j.metabol.2021.155122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS Olfactomedin 2 (OLFM2; also known as noelin 2) is a pleiotropic protein that plays a major role in olfaction and Olfm2 null mice exhibit reduced olfactory sensitivity, as well as abnormal motor coordination and anxiety-related behavior. Here, we investigated the possible metabolic role of OLFM2. METHODS Olfm2 null mice were metabolically phenotyped. Virogenetic modulation of central OLFM2 was also performed. RESULTS Our data showed that, the global lack of OLFM2 in mice promoted anorexia and increased energy expenditure due to elevated brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). This phenotype led to resistance to high fat diet (HFD)-induced obesity. Notably, virogenetic overexpression of Olfm2 in the lateral hypothalamic area (LHA) induced weight gain associated with decreased BAT thermogenesis. CONCLUSION Overall, this evidence first identifies central OLFM2 as a new molecular actor in the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Óscar Freire-Agulleiro
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Naoki Nakaya
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J Ortega
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Girona, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - José Luis Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Afia Sultana
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav I Tomarev
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - José Manuel Fernández-Real
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Girona, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
15
|
Kappa-Opioid Receptor Blockade Ameliorates Obesity Caused by Estrogen Withdrawal via Promotion of Energy Expenditure through mTOR Pathway. Int J Mol Sci 2022; 23:ijms23063118. [PMID: 35328539 PMCID: PMC8953356 DOI: 10.3390/ijms23063118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
Weight gain is a hallmark of decreased estradiol (E2) levels because of menopause or following surgical ovariectomy (OVX) at younger ages. Of note, this weight gain tends to be around the abdomen, which is frequently associated with impaired metabolic homeostasis and greater cardiovascular risk in both rodents and humans. However, the molecular underpinnings and the neuronal basis for these effects remain to be elucidated. The aim of this study is to elucidate whether the kappa-opioid receptor (k-OR) system is involved in mediating body weight changes associated with E2 withdrawal. Here, we document that body weight gain induced by OVX occurs, at least partially, in a k-OR dependent manner, by modulation of energy expenditure independently of food intake as assessed in Oprk1−/−global KO mice. These effects were also observed following central pharmacological blockade of the k-OR system using the k-OR-selective antagonist PF-04455242 in wild type mice, in which we also observed a decrease in OVX-induced weight gain associated with increased UCP1 positive immunostaining in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Remarkably, the hypothalamic mTOR pathway plays an important role in regulating weight gain and adiposity in OVX mice. These findings will help to define new therapies to manage metabolic disorders associated with low/null E2 levels based on the modulation of central k-OR signaling.
Collapse
|
16
|
Rial-Pensado E, Freire-Agulleiro O, Ríos M, Guo DF, Contreras C, Seoane-Collazo P, Tovar S, Nogueiras R, Diéguez C, Rahmouni K, López M. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol Metab 2022; 59:101465. [PMID: 35218946 PMCID: PMC8933534 DOI: 10.1016/j.molmet.2022.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. Methods Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. Results We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. Conclusions Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity. Central BMP8B induces BAT activation and browning through hypothalamic AMPK. Obesity elicits resistance to the central effects of BMP8B on energy balance. Obesity impairs the effect of BMP8B on AMPK, BMP Type I receptors signaling and BBS1 in the hypothalamus. Lack of BBS1 function recapitulates the thermogenic-induced resistance to central BMP8B.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Oscar Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Marcos Ríos
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Deng Fu Guo
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
17
|
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, Li Y, Li P, Du H, Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021; 10:48-65. [PMID: 33403891 PMCID: PMC7801117 DOI: 10.1080/21623945.2020.1870060] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Jingkang Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yaqi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Pengfei Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Haifeng Du
- The Third Municipal Hospital of Chengde, Chengde, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing China
| |
Collapse
|
18
|
Capelli V, Grijota-Martínez C, Dragano NRV, Rial-Pensado E, Fernø J, Nogueiras R, Mittag J, Diéguez C, López M. Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients 2021; 13:nu13124204. [PMID: 34959756 PMCID: PMC8708331 DOI: 10.3390/nu13124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Besides their direct effects on peripheral metabolic tissues, thyroid hormones (TH) act on the hypothalamus to modulate energy homeostasis. However, since most of the hypothalamic actions of TH have been addressed in studies with direct central administration, the estimation of the relative contribution of the central vs. peripheral effects in physiologic conditions of peripheral release (or administration) of TH remains unclear. In this study we used two different models of peripherally induced hyperthyroidism (i.e., T4 and T3 oral administration) to assess and compare the serum and hypothalamic TH status and relate them to the metabolic effects of the treatment. Peripheral TH treatment affected feeding behavior, overall growth, core body temperature, body composition, brown adipose tissue (BAT) morphology and uncoupling protein 1 (UCP1) levels and metabolic activity, white adipose tissue (WAT) browning and liver metabolism. This resulted in an increased overall uncoupling capacity and a shift of the lipid metabolism from WAT accumulation to BAT fueling. Both peripheral treatment protocols induced significant changes in TH concentrations within the hypothalamus, with T3 eliciting a downregulation of hypothalamic AMP-activated protein kinase (AMPK), supporting the existence of a central action of peripheral TH. Altogether, these data suggest that peripherally administered TH modulate energy balance by various mechanisms; they also provide a unifying vision of the centrally mediated and the direct local metabolic effect of TH in the context of hyperthyroidism.
Collapse
Affiliation(s)
- Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain;
| | - Nathalia R. V. Dragano
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Eval Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, 23562 Lübeck, Germany;
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Correspondence: ; Tel.: +34-881815420
| |
Collapse
|
19
|
Milbank E, Dragano NRV, González-García I, Garcia MR, Rivas-Limeres V, Perdomo L, Hilairet G, Ruiz-Pino F, Mallegol P, Morgan DA, Iglesias-Rey R, Contreras C, Vergori L, Cuñarro J, Porteiro B, Gavaldà-Navarro A, Oelkrug R, Vidal A, Roa J, Sobrino T, Villarroya F, Diéguez C, Nogueiras R, García-Cáceres C, Tena-Sempere M, Mittag J, Carmen Martínez M, Rahmouni K, Andriantsitohaina R, López M. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat Metab 2021; 3:1415-1431. [PMID: 34675439 DOI: 10.1038/s42255-021-00467-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Nathalia R V Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcos Rios Garcia
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Verónica Rivas-Limeres
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Liliana Perdomo
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Grégory Hilairet
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Francisco Ruiz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Patricia Mallegol
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Luisa Vergori
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Juan Cuñarro
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain
| | - Rebecca Oelkrug
- Institute for Endocrinology and Diabetes-Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Lübeck, Germany
| | - Anxo Vidal
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Juan Roa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
- FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jens Mittag
- Institute for Endocrinology and Diabetes-Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Lübeck, Germany
| | - M Carmen Martínez
- SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
20
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
21
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
22
|
Seoane-Collazo P, Romero-Picó A, Rial-Pensado E, Liñares-Pose L, Estévez-Salguero Á, Fernø J, Nogueiras R, Diéguez C, López M. κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance. Int J Mol Sci 2021; 22:ijms22041515. [PMID: 33546289 PMCID: PMC7913331 DOI: 10.3390/ijms22041515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine’s effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine’s effects on energy balance.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (M.L.)
| | - Amparo Romero-Picó
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (M.L.)
| |
Collapse
|
23
|
Fraga A, Rial-Pensado E, Nogueiras R, Fernø J, Diéguez C, Gutierrez E, López M. Activity-Based Anorexia Induces Browning of Adipose Tissue Independent of Hypothalamic AMPK. Front Endocrinol (Lausanne) 2021; 12:669980. [PMID: 34149618 PMCID: PMC8206787 DOI: 10.3389/fendo.2021.669980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.
Collapse
Affiliation(s)
- Angela Fraga
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Emilio Gutierrez
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Unidad Venres Clínicos, School of Psychology, Universidad of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
24
|
Jimenez T, Friedman T, Vadgama J, Singh V, Tucker A, Collazo J, Sinha S, Hikim AS, Singh R, Pervin S. Nicotine Synergizes with High-Fat Diet to Induce an Anti-Inflammatory Microenvironment to Promote Breast Tumor Growth. Mediators Inflamm 2020; 2020:5239419. [PMID: 33414685 PMCID: PMC7752272 DOI: 10.1155/2020/5239419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023] Open
Abstract
Breast cancer results from a complex interplay of genetics and environment that alters immune and inflammatory systems to promote tumorigenesis. Obesity and cigarette smoking are well-known risk factors associated breast cancer development. Nicotine known to decrease inflammatory signals also modulates immune responses that favor breast cancer development. However, the mechanisms by which nicotine and obesity contribute to breast cancer remain poorly understood. In this study, we examined potential mechanisms by which nicotine (NIC) and high-fat diet (HFD) promote growth of HCC70 and HCC1806 xenografts from African American (AA) triple negative (TN) breast cancer cells. Immunodeficient mice fed on HFD and treated with NIC generated larger HCC70 and HCC1806 tumors when compared to NIC or HFD alone. Increased xenograft growth in the presence of NIC and HFD was accompanied by higher levels of tissue-resident macrophage markers and anti-inflammatory cytokines including IL4, IL13, and IL10. We further validated the involvement of these players by in vitro and ex vivo experiments. We found a proinflammatory milieu with increased expression of IL6 and IL12 in xenografts with HFD. In addition, nicotine or nicotine plus HFD increased a subset of mammary cancer stem cells (MCSCs) and key adipose browning markers CD137 and TMEM26. Interestingly, there was upregulation of stress-induced pp38 MAPK and pERK1/2 in xenografts exposed to HFD alone or nicotine plus HFD. Scratch-wound assay showed marked reduction in proliferation/migration of nicotine and palmitate-treated breast cancer cells with mecamylamine (MEC), a nicotine acetylcholine receptor (nAchR) antagonist. Furthermore, xenograft development in immune-deficient mice, fed HFD plus nicotine, was reduced upon cotreatment with MEC and SB 203580, a pp38MAPK inhibitor. Our study demonstrates the presence of nicotine and HFD in facilitating an anti-inflammatory tumor microenvironment that influences breast tumor growth. This study also shows potential efficacy of combination therapy in obese breast cancer patients who smoke.
Collapse
Affiliation(s)
- Thalia Jimenez
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Theodore Friedman
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Vineeta Singh
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Alexandria Tucker
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Javier Collazo
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Satyesh Sinha
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Amiya Sinha Hikim
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rajan Singh
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shehla Pervin
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Abstract
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.
Collapse
Affiliation(s)
- Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
26
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 447:191-215. [PMID: 33046217 DOI: 10.1016/j.neuroscience.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
27
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
28
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
29
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 437:215-239. [PMID: 32360593 DOI: 10.1016/j.neuroscience.2020.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
30
|
Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020; 12:nu12020472. [PMID: 32069871 PMCID: PMC7071158 DOI: 10.3390/nu12020472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023] Open
Abstract
Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin’s satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| |
Collapse
|
31
|
González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2019; 76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Anxo Martinez-Ordoñez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|