1
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
2
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
3
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Meneses-Valdés R, Gallero S, Henríquez-Olguín C, Jensen TE. Exploring NADPH oxidases 2 and 4 in cardiac and skeletal muscle adaptations - A cross-tissue comparison. Free Radic Biol Med 2024; 223:296-305. [PMID: 39069268 DOI: 10.1016/j.freeradbiomed.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) isoforms 2 and 4 have emerged as signaling molecules that regulate exercise adaptations. This review systematically compares NOX2 and NOX4 expression, regulation, and roles in cardiac and skeletal muscle responses across exercise modalities. We highlight the many gaps in our knowledge and opportunities to let future skeletal muscle research into NOX-dependent mechanisms be inspired by cardiac muscle studies and vice versa. Understanding these processes could enhance the development of exercise routines to optimize human performance and health strategies that capitalize on the advantages of physical activity.
Collapse
Affiliation(s)
- Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Advanced Center for Chronic Diseases (ACCDiS) and Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark.
| |
Collapse
|
6
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Craige SM, Mammel RK, Amiri N, Willoughby OS, Drake JC. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol 2024; 77:103371. [PMID: 39357424 PMCID: PMC11474192 DOI: 10.1016/j.redox.2024.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| | - Rebecca K Mammel
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA; Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| |
Collapse
|
8
|
McGee SL, Hargreaves M. Exercise performance and health: Role of GLUT4. Free Radic Biol Med 2024; 224:479-483. [PMID: 39243828 DOI: 10.1016/j.freeradbiomed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The glucose transporter GLUT4 is integral for optimal skeletal muscle performance during exercise, as well as for metabolic health. Physiological regulation of GLUT4 translocation during exercise and increased GLUT4 expression following exercise involves multiple, redundant signalling pathways. These include effects of reactive oxygen species (ROS). ROS contribute to GLUT4 translocation that increases skeletal muscle glucose uptake during exercise and stimulate signalling pathways that increase GLUT4 expression. Conversely, ROS can also inhibit GLUT4 translocation and expression in metabolic disease states. The opposing roles of ROS in GLUT4 regulation are ultimately linked to the metabolic state of skeletal muscle and the intricate mechanisms involved give insights into pathways critical for exercise performance and implicated in metabolic health and disease.
Collapse
Affiliation(s)
- Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, 3217, Australia.
| | - Mark Hargreaves
- Department of Anatomy & Physiology, University of Melbourne, 3010, Australia.
| |
Collapse
|
9
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
10
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
11
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Powers SK, Lategan-Potgieter R, Goldstein E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic Biol Med 2024; 224:470-478. [PMID: 39181477 DOI: 10.1016/j.freeradbiomed.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Following the discovery that exercise increases the production of reactive oxygen species in contracting skeletal muscles, evidence quickly emerged that endurance exercise training increases the abundance of key antioxidant enzymes in the trained muscles. Since these early observations, knowledge about the impact that regular exercise has on skeletal muscle antioxidant capacity has increased significantly. Importantly, in recent years, our understanding of the cell signaling pathways responsible for this exercise-induced increase in antioxidant enzymes has expanded exponentially. Therefore, the goals of this review are: 1) summarize our knowledge about the influence that exercise training has on the abundance of key antioxidant enzymes in skeletal muscles; and 2) to provide a state-of-the-art review of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway that is responsible for many of the exercise-induced changes in muscle antioxidant capacity. We begin with a discussion of the sources of reactive oxygen species in contracting muscles and then examine the exercise-induced changes in the antioxidant enzymes that eliminate both superoxide radicals and hydrogen peroxide in muscle fibers. We conclude with a discussion of the advances in our understanding of the exercise-induced control of the Nrf2 signaling pathway that is responsible for the expression of numerous antioxidant proteins. In hopes of stimulating future research, we also identify gaps in our knowledge about the signaling pathways responsible for the exercise-induced increases in muscle antioxidant enzymes.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | | | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL, USA
| |
Collapse
|
13
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
14
|
Gonzalo-Skok O, Casuso RA. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:77. [PMID: 38981985 PMCID: PMC11233485 DOI: 10.1186/s40798-024-00741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation. METHODS In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI). RESULTS We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance. CONCLUSION While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
Collapse
Affiliation(s)
- Oliver Gonzalo-Skok
- Department of Communication and Education, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Sevilla, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
15
|
Shao M, Pan Q, Tan H, Wu J, Lee HW, Huber AD, Wright WC, Cho JH, Yu J, Peng J, Chen T. CYP3A5 unexpectedly regulates glucose metabolism through the AKT-TXNIP-GLUT1 axis in pancreatic cancer. Genes Dis 2024; 11:101079. [PMID: 38560501 PMCID: PMC10980945 DOI: 10.1016/j.gendis.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024] Open
Abstract
CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Shao
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
16
|
Yoshizaki H, Kawaharada R, Tsutsumi S, Okami H, Toriumi A, Miyata E, Nakamura A. Unveiling the Threat of Maternal Advanced Glycation End Products to Fetal Muscle: Palmitoleic Acid to the Rescue. Nutrients 2024; 16:1898. [PMID: 38931253 PMCID: PMC11207069 DOI: 10.3390/nu16121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.
Collapse
Affiliation(s)
- Hitomi Yoshizaki
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo 113-8602, Japan;
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Saki Tsutsumi
- Department of Neurophysiology & Neural Repair, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Akiyo Toriumi
- Department of Public Health, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Eri Miyata
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| |
Collapse
|
17
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
19
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
20
|
Eggelbusch M, Charlton BT, Bosutti A, Ganse B, Giakoumaki I, Grootemaat AE, Hendrickse PW, Jaspers Y, Kemp S, Kerkhoff TJ, Noort W, van Weeghel M, van der Wel NN, Wesseling JR, Frings-Meuthen P, Rittweger J, Mulder ER, Jaspers RT, Degens H, Wüst RCI. The impact of bed rest on human skeletal muscle metabolism. Cell Rep Med 2024; 5:101372. [PMID: 38232697 PMCID: PMC10829795 DOI: 10.1016/j.xcrm.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
Collapse
Affiliation(s)
- Moritz Eggelbusch
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Bergita Ganse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| | - Ifigenia Giakoumaki
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Paul W Hendrickse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia R Wesseling
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Edwin R Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Hans Degens
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lithuanian Sports University, Kaunas, Lithuania
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Kano R, Tabuchi A, Tanaka Y, Shirakawa H, Hoshino D, Poole DC, Kano Y. In vivo cytosolic H 2O 2 changes and Ca 2+ homeostasis in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2024; 326:R43-R52. [PMID: 37899753 DOI: 10.1152/ajpregu.00152.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
22
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
23
|
Day NJ, Kelly SS, Lui LY, Mansfield TA, Gaffrey MJ, Trejo JB, Sagendorf TJ, Attah K, Moore RJ, Douglas CM, Newman AB, Kritchevsky SB, Kramer PA, Marcinek DJ, Coen PM, Goodpaster BH, Hepple RT, Cawthon PM, Petyuk VA, Esser KA, Qian WJ, Cummings SR. Signatures of Cysteine Oxidation on Muscle Structural and Contractile Proteins Are Associated with Physical Performance and Muscle Function in Older Adults: Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298224. [PMID: 37986748 PMCID: PMC10659491 DOI: 10.1101/2023.11.07.23298224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (r = 0.48) between a higher oxidation level of 8 Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impair muscle power and strength, walking speed, and cardiopulmonary fitness with aging.
Collapse
Affiliation(s)
- Nicholas J. Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shane S. Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Tyler A. Mansfield
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jesse B. Trejo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J. Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Collin M. Douglas
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | | | - Russell T. Hepple
- Department of Physical Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Karyn A. Esser
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| |
Collapse
|
24
|
Cobley JN. 50 shades of oxidative stress: A state-specific cysteine redox pattern hypothesis. Redox Biol 2023; 67:102936. [PMID: 37875063 PMCID: PMC10618833 DOI: 10.1016/j.redox.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative stress is biochemically complex. Like primary colours, specific reactive oxygen species (ROS) and antioxidant inputs can be mixed to create unique "shades" of oxidative stress. Even a minimal redox module comprised of just 12 (ROS & antioxidant) inputs and 3 outputs (oxidative damage, cysteine-dependent redox-regulation, or both) yields over half a million "shades" of oxidative stress. The present paper proposes the novel hypothesis that: state-specific shades of oxidative stress, such as a discrete disease, are associated with distinct tell-tale cysteine oxidation patterns. The patterns are encoded by many parameters, from the identity of the oxidised proteins, the cysteine oxidation type, and magnitude. The hypothesis is conceptually grounded in distinct ROS and antioxidant inputs coalescing to produce unique cysteine oxidation outputs. And considers the potential biological significance of the holistic cysteine oxidation outputs. The literature supports the existence of state-specific cysteine oxidation patterns. Measuring and manipulating these patterns offer promising avenues for advancing oxidative stress research. The pattern inspired hypothesis provides a framework for understanding the complex biochemical nature of state-specific oxidative stress.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine redox technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
25
|
Lisi V, Senesi G, Balbi C. Converging protective pathways: Exploring the linkage between physical exercise, extracellular vesicles and oxidative stress. Free Radic Biol Med 2023; 208:718-727. [PMID: 37739138 DOI: 10.1016/j.freeradbiomed.2023.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Physical Exercise (EXR) has been shown to have numerous beneficial effects on various systems in the human body. It leads to a decrease in the risk of mortality from chronic diseases, such as cardiovascular disease, cancer, metabolic and central nervous system disorders. EXR results in improving cardiovascular fitness, cognitive function, immune activity, endocrine action, and musculoskeletal health. These positive effects make EXR a valuable intervention for promoting overall health and well-being in individuals of all ages. These beneficial effects are partially mediated by the role of the regular EXR in the adaptation to redox homeostasis counteracting the sudden increase of ROS, the hallmark of many chronic diseases. EXR can trigger the release of numerous humoral factors, e.g. protein, microRNA (miRs), and DNA, that can be shuttled as cargo of Extracellular vesicles (EVs). EVs show different cargo modification after oxidative stress stimuli as well as after EXR. In this review, we aim to highlight the main studies on the role of EVs released during EXR and oxidative stress conditions in enhancing the antioxidant enzymes pathway and in the decrease of oxidative stress environment mediated by their cargo.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| |
Collapse
|
26
|
Cimmino TP, Pagano E, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl-peptide receptor 2 signalling triggers aerobic metabolism of glucose through Nox2-dependent modulation of pyruvate dehydrogenase activity. Open Biol 2023; 13:230336. [PMID: 37875162 PMCID: PMC10597678 DOI: 10.1098/rsob.230336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
27
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Henriquez-Olguin C, Meneses-Valdes R, Raun SH, Gallero S, Knudsen JR, Li Z, Li J, Sylow L, Jaimovich E, Jensen TE. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle. Redox Biol 2023; 65:102842. [PMID: 37572454 PMCID: PMC10440567 DOI: 10.1016/j.redox.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023] Open
Abstract
The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Steffen H Raun
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Jonas R Knudsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- College of Physical Education, Chongqing University, Chongqing, 400044, CN, China
| | - Jingwen Li
- School of Medicine and Nursing, Huzhou University, Huzhou, 313000, CN, China
| | - Lykke Sylow
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
29
|
Espinosa A, Casas M, Jaimovich E. Energy (and Reactive Oxygen Species Generation) Saving Distribution of Mitochondria for the Activation of ATP Production in Skeletal Muscle. Antioxidants (Basel) 2023; 12:1624. [PMID: 37627619 PMCID: PMC10451830 DOI: 10.3390/antiox12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Exercise produces oxidants from a variety of intracellular sources, including NADPH oxidases (NOX) and mitochondria. Exercise-derived reactive oxygen species (ROS) are beneficial, and the amount and location of these ROS is important to avoid muscle damage associated with oxidative stress. We discuss here some of the evidence that involves ROS production associated with skeletal muscle contraction and the potential oxidative stress associated with muscle contraction. We also discuss the potential role of H2O2 produced after NOX activation in the regulation of glucose transport in skeletal muscle. Finally, we propose a model based on evidence for the role of different populations of mitochondria in skeletal muscle in the regulation of ATP production upon exercise. The subsarcolemmal population of mitochondria has the enzymatic and metabolic components to establish a high mitochondrial membrane potential when fissioned at rest but lacks the capacity to produce ATP. Calcium entry into the mitochondria will further increase the metabolic input. Upon exercise, subsarcolemmal mitochondria will fuse to intermyofibrillar mitochondria and will transfer the mitochondria membrane potential to them. These mitochondria are rich in ATP synthase and will subsequentially produce the ATP needed for muscle contraction in long-term exercise. These events will optimize energy use and minimize mitochondria ROS production.
Collapse
Affiliation(s)
- Alejandra Espinosa
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
- San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaiso, San Felipe 2172972, Chile
| | - Mariana Casas
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
| | - Enrique Jaimovich
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
| |
Collapse
|
30
|
Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, Apró W, Larsen FJ. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiol (Oxf) 2023; 238:e13972. [PMID: 37017615 DOI: 10.1111/apha.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
AIM The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
Collapse
Affiliation(s)
- Mikael Flockhart
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Dominik Tischer
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Lina C Nilsson
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Sarah J Blackwood
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
31
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Iwasa M, Kato H, Iwashita K, Yamakage H, Kato S, Saito S, Ihara M, Nishimura H, Kawamoto A, Suganami T, Tanaka M, Satoh-Asahara N. Taxifolin Suppresses Inflammatory Responses of High-Glucose-Stimulated Mouse Microglia by Attenuating the TXNIP-NLRP3 Axis. Nutrients 2023; 15:2738. [PMID: 37375642 DOI: 10.3390/nu15122738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus is associated with an increased risk of dementia, potentially through multifactorial pathologies, including neuroinflammation. Therefore, there is a need to identify novel agents that can suppress neuroinflammation and prevent cognitive impairment in diabetes. In the present study, we demonstrated that a high-glucose (HG) environment elevates the intracellular reactive oxygen species (ROS) levels and triggers inflammatory responses in the mouse microglial cell line BV-2. We further found that thioredoxin-interacting protein (TXNIP), a ROS-responsive positive regulator of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, was also upregulated, followed by NLRP3 inflammasome activation and subsequent interleukin-1beta (IL-1β) production in these cells. Conversely, caspase-1 was not significantly activated, suggesting the involvement of noncanonical pathways in these inflammatory responses. Moreover, our results demonstrated that taxifolin, a natural flavonoid with antioxidant and radical scavenging activities, suppressed IL-1β production by reducing the intracellular ROS levels and inhibiting the activation of the TXNIP-NLRP3 axis. These findings suggest the novel anti-inflammatory effects of taxifolin on microglia in an HG environment, which could help develop novel strategies for suppressing neuroinflammation in diabetes.
Collapse
Affiliation(s)
- Masayo Iwasa
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hisashi Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kaori Iwashita
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Sayaka Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Hideo Nishimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Rehabilitation, Health Science University, Minamitsuru-gun 401-0380, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
33
|
Lisi V, Senesi G, Bertola N, Pecoraro M, Bolis S, Gualerzi A, Picciolini S, Raimondi A, Fantini C, Moretti E, Parisi A, Sgrò P, Di Luigi L, Geiger R, Ravera S, Vassalli G, Caporossi D, Balbi C. Plasma-derived extracellular vesicles released after endurance exercise exert cardioprotective activity through the activation of antioxidant pathways. Redox Biol 2023; 63:102737. [PMID: 37236143 DOI: 10.1016/j.redox.2023.102737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVD) can cause various conditions, including an increase in reactive oxygen species (ROS) levels that can decrease nitric oxide (NO) availability and promote vasoconstriction, leading to arterial hypertension. Physical exercise (PE) has been found to be protective against CVD by helping to maintain redox homeostasis through a decrease in ROS levels, achieved by increased expression of antioxidant enzymes (AOEs) and modulation of heat shock proteins (HSPs). Extracellular vesicles (EVs) circulating in the body are a major source of regulatory signals, including proteins and nucleic acids. Interestingly, the cardioprotective role of EVs released after PE has not been fully described. The aim of this study was to investigate the role of circulating EVs, obtained through Size Exclusion Chromatography (SEC) of plasma samples from healthy young males (age: 26.95 ± 3.07; estimated maximum oxygen consumption rate (VO2max): 51.22 ± 4.85 (mL/kg/min)) at basal level (Pre_EVs) and immediately after a single bout of endurance exercise (30' treadmill, 70% heart rate (HR) -Post_EVs). Gene ontology (GO) analysis of proteomic data from isolated EVs, revealed enrichment in proteins endowed with catalytic activity in Post_EVs, compare to Pre_EVs, with MAP2K1 being the most significantly upregulated protein. Enzymatic assays on EVs derived from Pre and Post samples showed increment in Glutathione Reductase (GR) and Catalase (CAT) activity in Post_EVs. At functional level, Post_EVs, but not Pre_EVs, enhanced the activity of antioxidant enzymes (AOEs) and reduced oxidative damage accumulation in treated human iPS-derived cardiomyocytes (hCM) at basal level and under stress conditions (Hydrogen Peroxide (H2O2) treatment), resulting in a global cardioprotective effect. In conclusion, our data demonstrated, for the first time, that a single 30-min endurance exercise is able to alter the cargo of circulating EVs, resulting in cardioprotective effect through antioxidant activity.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, 16132, Genova, Italy
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alice Gualerzi
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Centro Imaging Sperimentale, IRCCS Istituto Scientifico San Raffaele, Via Olgettina 52, 20132, Milan, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Elisa Moretti
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Paolo Sgrò
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132, Genova, Italy
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland.
| |
Collapse
|
34
|
Tuncay A, Crabtree DR, Muggeridge DJ, Husi H, Cobley JN. Performance benchmarking microplate-immunoassays for quantifying target-specific cysteine oxidation reveals their potential for understanding redox-regulation and oxidative stress. Free Radic Biol Med 2023; 204:252-265. [PMID: 37192685 DOI: 10.1016/j.freeradbiomed.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible "off-the-shelf" nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the "unseen" microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by evaluating immunoassay performance in diverse contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6-7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∼75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-oxidation in THP-1 cells and (2) exercise increased GAPDH-specific oxidation in human erythrocytes. The "unseen" microplate data were "seen-to-be-believed" via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∼4 h with 50-70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress.
Collapse
Affiliation(s)
- Ahmet Tuncay
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | - Daniel R Crabtree
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | | | - Holger Husi
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK
| | - James N Cobley
- Division of Biomedical Science, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK; Cysteine Redox Technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
35
|
Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, Hao F, Han J, Xu J, Hao W, Wang R, Tian M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol 2023; 61:102634. [PMID: 36827746 PMCID: PMC9982643 DOI: 10.1016/j.redox.2023.102634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.
Collapse
Affiliation(s)
- Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenhe Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yinchao Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhexuan Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaoqing Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fengqi Hao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meihong Tian
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, H-1123, Budapest, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
36
|
Fernández-Puente E, Martín-Prieto E, Márquez CM, Palomero J. Effect of RONS-Induced Intracellular Redox Homeostasis in 6-NBDG/Glucose Uptake in C2C12 Myotubes and Single Isolated Skeletal Muscle Fibres. Int J Mol Sci 2023; 24:ijms24098082. [PMID: 37175789 PMCID: PMC10179233 DOI: 10.3390/ijms24098082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The glucose uptake in skeletal muscle is essential to produce energy through ATP, which is needed by this organ to maintain vital functions. The impairment of glucose uptake compromises the metabolism and function of skeletal muscle and other organs and is a feature of diabetes, obesity, and ageing. There is a need for research to uncover the mechanisms involved in the impairment of glucose uptake in skeletal muscle. In this study, we adapted, developed, optimised, and validated a methodology based on the fluorescence glucose analogue 6-NBDG, combined with a quantitative fluorescence microscopy image analysis, to determine the glucose uptake in two models of skeletal muscle cells: C2C12 myotubes and single fibres isolated from muscle. It was proposed that reactive oxygen and nitrogen species (RONS) and redox homeostasis play an important role in the modulation of intracellular redox signalling pathways associated with glucose uptake. In this study, we prove that the prooxidative intracellular redox environment under oxidative eustress produced by RONS such as hydrogen peroxide and nitric oxide improves glucose uptake in skeletal muscle cells. However, when oxidation is excessive, oxidative distress occurs, and cellular viability is compromised, although there might be an increase in the glucose uptake. Based on the results of this study, the determination of 6-NBDG/glucose uptake in myotubes and skeletal muscle cells is feasible, validated, and will contribute to improve future research.
Collapse
Affiliation(s)
- Escarlata Fernández-Puente
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eva Martín-Prieto
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Carlos Manuel Márquez
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Palomero
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
37
|
Xia Q, Casas-Martinez JC, Zarzuela E, Muñoz J, Miranda-Vizuete A, Goljanek-Whysall K, McDonagh B. Peroxiredoxin 2 is required for the redox mediated adaptation to exercise. Redox Biol 2023; 60:102631. [PMID: 36791646 PMCID: PMC9950660 DOI: 10.1016/j.redox.2023.102631] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Exercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of H2O2 in myoblasts and following exercise in C. elegans. A short bolus addition of H2O2 increases mitochondrial capacity and improves myogenesis of cultured myoblasts, this beneficial adaptive response was suppressed in myoblasts with decreased expression of cytoplasmic Prdxs. Moreover, a swimming exercise protocol in C. elegans increased mitochondrial content, fitness, survival and longevity in wild type (N2) worms. In contrast, prdx-2 mutant worms had decreased fitness, disrupted mitochondria, reduced survival and lifespan following exercise. Global proteomics following exercise identified distinct changes in the proteome of N2 and prdx-2 mutants. Furthermore, a redox proteomic approach to quantify reversible oxidation of specific Cysteine residues revealed a more reduced redox state in the non-exercised prdx-2 mutant strain that become oxidized following exercise. In contrast, specific Cys residues from regulatory proteins become more reduced in the N2 strain following exercise, establishing the key regulatory role of PRDX-2 in a redox signalling cascade following endogenous ROS generation. Our results demonstrate that conserved cytoplasmic 2-Cys Peroxiredoxins are required for the beneficial adaptive response to a physiological redox stress.
Collapse
Affiliation(s)
- Qin Xia
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Cell Signalling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland; Institute of Lifecourse and Medical Sciences, University of Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland.
| |
Collapse
|
38
|
Thomas HJ, Ang T, Morrison DJ, Keske MA, Parker L. Acute exercise and high-glucose ingestion elicit dynamic and individualized responses in systemic markers of redox homeostasis. Front Immunol 2023; 14:1127088. [PMID: 37063903 PMCID: PMC10102861 DOI: 10.3389/fimmu.2023.1127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBiomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma.MethodsIn a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers.ResultsOxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses.ConclusionFindings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.
Collapse
Affiliation(s)
- Hannah J. Thomas
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- *Correspondence: Lewan Parker,
| |
Collapse
|
39
|
Peng F, Xie J, Liu H, Zheng Y, Qian X, Zhou R, Zhong H, Zhang Y, Li M. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection. Bioact Mater 2023; 21:436-449. [PMID: 36185738 PMCID: PMC9483647 DOI: 10.1016/j.bioactmat.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 10/28/2022] Open
Abstract
The widespread use of orthopedic implants to support or replace bones is increasingly threatened by the risk of incurable bacterial infections, impenetrable microbial biofilms, and irreversible antibiotic resistance. In the past, the development of anti-infective biomaterials focused solely on direct antibacterial properties while ignoring the host's immune response. Inspired by the clearance of infection by the innate neutrophil response and participation in anti-infectious immunity of Zn ions, we report an innovative neutrophil extracellular traps (NETs) strategy, induced by biodegradable pure Zn, which achieved therapeutic efficacy toward biomaterial-related infections. Our in vitro and in vivo data showed that pure Zn was favorable for NETs formation by promoting the release of DNA fibers and granule proteins in a reactive oxygen species (ROS)-dependent manner, thereby retraining and degrading bacteria with an efficiency of up to 99.5%. Transcriptome analysis revealed that cytoskeletal rearrangement and toll-like receptor (TLR) signaling pathway were also involved in Zn-induced NETs formation. Furthermore, the in vivo results of a Staphylococcus aureus (S. aureus)-infected rat model verified that pure Zn potentiated the bactericidal capability of neutrophils around implants, and promoted osseointegration in S. aureus-infected rat femurs. This antibacterial immunity concept lays a foundation for the development of other antibacterial biomaterials and holds great promise for treating orthopedic infections.
Collapse
Affiliation(s)
- Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haiming Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xin Qian
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ruixiang Zhou
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China
| | - Yu Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
40
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
41
|
Nabeebaccus AA, Reumiller CM, Shen J, Zoccarato A, Santos CXC, Shah AM. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc Res 2023; 118:3305-3319. [PMID: 35325070 PMCID: PMC9847558 DOI: 10.1093/cvr/cvac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christina M Reumiller
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jie Shen
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Anna Zoccarato
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
42
|
D’Amico A, Fossati C, Pigozzi F, Borrione P, Peruzzi M, Bartimoccia S, Saba F, Pingitore A, Biondi-Zoccai G, Petramala L, De Grandis F, Vecchio D, D’Ambrosio L, Schiavon S, Sciarra L, Nocella C, Cavarretta E. Natural Activators of Autophagy Reduce Oxidative Stress and Muscle Injury Biomarkers in Endurance Athletes: A Pilot Study. Nutrients 2023; 15:nu15020459. [PMID: 36678330 PMCID: PMC9862446 DOI: 10.3390/nu15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oxidative stress and impaired autophagy are directly and indirectly implicated in exercise-mediated muscle injury. Trehalose, spermidine, nicotinamide, and polyphenols possess pro-autophagic and antioxidant properties, and could therefore reduce exercise-induced damage to skeletal muscle. The aim of this study was to investigate whether a mixture of these compounds was able to improve muscle injury biomarkers in endurance athletes through the modulation of oxidative stress and autophagic machinery. METHODS AND RESULTS sNOX2-dp; H2O2 production; H2O2 breakdown activity (HBA); ATG5 and p62 levels, both markers of autophagic process; and muscle injury biomarkers were evaluated in five endurance athletes who were allocated in a crossover design study to daily administration of 10.5 g of an experimental mixture or no treatment, with evaluations conducted at baseline and after 30 days of mixture consumption. Compared to baseline, the mixture intake led to a remarkable reduction of oxidative stress and positively modulated autophagy. Finally, after the 30-day supplementation period, a significant decrease in muscle injury biomarkers was found. CONCLUSION Supplementation with this mixture positively affected redox state and autophagy and improved muscle injury biomarkers in athletes, allowing for better muscle recovery. Moreover, it is speculated that this mixture could also benefit patients suffering from muscle injuries, such as cancer or cardiovascular patients, or elderly subjects.
Collapse
Affiliation(s)
- Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Annachiara Pingitore
- Department of General and Specialistic Surgery “Paride Stefanini”, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Sciarra
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel./Fax: +39-064-9970-102
| | - Elena Cavarretta
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
43
|
Kumar RA, Hahn D, Kelley RC, Muscato DR, Shamoun A, Curbelo-Bermudez N, Butler WG, Yegorova S, Ryan TE, Ferreira LF. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction. Free Radic Biol Med 2023; 194:23-32. [PMID: 36436728 PMCID: PMC10191720 DOI: 10.1016/j.freeradbiomed.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.
Collapse
Affiliation(s)
- Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Endocrine Society, Washington, D.C, USA
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Alex Shamoun
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - W Greyson Butler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
45
|
Llanos P, Palomero J. Reactive Oxygen and Nitrogen Species (RONS) and Cytokines-Myokines Involved in Glucose Uptake and Insulin Resistance in Skeletal Muscle. Cells 2022; 11:cells11244008. [PMID: 36552772 PMCID: PMC9776436 DOI: 10.3390/cells11244008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance onset in skeletal muscle is characterized by the impairment of insulin signaling, which reduces the internalization of glucose, known as glucose uptake, into the cell. Therefore, there is a deficit of intracellular glucose, which is the main source for energy production in the cell. This may compromise cellular viability and functions, leading to pathological dysfunction. Skeletal muscle fibers continuously generate reactive oxygen and nitrogen species (RONS). An excess of RONS produces oxidative distress, which may evoke cellular damage and dysfunction. However, a moderate level of RONS, which is called oxidative eustress, is critical to maintain, modulate and regulate cellular functions through reversible interactions between RONS and the components of cellular signaling pathways that control those functions, such as the facilitation of glucose uptake. The skeletal muscle releases peptides called myokines that may have endocrine and paracrine effects. Some myokines bind to specific receptors in skeletal muscle fibers and might interact with cellular signaling pathways, such as PI3K/Akt and AMPK, and facilitate glucose uptake. In addition, there are cytokines, which are peptides produced by non-skeletal muscle cells, that bind to receptors at the plasma membrane of skeletal muscle cells and interact with the cellular signaling pathways, facilitating glucose uptake. RONS, myokines and cytokines might be acting on the same signaling pathways that facilitate glucose uptake in skeletal muscle. However, the experimental studies are limited and scarce. The aim of this review is to highlight the current knowledge regarding the role of RONS, myokines and cytokines as potential signals that facilitate glucose uptake in skeletal muscle. In addition, we encourage researchers in the field to lead and undertake investigations to uncover the fundamentals of glucose uptake evoked by RONS, myokines, and cytokines.
Collapse
Affiliation(s)
- Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380544, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Jesus Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Av. Alfonso X El Sabio, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-666-589-153
| |
Collapse
|
46
|
Vainshtein A, Slavin MB, Cheng AJ, Memme JM, Oliveira AN, Perry CGR, Abdul-Sater AA, Belcastro AN, Riddell MC, Triolo M, Haas TL, Roudier E, Hood DA. Scientific meeting report: International Biochemistry of Exercise 2022. J Appl Physiol (1985) 2022; 133:1381-1393. [PMID: 36356257 DOI: 10.1152/japplphysiol.00475.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.
Collapse
Affiliation(s)
| | - Mikhaela B Slavin
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Arthur J Cheng
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Jonathan M Memme
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Angelo N Belcastro
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Matthew Triolo
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Tara L Haas
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Emilie Roudier
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - David A Hood
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Liu S, Qi R, Zhang J, Zhang C, Chen L, Yao Z, Niu W. Kalirin mediates Rac1 activation downstream of calcium/calmodulin-dependent protein kinase II to stimulate glucose uptake during muscle contraction. FEBS Lett 2022; 596:3159-3175. [PMID: 35716086 DOI: 10.1002/1873-3468.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in contraction-stimulated glucose uptake in skeletal muscle. C2C12 myotubes were contracted by electrical pulse stimulation (EPS), and treadmill running was used to exercise mice. The activities of CaMKII, the small G protein Rac1, and the Rac1 effector kinase PAK1 were elevated in muscle by running exercise or EPS, while they were lowered by the CaMKII inhibitor KN-93 and/or small interfering RNA (siRNA)-mediated knockdown. EPS induced the mRNA and protein expression of the Rac1-GEF Kalirin in a CaMKII-dependent manner. EPS-induced Rac1 activation was lowered by the Kalirin inhibitor ITX3 or siRNA-mediated Kalirin knockdown. KN-93, ITX3, and siRNA-mediated Kalirin knockdown reduced EPS-induced glucose uptake. These findings define a CaMKII-Kalirin-Rac1 signaling pathway that contributes to contraction-stimulated glucose uptake in skeletal muscle myotubes and tissue.
Collapse
Affiliation(s)
- Sasa Liu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Rui Qi
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Juan Zhang
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, China
| | - Liming Chen
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Zhi Yao
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Wenyan Niu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| |
Collapse
|
48
|
Madhamanchi K, Madhamanchi P, Jayalakshmi S, Panigrahi M, Patil A, Phanithi PB. Endoplasmic reticulum stress and unfolded protein accumulation correlate to seizure recurrence in focal cortical dysplasia patients. Cell Stress Chaperones 2022; 27:633-643. [PMID: 36258150 PMCID: PMC9672265 DOI: 10.1007/s12192-022-01301-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Epileptic seizures occur due to an imbalance between excitatory and inhibitory neurosignals. The excitotoxic insults promote the accumulation of reactive oxygen species (ROS), unfolded proteins (UFP) aggregation, and sometimes even cell death. The epileptic brain samples in our study showed significant changes in the quantity of UFP accumulation. This part explored the efficiency of ER stress and autophagy responses at neutralizing the UFP using resected epileptic brain tissue samples. Meanwhile, we regularly observed these patients' post-surgical clinical data to find the recurrence of seizures. According to International League against Epilepsy (ILAE) suggestions, we classified the patients (n = 26) as class 1 (completely seizure-free), class 2 (less frequent seizures or auras), and class 3 (auras with < 3 seizures per year). The classification helped us understand the reason for variations in the UFP accumulation in patient samples. We have observed the protein levels of ER chaperone, glucose-regulated protein 78 kDa (GRP78/BiP), inositol-requiring enzyme 1α (IRE1α), X box-binding protein 1 s (XBP1s), eukaryotic translation initiation factor 2α (peIF2α), C/EBP homologous protein (CHOP), NADPH oxidase (NOX2), and autophagy proteins like BECLIN1, ATG 7, 12, 5, 16, p62, and LC3. Our results suggested that ER stress response limitation may contribute to seizure recurrence in epilepsy patients, particularly in classes 2 and 3. In addition, we have observed significant upregulation of ER stress-dependent apoptosis initiation factor CHOP in these patients. These results indicate that understanding the ER stress response pattern infers the possibility of post-surgical outcomes in focal cortical dysplasia (FCD) patients.
Collapse
Affiliation(s)
- Kishore Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Pradeep Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Govt. Degree College for Men, Srikakulam District, Andhra Pradesh, 532001, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
49
|
Dang J, Lv Y, Li C, Fang Y, Li G, Wang Q. Integrated chromatographic approach for the discovery of gingerol antioxidants from Dracocephalum heterophyllum and their potential targets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4133-4145. [PMID: 36226573 DOI: 10.1039/d2ay01282k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a traditional Tibetan medicine, Dracocephalum heterophyllum has many benefits, but due to the complicated procedures of separation and purification of its chemical constituents, there are few reports on gingerols. In this study, four antioxidative gingerols were isolated from Dracocephalum heterophyllum by an integrated chromatographic approach. Antioxidant activity was then determined by in vitro experiments and its potential targets of action were investigated. First, the extract was pretreated using silica gel, MCI GEL®CHP20P, and diol and spherical medium pressure columns, while the antioxidant peaks were identified using an online HPLC-1,1-diphenyl-2-picrylhydrazyl system. Then, the antioxidant peaks were directionally separated and purified by high pressure liquid chromatography to obtain four gingerols with a purity higher than 95%, namely 5-methoxy-6-gingerol, 6-shogaol, 6-paradol, and diacetoxy-6-gingerdiol. Finally, 1,1-diphenyl-2-picrylhydrazyl assays and cellular antioxidant experiments were carried out, and molecular docking was used to explore potential antioxidant targets. The isolated gingerols upregulated the activity of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and NADPH oxidase 2 (NOX2), while they had little effect on the activity of nadph:quinone oxidoreductase-1 (NQO1). This method can efficiently prepare and isolate antioxidative gingerols from Dracocephalum heterophyllum, and it can be extended to isolate antioxidants from other natural products.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, PR China.
| | - Yue Lv
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, PR China.
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China.
| | - Chengzhao Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China.
| | - Yan Fang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China.
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China.
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining 810001, PR China.
| |
Collapse
|
50
|
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. J Physiol 2022; 600:4393-4408. [PMID: 36054466 PMCID: PMC9826115 DOI: 10.1113/jp283039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.
Collapse
Affiliation(s)
- Fulvia Draicchio
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Volker Behrends
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Neale A. Tillin
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Nicholas M. Hurren
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Lykke Sylow
- Molecular Metabolism in Cancer & Ageing Research GroupDepartment of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Richard Mackenzie
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| |
Collapse
|